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Current searches for gravitational waves from coalescing binary black holes (BBH) use templates
that only include the dominant harmonic. In this study we use effective-one-body multipolar wave-
forms calibrated to numerical-relativity simulations to quantify the effect of neglecting sub-dominant
harmonics on the sensitivity of searches. We consider both signal-to-noise ratio (SNR) and the
signal-based vetoes that are used to re-weight SNR. We find that neglecting sub-dominant modes
when searching for non-spinning BBHs with component masses 3 M� ≤ m1,m2 ≤ 200 M� and total
mass M < 360 M� in advanced LIGO results in a negligible reduction of the re-weighted SNR at
detection thresholds. Sub-dominant modes therefore have no effect on the detection rates predicted
for advanced LIGO. Furthermore, we find that if sub-dominant modes are included in templates the
sensitivity of the search becomes worse if we use current search priors, due to an increase in false
alarm probability. Templates would need to be weighted differently than what is currently done to
compensate for the increase in false alarms. If we split the template bank such that sub-dominant
modes are only used when M & 100 M� and mass ratio q & 4, we find that the sensitivity does
improve for these intermediate mass-ratio BBHs, but the sensitive volume associated with these sys-
tems is still small compared to equal-mass systems. Using sub-dominant modes is therefore unlikely
to substantially increase the probability of detecting gravitational waves from non-spinning BBH
signals unless there is a relatively large population of intermediate mass-ratio BBHs in the universe.

I. INTRODUCTION

Within the next few years the next genera-
tion of gravitational-wave detectors will come online.
These detectors — the advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) in the United
States [1], the French-Italian Virgo observatory [2], the
KAGRA detector in Japan [3], and a potential third
LIGO detector in India [4] — will be sensitive to sources
up to 10 times more distant than first generation detec-
tors. One of the most promising sources of gravitational-
waves for these detectors are coalescing binary black holes
(BBHs). As the two black holes in a binary orbit each
other, they emit gravitational radiation; this causes them
to inspiral and eventually merge into a single black hole.
Advanced detectors will be able to detect radiation emit-
ted during this process up to tens of Gpc away. The rate
of BBH coalescences with masses detectable by the ad-
vanced detectors is highly uncertain: the detection rate
has been estimated to be as low as 0.4 yr−1, but it may
be as high as 1000 yr−1 [5]. If the optimistic end of this
range is correct, BBHs would be the most prolific source
of gravitational-wave detections in the advanced detector
era.

Searches for BBHs use a matched filter to determine
when a gravitational wave is likely to be present in a
detector’s data [6, 7].1 The filter produces a signal-to-
noise ratio (SNR) that is proportional to the probability

1 Un-modeled “burst” searches [8] are also sensitive to BBHs [9].
Previously, these searches have been used to search for signals
with total masses M > 100 M�, as the signals in this mass
range did not have many cycles in the sensitive band of the

that a signal exists in the data with similar parameters
as the template used in the correlation [10]. Since the
physical parameters of the signal are unknown a priori,
a discrete bank of templates is used to cover the range of
possible parameters [11, 12]. This technique for search-
ing for gravitational waves relies on good agreement be-
tween templates and real signals. If there is significant
disagreement between the two, the SNR will be reduced,
and it becomes difficult to separate potential signals from
noise. It is therefore important to verify that templates
adequately resemble potential gravitational-wave signals.

Gravitational waveforms are decomposed into a −2
spin-weighted spherical harmonic basis −2Ylm(θ, φ).
Template waveforms used in past searches for BBHs have
only included the most dominant mode, l = |m| = 2
[6, 7]. In addition, predictions of the number of detec-
tions that will be made in advanced LIGO have been
made assuming both templates and signals only have the
dominant mode [5]. Real signals, however, will have all
modes. There can be significant mismatch [defined as
1 − E, where E is given by Eq. 13; see Sec. II C 1 for
details] between waveforms that include sub-dominant
modes and waveforms that only include the dominant
mode [13–16]. This raises the question, by neglecting
sub-dominant modes has the sensitivity of BBH searches
been overstated? Furthermore, would sensitivity improve
if templates included sub-dominant modes?

initial generation of LIGO detectors. In this paper, we will
consider signals with M as large as 360 M�. Due to the im-
proved low-frequency (< 40 Hz) sensitivity of the advanced de-
tectors, template-based searches similar to those done in [6, 7]
will be feasible at these higher masses. We therefore only con-
sider template-based searches here.
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Several studies have investigated the effects of sub-
dominant modes to try to answer these questions. Ref.
[14] used waveforms generated from numerical relativity
as both template and signal to measure mismatch when
sub-dominant modes are not included in templates. They
considered systems with total mass M > 100 M� and
mass ratios 1 ≤ q ≤ 4.2 When computing overlaps they
only considered templates which had the same intrinsic
parameters (mass and spin) as signals. They found that
adding sub-dominant modes could improve detection vol-
ume by up to 30%, but they noted that the largest gain
in volume occurred for signals for which the detectors
had the least sensitivity (these were systems with asym-
metric masses and inclination angle — the angle between
the orbital angular momentum and the line of sight to the
detector — θ ≈ π/2).

To fully understand the effect of sub-dominant modes
on the sensitivity of BBH searches, a bank of template
waveforms covering the source parameter space is nec-
essary. These waveforms should contain the complete
inspiral, merger and ringodwn stages of sub-dominant
modes since the latter become relatively stronger during
the last stage of inspiral and merger. Here we employ
effective-one-body (EOB) waveforms [17, 18] calibrated
to numerical-relativity simulations [13].

Building on an initial attempt [19] to calibrate sub-
dominant modes, Ref. [13] built a nonspinning EOB
model that include four sub-dominant modes, namely
the (l,m) = (2, 1), (3, 3), (4, 4) and (5, 5) modes, as
well as the dominant (l,m) = (2, 2) mode. The EOB
model of Ref. [13] was calibrated to numerical-relativity
simulations of mass ratios q ≤ 6. 3 A direct study [21]
carried out with the Markov Chain Monte Carlo tech-
nique demonstrated that the EOB waveforms of Ref. [13]
are indistinguishable from the numerical-relativity wave-
forms [22] used to calibrate them up to SNR = 50 for
the advanced LIGO detectors. Furthermore, preliminary
studies in Ref. [13] suggested that the EOB waveforms
containing subdominat modes could be sufficiently accu-
rate to search for nonspinning BBH signals of q ≤ 6, at
least in the relatively narrow frequency band where di-
rect comparison with numerical-relativity waveforms was
possible. The recent investigation of Ref. [23] verified the
accuracy of these EOB waveforms in the entire sensitiv-
ity band of advanced LIGO detectors. Having the correct
limit for q → ∞ by construction, we expect EOB wave-
forms to be reasonably accurate when q > 6. This ex-
pectation was recently reinforced by the excellent agree-
ment found against a q = 10 numerical-relativity wave-
form [24]. Finally, the dominant mode EOB waveforms
that we use here have been employed as simulated signals
in the most recent LIGO BBH searches [7].

2 In this paper we use the convention that q = m1/m2 with m1 ≥
m2.

3 An EOB model with slightly different parametrization was cal-
ibrated to the same set of numerical-relativity waveforms and
provides two sub-dominant modes (l,m) = (2, 1) and (3, 3) [20].

Using a bank of dominant-mode templates that allows
maximization over the masses of the binaries, Ref. [15]
studied templates and signals with component masses
3 M� ≤ m1,m2 ≤ 25 M�. They also found that sub-
dominant modes had little effect on equal-mass systems,
but argued that sensitive volume could be increased by
as much as 25% for systems with q ≥ 4 and inclination
angles 1.08 rad ≤ θ ≤ 2.02 rad if sub-dominant modes
were added to templates.

Both of these studies calculated what percentage of
sensitive volume could be gained if sub-dominant modes
were added to templates by finding the fractional loss
in SNR of signals with sub-dominant modes when they
were recovered by dominant-mode templates. However,
estimating the gain in sensitive volume in this manner
neglects additional complications that arise when search-
ing in real, non-Gaussian, data. In real data a signal-
based veto, χ2 [25], is used to re-weight SNR [6, 7]. Re-
weighted SNR is needed in order to separate potential
gravitational-wave signals from non-Gaussian transients
that are present in detector data [26]. Any mismatch
between the templates and signals causes an increase in
χ2, which in turn causes a decrease in re-weighted SNR
relative to SNR. Thus the sensitivity of dominant-mode
templates to real signals may be worse than predicted
from SNR considerations alone. This makes the case for
adding sub-dominant modes to templates stronger.

A signal must have high statistical significance in or-
der for it to be considered a gravitational-wave candi-
date. The standard measurement of significance is false-
alarm probability, which is the probability that an event
caused by noise is mis-identified as a signal. When cal-
culating sensitive volume, the SNR threshold is chosen
such that the false-alarm probability at that threshold is
small. In Refs. [14] and [15] the same SNR threshold was
used when estimating the sensitive volume of dominant-
mode templates and the potential sensitive volume of
sub-dominant mode templates. Both studies acknowl-
edged that adding sub-dominant modes to templates can
increase the probability of getting a false alarm. To
keep the false-alarm probability fixed, the SNR thresh-
old in a search that uses sub-dominant mode templates
must therefore increase. This increase in threshold de-
creases the sensitive volume that can be obtained by sub-
dominant mode templates, making the case for adding
sub-dominant modes to templates weaker.

Due to these conflicting factors it is difficult to make
a definitive statement about the impact of sub-dominant
modes on BBH searches from SNR considerations alone.
In this paper we resolve the uncertainty by finding both
SNR and χ2 between templates without sub-dominant
modes and signals with sub-dominant modes. Doing so,
we are able to estimate the fraction of sensitive volume
that is lost by neglecting sub-dominant modes when re-
weighted SNR is used. We also simulate a search with
sub-dominant modes: we estimate the increase in thresh-
old needed to keep the false-alarm probability fixed,
thereby allowing an accurate comparison of search vol-
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umes when sub-dominant modes are included and ex-
cluded in templates. We consider non-spinning BBHs
with component-masses 3 M� ≤ m1,m2 ≤ 200 M� and
with total mass M < 360 M�. We therefore cover the
entire range of “stellar-mass” BBHs that were searched
for in LIGO and Virgo data in the past (m1,m2 ∈
[3, 97] M�; M ≤ 100 M�) [7, 27], and we cover bina-
ries that involve “intermediate-mass black holes” which
may form from dynamical capture in globular clus-
ters [28]. To generate both dominant-mode and sub-
dominant mode waveforms we use the EOB model cal-
ibrated to numerical-relativity simulations, as obtained
in Ref. [13].

For simplicity, and as was done in Refs. [14, 15], we
study the effect of sub-dominant modes using a single
detector (real searches use a network of detectors). We
simulate an advanced LIGO detector by generating sta-
tionary Gaussian noise colored by the zero-detuned, high-
power advanced LIGO design curve [29]. Due to the
presence of non-Gaussian transients there is currently
no model for the noise distribution of real detector data
[30, 31]. However, by injecting signals into Gaussian
noise we find the best sensitivity that can be obtained by
the search. We reason that if sub-dominant mode tem-
plates have worse sensitivity than dominant-mode tem-
plates in Gaussian noise, those templates will fare no bet-
ter in real detector data. Furthermore, current detection
pipelines are able to mitigate noise transients such that
the sensitive volumes of real detectors are within a factor
of a few of what they would be if the data were Gaussian
[26]. The sensitive volumes we find using Gaussian noise
is thus a good approximation of what they will be in real
detector data (assuming advanced detectors have similar
data-quality characteristics).

In this paper we are concerned primarily with the ef-
fects of sub-dominant modes on our ability to detect grav-
itational waves; we do not address the effect on parameter
estimation. The goal of detection is to determine whether
or not a signal exists in some data, regardless of the
parameters. When doing parameter estimation, on the
other hand, a signal is assumed to be in the data; the goal
is then to find the best fitting parameters.4 These differ-
ing goals put different constraints on what to use as tem-
plate waveforms. As we will see, including sub-dominant
modes in templates does not improve our ability to de-
tect if the sub-dominant modes do not increase the SNR
of signals enough to offset increases in false-alarm prob-
ability. If a signal is assumed to be present, however,
then adding sub-dominant modes to template waveforms
can only improve parameter estimation if the resulting
waveform is a better match to the signal. Indeed, it has
been shown [16, 21] that including sub-dominant modes
reduces systematic bias when measuring the parameters

4 In prior searches, a detection pipeline was run on data first to
identify times when candidate signals exist; these times were then
followed up by parameter estimation pipelines [32].

of signals.
The rest of this paper is divided as follows: Sec. II pro-

vides background for the search methods and statistics
we discuss. In Sec. II A we review how SNR is calculated
using dominant-mode templates; in Sec. II B we review
the χ2 statistic and how it is used to re-weight the SNR;
in Sec. II C we discuss the statistics we use in this pa-
per to compare the sensitivity of searches; in Sec. II D
we provide a brief review of the astrophysics of BBHs to
motivate our choice of masses and rate priors. We show
that the bank of dominant-mode templates we use is ef-
fectual to dominant-mode signals across the mass space
we investigate in Sec. III A. In Sec. III B we find the sen-
sitivity of this bank to signals with sub-dominant modes
to see if sub-dominant modes have an effect on predicted
sensitivity. In Sec. IV we estimate the sensitivity of a
simulated bank of sub-dominant mode templates using
equations derived in Appendices B and A. Finally, in
Sec. V we review and discuss our results.

II. REVIEW OF CURRENT SEARCHES AND
TEMPLATE MODELING

The strain induced in a detector from a passing gravi-
tational wave is [33]:

h(t; Υ,Ξ) =
1

r

(
F+(α, δ, ψ)h+(t− tc; θ, φ, φ0,Υ)

+ F×(α, δ, ψ)h×(t− tc; θ, φ, φ0,Υ)
)
, (1)

where:

h(+,×) = (<,=)
∑
lm

−2Ylm(θ, φ)Alm(t− tc; Υ)

× exp
[
−i
(

Ψlm(t− tc; Υ) +mφ0

)]
. (2)

Here, −2Ylm(θ, φ) are the −2 spin-weighted spherical har-
monics, r is the distance to the source from the detector,
φ0 is the initial phase of the binary, and tc is the co-
alescence time of the binary. The angle θ is the angle
between the orbital-angular momentum and the line-of-
sight to the detector (the inclination); φ is the azimuthal
angle to the projection of the line-of-sight on to the or-
bital plane. The functions F+ and F× project the gravi-
tational wave from the source’s radiation frame into the
detector’s frame; they are functions of the right ascension
(α), declination (δ), and polarization (ψ) of the source
with respect to the detector [34].5 Since we only con-
sider non-spinning waveforms in this paper, the intrinsic
parameters Υ are the component masses m1 and m2.
Neglecting spin also means that φ and φ0 are degener-
ate, and we can set φ0 = 0. Together the parameters
{tc, r, θ, φ, α, δ, ψ} make up the extrinsic parameters Ξ.

5 Due to the motion of the Earth, F+ and F× are also functions
of time. Here we assume that the relative displacement of the
detector is small across the duration of the signal in the detector’s
band.
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A. SNR maximization for a dominant mode bank

Given some detector data s we wish to determine
whether or not a gravitational-wave signal h is present
in it. We do not know a priori the parameters of h. In
order to maximize the probability of detection we must
therefore search over all possible intrinsic and extrinsic
parameters that h may have. To do this, we calculate
the signal-to-noise (SNR) ρ maximized over Υ and Ξ:

ρ = max
Υ,Ξ

〈h(t; Υ,Ξ), s(t)〉√
〈h(t; Υ,Ξ), h(t; Υ,Ξ)〉

. (3)

The inner product 〈·, ·〉 is defined as [35]:

〈a, b〉 = 4<
∫ ∞

0

ã∗(f)b̃(f)

Sn(f)
df, (4)

where Sn(f) is the one-sided power spectral density
(PSD) of the noise. In this paper we use the zero-
detuned, high-power, advanced LIGO design curve [29].
This PSD grows substantially at frequencies below ∼
10 Hz due to seismic noise. As was done in Ref. [15],
we use a lower frequency cutoff of 15 Hz for our matched
filter. We terminate the filter at a frequency larger than
the ringdown frequency of the signal.

In principle we must maximize the SNR over 8 pa-
rameters for non-spinning systems — 2 intrinsic plus 6
extrinsic6 — but this number can be reduced. Let:

|F | =
√
F 2

+ + F 2
×, (5)

κ = arctan

(
F×
F+

)
; (6)

then:

h =
1

D (h+ cosκ+ h× sinκ) , (7)

where D = |F |/r is the effective distance [35]. Since D
cancels in the SNR, we need not maximize over it. We
can thus maximize over α, δ, and ψ by simply maximizing
κ.

The coalescence time is maximized over by evaluating
the SNR at discrete time intervals, selecting points where
ρ is at a maximum and exceeds some threshold. These
points are triggers. In Ref. [35] it is shown that ρ(t)
can be efficiently calculated by taking the inverse Fourier
transform of h̃∗(f)s̃(f)/Sn(f). Since we are interested in
the effect of sub-dominant modes, which do not affect
the maximization over coalescence time, we will make
this maximization implicit and set tc = 0 throughout the
rest of this paper.

In order to maximize over the intrinsic parameters a
template bank is used [11, 12]. Templates are typically

6 We do not need to maximize over r since it cancels in the SNR.

laid out across the search parameter space such that no
more than 3% of the SNR is lost due to the discreetness
of the bank [6, 7]. The SNR is maximized over the ex-
trinsic parameters for each trigger; the template with the
largest SNR is then selected, thereby maximizing over the
intrinsic parameters.

With these considerations Eq. (3) simplifies to:

ρ = max
θ,φ,κ

〈h+(t; θ, φ), s(t)〉 cosκ+ 〈h×(t; θ, φ), s(t)〉 sinκ√
〈h(t;κ, θ, φ), h(t;κ, θ, φ)〉

.

(8)
If the templates contain sub-dominant modes, then the
number of parameters that need to be maximized over
can be reduced no further. In Appendix A we perform
the maximization over κ analytically when sub-dominant
modes are included (the maximization over θ and φ must
be done numerically). This is used to model a hypotheti-
cal search using sub-dominant modes, which is discussed
in Sec. IV. In current searches, template waveforms are
generated using only the dominant, l = |m| = 2, mode.
In that case θ, φ, and κ are all degenerate with each
other and the maximization reduces to a single parame-
ter. This can be performed analytically, yielding [10]:

ρ =

√
〈h+(t), s(t)〉2 + 〈h×(t), s(t)〉2

〈h, h〉 . (9)

In stationary Gaussian noise containing no signal, ρ is
χ distributed (or equivalently, ρ2 is χ2 distributed) with
two degrees of freedom.

B. The χ2 test and re-weighted SNR

Real data from the LIGO and Virgo detectors contain
a number of non-Gaussian transients (glitches) [30, 31].
To mitigate the effect of these glitches the χ2 statistic
is calculated to better separate noise from potential sig-
nals. This is calculated as follows: split the matched
filter into p frequency bins such that the template has
equal amounts of power in each bin, and let ρi be the
SNR of a trigger in the ith bin. If the signal matches the
template then ρi ≈ ρ/p. We can therefore quantify how
well a signal matches a template by defining [25]:

χ2 = p

p∑
i=1

∣∣∣∣ρi − ρ

p

∣∣∣∣2 . (10)

If the template matches the signal exactly then the χ2

statistic will be χ2 distributed with 2p − 2 degrees of
freedom (hence the name). If there is any mismatch be-
tween the signal and the template, the mean χ2 is [25]:〈

χ2
〉

= 2p− 2 + µ2ρ2, (11)

where µ is a measure of the mismatch. Thus the larger
the mismatch between the signal and the template, the
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larger the χ2 statistic. Since the increase in χ2 is pro-
portional to ρ, even “loud” (large SNR) glitches are mit-
igated by χ2 as they will have high mismatch to the tem-
plate.

In BBH searches χ2 is used to re-weight ρ, obtaining
the re-weighted SNR ρ̃.7 As it is based on character-
istics of the data and the templates, the exact form of
the weighting evolved throughout initial LIGO. Gener-
ally, the weighting is such that ρ is reduced for triggers
with high χ2. In this study we use the re-weighted SNR
that was used in the most recent searches [6, 7], which is
defined as:8

ρ̃ =

{
ρ for χ2

r ≤ 1,

ρ
[

1
2

(
1 +

(
χ2
r

)3)]−1/6

for χ2
r > 1.

(12)

where χ2
r is the reduced χ2, which is χ2 divided by the

number of degrees of freedom.
Re-weighting the SNR using χ2 is crucial to BBH

searches. An SNR of 8 is typically used when predicting
detection rates [5], but it would not be possible to detect
at this ρ without some type of χ2 re-weighting of glitches
[26]. However, if signals also significantly mismatch the
templates then the use of ρ̃ can adversely affect the effi-
ciency to these signals. The effect on efficiency from the
mismatch between signals and templates therefore can-
not be determined from the loss in SNR alone. For this
reason, in the following sections we investigate the ef-
fect on χ2 due to the mismatch between dominant-mode
templates and signals with sub-dominant modes, and we
calculate efficiency using ρ̃.

C. Quantifying the ability of a search to make
detections

The purpose of our study is to investigate whether
adding sub-dominant modes to templates will improve
our ability to detect gravitational waves from non-
spinning BBHs. Ultimately, we want to know what tem-
plate bank maximizes the number of detections made per
unit time. To do so we need to quantify the ability of a
bank with dominant-mode templates and a bank of tem-
plates with sub-dominant modes to recover waveforms
with sub-dominant modes. For this purpose we calculate
effectualness; we also calculate efficiency, from which we
find sensitive volume and relative gain.

7 A cut on large χ2 values is also employed, but this cut is chosen
conservatively in order to not remove any signals [26]. As such, it
is mostly used to reduce the number of triggers for computational
purposes. We therefore do not consider it here.

8 In Ref. [7], a different weight than that given in Eq. (12) was
used for triggers whose templates had duration < 0.2 s. All of
the templates in our study have durations > 1 s, however, due
to the better low-frequency performance of the advanced LIGO
noise curve we use. We therefore use Eq. (12) for all triggers.

1. Effectualness

Effectualness9 is a statistic that is commonly used
to quantify how well one family of waveforms recovers
another. Given a simulated signal h† with parameters
Θ = (Υ,Ξ) and a bank of templates {h(Θ′)}, effectual-
ness is defined as [36, 37]:

Eab(Θ) = max
Θ′

〈
ha(Θ′), h†b(Θ)

〉
√
〈ha(Θ′), ha(Θ′)〉

〈
h†b(Θ), h†b(Θ)

〉 .
(13)

Here and elsewhere we adopt subscripts on E to indi-
cate whether or not the signal and templates have sub-
dominant modes; the first index indicates the templates,
the second the signal. We will use S to indicate a wave-
form that has sub-dominant modes and D to indicate a
waveform without sub-dominant modes. For example,
EDS(Θ) is the effectualness of a bank of templates with-
out sub-dominant modes to a signal with sub-dominant
modes and parameters Θ.

If a signal h† is in stationary Gaussian noise with zero-
mean, the expectation value of the overlap with a tem-
plate h is

〈
h, s = h† + n

〉
=
〈
h, h†

〉
. The maximum

overlap occurs when h and h† have the same parameters
and come from the same waveform model. Thus, via Eq.
(3), the expectation value of the maximum recoverable
SNR of a signal h† is:

max 〈ρ〉 =
√
〈h†, h†〉. (14)

Effectualness therefore gives the fraction of available SNR

in a signal h†b that is recovered by the template ha:

Eab(Θ) =
〈ρab(Θ)〉

max 〈ρbb(Θ)〉 . (15)

Here, 〈ρab(Θ)〉 indicates the expectation value of the

SNR of signal h†b(Θ) using templates {ha(Θ′)}.10 The
smaller the effectualness, the less SNR recovered by the
template and the closer signals need to be in order to
detect them. Effectualness is thus an estimate of how
sensitive a bank of templates will be to a particular set
of signals.

However, effectualness is not sufficient for comparing
the sensitivity of a set of templates to signals created with
different waveform models. We see from Eq. (15) that
a drop in effectualness can result from a decrease in the
overlap between two waveforms or from an increase in the

9 Effectualness has also been referred to as “fitting factor” [36].
10 Note that max 〈ρbb(Θ)〉 is not the same as 〈ρbb(Θ)〉. This

is because 〈ρbb(Θ)〉 indicates the SNR of a bank of templates

{hb(Θ′)} to a signal h†b(Θ). In fact, while the waveform models
may be the same, the template and signal parameters may not
due to the discreetness of the bank.
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maximum recoverable SNR. This ambiguity has partic-
ular relevance for sub-dominant modes. The predicted
detection rates of advanced LIGO are made assuming
that both signals and templates have the dominant mode
only [5]. Real signals will have sub-dominant modes. If
EDS < EDD for some signals, it is not clear from effectu-
alness alone whether the loss is due to 〈ρDS〉 < 〈ρDD〉 or
if it is because max 〈ρSS〉 > max 〈ρDD〉. If entirely the
first case, detection rates will be less than predicted. If
entirely the second case, the sensitivity of aLIGO will be
the same as predicted (perhaps better, since the addi-
tional power in the sub-dominant modes may give larger
SNR than expected). The drop in effectualness in this
case only indicates that the sensitivity could be better
than predicted if sub-dominant modes were added to
templates, but it will not be worse.

It is also not clear what affect a decrease in effectu-
alness has on re-weighted SNR. Equation (11) indicates
that larger mismatch between signal and template re-
sults in larger χ2; this increase results in lower ρ̃. Since
re-weighted SNR is used as the ranking statistic in real
searches, the decrease in effectualness (increase in mis-
match) may result in a further reduction in sensitivity
via χ2.

Finally, effectualness implicitly assumes that SNR is
the optimal statistic (in the Neyman-Pearson sense) to
detect a gravitational wave in Gaussian noise. While this
has been shown to be true when the intrinsic parameters
of the signal are known [10], it is not necessarily true if
the intrinsic parameters are unknown, as is the case in
real BBH searches. Finding the optimal statistic in this
case is difficult to do, as the waveforms have a non-trivial
dependence on the intrinsic parameters. Moreover, we
would need to know the distribution of the sources’ in-
trinsic parameters, which in our case are the masses of
BBHs. As we will see in Sec. II D the mass distribution of
BBHs is highly uncertain. Even if we could find the op-
timal statistic for an assumed distribution, the statistic
may not be optimal for the real astrophysical distribu-
tion.

In practice, we get around these difficulties by simply
assuming that SNR maximized over the template bank
is a good approximation to the optimal statistic. In do-
ing so, we assume that each template is equally likely
to detect a signal, which implicitly assumes a particu-
lar astrophysical distribution. Effectualness then gives
us a measure of the performance of the bank assuming
that distribution is correct. However, if the implicit dis-
tribution is not correct, then SNR maximized over the
bank is not a good approximation of the optimal statis-
tic, thereby making effectualness a poor metric for search
sensitivity.

For these reasons the effect of sub-dominant modes
on the sensitivity of a search cannot be ascertained by
effectualness alone. A more informative metric is the
sensitive volume, which is found from efficiency.

2. Efficiency, sensitive volume, and relative gain

Given a set of N simulated signals with intrinsic and
extrinsic parameters Θ and generated from waveform-

model b, {h†b(Θ)}, the efficiency of a bank of templates
generated from waveform-model a is the fraction of sig-
nals found with ρ̃ larger than some threshold value at a
distance r [38]; i.e.,

εab(r,Υ) =
nab(r,Υ)

Nb(r,Υ)
. (16)

As with effectualness subscripts indicate the type of
waveform used for the templates and signals; e.g., εDS is
the efficiency of a dominant mode bank to sub-dominant
mode signals. Note that, aside from r, εab is a function of
the intrinsic parameters only (Υ). Since the universe is
isotropic at the distances we are considering, the rest of
the extrinsic parameters are accounted for by uniformly
distributing signals in {θ, φ, φ0, α, δ, ψ}.

When determining efficiency in real searches the
threshold ρ̃ is determined by the loudest event in the
data [6, 7]. In this study we use ρ̃ = 8 as the threshold.
SNR (ρ) equal to 8 is commonly used as a threshold for
predicting detection rates [5]. For well-matched signals,
ρ̃ ≈ ρ when ρ = 8; using ρ̃ = 8 as a threshold should
therefore give roughly the same results as predictions if
mismatches between signals and templates are not too
large.

Integrating the efficiency times the astrophysical rate
of BBHs R(V,Υ) over volume and Υ gives the expected
rate of GW detections per unit time:

Rdetect =

∫
ε(r,Υ)R(V,Υ)dV dΥ. (17)

Assuming R(V,Υ) is constant over volumes for which
ε 6= 0 and uniform in a small region in parameter space
Υ + ∆Υ, we define the sensitive volume Vab as:

Vab (Υ + ∆Υ) = 4π

∫ ∞
0

εab (r,Υ + ∆Υ) r2dr. (18)

With these assumptions, Vab is proportional to the aver-
age rate of detections in Υ + ∆Υ.

We assume that all of the error in the sensitive volume
is due to error in the measurement of the efficiency from
statistical fluctuations in the noise. This error is derived
from the range of efficiency values for which the num-
ber of found injections varies no more than one standard
deviation [39]:

(n− 〈n〉)2 ≤
〈
n2
〉
− 〈n〉2 .

The mean and variance are given by the Binomial distri-
bution:

〈n〉 = Nε,〈
n2
〉

= Nε(1− ε).
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Using these values and solving for ε yields [39]:

± δεi =
Ni(2ni + 1)±

√
4Nini(Ni − ni) +N2

i

2Ni(Ni + 1)
, (19)

where the index i indicates the efficiency and number of
injections in the ith distance bin (dependence on wave-
forms a, b and parameters Υ made implicit). This error
is then propagated to the volume via Eq. (18). Note
that this results in a conservative estimate of δV . In our
study we average over several realizations of noise when
finding ρ̃; thus actual statistical fluctuations in εab are
less than what is assumed in Eq. (19).

To compare the sensitivity of two template banks to a
set of simulated signals we define the relative gain Gcdab :

Gcdab(Υ + ∆Υ) =
Vcd(Υ + ∆Υ)

Vab(Υ + ∆Υ)
. (20)

The upper (lower) indices denote the waveform models
used for templates and signals in the numerator (denom-
inator). Since sensitive volume is proportional to the
detection rate, the relative gain gives the average num-
ber of detections per unit time the cd search will make
relative to the ab search.

D. Astrophysical priors on the distribution of BBH
masses

When comparing the sensitivity of template banks it
can happen that one bank has better sensitivity in one
area of parameter space, but worse sensitivity in another.
We will see this in Sec. IV; templates with sub-dominant
modes have better sensitivity at M > 100 M� and q &
10, but worse sensitivity for lower mass and more equal-
mass systems. This raises the question of whether the
gain in sensitivity in one area of parameter space is large
enough to offset the loss in another. In this case it is
useful to try to find the net relative gain, which is:

net
{
Gcdab
}

=

∫
R(Υ)Vcd(Υ)dΥ∫
R(Υ)Vab(Υ)dΥ

. (21)

Doing so gives the relative number of detections made
over the entire parameter space; if the net gain is > 1
the gain in sensitivity in one area of parameter space is
worth the loss in another.

Calculating net gain requires knowledge of the rate of
BBH coalescence, R(Υ). Unfortunately, this is highly
uncertain. For a BBH with m1 = m2 = 10 M�, the
coalescence rate has been estimated to be anywhere from
O(10−4) to O(10−1) Mpc−3Myr−1, leading to predicted
detection rates between 0.4 and 103 per year in advanced
LIGO [5]. We do not need to know the magnitude of the
BBH coalescence rate in order to calculate the net gain
— we only need the relative distribution in mass — but
even this is largely uncertain.

Binary black holes with masses detectable by LIGO are
thought to be formed in one of two ways: via the two stars

in an isolated binary each collapsing into black holes (field
binaries), or by a black hole capturing another black hole
in a dense stellar region such as globular clusters [40].
No BBHs have been directly observed; their existence
is predicted from population synthesis models, from the
predicted evolution of known X-ray binaries, and from
considerations of the dynamics of black holes in dense
stellar clusters [5].

The most massive black holes formed from stellar col-
lapse known are in the X-ray binaries IC 10 X-1 and NGC
300 X-1 [41, 42]. These black holes have been estimated
to have masses between 20 and 35 M�, but population
synthesis models predict that black holes formed from
isolated field stars may have masses as large as 80 M�
in low-metallicity environments [43]. The mass distribu-
tion of black holes in field binaries are more difficult to
predict, however, as the proximity of the two progenitor
stars to each other add several complications [44]. Popu-
lation synthesis models give varying results depending on
the values assumed for input parameters, but models gen-
erally suggest field binaries have M . 100 M� [45], with
the peak of the distribution occurring around 20 M� (cf.
Figs. 8 and 9 of Ref. [45]). The distribution in mass
ratio is also uncertain: some models predict equal-mass
systems are more likely, while others predict a roughly
uniform distribution between q = 1 and 4 (cf. Fig. 9 of
Ref. [44]).

Black holes formed from dynamical capture in globu-
lar clusters may have masses between 102 and 104 M�
[28]. The existence of these intermediate-mass black
holes (IMBHs) is more speculative, but are supported
by observations of ultra luminous X-ray sources [46].
If IMBHs do exist they may form binaries with other
IMBHs or with stellar-mass black holes, thus forming
BBHs with larger total masses and mass ratios than pos-
sible in field binaries [5]. The merger rate between an
IMBH with mass between 50 and 350 M� and a stellar-
mass black hole with mass m has been estimated to be
∼ (0.02/m) Mpc−3Myr−1 [47]. This is an optimistic es-
timate [5], but if correct, the rate of these intermediate-
mass-ratio inspirals (IMRIs) could be on the same order
of magnitude as BBHs formed from field binaries.

In this paper we consider BBHs with 3 ≤ m1,m2 ≤
200 M� and M ≤ 360 M�. We therefore cover the entire
predicted mass range of field binaries and the lower end of
IMBH/IMBH and IMRI binaries. (Our choice of masses
is based on the effectualness of the template placement
algorithm we use; see Sec. III for details.) Due to the
large uncertainty in mass distribution across this range,
we will simply assume a uniform rate inm1 andm2 to cal-
culate net gain. This choice of astrophysical prior weights
equal-mass systems as being more likely to occur than
asymmetric-mass systems. Since this may bias our re-
sults (sub-dominant modes are more significant in higher
mass-ratio systems) we will also consider a rate uniform
in M and q. We will find that BBHs with M > 100 M�
are the dominant contribution to the net gain using these
rate priors, as the sensitive volumes of these larger mass
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systems can be one to two orders of magnitude larger
than lower-mass BBHs. Since the existence of IMBHs is
more speculative, we additionally report net gains when
only stellar-mass BBHs (M < 100 M�) are considered.

The astrophysical rates we use are only meant to be
rough approximations for comparisons between template
banks; we do not attempt to calculate detection rates.
We do, however, report sensitive volumes across the mass
space [see Fig. 10]. If a particular astrophysical prior is
chosen, our results can be used to estimate the total num-
ber of non-spinning BBH detections that will be made in
advanced LIGO.

III. IMPACT OF SUB-DOMINANT MODES ON
A DOMINANT MODE TEMPLATE BANK

Past BBH searches have used waveforms without sub-
dominant modes as templates [6, 7]. Predicted advanced
LIGO detection rates are also based on considerations of
the dominant mode only [5]. This assumes that the effect
of neglecting sub-dominant modes is small. To test the
validity of this assumption we compare the sensitivity of a
template bank without sub-dominant modes to simulated
signals without sub-dominant modes and to signals with
sub-dominant modes.

We generate one million simulated signals (injections)
uniformly distributed in component mass, inclination,
sky location, distance, and polarization. Component
masses are between 3 and 200 M�, resulting in total
masses (M) between 6 and 400 M� and mass ratios (q)
between 1 and ∼ 66. Distance limits are chosen such that
an optimally-oriented signal with the same masses as a
given injection would produce an SNR between 6 and
100. For each injection we generate a version without
sub-dominant modes and a version with sub-dominant
modes, both at the same physical distance, using the
EOB waveform calibrated to numerical relativity that is
described in Ref. [13].11 Template waveforms are the
dominant-mode version of this waveform.

To calculate the re-weighted SNR of each injection we
generate 16 realizations of Gaussian noise colored by the
zero-detuned high power noise curve. We use a different
set of 16 realizations for each injection. In each realiza-
tion we calculate the maximum SNR before the injec-
tion is added to the noise and after. If the SNR with
the injection in the noise is larger than the SNR from
noise alone, we record the SNR and calculate χ2 and re-
weighted SNR. We then find the mean ρ, χ2, and ρ̃ to get
a measure of their expectation values. Only realizations
that produced an SNR louder than noise are included in
the average.

11 Specifically, we use the EOBNRv2 code in the LSC Algorithm
Library (LAL) [48] to generate dominant-mode waveforms. For
sub-dominant mode waveforms we use the EOBNRv2HM code
in LAL.

Due to computational constraints we are not able to
calculate re-weighted SNR for every template for every
injection. Instead, we use the best matching template
from the effectualness study to calculate ρ̃. This is equiv-
alent to maximizing on SNR, then finding re-weighted
SNR, which is what current searches do [26]. We note
that maximizing on ρ̃ might give better sensitivity, but
since this is not what is currently done we do not inves-
tigate this idea further.

To calculate the sensitive volume we create 16 bins
uniformly distributed in M and 10 bins uniformly dis-
tributed in log q, keeping bins which have at least 1000
injections in them. Within each mass bin we create 20
bins uniform in log distance. We find the efficiency in
each distance bin, then numerically integrate over the
distance bins to get the sensitive volume. The distance
bins span the smallest injected distance to the largest
within the given mass bin. For distances smaller then
the closest injection we assume ε = 1; for distances larger
than the furthest injection we assume ε = 0.

A. Effectualness of the dominant-mode bank

Past BBH searches [6, 7] have constructed template
banks by placing templates in parameter space such that
no more than 3 % of SNR is lost due to the discreet-
ness of the bank. In other words, templates are placed
such that the minimal match, which is the minimum of
the effectualness of the bank, is ≥ 97%. Templates are
placed in a hexagonal grid [49] using a metric calculated
from the mismatch between a waveform with intrinsic
parameters Υ and a waveform with parameters Υ + δΥ
[11, 12]. This metric is found analytically using inspiral
waveforms expanded to 1.5 post-Newtonian order (PN)
in phase [50].12 As this metric is based solely on the in-
spiral part of the waveform, it will fail to properly place
templates at high mass, where the waveforms are domi-
nated by merger and ringdown [51]. More sophisticated
template placement methods have recently been devised:
a new metric has been calculated using the 3.5 PN ap-
proximant [52] and a “stochastic” placement method has
been developed that uses no metric [53]. In this study we
are only interested in the relative difference in sensitiv-
ity when a template bank neglects sub-dominant modes
and not on the most efficient placement algorithm. We
therefore use the same 1.5 PN placement algorithm that
has been used in prior searches,13 putting a cut on total

12 In Ref. [50], the metric was calculated to second post-Newtonian
order. However, a bug was recently discovered in the template-
placement code in LAL (on which this study depends) that
caused the metric calculation to be truncated at 1.5 PN. Since
this bug was discovered after we had finished all calculations, we
simply use the 1.5 PN metric.

13 We emphasize that while the templates are placed using the
1.5 PN approximant, the template waveforms are EOBNRv2.



9

FIG. 1. Effectualness of a template bank placed us-
ing the 1.5 PN metric and using waveforms without sub-
dominant modes (EOBNRv2) to injections without sub-
dominant modes (also EOBNRv2), EDD. The desired minimal
match of the bank (= min {E}) is 0.97.

mass where the metric fails to maintain the desired 97 %
minimal match.

To determine where the 1.5 PN metric fails to main-
tain a 97 % minimal match we generate a template bank
to cover component masses between 3 and 200 M� (6 ≤
M/M� ≤ 400). Using the aLIGO zero-detuned high
power PSD, this results in a bank of 19 800 templates.
We calculate the effectualness of this bank to the injec-
tions without sub-dominant modes, EDD; the results are
shown in Fig. 1. The effectualness appears to be > 0.97
for M . 360 M�, but is lower than that for larger M .
Indeed, we find that less than 0.3 % of injections with
M < 360 M� have an effectualness < 0.97 [see Fig. 3],
but ∼ 70 % of injections have an effectualness < 0.97 for
total masses larger than 360 M�. We therefore place a
cutoff of M < 360 M� when reporting effectualness and
efficiency.

B. Efficiency to injections with sub-dominant
modes

Figures 2 and 3 show the effectualness of the dominant-
mode bank when sub-dominant modes are added to the
injections, EDS. We find that EDS is substantially lower
than EDD for many injections: ∼ 50 % of sub-dominant
injections have an effectualness < 0.97 for M < 360 M�.
In Fig. 2 we see that the effectualness decreases with
increasing mass ratio. This is expected as the amount

FIG. 2. Effectualness of the 1.5 PN dominant-mode template
bank to injections with sub-dominant modes, EDS. The de-
sired minimal match (= min {E}) of the bank was 0.97, but
we see that the effectualness drops below this as we go to
higher mass ratio.

of power in the higher modes will increase relative to the
dominant mode as the binary becomes more asymmetric.

Given that EDS < EDD we wish to know if the predicted
detection rates for advanced LIGO will be worse than ex-
pected. As discussed in Sec. II C we cannot tell this from
effectualness alone. Instead, we compute GDS

DD, which
is the sensitive volume of injections with sub-dominant
modes (VDS) relative to the sensitive volume of injections
without sub-dominant modes (VDD) when both are recov-
ered by the dominant-mode template bank. If GDS

DD < 1
it means that the sensitivity to real signals (which have
sub-dominant modes) will be worse than predicted. If
GDS

DD > 1 it means that the sensitivity to real signals will
be better than predicted; if GDS

DD = 1 it means there is no
difference.

Figure 4 shows GDS
DD in each mass bin. We see that

the gain ≈ 1 everywhere. Indeed, if we assume a uni-
form astrophysical rate in component masses we find
net
{
GDS

DD

}
= 1.005 ± 0.004; a uniform rate in M and

q yields net
{
GDS

DD

}
= 1.019 ± 0.004. This means that

a dominant-mode template bank yields predicted detec-
tion rates even though both the bank and the predictions
neglect sub-dominant modes.

Comparing Fig. 4 to Fig. 2 we see that GDS
DD ≈ 1

despite the drop in effectualness to injections with sub-
dominant modes. Notably, the relative gain is slightly
larger than 1 in the areas where the effectualness is small-
est. This means that the drop in effectualness seen in Fig.
2 is largely due to an increase in the amount of power in
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FIG. 3. Cumulative histogram of the effectualness of a tem-
plate bank without sub-dominant modes to injections with-
out sub-dominant modes EDD (gray) and injections with sub-
dominant modes EDS (blue). Each bin gives the fraction of
injections with an effectualness less than the right edge of the
bin. The red dashed line indicates the target minimal match
for the bank (0.97). All injections have total mass < 360 M�.

injections when sub-dominant modes are added rather
than a decrease in SNR between the templates and in-
jections.

A decrease in effectualness will always result in an in-
crease in χ2, regardless of whether the mismatch (≡ 1−E)
results in an increase or decrease in SNR. Whether re-
weighted SNR increases or decreases therefore depends
on whether the gain in ρ offsets the gain in χ2. Figure
5 shows reduced χ2 versus SNR for all injections with
M < 360 M�. The black arrows indicate how, on aver-
age, the injections move in this plane when higher modes
are added. The solid black line shows where ρ̃ = 8, which
is the threshold we use when calculating efficiency. All
injections to the left of this line are missed, all injections
to the right are found. We see that at this threshold
the increase in χ2 is roughly offset by the increase in
SNR when sub-dominant modes are added, which ex-
plains why GDS

DD ≈ 1 despite an increase in mismatch for
injections with sub-dominant modes.

Figure 5 also shows that as we go to higher ρ, the gain
in χ2

r becomes larger relative to the gain in SNR when
sub-dominant modes are included (the black arrows pro-
gressively point to higher χ2

r rather than to higher SNR
as we move to the right in the plot). If our threshold
ρ̃ were larger more injections would move below thresh-
old (from an increase in χ2) than above (from an in-
crease in ρ). This is confirmed by Fig. 6. The top
plot shows the percentage of injections that move above
threshold (gained) and the percentage of injections that
move below threshold (lost) when sub-dominant modes

are added, as a function of threshold ρ̃. Around a thresh-
old of ρ̃ = 8 there is a small net gain in the number of
injections found when sub-dominant modes are added.
If the threshold were larger than ∼ 9.5, however, there
would be a net loss. This loss causes an overall drop
in efficiency, which in turn causes a drop in sensitiv-
ity. For example, the bottom plot in Fig. 6 shows GDS

DD
when the threshold ρ̃ = 11. We see that many tiles have
gains < 1 now. Assuming a uniform astrophysical rate
in component-masses yields net

{
GDS

DD

}
= 0.994 ± 0.004;

uniform in M, q yields net
{
GDS

DD

}
= 0.988± 0.006. Note,

however, that the decrease in gain mostly occurs for tiles
with M > 100 M� and q > 4, which is where the drop
in effectualness is the largest. If we restrict our net gain
calculation to stellar-mass BBHs only (M < 100 M�) we
get net

{
GDS

DD

}
= 1.01± 0.03 for both rate priors.

We conclude that if gravitational waves can be de-
tected at a single-detector ρ̃ ≈ 9.5 or less, then neglecting
sub-dominant modes will not affect the expected sensi-
tivity of a non-spinning BBH search across all masses. If
the threshold for detection is larger, then neglecting sub-
dominant modes will cause a larger drop in sensitivity
than what would otherwise be expected for BBHs with
q & 4 and containing at least one IMBH (m & 100 M�).
Non-spinning stellar-mass BBHs, however, are not af-
fected by neglecting sub-dominant modes, even if the
single-detector threshold for detection is ρ̃ = 11.

IV. PREDICTED EFFICIENCY OF A
TEMPLATE BANK WITH SUB-DOMINANT

MODES

In the previous section we found that neglecting sub-
dominant modes did not adversely affect the sensitivity
of a search for non-spinning BBHs. We found this by
comparing the sensitive volume of injections with sub-
dominant modes to the sensitive volume of injections
without sub-dominant modes when both are recovered
by dominant-mode templates. However, the decrease
in effectualness to injections with sub-dominant modes
means that there is some power not being recovered
by the dominant-mode templates. If the templates had
sub-dominant modes they would be able to recover that
power, which could increase the sensitivity of the search.
We therefore wish to know how the sensitivity of a bank
of templates with sub-dominant modes compares to a
bank of templates without sub-dominant modes, GSS

DS.

A. Search sensitivity when sub-dominant modes
are included in all templates

Currently, no search exists that uses a bank of tem-
plates with sub-dominant modes. We do not try to cre-
ate one here. Instead, we simulate how such a search
would perform as compared to the dominant-mode tem-
plate bank used here. In our simulation we will continue
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FIG. 4. Sensitive volume of injections with sub-dominant modes relative to sensitive volume of injections without sub-dominant
modes when both are recovered by the dominant-mode template bank (GDS

DD; see Sec. II C for definition) in M , q plane. The
solid black line indicates the injection region. Only tiles with 1000 or more injections in them are shown.

FIG. 5. Reduced χ2 (χ2
r) versus SNR of all injections with

M < 360M�. Gray crosses are injections with the dominant-
mode only, dark-blue crosses are injections with sub-dominant
modes. The dashed and sold black lines show lines of constant
ρ̃; shown are ρ̃ = 6, 8, and 11 (dashed, solid, and dashed,
respectively). The black arrows indicate where, on average,
injections move in this plane when sub-dominant modes are
added.

to use ρ̃ maximized over the template bank as our detec-
tion statistic. We do not try to find the optimal search
statistic when sub-dominant modes are used. As dis-
cussed in Sec. II C 1, finding the optimal statistic over a
bank of templates is difficult, if not impossible, due to
our lack of knowledge of the mass distribution of BBHs.
Our goal here is to answer the question: using current
search techniques, will sensitivity improve if we include
sub-dominant modes in templates?

To calculate GSS
DS we need to know the sensitive volume

of a template bank with sub-dominant modes to injec-
tions with sub-dominant modes, VSS. Since VSS depends
on the number of injections found by the template bank
above some threshold, finding VSS requires two pieces of
information: the average re-weighted SNR of injections
filtered with a sub-dominant mode template bank 〈ρ̃SS〉,
and the threshold for making a detection in such a search.

In order to estimate 〈ρ̃SS〉 of each injection we first
calculate the maximum SNR that can be recovered from
the injection by finding the overlap of the injection with
itself [see Eq. (14)]. A real sub-dominant mode search
will use discrete templates, as is done with the dominant-
mode bank. The discreteness of the template bank will
cause some loss of SNR. Even though both the injections
and templates have sub-dominant modes in our simula-
tion, the mismatch due to the discreteness of the bank
will also cause some small increase in χ2

r, as was the
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FIG. 6. Top: Percentage of injections gained and lost when
sub-dominant modes are added as a function of threshold
ρ̃. The dashed black line shows the percentage of injections
gained, the dashed red line shows the percentage of injections
lost. The solid line shows the net gain/loss; where it is black
there is a net gain; where it is red there is a net loss. Bottom:
GDS
DD when the threshold re-weighted SNR for both D and S

injections is 11 instead of 8. The solid black line indicates the
injection region. Errors on gain are approximately twice the
errors reported in the corresponding tiles in Fig. 4.

case for the dominant-mode injections recovered by the
dominant-mode template bank (gray crosses in Fig. 5).
This in turn causes a small decrease in re-weighted SNR
relative to SNR for some injections. To simulate both of
these effects, we estimate 〈ρ̃SS〉 to be:

〈ρ̃SS〉 =
〈ρ̃DD〉
〈ρDD〉

EDD max{ρSS}. (22)

Here EDD simulates the loss in SNR due to the dis-
creteness of the bank — i.e., we have assumed 〈ρSS〉 ≈
EDD max{ρSS} — and 〈ρ̃DD〉 / 〈ρDD〉 simulates the effect
of χ2

r re-weighting. Thus the discreteness of our simu-
lated template bank with sub-dominant modes is equiv-
alent to the discreteness of our (real) dominant-mode
bank.

By assuming 〈ρSS〉 ≈ EDD max{ρSS} = EDD

√
〈hS, hS〉

in Eq. (22) we have neglected any contribution to the

SNR from noise. Due to the maximization over the phase,
the average SNR of a simulated signal h when filtered
with itself in Gaussian noise will be slightly larger than√
〈h, h〉. Rather than adding a factor to our estimate of
〈ρ̃SS〉 to account for this contribution, when finding GSS

DS
we use a “noiseless” estimate of 〈ρ̃DS〉, given by:

〈ρ̃DS〉 (noiseless)
=
〈ρ̃DS〉
〈ρDS〉

EDS max{ρSS}. (23)

Here, EDS max{ρSS} gives 〈ρDS〉 with the noise contri-
bution removed and 〈ρ̃DS〉 / 〈ρDS〉 accounts for χ2

r re-
weighting.

When calculating the sensitivity of the dominant-mode
template bank we used a threshold of ρ̃ = 8. In a
real search triggers are produced by gravitational waves
and by background noise. High statistical significance
is therefore required in order for a trigger to be consid-
ered a gravitational-wave candidate. The standard mea-
surement of significance is false-alarm probability F(ρ).
When evaluating the sensitivity of the dominant-mode
template bank we choose ρ̃ = 8 because it corresponds
to a false-alarm probability small enough that we could
confidently claim detection in real detector data. This
means that to compare the sensitivity of the simulated
sub-dominant mode search to the dominant-mode search
we must chose a threshold ρ̃ that results in the same false-
alarm probability that ρ̃ = 8 did in the dominant-mode
search.

As discussed in Sec. II A sub-dominant modes break
the degeneracy between θ, φ and κ. This means that
to fully recover all of the power in the sub-dominant
modes we have to maximize over three extrinsic parame-
ters instead of one. These additional maximizations will
cause the single-detector SNR distribution in noise to
change. SNR from dominant-mode templates is χ dis-
tributed with 2 degrees of freedom in stationary Gaussian
noise. If a template has sub-dominant modes, the SNR
will have a larger number of degrees of freedom. The
increase in the degrees of freedom means that F(ρ) at a
given SNR will increase. In order to keep the same false-
alarm probability for a bank with sub-dominant modes
as we had for the dominant-mode bank, the threshold ρ̃
must therefore increase. The relative gain in sensitivity
of a template bank with sub-dominant modes depends
on whether the increase in SNR due to the sub-dominant
modes is enough to offset the increase in SNR threshold.

In Appendix B we estimate the false-alarm probabil-
ity of a dominant-mode template bank with N tem-
plates F(ρ|D, N) at ρ = 8 [see Eq. (B2)]. For the
dominant-mode bank used here N = 19 800, which gives
F(ρ = 8|D, N) ≈ 2.5 × 10−10. We also calculate false-
alarm probability as a function of SNR of the simulated
sub-dominant mode bank F(ρ|S) [see Eqs. (B1) and
(B6)]. Assuming ρ̃ ≈ ρ for injections, we estimate that
the threshold ρ̃ would have to increase to 8.31 for the
sub-dominant mode bank in order for F(ρ|S, N) to also
be equal to 2.5× 10−10.
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Using the estimated ρ̃SS given in Eq. (22) and a thresh-
old ρ̃ = 8.31 we calculate the sensitive volume of the
simulated sub-dominant mode template bank VSS in the
same M, q tiles we used in Fig. 4. We compare this to
VDS (which used a threshold ρ̃ = 8) to get GSS

DS; this is
plotted in Fig. 7. We find that the sub-dominant mode
template bank has worse sensitivity then the dominant-
mode bank across nearly the entire mass-space, dropping
to as low as ∼ 90% for mass ratios between 1 and 1.5.

The reason for the poor sensitivity of the sub-dominant
mode bank to equal-mass systems can be understood by
considering Fig. 2, in which we see that when q → 1,
EDS → 1. This means that dominant-mode templates
are recovering nearly all of the available power in equal-
mass signals. Put another way, signals from equal-mass
systems gain almost no SNR by adding sub-dominant
modes to the templates. The SNR distribution in noise of
sub-dominant mode templates that are close to the equal-
mass line are not much different than their dominant-
mode counterparts. However, false-alarm probability is
a global property of the template bank: even though the
SNR distribution does not change for equal-mass tem-
plates, it does for more asymmetric-mass templates. The
presence of these templates in the bank affects the false-
alarm probability of the entire search. The result is that
equal-mass signals suffer an increase in threshold but gain
no SNR from the sub-dominant template bank.

The sub-dominant mode bank does have better sen-
sitivity at higher mass ratios and total masses. In the
highest mass-ratio tile in Fig. 2 the sensitivity is twice
that of a dominant-mode bank. A sub-dominant mode
bank may therefore still increase the probability of mak-
ing a detection, if the total gain in sensitive volume to
higher mass-ratio systems is enough to offset the drop
in sensitivity to equal-mass systems. However, assum-
ing either a uniform astrophysical rate in m1,m2 or a
uniform rate in M, q yield net gains < 1: the former
gives net

{
GSS

DS

}
= 0.932 ± 0.003 while the latter gives

net
{
GSS

DS

}
= 0.987 ± 0.003. Restricting to stellar-mass

BBHs also results in net gains < 1, yielding 0.92 ± 0.01
and 0.96± 0.01 for the two priors, respectively.

Using templates that more accurately model signals
should improve sensitivity. The reason the sub-dominant
mode templates do not is due to the astrophysical prior
that is inherent in the search. Simply selecting the tem-
plate with the largest SNR when maximizing over the
bank (as we have done for both the dominant-mode
and sub-dominant mode bank, and as is done in current
searches) assumes that every template is equally likely
to detect a signal. The detectors are not equally sen-
sitive to all signals, however, nor is the density of tem-
plates uniform. This makes the search most sensitive to
a particular astrophysical rate distribution. Adding sub-
dominant modes changes the distribution to which the
search is most sensitive, thereby implicitly changing the
search prior.

As noted by Refs. [14] and [15], the largest SNR in-
crease occurs for signals from asymmetric-mass binaries

and from systems inclined to the line of sight. Yet the
magnitude of the detector’s sensitivity is lowest to these
systems. Including sub-dominant modes while weight-
ing the SNR of each template equally causes us to gain
sensitivity to signals for which we are least sensitive at
the cost of losing sensitivity to signals for which we are
most sensitive. We can see this negative correlation in
Fig. 8, which shows the fractional gain in SNR when
sub-dominant modes are added (ignoring the effects of
χ2
r re-weighting) versus the distance at which a signal

can be detected by the dominant-mode bank at SNR 8
(“sensitive distance”), colored by mass-ratio. The sen-
sitive distance of the signals with the largest gain (and
mass-ratio) is an order of magnitude smaller than the
sensitive distance of the signals with the smallest gain.
In general, a plot such as this can be used to determine
whether changing the parameters of a search are worth-
while. If there is a negative correlation between SNR
gain and sensitive distance — i.e., only signals for which
the detector is least sensitive gain SNR by changing the
search parameters — that change is unlikely to improve
the overall detection rate unless the astrophysical distri-
bution is strongly weighted to those signals.

B. Splitting the template bank to improve
sensitivity

Including sub-dominant modes in templates would im-
prove the sensitivity of the search if we applied a weight
to each template that better reflected the probability the
template will make a detection. Determining the best
weight to use requires knowledge of the astrophysical rate
of signals. We expect that signals will be distributed uni-
formly in the inclination angle θ. However, the proper
weight to apply to signals with this assumption is already
inherent in the SNR. The projection of the waveform into
the radiation frame, and then again into the detector’s
frame (done by the P and K matrices, respectively, in
Appendix A) is the weight one should apply to the SNR
assuming signals are distributed uniformly in space. In-
deed, that the SNR from an inclined signal is smaller
than the SNR from a face-on signal at the same distance
is a result of the antenna pattern indicating that these
signals are less likely to be detected.

Any weight we apply to the SNR must therefore be
based on the distribution of intrinsic paramters. Given
the large uncertainty in the mass distribution of BBHs
this is difficult to do. However, if we can find a weight
that results in G ≥ 1 relative to the dominant-mode
search in all mass tiles, we know that this new search will
be at least as sensitive to real signals as the dominant-
mode search, regardless of the astrophysical mass distri-
bution.

The simplest way to arrive at such a weight is to split
the template bank in two parts. In one part we use tem-
plates with sub-dominant modes; in the other, we use
dominant-mode templates. In this scenario false-alarm
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FIG. 7. Relative gain of sub-dominant bank compared to dominant-mode bank if the sub-dominant modes are used everywhere,
GSSDS. The solid black line indicates the injection region. The dashed black line shows where we choose to place a boundary
between dominant-mode and sub-dominant mode templates for a split-bank search (see Fig. 9 for gain).

FIG. 8. The maximum gain in SNR that is possible by
adding sub-dominant modes to templates (max 〈ρSS〉 / 〈ρDS〉)
versus the distance at which a signal can be detected by the
dominant-mode template bank at SNR 8 (sensitive distance).
Each point represents a simulated signal; the points are col-
ored by their mass-ratio (q).

probabilities are calculated separately in each region,
then combined. As we will see below, the process of
combining the results across the split effectively down-
weights higher mass-ratio templates such that they do
not hurt the sensitivity to equal-mass systems, yet still
improves sensitivity to the high-mass ratio signals.

In order to not lose any sensitivity we need to place the
split between dominant-mode and sub-dominant mode
templates at points in the mass space where GSS

DS > 1.
Otherwise, signals with masses that are in the sub-
dominant part of the bank that are near the split will
suffer a loss of sensitivity. We empirically chose to split
the bank such that sub-dominant mode templates are
used when:14

m2 < 0.6m1 − 43. (24)

This cut is shown in Fig. 7 (black dashed line). We note
that this is an empirical estimate for this template bank
and Gaussian noise. If a real search were performed, this
cut would have to be tuned based on the noise and bank
characteristics. We assume that such a cut would be in
approximately the same location in parameter space as
the cut we choose here, however.

14 We put the cut in m1,m2 rather then M, q because we found
that the GSSDS was roughly linear in m1,m2.
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Using the split in Eq. (24) we find that 3750 templates
are in the sub-dominant region while 16 050 templates re-
main in the dominant-mode region. In Appendix B we
find that F(ρ) is roughly proportional to the number
of templates in the search [see Eq. (B1)]. This means
that the false-alarm probabilities we get for triggers in
the dominant-mode part of the template bank will have
decreased by a factor of 16 050/19 800 ≈ 0.8 compared
to what we get when we search the entire mass space.
Likewise, the false-alarm probability of triggers in the
sub-dominant mode part of the bank will decrease by a
factor of ∼ 0.2. These drops in false-alarm probabilities
are artificial: they are due solely to our choice of cut.
Indeed, we could split the bank an arbitrary number of
times, thereby arbitrarily decreasing false-alarm proba-
bilities.

To account for this artificial decrease we must combine
results by multiplying the signals’ false alarm probabili-
ties by a trials factor [6]. For the dominant-mode part
of the bank we multiply by 19 800/16 050 ≈ 1.2; this is
equivalent to using dominant mode templates throughout
the entire mass space, and so the threshold in this part of
the bank remains ρ̃ = 8. In the sub-dominant mode part
of the bank we multiply by 19 800/3750 ≈ 5.3. To keep
F(ρ) fixed at 2.5 × 10−10, the threshold in this region
increases to 8.44. This is equivalent to down-weighting ρ̃
of templates in this part of the bank, as desired.

Figure 9 shows the relative gain of the split bank (in-
dicated by S

D ) compared to using dominant mode tem-

plates everywhere (G
S
D S

DS ). We find that we can gain sen-
sitivity by using templates with sub-dominant modes if
we split the bank using the criteria in Eq. (24). Since
dominant-mode templates are used below this cut, we
lose no sensitivity relative to what we had when we
used dominant-mode templates everywhere. In terms
of possible astrophysical systems, note that only IMRIs
(m1 & 100 M�, m2 . 80 M�) fall in the region where
sub-dominant modes are used, and that the dominant-
mode part of the bank covers all possible stellar-mass
BBHs (m1,m2 . 80 M�).

Splitting the bank and only using sub-dominant modes
in one part results in a search that is as good or better
than the dominant-mode search in all mass tiles, as we
desired. The net gain, however, is not much larger than
simply using dominant-mode templates everywhere. As-
suming a uniform astrophysical rate in component masses

gives net
{
G

S
D S

DS

}
= 1.002 ± 0.004; assuming a uniform

rate inM, q yields 1.024±0.004. The reason for the nearly
non-existent increase in net gains can be understood by
considering Fig. 10, which shows the sensitive volume of
the split bank in Gpc3. For a given total mass, the largest
sensitivity occurs at equal mass by a large margin. For
example, between ∼ 190 and 200 M� (the mass bin with
the largest range in q) we see that the sensitive volume
drops by four orders of magnitude — from 526 Gpc3 to
0.43 Gpc3 — as we go from q = 1 to q ≈ 60. Even though
the sub-dominant modes have doubled our sensitivity at

the highest mass ratio tile, the magnitude of the sensi-
tive volume is small relative to the other parts of the
bank. Using the split bank is therefore unlikely to have
a significant affect on the overall probability of making
a gravitational-wave detection in advanced LIGO, unless
there is a relatively large population of IMRIs with q & 4
compared to IMBH-IMBH and stellar-mass BBHs.

V. CONCLUSIONS AND FUTURE WORK

We have investigated the effects of neglecting sub-
dominant modes in templates on the predicted BBH
sensitivity of a single advanced LIGO detector. In do-
ing so we have considered the loss in re-weighted SNR,
which more accurately reflects what is done in real BBH
searches than considering SNR alone. We found that
not including sub-dominant modes in templates does not
make the sensitivity to non-spinning BBH signals any
worse than what has been predicted as long as the grav-
itational waves can be detected at single-detector re-
weighted SNRs . 9.5. If the threshold for detection
is larger, neglecting sub-dominant modes will result in
worse sensitivity than predicted, but only for IMRI BBHs
with total masses & 100 M� and q & 4. Stellar-mass
BBHs (M . 100 M�) and more equal-mass IMBH-IMBH
binaries (m1,2 & 100 M�, q . 4) are unaffected.

We have also simulated a bank of non-spinning tem-
plates that have sub-dominant modes to see if any im-
provement in sensitivity can be gained. To do so we ana-
lytically maximized the SNR over κ when sub-dominant
modes are included, then numerically maximized over
the remaining extrinsic parameters [see Appendix A]. We
found that if sub-dominant modes are used throughout
the entire bank, and all templates are weighted equally,
the sensitivity would be worse for stellar-mass BBHs and
IMBH-IMBH binaries with q . 4 due to the increase in
threshold needed to keep false-alarm probability fixed.
Such a search would only improve sensitivity to IMRIs
with q & 4. Therefore, in order to include sub-dominant
modes in templates, the templates must be weighted by
the likelihood that they will detect a signal.

We found an effective weight by splitting the bank
in two parts. Using sub-dominant modes in templates
that satisfy Eq. (24) and dominant-mode templates else-
where, we can improve the sensitivity to IMRI BBHs
without sacrificing the sensitivity to stellar-mass BBHs
and IMBH-IMBH binaries. The split bank is only one of
many possible weighting schemes. Using sub-dominant
modes throughout the entire bank with a more incremen-
tal weight may yield better sensitivity. However, since
sub-dominant modes improve sensitivity to signals for
which the detectors are least sensitive, a more sophisti-
cated search would probably only yield a small increase
in the detection rate.

In Fig. 10 we present the single-detector sensitive vol-
umes of the split bank. We find that the sensitive vol-
umes to signals in the sub-dominant part of the bank
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FIG. 9. Relative gain of sub-dominant bank compared to dominant-mode bank if the sub-dominant modes are only used in

part of the bank, G
S
D

S

DS . The sold black line indicates the injection region; the dashed-black line indicates the boundary used
for switching between dominant-mode and sub-dominant mode templates.

(tiles above the black-dashed line) are one to four orders
of magnitude smaller than equal mass-ratio systems with
equivalent total masses. Using the split-bank is therefore
unlikely to substantially increase the probability of mak-
ing a gravitational-wave detection over a dominant-mode
bank unless there is a large population of high-mass ratio
IMRIs in the universe.

In order to use a split bank more investigation is
required to establish how exactly to use sub-dominant
modes in a real search. Open questions include how to
search over θ and φ,15 and how to apply a coincidence test
between multiple detectors. Given that using a split bank
has negligible impact on the overall probability of making
a gravitational-wave detection in advanced LIGO, simply
using a dominant-mode bank everywhere may be more
desirable.

We did not try to predict advanced LIGO BBH detec-
tion rates, as doing so would require a choice of astro-
physical rates. However, Fig. 10 can be used to predict
detection rates if a particular astrophysical rate is as-
sumed. The volumes given in Fig. 10 are for a split
bank; dividing the sensitive volumes by the net gains

15 One possibility is to simply place templates in θ and φ using the
stochastic method described in Ref. [53] In that case, the SNR
of each template would be found using Eq. (A20).

given in Fig. 9 yields the sensitive volumes if a dominant-
mode bank is used everywhere instead. For example, if a
dominant-mode bank is used, the sensitive volume of the
largest-mass ratio tile is ∼ 0.2 Gpc3 instead of 0.43 Gpc3.
The sensitive volumes we report were calculated using a
single detector. Since real searches use a network of de-
tectors, actual sensitive volumes may vary depending on
the relative sensitivities of each detector.

We emphasize that in this study we only considered
non-spinning signals. Sub-dominant modes are likely to
play a more important role when one or both of the com-
ponent masses are spinning. Currently, there are no spin-
ning waveform models available with merger and ring-
down that include sub-dominant modes. Once such wave-
forms become available, creating a sub-dominant mode
search may be more advantageous. Since our analytic
maximization over κ in Appendix A is still valid if the
component masses are spinning, the result therein [specif-
ically Eq. (A20)] can be used in such a search.

A dominant-mode EOB model calibrated to numeri-
cal relativity that incorporates spins aligned with the or-
bital angular momentum does currently exist [54], as well
as spinning “phenomological” models derived from nu-
merical relativity [55, 56]. Past BBH searches have only
used non-spinning templates, but there is much work cur-
rently on-going to extend template banks into the spin-
ning regime [53, 57]. Doing so brings up many of the
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FIG. 10. Sensitive volume in Gpc3 of the split bank. The solid-black line shows the injection region, the dashed-black line the
cut between sub-dominant and dominant-mode templates. Dividing the sensitive volumes in this figure by the net gains given
in Fig. 9 yields sensitive volumes if dominant-mode templates are used everywhere.

same questions we addressed in this study: is the sensi-
tivity of a search significantly affected by neglecting spin?
Does the increase in number of templates needed to in-
clude spin increase the false-alarm probability such that
any gain in SNR is nullified? In a future work we will
address these questions using spinning EOB waveforms
calibrated to numerical relativity and the methods that
we establish in this study.
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Appendix A: SNR maximization with sub-dominant
modes

All of the assumptions we made for dominant-mode
templates apply to templates with sub-dominant modes
up to Eq. (8). As stated in Sec. II, when only the
dominant-mode is considered, the angles κ, θ, and φ can
be combined into a single parameter. The maximization
over this parameter is straight forward as the denomina-
tor of the SNR does not depend on it (the parameter can-

cels in the inner product
√
〈h, h〉) [10]. However, when

sub-dominant modes are considered, the maximization
over the extrinsic parameters is more complicated. First,
κ, θ, and φ cannot be combined as the degeneracy be-
tween them is broken. Second, both the numerator and
the denominator in the SNR depend on all three angles
[see Eq. (A19), below]. Here we derive an analytic ex-
pression for the SNR maximized over κ when all modes
are included in the waveform. As the result [Eq. (A20)]
has non-trivial dependence on θ and φ we do the remain-
ing maximizations numerically.

The m summation in Eq. (2) is over −l ≤ m ≤ l. The
number of terms in the summation can be reduced by
relating the positive and negative m modes. Letting:

−2Ylm(θ, φ) = glm(θ)eimφ,

hlm(t) = Alm(t)−imΨlm(t),
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h is:

h(t) =
∑
l|m|

(
<
{
glm(θ)eimφhlm(t)

+ gl−m(θ)e−imφhl−m(t)
})

cosκ

+
(
=
{
glm(θ)eimφhlm(t)

+ gl−m(θ)e−imφhl−m(t)
})

sinκ. (A1)

Here, |m| indicates that the summation is over positive-
m modes only, and we have set D = 1 since it does not
enter in the SNR.16 The ±m modes of the hlm are related
by:

hl−m = (−1)lh∗lm. (A2)

Using this relationship Eq. (A1) becomes:

h(t) =
∑
l|m|

(
G1lm(θ) cos(mφ)h1lm(t)

+G1lm(θ) sin(mφ)h2lm(t)
)

cosκ

+
(
G2lm(θ) sin(mφ)h1lm(t)

−G2lm cos(mφ)h2lm(t)
)

sinκ, (A3)

where:

G1lm(θ) = glm(θ) + (−1)lgl−m(θ); (A4)

G2lm(θ) = glm(θ)− (−1)lgl−m(θ); (A5)

h1lm(t) = Alm(t) cos[mΨ(t)]; (A6)

h2lm(t) = Alm(t) sin[mΨ(t)]. (A7)

Equation (A3) can be expressed more concisely by the
matrix equation:

h(t) =
∑
l|m|

KPlmHlm (A8)

= KPH, (A9)

where:

Plm =

(
G1lm cosmφ G1lm sinmφ
G2lm sinmφ −G2lm cosmφ

)
; (A10)

Hlm =

(
h1lm

h2lm

)
; (A11)

K =
[
cosκ sinκ

]
; (A12)

P =
[
P22 P21 · · ·

]
; (A13)

H =

H22

H21

...

 . (A14)

16 As written, Eq. (A1) double counts terms for which m = 0. For
the sake of brevity we have redefined the Al0 in this equation to
be 1/2 of their original values.

Let us define the covariance matrix C as:

C ≡ H⊗H, (A15)

where the outer product A⊗B is:

[A⊗B]ij ≡ 〈Ai, Bj〉 . (A16)

Note that K depends only on κ, P on θ and φ, and
C on the intrinsic parameters Υ. Also note that C is
symmetric. In this notation 〈h, h〉 is:

〈h, h〉 = KPCPTKT. (A17)

Defining Q as:

Q = H⊗
[
s
]

=

〈h122, s〉
〈h222, s〉

...

 , (A18)

the SNR is:

ρ = max
θ,φ,κ

KPQ√
KPCPTKT

. (A19)

We can perform the maximization over κ analytically.
First consider the case when θ = π/2. From the definition
of the −2Ylm:

G2lm(π/2) = 0, ∀(l,m),

which means:

P2i(θ = π/2, φ) = 0, ∀i.

In this case KP has no sinκ terms, causing the κ depen-
dence to cancel in Eq. (A19). Thus17:

ρ = max
φ,θ=π/2

P1iQi√
P1jCjkPk1

.

To maximize over κ when θ 6= π/2, let g = PCPT so

that the denominator of the SNR is
√

KgKT. Note that
g is a 2× 2 symmetric matrix. We can therefore think of
it as a metric that defines an inner product space between
2-dimensional vectors. Since g depends on P and C the
curvature of this space is determined by θ, φ and Υ.
From this point of view the denominator of the SNR is
simply the magnitude of K in this space:18

√
KPCPTKT =

√
KgKT ≡

√
〈〈K, K〉〉 ≡ ||K||.

If we let ST = g−1PQ then we find that the numerator
of the SNR is the inner product of K and S:

KPQ = KgST = 〈〈S, K〉〉 .

17 Here repeated indices indicate sum over.
18 We use 〈〈·, ·〉〉 to differentiate the inner product defined by g

from the inner product defined in Eq. (4).
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The SNR is therefore at a maximum when K and S are
aligned:

ρ = max
θ,φ,κ

〈〈S, K〉〉
||K|| = max

θ,φ
||S||.

The magnitude of S is:

||S|| =
√

SgST =
√

QTPT(g−1)Tgg−1PQ.

Since g is symmetric its inverse is also symmetric. The
SNR is thus:

ρ =

{
maxφ P1iQi (P1jCjkPk1)

−1/2
if θ = π/2,

maxθ,φ
√

QTPT(PCPT)−1PQ otherwise.

(A20)
Note that in performing the κ maximization we did not
need to invoke the non-spinning assumption. Thus the
argument of Eq. (A20) is valid for all systems; if there is
spin, then further maximizations would need to be car-
ried out over the spin components in addition to θ and
φ.

Appendix B: Estimating false-alarm probability
from a bank of templates

The false-alarm probability of a template bank as a
function of SNR depends on the size of the parameter
space being searched over. The larger the parameter
space, the greater the probability of getting a false alarm.
Let us assume that every template in the bank is indepen-
dent of each other. As described in Sec. II, in a search,
intrinsic parameters are maximized over by selecting the
template that yields the largest SNR. Due to this maxi-
mization, only one template can produce a trigger at any
given time, making the probability of getting a trigger
with some SNR from each template mutually exclusive.
The false-alarm probability of the bank is thus:

F(ρ) =
N∑
k=1

∫ ∞
ρ

fB(ρ′|k)dρ′,

where N is the number of templates in the bank and
fB(ρ′|k) is the probability density function of the SNR
of each template after maximization. Due to the bank
maximization fB(ρ|k) is given by the probability that the
template produces an SNR equal to ρ times the probabil-
ity that every other template produces an SNR less than
ρ; thus:

F(ρ) =

N∑
k=1

∫ ∞
ρ

fP (ρ′|k)

N∏
l 6=k

[∫ ρ′

0

fP (ρ′′|l)dρ′′
]

dρ′

=

N∑
i=1

∫ ∞
ρ

fP (ρ′|k)

N∏
l 6=k

FP (ρ′|l)dρ′. (B1)

Here fP (ρ|k) is the SNR distribution in noise of the kth

template and FP (ρ|l) is the cumulative distribution func-
tion of the lth template.

In Gaussian noise, every dominant-mode template is χ
distributed with two degrees of freedom. For a dominant-
mode bank Eq. (B1) simplifies to:

FD(ρ) = 1−
(

1− e− ρ
2

2

)N
. (B2)

In our case, N = 19 800 and ρ = 8; the probability that
the dominant-mode bank produces a false alarm at SNR
8 is therefore ≈ 2.5× 10−10.

Note that Eq. (B2) approaches 1 as N → ∞ for all
ρ > 0. This is due to our assumption that the tem-
plates are independent of each other. We expect that
as we increase the minimal match of the bank to 100%
(which would require an infinite number of templates)
the false-alarm probability would instead approach some
limiting value for a given ρ. The minimal match of our
template bank is 97%; assuming that templates are inde-
pendent might therefore seem exceedingly näıve. To test
this assumption we filtered the dominant mode template
bank in 10 000 realizations of noise. In each realization
we selected the template with the best SNR to provide a
measure of false-alarm probability as a function of SNR.
We found good agreement between these results and Eq.
(B2). Thus, despite a seemingly large overlap between
neighboring templates, our assumption of independence
appears to be approximately valid for the minimal match
of our bank.

To model a search with sub-dominant modes we as-
sume a bank with the same number of templates and
with the same (M, q) coordinates as the dominant-mode
bank. In such a search we would maximize ρ over θ, φ
and κ for each template, then maximize over the entire
bank. To find F(ρ) of this bank we need the probability
density function of the SNR for each template in station-
ary Gaussian noise, fP (ρ|k). To find that we need an
expression for the maximized SNR when sub-dominant
modes are included. In Appendix A we analytically max-
imize ρ over κ to get Eq. (A20). This equation depends
on the matrix Q, the elements of which are the over-
lap between the template and the detector data [see Eq.
(A18)]. In stationary Gaussian noise the Qi are Gaus-
sian random variables with variance σ2

i =
∑
j Cij , where

Cij are the elements of the covariance matrix defined in
Eq. (A15). To find fP (ρ|k) from this multivariate Gaus-
sian distribution we need to maximize over θ and φ. This
maximization is not trivial, however, and so we must find
the SNR distribution numerically.

One way to find fP (ρ|k) is to generate many realiza-
tions of noise, filter it to get Q, then perform the max-
imization in Eq. (A20) for each template. However, we
expect the probability of getting ρ ≈ 8 to be extremely
small: the probability of getting 8±0.1 from a χ distribu-
tion with 10 degrees of freedom (the upper limit of what
we expect from a template with 5 modes) is order 10−9.
Getting an accurate measure of fP (ρ|k) around SNR 8 is
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thus computationally intractable using this “brute force”
method. Instead, we follow a procedure similar to that
used in Ref. [58] to find the probability density function.

To simulate a particular realization of Q we do not
need to do any matched filtering; instead we draw a set
Z of pseudo-random values from a Gaussian distribution
with zero mean and unit variance. Q is then19:

Qi =
√
CijZj .

We think of Q as being a vector in a ν dimensional space
S, where ν is equal to twice the number of modes; the
relative size of each dimension is determined by the co-
variance matrix.

Now let r = ||Z|| and ||Ẑ|| = 1 such that Z = rẐ.
Define ρ̂ to be the maximized SNR we obtain from a
realization of Q̂ =

√
CẐ. From From Eq. (A20) we see

that:

ρ(Q, k) = rρ̂(Q̂, k) ≡ rρ̂(Ω, k). (B3)

Here, Ω is the solid angle describing the direction of Q in
S, and we have made the dependence of the SNR on the
intrinsic parameters of the kth template explicit. Since
each element in Z is a Gaussian random variable with
zero mean and unit variance, r — which is the quadrature
sum of these variables — is χ distributed with ν degrees
of freedom:

fR(r|ν) =
rν−1e−r

2/2

2ν/2−1Γ(ν/2)
. (B4)

The number of degrees of freedom is equal to the dimen-
sion of Q, which is twice the number of modes. In our
case, ν = 10.

Using the coordinate transformation given by Eq. (B3)
we find:

fP (ρ|k,Ω, ν) =
1

ρ̂(Ω, k)
fR

(
ρ

ρ̂(Ω, k)

∣∣∣∣ ν) . (B5)

Marginalizing out Ω yields fP (ρ|k, ν):

fP (ρ|k, ν) =

∫
1

ρ̂(Ω, k)
fR

(
ρ

ρ̂(Ω, k)

∣∣∣∣ ν)dΩ

/∫
dΩ.

(B6)
We solve this via Monte Carlo integration. For each point
in the Monte Carlo we generate a normalized random vec-
tor Ẑ. We use Eq. (A20) to find ρ̂(Ω) for this realization,

with Q̂ =
√

CẐ. We then find fP (ρ|k, ν) with ν = 10 for
several different values of ρ, terminating the Monte Carlo
when the error on fP (ρ|k) at ρ = 9 is less than 20%.

The top plot in Fig. 11 shows fP (ρ|k) for two different
templates. We find that for ρ ' 7, fP (ρ|k) approaches

19 Since C is positive-definite
√

C is real; we find it from the eigen-
decomposition of C. Specifically,

√
C = T

√
ΛT−1 where T is

the matrix of the eigenvectors of C and Λ is the diagonal matrix
formed from the eigenvalues.
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FIG. 11. SNR distribution in noise of two templates with
sub-dominant modes (fP (ρ|k)) versus SNR (top) and fitted
number of degrees of freedom νk for each template in total
mass and mass-ratio q (bottom). The dashed lines in the top
plot show a χ distribution with the fitted νk to fP (ρ|k) of the
templates shown. Fits were done between ρ = 7 and 9.

the χ distribution with non-integer number of degrees
of freedom fX(ρ|νk) for all templates. We therefore fit
fX(ρ|νk) to fP (ρ|k) between ρ = 7 and 9 by maximizing
over νk. The bottom plot in Figure 11 shows the best-fit
νk (νk) for each template in the bank. If all of the modes
were independent of each other νk would be equal to 10
for all k. Instead we find that the largest νk ≈ 4.6, which
occurs at the largest mass-ratio and total mass part of
the bank. As the templates approach the equal mass line
the number of degrees of freedom approaches two. This
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is expected: as q → 1, the sub-dominant modes become
small relative to the dominant mode, and fP (ρ|k) reduces
to a χ distribution with 2 degrees of freedom.

To solve Eq. (B1) we substitute fX(ρ|νk) and

FX(ρ|νk) for fP (ρ|k) and FP (ρ|k), then numerically in-
tegrate for several different values of ρ. Inverting yields
ρ(F), which we solve for F = FD(ρ = 8).
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