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We compute the periastron advance using the effective-one-body formalism for binary black holes

moving on quasicircular orbits and having spins collinear with the orbital angular momentum. We

compare the predictions with the periastron advance recently computed in accurate numerical-relativity

simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not

use any numerical-relativity calibration of the effective-one-body model, and stem from two key

ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning

particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully

symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle

limit, of all post-Newtonian corrections linear in the spin of the particle. In fact, even when only the

leading spin post-Newtonian corrections are included in the effective-one-body spinning Hamiltonian but

all the test-particle corrections linear in the spin of the particle are resummed we find very good agreement

with the numerical results (within the numerical error for equal-mass binaries and discrepancies of at most

1% for larger mass ratios). Furthermore, we specialize to the extreme mass-ratio limit and derive, using

the equations of motion in the gravitational skeleton approach, analytical expressions for the periastron

advance, the meridional Lense-Thirring precession and spin precession frequency in the case of a spinning

particle on a nearly circular equatorial orbit in Kerr spacetime, including also terms quadratic in the spin.

DOI: 10.1103/PhysRevD.88.084005 PACS numbers: 04.30.�w, 04.25.�g

I. INTRODUCTION

The periastron precession in a two-body system
describes the angular advance of the line joining the points
of closest and farthest approach of an elliptic orbit. This
secular effect occurs whenever the ratio of frequencies of
the radial and azimuthal motions is different from unity,
and it is caused by relativistic effects, the bodies’ multipole
moments or other perturbations. In the Solar System, the
periastron advance (PA) has been measured for several
planets [1,2] and is mainly due to perturbations from the
presence of the other planets. The sun’s oblateness also
contributes to the PA, but after initial controversies about a
potentially large effect [3], subsequent helioseismology
measurements found that the contribution is negligibly
small [4]. The residual rates of precession are entirely
accounted for by general relativity and provide important
constraints on possible deviations [5]. The periastron shifts
are also measured in numerous binary systems [6]. These
include relativistic binary pulsars where spin-orbit effects
in the PA could constrain the neutron stars’ moments of
inertia and hence the nuclear equation of state [7,8]. The

most extreme values of the PA occur for zoom-whirl orbits
in highly relativistic binaries near the threshold of an
instability in the radial motion [9,10].
In the limit that the binary’s orbit is a small perturbation

to a strictly circular orbit, its epicyclic frequency becomes
independent of the eccentricity. The PA in this limit, when
expressed as a function of the azimuthal frequency, is a
gauge invariant quantity. As such it provides an important
tool for comparing and connecting different approaches to
modeling the binary dynamics. Accurate analytical models
of coalescing binaries are the foundation for computing
templates for gravitational waves that could be observed
with detectors coming online within the next few years,
such as advanced LIGO and Virgo. This has motivated
substantial recent interest in using the PA to assess
the performance of perturbative post-Newtonian (PN)
[11], gravitational self-force [12] and effective-one-body
(EOB) [13–16] approaches. For binaries at large orbital
separations, the PN computations of Refs. [7,17–21] apply
to binaries with arbitrary mass ratios and include the spin-
orbit effects. Finite size effects such as stellar oscillations
and tidal interactions were considered in Refs. [22,23]. The
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radial epicyclic frequency for test particles in Kerr space-
time is frequently used when modeling phenomena in
relativistic thin accretion disks [24]. For generic geodesics
in Kerr spacetime, the PA is known in terms of elliptic
integrals [25] and its PN expansion has been calculated
explicitly [26]. Postgeodesic effects in the PA for non-
spinning black holes in the small mass-ratio limit were
obtained from the conservative gravitational self-force in
Ref. [27] and used to improve the EOB model [28–30]. In
2010, the computation of the PA from numerical-relativity
(NR) simulations became possible [31], enabling tests of
the veracity of the various perturbative approaches [32].

In this paper we extend previous calculations of the PA
for nonspinning binaries to include nonprecessional spin
effects. For comparable mass binaries, we compute the PA
in the limit of circular equatorial orbits within the EOB
approach [13]. In the EOB model the conservative dynam-
ics with spins is generated by a Hamiltonian [16,33–38].
The Hamiltonian used here [34–36] has the structure of the
constrained Hamiltonian for a spinning particle in Kerr
spacetime but the metric functions and the particle’s spin
are augmented with mass-ratio dependent deformations
chosen so as to reproduce the PN Hamiltonian [18,39] in
the weak-field limit. The Hamiltonian for generic spinning
binaries is usually expressed in a fixed source frame in
terms of Cartesian coordinates. Here, we write this
Hamiltonian in coordinates adapted to the binary geome-
try, which could be useful in future work on precessing
binaries [40]. Then, specializing to the case of equatorial
orbits, we apply a linear stability analysis to the canonical
equations of motion to obtain the epicyclic frequency in
terms of derivatives of the Hamiltonian. Combining the
result with the algebraic relations for determining the
angular momentum and radius-frequency relationship for
circular orbits leads to the gauge invariant expression for
the PA as a function of the orbital frequency. We compare
the results, which we evaluate numerically, with data from
the NR simulations of Refs. [41–44] and assess the per-
formance of spinning EOB models.

By construction, the results derived from the EOB
Hamiltonian when specialized to the extreme mass-ratio
limit directly reduce to the dynamics of a spinning particle
in a Kerr spacetime, to linear order in the particle’s spin. As
an independent check and an extension to quadratic order in
the spin we also compute the PA from the equations of
motion in the gravitational skeleton approach [45–52]. The
magnitude of the particle’s spin scales with the mass ratio
as sm=M, where 0 � s � 1 is a dimensionless spin
parameter for a compact object and m=M � 1. Linear-in-
spin corrections to geodesic motion thus enter at the same
order in the mass ratio as the gravitational self-force [12].
While dissipative effects are dominated by the gravitational
radiation-reaction force [53], the influences of the spin
and self-force on the conservative dynamics could be
equally important [53,54]. We extend the comparisons of

Refs. [53–55] here to include information beyond strictly
circular orbits obtained from the PA. In addition, we also
compute explicitly the Lense-Thirring and spin precession
frequencies for small deviations from circular equatorial
orbits.
The organization of this paper is as follows. In Sec. IIA,

we express the EOB Hamiltonian in spherical coordinates
and in a generic fixed source frame. In Sec. IIB, we special-
ize to aligned or antialigned spins and compute the angular
momentum and frequency of circular orbits. Then, we apply
the general method to compute libration frequencies to the
EOB Hamiltonian in Sec. II C and obtain the results for the
epicyclic frequency. In Sec. III we compare them to NR data
and discuss the efficiency of the EOB spin resummations in
Sec. III C. In Sec. IV we consider the case of a spinning
particle on a nearly circular equatorial orbit in Kerr space-
time and derive explicit expressions for the PA and the
precession frequencies for the orbital plane and spin vector.
In Sec. IVC we specialize the spinning particle results to
Schwarzschild and compare the spin-dipole and gravita-
tional self-force contributions to the energy and PA.
Finally, Sec. V contains our main conclusions.
Henceforth, greek letters denote spacetime indices and

run over 0, 1, 2, 3; latin letters from the middle of the
alphabet i, j, k are spatial indices, while Latin letters from
the beginning of the alphabet a, b, c are Minkowski space-
time indices. Summations over any repeated indices are
implied and square brackets around pairs of indices indicate

antisymmetrization, e.g., x½apb� ¼ ðxapb � xbpaÞ=2. We
use units with G ¼ c ¼ 1 throughout. An asterisk when
used in a superscript denotes the dual of a tensor, e.g.,
R�
abcd ¼ �cd

fgRabfg=2, and
�Rabcd ¼ �ab

fgRfgcd=2, where

�0123 ¼ 1 is the permutation symbol. The basis vectors of a
timelike tetrad are denoted by e

�
a and the Ricci rotation

coefficients by!ab
c ¼ e�a e�be

c
�;�. A semicolon indicates the

covariant derivative and a comma denotes the partial deriva-
tive. Boldface symbols stand for spatial vectors; vectorial
arrows denote four-vectors. The notation for the quantities
in the EOB model follows that of Refs. [34,35].

II. EFFECTIVE-ONE-BODY MODEL

A. Hamiltonian in spherical coordinates

In the spinning EOB model of Refs. [34–36] (see also
Refs. [16,33,37,38] for a different implementation of the
EOB Hamiltonian with spins), the dynamics of two black
holes with masses m1 and m2 and spins S1 and S2 is
generated by the Hamiltonian

Hreal ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðHeff � 1Þ

q
; (1)

where M ¼ m1 þm2 and � ¼ m1m2=M
2. The

Hamiltonian Heff describes an effective particle of mass
� ¼ �M and spin S� moving in a deformed, fully symme-
trized (under the interchange of the body labels) Kerr
metric with mass M and spin SKerr ¼ S1 þ S2.
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The constrained Hamiltonian of a spinning particle in
Kerr spacetime was calculated in Boyer-Lindquist coordi-
nates in Ref. [34], using a spherical reference tetrad to
describe the dynamics of the particle’s spin. In the flat
space limit, such a description of the spins includes addi-
tional spin-orbit couplings besides the usual S� � L cou-
pling. As discussed in Ref. [35], the spherical gauge terms
can be avoided when using the Cartesian components of
the spins and the resulting Hamiltonian, derived in
Cartesian quasi-isotropic coordinates, is more convenient
for the mapping to an EOB model with two precessing
spins. Below, we express this Hamiltonian explicitly in
spherical coordinates for the orbital variables defined
with respect to the frame in which SKerr is along the z
axis. The structure of the reexpressed Hamiltonian will be
analogous to that in Ref. [34], where it was directly related
to geometric and physical quantities. Here, however, this
structure is just a convenient way to arrange the terms.

We use dimensionless spatial coordinates x and
momenta P for the effective particle, with x in units of
M and P in units of �. In the EOB spherical coordinates
xi ¼ ðr; �; �Þ with canonically conjugate specific mo-
menta Pi ¼ ðPr; P�; P�Þ the effective Hamiltonian of

Ref. [35] can be written as

Heff ¼ HNS þHS þHSS; (2a)

HNS ¼ �P� þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ 2�ð4� 3�ÞP4

r=r
2

q
; (2b)

HS ¼
�
Ft þ

�
�þ ��P�ffiffiffiffi

Q
p

�
F�

�
� S�

þ �ffiffiffiffi
Q

p ð�rrPrFr þ ���P�F�Þ � S�; (2c)

HSS ¼ 1

2r3
½3ðS� � n̂Þ2 � S� � S��; (2d)

where n̂ is a radial unit vector. Here, the following combi-
nations of the specific momenta and spins appear:

Q ¼ 1þ �P2
� þ �rrP2

r þ ���P2
�; (3a)

S� ¼ ��½1þ �f�ðr;PÞ� þ �g�ðr;PÞ�; (3b)

� � SKerr ¼ S1 þ S2; (3c)

�� ¼ m2

m1

S1 þm1

m2

S2: (3d)

The functions f� and g� depend on the choice of identi-
fication between the PN spin terms and the EOB functions
[36]. Except in the test-particle limit, the effective parti-
cle’s spin S� is not a canonical quantity but merely a
function of canonical variables ðx;P;S1;S2Þ. The metric
functions are

� ¼
ffiffiffiffiffiffiffiffiffi
�t�

p
ffiffiffiffiffiffi
�t

p ; � ¼ 2	r

�t

; (4a)

� ¼ �

�tsin
2�

; �rr ¼ �r

�
; ��� ¼ 1

�
; (4b)

where

	 � j�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS1j2 þ jS2j2 þ 2S1 � S2

q
; (5a)

�t ¼ r2AðrÞ þ 	2; (5b)

� ¼ r2 þ 	2cos 2�; (5c)

�r ¼ �tD
�1ðrÞ; (5d)

�t ¼ ðr2 þ 	2Þ2 � 	2�tsin
2�: (5e)

The specific form of the potentials AðrÞ and D�1ðrÞ
depends on the choice of the EOB model. The vectors
Ft, Fr, F� and F� in Eq. (2c) are given by

F�¼ cos�n̂þ v̂; (6a)

Ft¼ n̂

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffi
���

p
ffiffiffiffi
Q

p
�
P��;�ð1þ2

ffiffiffiffi
Q

p Þ
ð1þ ffiffiffiffi

Q
p Þ ��P�cot��ð1�2

ffiffiffiffi
Q

p Þ�;�

2�

�
þ v̂

csc�
ffiffiffiffiffiffiffi
�rr

p
ffiffiffiffi
�

p
�
�P��;r

ð1þ ffiffiffiffi
Q

p Þþ
ð2 ffiffiffiffi

Q
p �1Þ�;rþ�P��;r

2
ffiffiffiffi
Q

p
�
;

(6b)

Fr¼�n̂

ffiffiffiffiffiffiffiffi
���

p ð�;�Prþ�;rP�Þ
2�

ffiffiffiffi
�

p ð1þ ffiffiffiffi
Q

p Þ � v̂
csc�ð�;��

��P�þ2Pr�
rr�;rÞ

2�
ffiffiffiffi
�

p ffiffiffiffiffiffiffi
�rr

p ð1þ ffiffiffiffi
Q

p Þ � �̂
csc�

ffiffiffiffiffiffiffiffi
���

p
2�

ffiffiffiffiffiffiffi
�rr

p
�
2

ffiffiffiffi
Q

p
�;�þP��;�

ð1þ ffiffiffiffi
Q

p Þ þ����
;�

���

�
; (6c)

F�¼�n̂

ffiffiffiffiffiffiffiffi
���

p
�;�P�

�
ffiffiffiffi
�

p ð1þ ffiffiffiffi
Q

p Þ� v̂
csc�

ffiffiffiffiffiffiffi
�rr

p
P��;r

2�
ffiffiffiffi
�

p ð1þ ffiffiffiffi
Q

p Þþ �̂ csc�

�
1þ

ffiffiffiffiffiffiffi
�rr

p

2�
ffiffiffiffiffiffiffiffi
���

p
�
2

ffiffiffiffi
Q

p
�;rþP��;r

ð1þ ffiffiffiffi
Q

p Þ þ����
;r

���

��
: (6d)

Here, the Cartesian unit vectors ðn̂; �̂; v̂Þ are defined by

n̂ ¼ x

r
; �̂ ¼ ê	Z � n̂; v̂ ¼ n̂� �̂; (7)

where ê	Z ¼ �=	 denotes the direction of the (deformed)
Kerr spin.

When the spins are precessing, the spherical coordinates
tied to the spin are no longer adequate for describing the
motion in a fixed frame. For this reason, Cartesian
coordinates are used in current implementations of the
EOB model for gravitational wave–template construction
[35,36,40,56–58]. The disadvantage of Cartesian coordi-
nates is that the direct connection to the binary geometry is
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obscured. An alternative geometric coordinate choice
that is analogous to the Keplerian orbital elements in
celestial mechanics was adapted to spinning binaries in
Refs. [59–61] (see also Refs. [62–64] for related parame-
trizations). Below, we provide a brief description of the
modifications necessary to write the EOB Hamiltonian
using the modified Keplerian coordinates that can be
employed in future work related to template construction
[40,56–58]. References [59–61] provide the details and
derivations relevant to this choice of variables.

The dynamical variables in this approach are the set of
radial variables ðr; PrÞ and the magnitudes of the angular
momenta together with various angles parametrizing rota-
tions from different frames to a fixed reference frame
ðe1; e2; e3Þ. These angles are illustrated in Fig. 1 and
defined as follows. Without loss of generality, we can
choose the orientation of the fixed frame to be e3 ¼ J=J
because the total angular momentum J ¼ Lþ �, where
L ¼ x� P, is conserved for the dynamics generated by
the EOB Hamiltonian. We introduce an orbital frame
ði; j; kÞ such that k ¼ L=L. The rotation between the two
frames defines an inclination angle � (the angle of the
precession cone of L around J) and an angle � measuring
the longitude of the line of nodes, the intersection of the
orbital plane with the fixed equatorial plane. Specifically,
cos� ¼ k � e3 and cos� ¼ i � e1. The relative separation
vector is given by x ¼ r cos’iþ r sin’j, where ’ is the
azimuthal angle in the instantaneous orbital plane. With
these conventions the radial unit vector in the fixed frame is

n̂ ¼ ðcos� cos’� cos� sin� sin’; cos� cos� sin’

þ sin� cos’; sin� sin’Þ: (8)

The instantaneous direction of the total spin in the fixed
frame can be expressed as

ê	Z ¼ ð ~w sin�;� ~w cos�; sin� sin�LS þ cos� cos�LSÞ;
(9)

where �LS is the angle between L and � (measured in the
opposite sense to �) with L � � ¼ L	 cos�LS, and

~w ¼ sin� cos�LS � cos� sin�LS. The vectors v̂ and �̂
can then be constructed by using Eqs. (8) and (9) in Eq. (7).
All occurrences of cos � ¼ � � n̂ in the metric functions
and Hamiltonian should be replaced by

cos� ¼ sin�LS sin’: (10)

Note that this differs from Ref. [61], where the replacement
for cos� involves � instead of �LS, because the � coor-
dinate in the Hamiltonian is defined with respect to the
direction of the deformed Kerr spin rather than the e3 axis
in the fixed frame. The angular momenta appearing in
Eqs. (6) are given by

P� ¼ L cos�LS; P� sin � ¼ �L cos�LS cos’ (11)

and the function Q in this parametrization becomes

Q ¼ 1þ �rP
2
r

�
þ L2

�t�

�2cos 2�LS þ�tcos
2’sin 2�LS

1� sin 2�LSsin
2’

:

(12)

The individual spins expressed in the fixed frame depend
on several additional angles: �1, defined by S1	 cos �1 ¼
S1 � �; �2 ¼ �1 þ �12 � 
, where �12 is the angle
between S1 and S2; and an azimuthal angle �S measured
between i and the projection of S1 on the plane perpen-
dicular to ê	Z . The scalar products involving the spins SA

where A ¼ 1, 2 that are needed for computing the terms
containing S� in the Hamiltonian are

SA � n̂ ¼ SAðcos �A sin’ sin�LS � w sin�AÞ; (13a)

SA � v̂ ¼ SA½cos �Að1� sin 2’sin 2�LSÞ
þ w sin �A sin’ sin�LS�; (13b)

SA � �̂ ¼ SA sin�Aðsin’ cos�LS cos�S � cos’ sin�SÞ;
(13c)

where w ¼ sin’ cos�LS sin�S þ cos’ cos�S. The
angles �, �A, �S and �LS, �12 are functions of the magni-
tudes	, L, J, S1, S2 fixed by the instantaneous geometry of
the binary. From Eqs. (10)–(13) it follows that the
Hamiltonian in this parametrization has the form
Heffðr; ’; Pr; L; J; �S; 	; S1; S2Þ. The Poisson brackets are
1 ¼ fr; Prg ¼ f�; Jg ¼ f’;Lg ¼ f�S;	g, the magnitudes
S1 and S2 are conserved (their conjugate angles are cyclic

FIG. 1. Parameter choice for the binary geometry. The e3 axis
of the fixed frame is along the direction of the total angular
momentum J. The orbital plane is perpendicular to k ¼ L=L
and the vector i points to the intersection of the orbital plane and
the plane normal to e3. The total spin � and L subtend the angle
�LS. The projection of S1 onto the ði; ê	Z � iÞ plane defines the
angle �S.
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coordinates) and the other angles are determined by geo-
metric considerations.

To compute the PA, we can without loss of generality
specialize to equatorial orbits since the radial and preces-
sional motions are independent. Motion in the equatorial
plane requires that the spins be collinear to the orbital
angular momentum, implying that � ¼ 0 and the other
angles �A, �LS and �12 either 0 or 
. In this case all the
frames coincide and the v̂ components of Eqs. (6) speci-
alized to � ¼ 
=2 and P� ¼ 0 can be used directly. The
transformations discussed above would however be needed
to compute the dragging of the nodes and the
spin precessions in the EOB model using the method
of Sec. II C.

B. Specialization to equatorial orbits,
angular momentum and frequency

of circular orbits

The Hamiltonian for equatorial orbits obtained from the
v̂ components of Eqs. (6) with � ¼ 
=2, P� ¼ 0 simplifies
to be

Heff
eq ¼ �P� þ �

ffiffiffiffi
Q

p � S2�
2Mr3

þ S�
�
Feq
t þ

�
�þ ��P�ffiffiffiffi

Q
p

�

� ð�rrÞ3=2P2
r�;rffiffiffiffi

�
p ffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p Þ

�
; (14)

where S� ¼ jS�j and

Feq
t ¼

ffiffiffiffiffiffiffi
�rr

p
2

ffiffiffiffi
�

p
�
2�P��;r

ð1þ ffiffiffiffi
Q

p Þ þ
�P��;r � �;rffiffiffiffi

Q
p þ 2�;r

�
: (15)

For circular equatorial orbits, the third term on the second
line of Eq. (14) vanishes and Q ¼ 1þ r2P2

�=�t. The

resulting expression for the Hamiltonian agrees with
Eq. (C4) in Ref. [65] when we substitute for the metric
functions and for Q. The quantity P� for circular orbits is

determined by solving @Heff=@r ¼ 0 which is explicitly

0 ¼ �;rP� þ �;r

ffiffiffiffi
Q

p þ ��;rP
2
�

2
ffiffiffiffi
Q

p þ S�
@Feq

t

@r
þ @S�

@r

@Heff
eq

@S�

þ S�
�
�;r þ

ð��Þ;rP�ffiffiffiffi
Q

p � ���;rP
3
�

2Q3=2

�
þ 3S2�

2r4
: (16)

The orbital frequency is

Hcirc
real�� ¼ @Heff

@P�

¼ �þ ��P�ffiffiffiffi
Q

p þ S�
�
��ffiffiffiffi
Q

p � ��2P2
�

Q3=2
þ @Feq

t

@P�

�

þ @S�
@P�

��
�þ ��P�ffiffiffiffi

Q
p

�
þ Feq

t � S�
r3

�
; (17)

where Hcirc
real is the Hamiltonian (1) with Heff ¼ Heff

eq jPr¼0.

To obtain P�ð��Þwe substitute the solution to Eq. (16) for

P�ðrÞ into Eq. (17), solve for rð��Þ and use the result to

compute P�ðrð��ÞÞ. We implemented these manipula-

tions numerically using MATHEMATICA.
For nonspinning binaries, the metric potentials reduce to

� ¼ ffiffiffiffiffiffiffiffiffi
AðrÞp

, � ¼ 0, � ¼ r�2, �rr ¼ AðrÞD�1ðrÞ and
�t ¼ r4. The solution to Eq. (16) is then given explicitly
by P2

� ¼ r3A0ðrÞ=½2AðrÞ � rA0ðrÞ�. Using this in Eq. (17)

leads to Hcirc
real�� ¼ ffiffiffiffiffiffiffiffiffiffiffi

A0ðrÞp
=

ffiffiffiffiffi
2r

p
. These results agree with

Eqs. (4.5) and (4.10) in Ref. [28] after converting the
dependences on u ¼ r�1.

C. Libration frequencies for small deviations
from equilibrium

Having determined the quantities for equatorial orbits,
we now consider the epicyclic frequency of small pertur-
bations to such orbits. We employ a linear stability analysis
to compute the radial frequency using a general method
that is also applicable to the computations of the other
frequencies in Sec. IV. Introducing the vector of canonical
variables yL ¼ ðxi; Pi; S

i
1; S

i
2Þ, the equations of motion

derived from the Hamiltonian (1) take the form

_yL ¼ fLðyKÞ; (18)

where the dot denotes d=dt. The generalization to systems
with a higher dimensional phase space and different time
evolution parameter is straightforward; one just replaces t
with the evolution parameter and all the vectors and
matrices by their higher dimensional counterparts. We
are interested in the behavior of solutions to Eq. (18)
near an equilibrium configuration yL0 corresponding to a

circular equatorial orbit, where fLðyK0 Þ ¼ 0 except for

L ¼ 3which is Eq. (17). Linearizing yL ¼ yL0 þ �L, where
�L=yL0 � 1 represents a small deviation vector, leads

to a set of linear differential equations with constant
coefficients

_�L ¼
�
@fL

@yK

��������y¼y0

�
�K þOð�2Þ: (19)

We decompose the solutions to this system into the eigen-
values and eigenvectors of the stability (Jacobian) matrix
ð@fL=@yKÞ. The eigenvalues � characterize the rate at
which trajectories with small differences in initial condi-
tions separate, since the eigensolutions to Eq. (19) are
	e
�t. Complex values of the exponents � correspond to
the frequencies of libration about a stable equilibrium,
while real, positive � either reflect the sensitivity to
initial conditions of chaotic orbits or characterize the
unstable direction of a hyperbolic point (e.g., a marginally
stable orbit).
We compute Eq. (19) using the EOB Hamiltonian with

the circular equatorial orbit values for y0 and find the
eigenvalues. The result for the radial frequency is
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ðHcirc
realÞ2�2

r ¼
@2Heff

eq

@r2
@2Heff

eq

@P2
r

��������Pr¼0
: (20)

Note that Eqs. (14) and (3a) show that the term H;PrPr
in

Eq. (20) involves �rr, the only metric potential that
depends on the EOB function DðrÞ. As can be verified
by direct computation, this potential does not appear
in the solutions for the circular orbit quantities from
Eqs. (16) and (17). The expression (20) is entirely equiva-
lent to that obtained with the method based on perturbing
the effective potential [28] which is determined by solving
H ¼ E for P2

r .
We express the radial frequency (20) in terms of the

gauge invariant frequency by using Eqs. (16) and (17)
to eliminate P� and r. The angle of PA is related to

Eqs. (20) and (17) by ��PA ¼ 2
jK � 1j, where

K ¼ ��

�r

: (21)

Note that K being the ratio of two frequencies is indepen-
dent of the choice of time parametrization. The numerical
values we obtain for K will be used to compare with NR
data in Sec. III below. For nonspinning binaries, Eq. (21)
reduces to K�2 ¼ D�1ðrÞ½rAðrÞA00ðrÞ=A0ðrÞ � 2rA0ðrÞ þ
3AðrÞ�, which agrees with Eq. (5.19) of [28].

The method described above can also be used to com-
pute the precession frequencies for meridional oscillations
of the orbital plane and for the spins in the case of small
deviations from exact collinearity of the angular momenta.
We will calculate these quantities explicitly for the case of
a spinning particle in Sec. IV. However, we do not provide
these precession frequencies for the EOB model because
they involve the same EOB potentials already present in
the PA and data for comparisons with other approaches
is currently lacking. In principle the precessions can be
obtained by using in Eq. (19) the equations of motion for
the variables discussed at the end of Sec. II A and finding
the characteristic exponents.

D. Reduction to the case of a spinning particle
in Kerr spacetime

In this subsection we briefly outline the specialization of
the EOB results to the extreme mass-ratio case, where they
describe a spinning dipole in Kerr spacetime. The explicit
expressions will be given in Sec. IV, where we present a
complementary approach using the multipolar equations of
motion. The EOB potentials for a Kerr spacetime are
AðrÞ ¼ 1� 2=r and D�1ðrÞ ¼ 1, where distances are in
units of the black hole mass parameter M. The Kerr spin
reduces to 	 ¼ 
aM2, where 0 � a � 1 is the dimen-
sionless Kerr spin parameter and the upper (lower) signs
correspond to prograde (retrograde) orbits. The spin S�
becomes S� ¼ 
sm=M, where 0 � s � 1 is the particle’s
spin parameter, m is its mass and the signs denote the
relative orientation of the particle’s spin and orbital angular

momentum. Keeping only terms up to linear order in S�,
we perturbatively solve for the circular orbit quantities
from Eqs. (16) and (17). After eliminating P� in favor of

the conserved quantity Jz ¼ P� 
 S�, substituting the

Kerr metric functions into the equatorial Hamiltonian of
Eq. (14) and using the perturbative circular orbit quantities
we arrive at the OðsÞ terms in Eq. (43) below.

III. COMPARISON TO NUMERICAL-RELATIVITY
PERIASTRON ADVANCE

A. Numerical data

Throughout this section, we use the notation q ¼
m1=m2 � 1 for the mass ratio and 
A ¼ ðSA � k̂Þ=m2

A

denotes the spin component along the orbital angular
momentum (i.e., 
A < 0 denotes a spin antiparallel to L).
We consider 19 numerical-relativity simulations, per-

formed with the Spectral Einstein Code [66] (SpEC). The
simulations with equal masses and equal spins (q ¼ 1,

A ¼ 
B) were presented in Refs. [67–69]; the remaining
simulations were presented in Ref. [42]. All simulations
are also part of the SpEC binary black hole simulation
catalog [44]. For all runs, only the inspiral phase is used,
with computational methods described in [70–76].
Calculation of the periastron advance from the numeri-

cal simulations is performed with the techniques described
in Refs. [32,77]. In short, we compute the orbital frequency

�ðtÞ ¼ jrðtÞ � _rðtÞj
jrðtÞj2 ; (22)

where rðtÞ is the coordinate distance between the centers of
the apparent horizons of the two black holes. Orbital
eccentricity induces oscillations into �ðtÞ, which are
extracted by a suitable fit, from which KNR is extracted
as a function of orbital frequency M��. To make the

numerical data more easily usable, polynomial fits are
performed of the form

KNRðM��Þ¼ ½a0þa1ðM��Þþa2ðM��Þ2�KSchw; (23)

with KSchw ¼ ½1� 6ðM��Þ2=3��1=2. The resulting fits are

listed in Table I. The accuracy with which KNR can be
computed depends sensitively on the orbital eccentricity of
the individual simulations; therefore we give error bounds
separately for each simulation.

B. Comparison with the baseline
effective-one-body model

In this section we illustrate the results for the PA
obtained from the EOB Hamiltonian using Eqs. (21),
(20), (14)–(17), (4), and (5). For the potentials AðrÞ and
D�1ðrÞ that appear in the metric functions in Eqs. (5) we
use the 3PN accurate Taylor series [35]: A ¼ 1� 2=rþ
2�=r3 þ �ð94=3� 41
2=32Þ=r4 and D�1 ¼ 1þ 6�=r2 þ
2ð26� 3�Þ�=r3. We will show below that the PA depends
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only weakly on the choice of the functions f� and g� in the
expression (3b) for S�. The most accurate mapping that we
use as the baseline model for the comparisons includes the
3.5PN spin-orbit terms given in Eqs. (51) and (52) of
Ref. [36], with all the gauge parameters therein set to
zero, aj ¼ bj ¼ 0 for j ¼ 0, 1, 2, 3. As such, the EOB

model contains only information available from PN theory
and the test-particle limit, without any additional calibra-
tions from NR. We verified that using the calibrated spin-
ning EOB model [57] with the logarithmically resummed
potentials A andD from Sec. V E of Ref. [35] gives similar
results in the low-frequency regime relevant here. We also
include the predictions from PN theory in the comparison,
using the highest PN orders currently available: 3.5PN
order in the spin-orbit effects and 3PN order in the
spin-spin effects (see the companion paper [77] for more
details on the PA in PN theory). We find that including the
3PN spin-spin effects significantly improves the agreement
with the NR data in all cases.

We show in Fig. 2 the frequency ratio K as a function of
the azimuthal frequency for equal-mass binaries with
aligned spins. Quite interestingly, the EOB prediction
closely tracks the NR data over the entire frequency range
considered, even for the case of spins close to maximal

1 ¼ 
2 ¼ 0:97. The difference between EOB and NR
is within the estimated numerical error. The PN results,
instead, are outside the NR error bounds, with the discrep-
ancy decreasing for lower frequencies and lower spins.

At low frequencies the curves should all converge to
K ¼ 1. Two cases with antialigned spins, 
1 ¼ 
2 ¼
�0:95 and 
1 ¼ 
2 ¼ �0:9, are displayed in Fig. 3, again
for equal masses. The agreement between EOB and NR in
this case is still very good, but we notice that the EOB
prediction for the case 
1 ¼ 
2 ¼ �0:95 (
1 ¼ 
2 ¼
�0:9) is slightly outside (coincides with) the numerical
error forM�� & 0:02. We find that the small discrepancy,

0.3%, in the case 
1 ¼ 
2 ¼ �0:95 does not change sig-
nificantly when computing the EOB model at different PN
orders. We plan to investigate this oddity in the future using
black hole simulations with antialigned spins and different
spin magnitudes, and larger eccentricities. In fact, the
extraction of the periastron advance for antialigned simu-
lations is more delicate than for simulations with aligned
spins. For the 
1 ¼ 
2 ¼ �0:95 simulation, the eccentric-
ity is 10�3, and to obtain a better estimate for the periastron
advance a larger eccentricity is required.
Since the comparisons above showed that the EOB and

NR data for equal-mass binaries with equal spins agree
over a range in frequency, we now pick a fiducial low
frequency M�� ¼ 0:02 and consider variations in the

spin parameter, shown in Fig. 4. The blue diamonds cor-
respond to the NR data and its error bounds, the red circles
are the EOB prediction and the black squares indicate the
PN results. The increase inK with decreasing spin parame-
ter at fixed M�� is largely due to the fact that for smaller

spins a binary at the fiducial frequency is closer to its

TABLE I. Periastron advance extracted from numerical simulations. The first three columns give mass ratio and spin projection onto
the orbital angular momentum for the aligned-spin binary black hole simulations which are considered here. The next three columns
give the fitting parameters of Eq. (23) for the periastron advance, followed by fits of the lower and upper error bounds. The rightmost
column indicates the frequency range within which each fit is valid.

K Kþ �K K� �K
q 
1 
2 a0 a1 a2 a0 a1 a2 a0 a1 a2 M��

1 0.97 0.97 1.00764 �3:9949 �70:807 1.0065 �3:9406 �67:121 0.99418 �2:7579 �101:543 [0.0169, 0.0344]

1 0.95 0.95 0.98830 �2:2364 �107:11 0.99952 �3:2598 �79:725 0.98340 �1:7802 �122:724 [0.0184, 0.0318]

1 0.9 0.9 0.96487 �0:3254 �138:67 0.96828 �0:5883 �130:568 0.99319 �2:6815 �94:834 [0.0200, 0.0310]

1 0.8 0.8 0.98881 �1:8428 �104:636 1.00304 �3:1416 �73:026 0.97868 �0:9219 �127:882 [0.0177, 0.0317]

1 0.6 0.6 0.99923 �2:0355 �86:061 1.01226 �3:1797 �56:734 0.97886 �0:2337 �128:612 [0.0190, 0.0310]

1 �0:95 �0:95 1.09949 �7:4342 346.477 1.32874 �33:6076 1099.42 0.78660 26.3466 �570:337 [0.0177, 0.0260]

1 �0:9 �0:9 0.96722 6.4391 �34:411 1.3842 �38:2326 1175.23 0.68089 37.9372 �908:291 [0.0177, 0.0240]

3 0.5 0.5 0.97678 0.2600 �117:537 0.98929 �0:8407 �93:074 0.95453 2.1900 �161:296 [0.0180, 0.0320]

1 0 0 0.99555 0.5048 �76:340 0.99679 0.2800 �62:419 0.99430 0.7297 �90:261 [0.0120, 0.0320]

1 0.5 0 0.98950 0.2893 �106:77 1.01884 �3:0266 �8:075 0.95792 3.8258 �210:184 [0.0155, 0.0250]

1 �0:5 0 0.93781 6.5575 �171:793 1.2331 �23:1674 588.235 0.84533 17.1947 �486:223 [0.0195, 0.0259]

1.5 0.5 0 0.97522 1.4335 �139:448 1.03313 �4:6662 30.687 0.92707 6.5007 �281:776 [0.0158, 0.0259]

1.5 �0:5 0 0.99988 1.0478 �30:022 1.00286 0.6444 �15:295 0.99588 1.5908 �49:196 [0.0123, 0.0215]

3 0.5 0 1.00301 �1:7336 �65:616 1.02202 �3:7818 �7:466 0.99159 �0:4448 �105:151 [0.0164, 0.0287]

3 �0:5 0 1.00559 0.7585 17.065 1.01162 0.0921 38.352 0.99854 1.5502 �8:129 [0.0130, 0.0270]

5 0.5 0 0.99812 �1:2905 �76:358 0.99779 �1:1426 �79:709 0.99846 �1:4383 �73:008 [0.0169, 0.0280]

5 �0:5 0 1.02734 �1:3157 101.025 1.03345 �1:9245 117.851 1.02648 �1:2087 95.786 [0.0179, 0.0360]

8 0.5 0 0.97198 0.7119 �114:923 0.98183 0.0285 �102:411 0.96138 1.4528 �128:537 [0.0210, 0.0420]

8 �0:5 0 1.02556 �1:2578 130.85 1.05938 �4:3455 203.072 0.99952 1.2217 69.698 [0.0200, 0.0300]
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innermost stable circular orbit (ISCO), where the PA
diverges because the radial frequency goes to zero. This
also accounts for the trend in the performance of the PN
results in Fig. 4 which become increasingly accurate far-
ther from the ISCO. We confirmed this reasoning for the
behavior of K in the case of a test particle in Kerr space-
time (using the expressions given in Sec. IV below). We
find that when evaluated at a fixed circular orbit radius,
Kð
KerrÞ decreases with increasing spin, whereas when
instead evaluated at a fixed distance from the ISCO,
Kð
KerrÞ monotonically increases as this location shifts
towards the strong-field region.
Next, we consider the effect of varying the mass ratio.

The values of K for a binary with mass ratio q ¼ 3 and a
single spin 
1 ¼ �0:5 are shown in Fig. 5 over a range of
frequencies. Again, the EOB prediction tracks the NR data
very closely. The results for q ¼ 3 with two spins 
1 ¼

2 ¼ 0:5 look very similar to the single spin cases in Fig. 5
and we do not show them here. We also verified that for
binaries which have only one spinning component with

1 ¼ 
0:5, the plots of K versus �� are qualitatively

very similar to those discussed above, showing excellent
agreement for 
1 ¼ 0:5, and are marginally outside the
error over a small low-frequency range in some of the cases
with 
1 ¼ �0:5, and we do not include these figures here.
Instead, in Fig. 6 we summarize the information for single
spin systems with different mass ratios by evaluating them
at the fiducial frequency. The EOB predictions are in good
agreement with the NR data for all mass ratios. By contrast,
the discrepancies between the PN predictions and the NR
results increase for larger mass ratios, largely due to the
closer proximity to the ISCO with increasing mass ratio.

1.4

1.5

1.6

K

0.018 0.02 0.022 0.024
MΩφ

1.4

1.5

K

EOB(3.5PN)
3.5PN
NR

q = 1, χ1 = χ2= −0.9
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FIG. 3 (color online). Antialigned spins, equal masses.
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FIG. 2 (color online). Aligned spins, equal masses. The EOB
results are shown as red dashed lines. The solid blue curves are
the fits to the NR data and the shaded region indicates the error
estimate. The dash-dotted black curves are the PN predictions.
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FIG. 4 (color online). Varying the spin parameter. Binaries
with equal spins and mass ratio q ¼ 1 at a fixed frequency
M�� ¼ 0:02. The red circles are the EOB result; the blue

diamonds are the NR data points, together with their error
bounds. The black squares are the PN predictions. The inset
shows an enlargement for spins � 0:6.
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In summary, the comparisons with NR data show that
throughout the region of parameter space in frequencies,
mass ratios and spins considered here, the EOB model
provides an excellent prediction for the PA, while the PN
results have larger differences to the NR data. This reaf-
firms the utility of the EOB resummation for approximat-
ing the conservative dynamics including nonprecessional
spin effects.

C. Varying the effective-one-body model

As mentioned before and discussed in detail in the
companion paper [77], the PN results show substantial
improvement when including higher-order spin terms
in the model. On the other hand, the EOB model is a
resummation of all the PN terms to Oð�Þ in which the

test-particle limit imposes the overall structure in two
ways: (i) the effective particle moves in a deformed Kerr
spacetime symmetrized with respect to the two-body
masses and spins, and (ii) the terms linear in the effective
particle’s spin are deformations of the results for a spinning
particle in Kerr. The PN information on the � dependence
enters via the deformations of the metric potentials and the
identification between the effective spin and the spins in
the binary. To assess the robustness of the EOB model
under variations of the PN spin information we generated
plots such as Fig. 7 for all the data. This figure is repre-
sentative of the qualitative features in all cases considered.
It shows for a binary with 
1 ¼ 
2 ¼ 0:95, q ¼ 1, the
fractional differences in the PA prediction from the EOB
model and the NR data when including the spin terms at
different PN order, while keeping the nonspinning terms
through 3PN order.
We see that the model is fairly robust under variations in

the PN spin information, the fractional corrections being
small in all cases. Quite remarkably, for equal-mass bi-
naries with aligned spins the EOB predictions using only
the leading-order 1.5PN spin-orbit effects (i.e., S� ¼ 	�)
and 2PN spin-spin effects are well inside the numerical
errors in all the q ¼ 1 cases considered. For larger mass
ratios, the predictions from the leading-order spin cou-
plings are still close to the NR values but in several cases
they are outside the error bounds by up to 	1%. The
additional variations when adding the 2.5PN spin-orbit
effects are small but the 3.5PN spin-orbit terms lead
to an appreciable improvement in these cases. As a repre-
sentative example, for q ¼ 3, 
1 ¼ �0:5, 
2 ¼ 0 at
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FIG. 6 (color online). Varying the mass ratio. Results for
binaries with a single spin 
1 ¼ �0:5 at M�� ¼ 0:02.
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FIG. 7 (color online). Effect of varying the PN spin informa-
tion included in the EOB model. This figure shows, for the case

1 ¼ 
2 ¼ 0:95, q ¼ 1, the fractional differences in the PA
prediction from the EOB model and the NR data when either
we vary the PN order of the spin terms in the baseline EOB
model or when we consider the EOB model of Refs. [16,33,37]
in which the terms linear in the effective particle’s spin are not
deformations of the results for a spinning particle in Kerr. All the
EOB models employ the nonspinning 3PN terms. The gray
shaded area indicates the uncertainty of the numerical data KNR.
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M�� ¼ 0:02, the EOB model with only the 1.5PN

(2.5PN) spin information is outside the error by 	0:17%
(	0:16%), while including also the 3.5PN spin-orbit
information reduces the discrepancy to 	0:02%.

Given the improvements of the EOB resummations
compared to the PN results and that idea (i) above is an
immediate extension of the successful nonspinning EOB
model, we now assess, in a preliminary fashion, the utility
of the spin resummation (ii) by comparing the EOB model
used here and the NR data with the spinning EOB model of
Refs. [16,33,37]. The latter uses (i) with a different iden-
tification between the Kerr spin and the spins of the
two bodies and it employs a substantially simpler effective
spin coupling in the Hamiltonian because it does not en-
force (ii). We compute K predicted by the EOB model of
Refs. [16,33,37] using Eqs. (4.3)–(4.19) of Ref. [33] with
the Taylor series potentials A and D of Eqs. (4.7) therein
and the gyromagnetic coefficients from Eqs. (29) and (30)
in Ref. [37] with all the gauge parameters set to zero. This
choice is similar to the one made in the baseline EOB
model. We show the results in Fig. 7 and find that they are
slightly outside the NR error; the results for other systems
with two aligned spins are qualitatively similar. Changes to
the EOB model in Refs. [16,33,37] could likely eliminate
this discrepancy but the purpose here is to employ similar
choices for the basic inputs to gain insight into the effi-
ciency of the models’ underlying structure. The results of
Fig. 7 indicate that the more complicated spin resumma-
tion imposed by (ii) is in fact a valuable feature of the EOB
model in predicting the PA.

IV. SPINNING PARTICLE IN KERR SPACETIME

In this section we discuss an alternative computation of
the PA for a spinning particle based on the multipolar
equations of motion. This serves as a consistency check
of the Hamiltonian results and enables the extension to
higher order in S�.

For a body occupying a region in which the gravitational
field varies slowly, the influence of its internal structure on
its motion is encoded entirely in a collection of reduced
multipole moments [50,78]. These moments are defined as
integrals over a hypersurface whose normal is specified
with respect to a reference worldline z� [79]. The choice of
reference worldline that defines the multipole moments is
fixed by a spin supplementary condition (SSC) of the form
n�S

�� ¼ 0, where S�� is the spin tensor and n� is a

smooth timelike vector. This ensures that only the three
physical spin degrees of freedom influence the motion (see
Ref. [80] for a discussion of the features of different
choices for n�). The multipole moment expansion about
the worldline reduces the four partial differential equations
of stress energy conservation to ten ordinary differential
equations for the momentum and spin components. Using a
small parameter � � 1 to indicate the scalings of the
multipole moments, with each ‘ multipole being Oð�‘Þ,

the equations of motion with the quadrupolar force and
torque are [50,51,54]

DS��

d�
¼ 2p½�u�� � 4

3
R���

½�J����� þOð�3Þ; (24a)

Dp�

d�
¼ � 1

2
R����u

�S�� � 1

6
R����;�J

���� þOð�3Þ:
(24b)

Here, R���� is the Riemann tensor, u� ¼ dx�=d� is the

tangent to the particle’s worldline and � is a time
parameter. The quadrupole tensor J���� satisfies various
symmetry and orthogonality relations [50], but its time
dependence is set entirely by the body’s internal dynamics.
Equations (24) can only be solved once an equation of state
for J���� has been specified.
For the calculations in this subsection we perturbatively

expand all the quantities toOð�2Þ. We choose the covariant
SSC S��p� ¼ 0 (the center of mass frame) and proper time
as the evolution parameter. The momenta p� used in this

subsection are related to the canonical momenta P� and

canonical spin tensor ~S�� used in the Hamiltonian of

Sec. II A by P� ¼ p� þ ~S��!���=2, where !��� are

the spacetime components of the Ricci rotation coeffi-
cients. In terms of a tetrad frame e

�
a they are given by

!ab
c ¼ e�a e�be

c
�;�: (25)

The notation adopted in Ref. [34] is E��� ¼ !���=2. The

transformation law for the components of the spin tensor to
canonical gauge are discussed in Refs. [80,81] but will not
be needed here because the final results will be expressed
in terms of gauge invariant quantities.
We use a model for the quadrupole tensor specialized to

describe a spinning black hole and given by

J���� ¼ � 3

ð�p�p
�Þp

½�Q��½�p��; (26)

where the quadrupole tensor is

Q�� ¼ S��S�
�: (27)

The modifications necessary to model a nonvacuum com-
pact object are explained in Ref. [54] and would require
including the body’s tidally induced mass and current
quadrupole moments in J���� as well as scaling Eq. (27)

by the rotational Love number. The spin tensor can be
expressed in terms of a spin four-vector S� as

S�� ¼ � �����S�p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p�p
�

p ; (28)

where ����� is the Levi-Civita tensor.

The multipolar equations of motion (24) admit several
conserved quantities. For each Killing vector �� ¼ ð@tÞ�,
ð@�Þ� the quantities
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C� ¼ p��
� � 1

2
S��r���; (29)

giving E and Jz are conserved to all multipole orders [51].
To linear order in � there also exists an extension of the
Carter constant [82,83], which makes the Oð�Þ dynamics
completely integrable. However, integrability is lost
at Oð�2Þ.

To reduce all manipulations to operations in Minkowski
space will work directly with the quantities projected onto
a tetrad, choosing the frame

e0�¼
ffiffiffiffi
�

p
ffiffiffiffi
�

p ð1;0;0;�asin2�Þ; e1�¼
ffiffiffiffi
�

p
ffiffiffiffi
�

p ð0;1;0;0Þ;

e2�¼ð0;0;
ffiffiffiffi
�

p
;0Þ; e3�¼ sin�ffiffiffiffi

�
p ð�a;0;0;r2þa2Þ;

(30)

where � ¼ r2 þ a2 � 2r and we use dimensionless units
where the Kerr mass parameter is M ¼ 1.

The conserved energy and angular momentum (29) are
expressed in terms of the projections pa ¼ ea�p� as

E¼
ffiffiffiffi
�

p
ffiffiffiffi
�

p p0þasin�ffiffiffiffi
�

p p3þ2arcos�

�2
S23�r2�a2cos2�

�2
S01;

(31a)

Jz¼asin2�
ffiffiffiffi
�

p
ffiffiffiffi
�

p p0þðr2þa2Þsin�ffiffiffiffi
�

p p3

�asin2�ðr�þr2�a2cos2�Þ
�2

S01

þrsin�
ffiffiffiffi
�

p
�

S13þa
ffiffiffiffi
�

p
sin�cos�

�
S20

�cos�

�2
½�a2sin2��ðr2þa2Þ2�S23: (31b)

The tetrad projection of Eq. (24b) determines the evo-
lution of the normalization ð�pap

aÞ, which is no longer a
constant at quadratic order in the spin [54]. Subtracting the
nonconstant terms leads to a perturbatively conserved mass
parameter given by

m2 ¼ �pap
a � 1

3
RbcdfJ

bcdf þOð�3Þ: (32)

The quantity ua is normalized to uaua ¼ �1 since � is
the proper time. The evolution of ~u has to be determined
from its relationship with ~p obtained by contracting
Eq. (24a) with pa and rewriting the left-hand side using
the preservation of the SSC, u�r�ðSabpbÞ ¼ 0.

Substituting Eq. (24b) and expressing ðpap
aÞ in terms of

m using Eq. (32) leads to [54]

ua ¼ pa

m

�
1þ 1

2m2
QbcEbc

�
þ 1

2m3
SabRbcdfp

cSdf

� 1

m3
Rcdf

aQfdpc; (33)

where Ebd ¼ Rabcdp
apc.

A. Specialization to equatorial orbits

In the following, we will rescale the momenta by the
particle’s massm and the angular momenta bymM to work
with dimensionless quantities as we did in Sec. II A.
The particle’s spin angular momentum is sm2 and in the
rescaled units it becomes

S� ¼ s
m

M
; 0 � s � 1: (34)

The values of pa for equatorial orbits are determined in
terms of the conserved quantities E, Jz by specializing
Eqs. (31) to � ¼ 
=2, S23 ¼ S20 ¼ 0, S01 ¼ S2p3, S13 ¼
�S2p0 since S2 ¼ �sgnðS�LzÞS� is the only nonvanishing
spin component in this case. Here, sgnðS�LzÞ ¼ 
1 indi-
cates if the particle’s spin is aligned or antialigned with its
orbital angular momentum. This leads to

p0 ¼ ðr2 þ a2ÞE� aJz

r
ffiffiffiffi
�

p
�
1þ S2�

r3

�

� sgnðS�LzÞS� Jz � aEðrþ 1Þ
r2

ffiffiffiffi
�

p ;

p3 ¼ Jz � aE

r

�
1þ S2�

r3

�
� sgnðS�LzÞS� Er :

(35)

We use these results in the normalization condition (32),
which for equatorial orbits reduces to [see Eq. (73)
of Ref. [54]]

� ðp0Þ2 þ ðp1Þ2 þ ðp3Þ2 ¼ �1þ S2�
r5

½r2 þ 3ðJz � aEÞ2�:
(36)

Solving Eq. (36) for p1 and setting the resulting expres-
sion and its radial derivative to zero determines E and Jz
as functions of the circular-orbit radius. Next, the coor-
dinate radius is eliminated in favor of the orbital fre-
quency as follows. The projection of the four-velocity
onto the equatorial tetrad is ua ¼ u�ea� which gives for

equatorial orbits

ut ¼ ðr2 þ a2Þ
r

ffiffiffiffi
�

p u0 þ a

r
u3; u� ¼ a

r
ffiffiffiffi
�

p u0 þ u3

r
: (37)

The orbital frequency is given by the ratio �� ¼ u�=ut.

To find the relationship of the tetrad components u0 and
u3 with E and Jz we use Eq. (33) written in terms of the
spin vector:
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ua¼pa

�
1þ1

2
QcdEcd

�
þ�R�a

bcdS
bScpd�pcRcdf

aQfd:

(38)

Here, �R�a
bcd is the left and right dual of the Riemann

tensor computed from the contractions �R�
abcd ¼

�ab
fg�cd

lmRfglm=4. For circular equatorial orbits we

evaluate Eq. (38) using p1 ¼ p2 ¼ 0, S0 ¼ S1 ¼ S3 ¼ 0
to obtain ua ¼ pa½1� S2�ð1þ 3ðp3Þ2Þ=ð2r3Þ� for u0

and u3 in terms of p0 and p3 and hence E, Jz from (36).
We use this in the expression for the frequency, invert
perturbatively to find rð��Þ and compute the following

expressions for the conserved quantities as functions
of ��:

Eð��Þ ¼

aþ ðrc � 2Þ ffiffiffiffiffi

rc
p

r3=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq � sgnðS�LzÞS�ð
 ffiffiffiffiffi

rc
p � aÞ

r9=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq þ S2�ð
3aþ ðrc � 4Þ ffiffiffiffiffi

rc
p Þ

2r15=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq ; (39a)

Jzð��Þ ¼

ða2 � 2a

ffiffiffiffiffi
rc

p þ r2cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq

r3=4c

þ sgnðS�LzÞS�½a2 � að1� 3rcÞ ffiffiffiffiffi
rc

p þ ðrc � 4Þr2c�
r9=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq


 S2�½3a2 
 2a
ffiffiffiffiffi
rc

p ð3rc � 2Þ þ r2cð2rc � 7Þ�
2r15=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ðrc � 3Þ ffiffiffiffiffi

rc
pq : (39b)

The upper/lower signs here refer to the value of sgnðaLzÞ,
signifying prograde/retrograde orbits relative to the Kerr
spin. We use the notation

rc ¼
ð1� a��Þ2=3

�2=3
�

: (40)

In the PN limit, the expansion of Eð��Þ for �� ! 0
obtained from Eqs. (40) and (39a) reduces at OðS2��2

�Þ to
the result implied by the relations in Ref. [84], and the
terms at OðS��5=3

� Þ and OðS��7=3
� Þ agree with the corre-

sponding pieces in Ref. [85].

B. Periastron advance and precession frequencies

The equations of motion (24) for a generic orbit
expressed on the tetrad are

dx�

d�
¼ u�; (41a)

dpa

d�
¼ !bc

aubpc þ R�a
bcdp

bScpd þ fa; (41b)

dSa

d�
¼ !bc

apbSc þ papcpfSbSdR�
bcdf; (41c)

where fa ¼ e
�
a Rbcdf;�J

bcdf=6. When performing the

variation around circular orbits, we use that �x� ¼
e�a �xa with

d�xa

d�
¼ �ea�e

�
b;�e

�
cu

c�xb þ @ua

@x�
e
�
b �x

b þ @ua

@pb
�pb þ @ua

@Sb
�Sb: (42)

We apply the method of Eq. (19) with � ¼ ð�xa; �pa; �SaÞ and use MATHEMATICA to compute the characteristic
polynomial for the Jacobian matrix.

The characteristic polynomial factors into a radial and a mixed meridional and spin piece. Its solutions lead to three pairs
of nontrivial eigenvalues1 that we interpret as the periastron, nodal and gyroscope precession frequencies. From the radial
eigenvalue and after perturbatively substituting Eqs. (35) and (39) and rð��Þ we obtain

�2
r

�2
�

¼ K�2

¼ �3a2 
 8a
ffiffiffiffiffi
rc

p þ ðrc � 6Þrc
r2c

þ 6sgnðS�LzÞS�ð
 ffiffiffiffiffi
rc

p � aÞ½ðrc � 3Þ ffiffiffiffiffi
rc

p 
 2a�
r7=2c

� 3S2�½ðrc � 7Þ ffiffiffiffiffi
rc

p 
 6a�½ðrc � 3Þ ffiffiffiffiffi
rc

p 
 2a�
r5c

: (43)

Wewill use theOðS�Þ piece of this result in Sec. III to compare the effects of the spin dipole and the gravitational self-force.

1This number follows from the number of degrees of freedom after imposing all the constraints: the normalization and orthogonality
conditions leave eight degrees of freedom, but the conservation of Jz and E eliminates two of these.
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One of the other pairs of eigenvalues characterizes the meridional frequency and is given as a function of �� by

��

��

¼ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 4a

ffiffiffiffiffi
rc

p þ r2c

q � 3asgnðS�LzÞS�ð
2aþ ðrc � 3Þ ffiffiffiffiffi
rc

p Þffiffiffiffiffi
rc

p ð3a2 � 4a
ffiffiffiffiffi
rc

p þ r2cÞ3=2

 15a5S2�ð3a2 þ rcð7rc þ 4ÞÞ

2r5=2c ð ffiffiffiffiffi
rc

p � aÞ2ð3a2 � 4a
ffiffiffiffiffi
rc

p þ r2cÞ5=2


 3aS2�½a2ð80rc � 7r2c þ 4Þ þ 3r4c � 16r3c þ 26r2c�
2r1=2c ð ffiffiffiffiffi

rc
p � aÞ2ð3a2 � 4a

ffiffiffiffiffi
rc

p þ r2cÞ5=2
þ 6a4S2�ð�22a2 þ 3r2cðrc � 16Þ þ 13rcÞ

2r2cð ffiffiffiffiffi
rc

p � aÞ2ð3a2 � 4a
ffiffiffiffiffi
rc

p þ r2cÞ5=2

� 3a2S2�ðr3c � 11r2c þ 39rc þ 23Þ
2ð ffiffiffiffiffi

rc
p � aÞ2ð3a2 � 4a

ffiffiffiffiffi
rc

p þ r2cÞ5=2
: (44)

This Lense-Thirring precession is the analog of the PA for ��, giving a secular change in angle of ��LT ¼
2
j��=�� � 1j. It is sometimes referred to as the angle of advance of the nodes of a circular orbit, where a node is

an orbit’s intersection point with the equatorial plane. The weak-field limit of Eq. (44) provides a useful check of the
physical interpretation of the angular eigenvalues. Expanding the square root of the inverse of Eq. (44) for small�� gives

the angular advance of the ascending node in the PN limit ð2
Þ�1��LT ¼ 
2a�� þOð�4=3
� Þ. This agrees with the weak-

field expressions for the Lense-Thirring effect around a rotating body [86,87] when we substitute the leading-order PN
relation between�� and r. As indicated by the
 signs for prograde/retrograde motion, the leading-order effect is that the

nodes are dragged in the sense of the Kerr spin angular momentum [88].
The spin precession frequency is

�s

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ r3=2c � 3

ffiffiffiffiffi
rc

pq

r3=4c

� sgnðS�LzÞ
3S�ð3a2 � 4a

ffiffiffiffiffi
rc

p þ r2cÞ
2r11=4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ ffiffiffiffiffi

rc
p ðrc � 3Þ

q þ S2�a2ð446 ffiffiffiffiffi
rc

p � 970aþ ð3r2c þ 9rc � 65Þr3=2c Þ
4r13=4c ð ffiffiffiffiffi

rc
p � aÞ2ð
2aþ ffiffiffiffiffi

rc
p ðrc � 3ÞÞ3=2

þ S2�½9ðrc � 6Þr2c þ 5ð23rc � 18Þ�
4r7=4c ð ffiffiffiffiffi

rc
p � aÞ2ð
2aþ ffiffiffiffiffi

rc
p ðrc � 3ÞÞ3=2 þ

a4S2�ð30a2rc � 162a2 þ 9r3c � 44r2c þ 764rcÞ
4r19=4c ð ffiffiffiffiffi

rc
p � aÞ2ð
2aþ ffiffiffiffiffi

rc
p ðrc � 3ÞÞ3=2

þ S2�½ð7� 6rcÞr2c þ 58rc � 108�
8r11=4c ð
2aþ ffiffiffiffiffi

rc
p ðrc � 3ÞÞ3=2 �

S2�½15a4ð4rc � 37Þ þ 2a2r2cð9rc þ 91Þ�
8r19=4c ð
2aþ ffiffiffiffiffi

rc
p ðrc � 3ÞÞ3=2 (45)

In the weak-field limit, the expansion of Eq. (45) is
j�s=�� � 1j ¼ 3�2=3

� =2þOð��Þ, which is equivalent
to the drift of a gyroscope computed in Refs. [86,89].

As mentioned below Eq. (29), when consistently work-
ing to linear order in the spin the particle motion is
completely integrable [82,83]. However, studies of the
nonperturbative integrations of the equations of motion
for a spinning dipole found that the dynamics are formally
chaotic for very large spins and substantial orbital eccen-
tricity [90–93]. In the limit of circular equatorial orbits,
traces of the onset of chaos were found to persist as an
instability in the meridional direction [90,91].2 The exis-
tence of this instability was however limited to spin values
of order s	OðM=mÞ 
 1, corresponding to S� ¼ Oð1Þ,
which are outside the regime of validity of the spin-dipole
model used to determine the equations of motion. Not
surprisingly, we find that in the perturbative case consid-
ered here, the frequency (44) remains real and the motion
remains stable in the meridional direction until the last
stable orbit where �r ¼ 0.

C. Comparison between spin dipole and gravitational
self-force in Schwarzschild

For extreme mass-ratio binaries the leading-order cor-
rections to geodesic motion are linear in the mass ratio and
are due to two effects: the influence of the particle’s
spin dipole and gravitational self-force (SF) corrections.
Although both effects enter at the same order in m=M,
the magnitude of their imprint on observables could be
very different; e.g., dissipative effects are dominated by
gravitational radiation reaction. For the conservative
dynamics, previous comparisons focused on circular orbits
and include the ISCO shift [55] and the relationship EðP�Þ
or EðJzÞ [54]. For a Schwarzschild background, we com-
plement the studies of Ref. [54] by using Eð��Þ, thus
specifying the identification between nonspinning and
spinning configurations in terms of the observable fre-
quency ��. This bypasses the subtlety that such a com-

parison at a fixed value of the conserved quantity Jz
corresponds to comparing different orbital configurations.
We also extend this comparison to the postgeodesic effects
in K obtained from the results of Sec. III and Ref. [32].
Figure 8 illustrates the spin-dipole and SF effects

on Eð��Þ and Kð��Þ in the following way. We write

2Note that there are several typos in the matrix elements used
to compute the Lyapunov exponents in Ref. [91].
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Eq. (39a) specialized to the Schwarzschild case (a ¼ 0) as
Eð��Þ ¼ ESchw þ S�Espin þOðS2�Þ, where ESchw is the

Schwarzschild geodesic term from the first line of
Eq. (39a) and Espin is the term from the second line of

Eq. (39a), and expressK from Eq. (43) in a similar fashion.
For the SF contributions, we use the Oð�Þ term in Eð��Þ
from Eq. (3b) in Ref. [94] and the OðqÞ term in K from
Eq. (6) of Ref. [32]. We recall that the convention of
Ref. [32] is q ¼ m=M ¼ �þOð�2Þ and use the notation
Q for either of the quantities E or K.

In the upper panel of Fig. 8 we quantify the relative
importance of SF and spin-dipole contributions. We show
the ratios Espin=ESF and Kspin=KSF when s ¼ 1 (solid

lines) and s ¼ 0:2 (dashed lines). We see that the maxi-
mum spin-dipole contribution to the energy (PA) can be
larger than the SF contribution when M�� & 0:035

(M�� & 0:015). Moreover, the SF contributions increase

more rapidly with the orbital frequency than the spin-
dipole effects and become dominant in the strong-field
regime. In the lower panel of Fig. 8 we evaluate the
total Oð�Þ fractional corrections. Shown are the ratios
ðESFþEspinÞ=ESchw and ðKSFþKspinÞ=KSchw when s ¼ 1,

for the aligned (solid lines) and antialigned (dashed lines)
configurations. The scale on the y axis thus gives only the
dimensionless coefficient at Oð�Þ and must be multiplied
by � to evaluate the net physical fractional corrections.
We notice that whereas the SF and spin-dipole contribu-
tions to the energy are quite small, they are much more
important in the PA. Notably, they become comparable to

�KSchw when the orbital frequency is larger than M�� ’
0:03. Also, in the antialigned case the contributions from
SF and spin dipole can cancel each other and the net
effects are smaller than in the aligned case at the same
frequency.

V. CONCLUSIONS

We calculated the periastron advance for binaries with
aligned spins in the limit of circular orbits from the EOB
Hamiltonian and for a spinning particle in a Kerr back-
ground. We focused on the gauge invariant ratio K of the
azimuthal and radial frequencies of the motion.
For the EOB model, first we wrote explicitly the spin-

ning EOB Hamiltonian for generic binaries in spherical
coordinates and detailed the modifications necessary to
express the quantities in a fixed source frame. The spheri-
cal coordinates adapted to the binary’s geometry could be
a useful tool in future studies of precessing binaries in the
EOB framework [40]. This form of the Hamiltonian
could also be used in the future for computing the gauge
invariant expressions for the orbit-averaged precession
frequencies of the orbital plane and the spins for small
deviations from equatorial orbits (aligned spins). Then,
after reducing the dynamics to equatorial orbits and non-
precessing spins, we derived an implicit relation for K in
terms of partial derivatives of the Hamiltonian and of
solutions to algebraic equations that determine circular-
orbit quantities. We evaluated these results numerically
for a 3.5PN EOB model and used them to compare with
PN predictions and NR data from Ref. [41]. The EOB
model that we employed is not calibrated to any
numerical-relativity simulation. Quite remarkably,
throughout the region of parameter space in frequencies,
mass ratios and spins covered by the NR data, the dis-
crepancies between the EOB and NR results are within
the NR errors in all cases except for 
1 ¼ 
2 ¼ �0:95
and 
1 ¼ 
2 ¼ �0:9. In the former case the EOB pre-
diction is slightly outside (by 0.3%) the numerical error
for M�� & 0:02; in the latter case it coincides with the

numerical error for M�� & 0:02. This quirk will be

investigated in the future using black hole simulations
with antialigned spins and different spin magnitudes,
and larger eccentricities. The differences to the PN
predictions were larger and are discussed in detail
in Ref. [77].
We also found that the EOB results for equal-mass

binaries are quite stable when varying the PN spin infor-
mation. All these results confirm the utility of the EOB
approach for approximating not only the gravitational
waveforms [40,56–58], but also the conservative dynam-
ics in the presence of nonprecessional spin effects,
even for nearly extremal spins. Moreover, the excellent
agreement also confirms the two main ideas underlying
the EOB approach with spins, that is, the mapping of
the two-body dynamics of spinning particles onto the
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FIG. 8 (color online). Postgeodesic effects in Schwarzschild.
Gravitational self-force and spin-dipole effects at Oð�Þ in the
quantities Q ¼ ðEð��Þ; Kð��ÞÞ for a Schwarzschild back-

ground. Upper panel: Relative importance of conservative
spin-dipole and SF effects for strictly (Q ¼ E, solid lines) and
nearly (Q ¼ K, dashed lines) circular orbits. Lower panel:
Combined Oð�Þ effect for maximally spinning particles with
s ¼ 1. Solid lines are for sgnðS�LzÞ ¼ þ1, dashed lines for
sgnðS�LzÞ ¼ �1.
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dynamics of a spinning particle in a (deformed) Kerr
spacetime and the resummation of all PN terms linear
in the spin of the effective particle. In fact, for equal-mass
binaries the EOB predictions are in very good agreement
with the numerical results already when only the leading
PN spin-orbit and spin-spin effects are included in the
EOB model.

Although the frequency range considered here is well
within the adiabatic regime, the NR data include a small
contribution from gravitational radiation reaction. The PA
in the EOB model with dissipation could be computed
from the EOB orbital frequency by applying the same
method employed in the NR simulations to extract the
PA. We defer this study to the future.

In future work, we will use the EOB results obtained in
this paper to obtain gauge invariant expressions for the
Oð�Þ terms in the metric potentials for binaries with
spins. This could be useful for improving the spinning
EOB model using information from SF calculations,
analogous to the nonspinning case considered in
Refs. [36,94].

For a spinning particle in a Kerr spacetime, we obtained
explicit gauge invariant expressions for K and for the
meridional and spin precession frequencies in the circular
equatorial limit, including terms quadratic in the particle’s
spin. Specializing the results for the energy and PA to a
Schwarzschild background we compared the spin-dipole
and SF effects, which both scale linearly with the mass
ratio. We found that the spin dipole dominates at low
frequency and, depending on the particle’s spin, could
be non-negligible compared to the conservative SF even
at higher frequencies. We used these results to quantify
the dimensionless coefficients associated with the post-
geodesic effects at linear order in the mass ratio, which
were substantially smaller for the energy than for the PA.
The extension of our comparisons to a Kerr spacetime,
which includes more intricate spin interactions, is imme-
diate once the SF results for the PA in Kerr become
available. Such studies could provide information on
which physical effects to include when modeling the
conservative dynamics of small mass ratio systems to a
desired accuracy. In addition, our results for K could
inform the description of binaries with less extreme
mass ratios. For example, they could be used to improve
analytical and phenomenological models as done in
Ref. [77] and as a benchmark for higher-order PN spin
terms when they become available.

ACKNOWLEDGMENTS

We thank Andrea Taracchini and Yi Pan for help with
implementing the EOB Hamiltonian and Enrico Barausse,
Alexandre Le Tiec, Yi Pan and Andrea Taracchini for
useful interactions and comments. A. B. acknowledges
partial support from NSF Grants No. PHY-0903631 and
No. PHY-1208881, and NASA Grant No. NNX09AI81G.

T. H. acknowledges support from NSF Grants No. PHY-
0903631 and No. PHY-1208881 and the Maryland Center
for Fundamental Physics. A.M. and H. P. acknowledge
support from NSERC of Canada, from the Canada
Research Chairs Program, and from the Canadian
Institute for Advanced Research. We acknowledge support
from the Sherman Fairchild Foundation, from NSF Grants
No. PHY-0969111 and No. PHYS-1005426 at Cornell, and
from NSF Grants No. PHY-1068881 and No. PHY-
1005655 at Caltech. The numerical-relativity simulations
were performed at the GPC supercomputer at the SciNet
HPC Consortium [95]; SciNet is funded by the Canada
Foundation for Innovation (CFI) under the auspices of
Compute Canada; the Government of Ontario; Ontario
Research Fund—Research Excellence; and the University
of Toronto. Further computations were performed on
the Caltech computer cluster Zwicky, which is funded
by the Sherman Fairchild Foundation and the
NSF MRI-R2 Grant No. PHY-0960291, on SHC at
Caltech, which is supported by the Sherman Fairchild
Foundation, and on the NSF XSEDE network under
Grant No. TG-PHY990007N.

APPENDIX: USEFUL QUANTITIES FOR A
SPINNING PARTICLE IN KERR SPACETIME

For circular equatorial orbits, the quantities entering the
relationship between ua and pa reduce to

QabEab¼�S2�
r3
½ðp0Þ4þðp0p3Þ2�2ðp3Þ4�; (A1a)

�R�a
bcdS

bScpd¼S2�
r3
ð�p0;0;0;2p3Þ; (A1b)

pcRcdf
aQfd¼S2�

r3
fp0½ðp3Þ2�ðp0Þ2��0

a

þ2p3½ðp0Þ2�ðp3Þ2��3
ag: (A1c)

The rotation coefficients used in our calculation are
given by

!00
2¼!03

0¼�!11
2¼!12

1¼a2 cos�sin�

�3=2
;

�!02
3¼�!30

2¼�!32
0¼!03

2¼!20
3¼!23

0

¼a
ffiffiffiffi
�

p
cos�

�3=2
;

!32
3¼�!33

2¼�ðr2þa2Þcos�
�3=2 sin�

;

!00
1¼!01

0¼ rða2�rÞ�a2cos2�ðr�1Þffiffiffiffi
�

p
�3=2

;

!03
1¼!10

3¼!13
0¼!30

1¼!31
0¼�!01

3¼arsin�

�3=2
;

!21
2¼�!22

1¼!31
3¼�!33

1¼�r
ffiffiffiffi
�

p

�3=2
:
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[42] A. H. Mroué and H. P. Pfeiffer, arXiv:1210.2958.
[43] D. A. Hemberger, M.A. Scheel, L. E. Kidder, B. Szilágyi,
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D. A. Hemberger, and G. Lovelace arXiv:1309.0541.

[78] W.G. Dixon, Gen. Relativ. Gravit. 4, 199 (1973).
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