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Abstract
The imprint of non-linearities in the propagation of gravitational waves — the tail effect — is

responsible for new spin contributions to the energy flux and orbital phasing of spinning black hole

binaries. The spin-orbit (linear in spin) contribution to this effect is currently known at leading

post-Newtonian order, namely 3PN for maximally spinning black holes on quasi-circular orbits.

In the present work, we generalize these tail-originated spin-orbit terms to the next-to-leading

4PN order. This requires in particular extending previous results on the dynamical evolution of

precessing compact binaries. We show that the tails represent the only spin-orbit terms at that

order for quasi-circular orbits, and we find perfect agreement with the known result for a test

particle around a Kerr black hole, computed by perturbation theory. The BH-horizon absorption

terms have to be added to the PN result computed here. Our work completes the knowledge of

the spin-orbit effects to the phasing of compact binaries up to the 4PN order, and will allow the

building of more faithful PN templates for the inspiral phase of black hole binaries, improving the

capabilities of ground-based and space-based gravitational wave detectors.
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I. INTRODUCTION

This work is the continuation of our series of papers [1–3], where we computed the next-
to-next-to-leading spin-orbit effects in the dynamics and gravitational radiation of black
hole binary systems. These next-to-next-to-leading contributions are 2PN ∼ 1/c4 orders
beyond the leading spin-orbit effect which arises at 1.5PN ∼ 1/c3 order — thus being of
absolute 3.5PN ∼ 1/c7 order.1 More specifically, we derived in Ref. [1] the corresponding
contributions to the equations of motion in harmonic coordinates, and proved the equivalence
of our result with the one obtained previously within the ADM Hamiltonian formalism [4,
5]. In Ref. [2] we presented explicit results for the conserved integrals of the motion, the
precession equations for the spins and the near-zone PN metric. In Ref. [3] we obtained the
corresponding results for the radiative multipole moments, energy flux and orbital phasing.
In the present paper, we address the computation of the tail contributions to the emitted
energy flux and to the phasing of the binary to the next-to-leading order, which corresponds
to 4PN ∼ 1/c8, thus extending the computation performed in Ref. [6] where these tail effects
were obtained at the leading 3PN ∼ 1/c6 order. Hereafter we shall refer to the works [6]
and [3] as Papers I & II respectively.

The above PN counting for spin effects refers to maximally spinning black holes. In keep-
ing with the conventions used in Papers I & II, we use as a spin variable S ≡ cStrue = Gm2χ,
where m is the compact body’s mass and Strue has the dimension of an angular momentum,
with χ the dimensionless spin parameter, which is 1 for a maximally spinning Kerr black
hole. With this definition, the spins of the two bodies are considered as “Newtonian” quanti-
ties, and all spin effects include (at least) an explicit 1/c factor with respect to non-spinning
effects. One should keep in mind that the spin-orbit effects will be formally half a PN
order smaller — and our computations will thus be half a PN order more accurate — for
non-maximally spinning objects like neutron stars.

Computing high-order PN corrections to the gravitational waveform emitted by compact
binaries permits a better comparison with numerical relativity results, and improves the
accuracy of the templates that will be used in the data analysis of gravitational wave ground-
based detectors such as LIGO, Virgo and KAGRA, and, further ahead, space-based LISA-like
detectors. Including the effects of spins is essential, as recent astrophysical evidence indicates
that stellar-mass black holes [7–11] and supermassive black holes [12–14] (see Ref. [15] for
a review) can be generically close to maximally spinning. The presence of spins crucially
affects the dynamics of the binary, in particular leading to orbital plane precession if they
are not aligned with the orbital angular momentum (see for instance [16, 17]), and to strong
modulations in the observed signal frequency and phase.

The spin-orbit effects have been known at the leading order (1.5PN) since the seminal
works [18–21]. They have been extended more recently to the next-to-leading order (2.5PN)
in Refs. [22–26] for the equations of motion and in Ref. [27] for the radiation field. Spin-spin
interactions are also known: see Refs. [21, 28–30] for the leading (2PN) order in the equations
of motion and radiation field; [31–35] for the next-to-leading (3PN) order in the equations of
motion; and [36, 37] for the next-to-next-to-leading (4PN) order in the equations of motion
for the coupling of different spins.

In line with Papers I & II, we use the multipolar post-Newtonian approach to gravitational
radiation, which combines a multipolar-post-Minkowskian expansion for the vacuum field in
the exterior of the matter source [38], together with a matching to the post-Newtonian field

1 As usual we refer to nPN as the post-Newtonian (PN) terms with formal order O(c−2n).
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inside the source [39] (see Ref. [40] for a review). In that formalism, the tails, which are
physically due to the backscatter of linear waves from the curvature of space-time generated
by the total mass of the source, appear as integrals over the past of the source, which enter
the relationships between the radiative multipole moments which are observed at infinity
from the source, and the source-rooted multipole moments.

From a data analysis point of view, such tail contributions are very important features
of the waveform of inspiralling compact binaries, and will likely be decoded by the next
generation of detectors, i.e. the advanced versions of LIGO and Virgo on ground, and by
the future LISA-like detectors in space. More specifically, we shall show, using an estimate
of the number of cycles of the waveform in the appropriate frequency bands (based on the
Taylor T2 approximant), that the spin-orbit tail contribution at leading and next-to-leading
orders is relevant to the future data analysis of these detectors and should be included in
the gravitational wave templates.

The plan of this paper is as follows. In Sec. II we briefly recall the general formalism for
gravitational wave generation and the various types of contributions to the waveform and
flux, including the tails. We also show that, at the 4PN order and at the spin-orbit level
for circular orbits, the only contribution to the flux originates from the tails. In Sec. III, we
describe the dynamics of the precessing binary, and we give an explicit analytical solution
for the precession, formally valid up to any PN order but neglecting radiation reaction and
limited to the spin-orbit level. In Sec. IV, we provide the necessary expressions for the
source moments (taken from Paper II), explain our calculations of the tail integrals both in
the Fourier and time domains, and give our final results for the emitted flux and the orbital
phasing of the binary. Appendix A provides some further technical explanations.

II. GRAVITATIONAL WAVE TAILS IN THE ENERGY FLUX

A. Radiative versus source multipole moments

The total gravitational-wave energy flux, emitted in all directions around the source, is

F ≡
(

dE
dt

)GW

≡
(∫

dΩ
dE

dt dΩ

)GW

, (2.1)

where E denotes the energy carried away in the gravitational waves. In the most general case
the flux is given as an infinite series of multipolar contributions (starting at the quadrupole
level ` = 2), by [41]

F =
+∞∑

`=2

G

c2`+1

[
(`+ 1)(`+ 2)

(`− 1)` `!(2`+ 1)!!
U

(1)
L U

(1)
L +

4`(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!
V

(1)
L V

(1)
L

]
. (2.2)

The radiative multipole moments UL with mass-type and VL with current-type parametrize
(by definition) the asymptotic transverse-traceless spatial waveform at leading order in the
distance to a general matter source. Consequently they also parametrize the various gravita-
tional wave fluxes like the energy flux.2 The radiative moments are functions of the retarded

2 The notation for multi-indices and symmetric-trace-free (STF) tensors like UL and VL is the same as in

Papers I & II. Thus we denote by L = i1 · · · i` a multi-index composed of ` multipolar spatial indices

i1, · · · , i` ranging from 1 to 3. In the case of summed-up (dummy) multi-indices L, we do not write the `

summations from 1 to 3 over their indices. Time derivatives are indicated with a superscript (n).
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time TR ≡ T−R/c in a radiative coordinate system which by definition is a system for which
TR coincides with a null coordinate asymptotically in the limit R ≡ |X i| → ∞.

In order to define a wave generation formalism, the radiative moments UL(TR) and VL(TR)
are to be related to the matter content of the source. This is done in two steps. First, they
are expressed in terms of some “canonical” multipole moments ML and SL. The relations
between the radiative moments UL, VL and the canonical ones ML, SL encode the non-
linearities in the wave propagation between the source and the detector. Those relations are
re-expanded in a PN approximation and are then seen to contain, at the leading 1.5PN order,
the contribution of the gravitational-wave tails, which take the form of “hereditary” type
integrals, formally depending on all the infinite past of the source. Explicitly we have [42, 43]

UL(TR) = M
(`)
L (TR) +

2GM

c3

∫ +∞

0

dτ M
(`+2)
L (TR − τ)

[
ln

(
τ

2τ0

)
+ κ`

]
+O

( 1

c5

)
, (2.3a)

VL(TR) = S
(`)
L (TR) +

2GM

c3

∫ +∞

0

dτ S
(`+2)
L (TR − τ)

[
ln

(
τ

2τ0

)
+ π`

]
+O

( 1

c5

)
. (2.3b)

The constant ADM mass M of the source (or mass monopole) is responsible for the backscat-
tering of the linear waves producing tails. The logarithmic kernels of the tail integrals involve
a freely specifiable time scale τ0 entering the relation between the radiative time TR and the
corresponding retarded time tr ≡ t− r/c in harmonic coordinates:

TR = tr −
2GM

c3
ln

(
r

cτ0

)
. (2.4)

The numerical constants κ` and π` appearing in Eqs. (2.3) (which depend on the choice of
harmonic coordinates used to cover the source) are given by

κ` =
2`2 + 5`+ 4

`(`+ 1)(`+ 2)
+

`−2∑

k=1

1

k
, (2.5a)

π` =
`− 1

`(`+ 1)
+

`−1∑

k=1

1

k
. (2.5b)

Since spin-orbit effects start at order O(c−3) in the mass-type moments and at order O(c−1)
in the current-type moments [27], one can easily check that in order to obtain the spin-orbit
terms at 4PN in the flux we need only the tails in the mass and current quadrupole moments
Uij and Vij (i.e. having ` = 2), and these will have to be computed at 1PN relative order,
and in the mass and current octupoles Uijk and Vijk (` = 3), to be computed at Newtonian
order.

As a second step, the canonical moments ML and SL are related to a particular set of
six source-rooted multipole moments, that admit explicit analytic closed form expressions
as integrals over the matter and gravitational fields in the source [39]. This new set of
moments can be divided into two “source” multipole moments IL and JL (mass-type and
current-type), and four so-called “gauge” multipole moments WL, XL, YL, ZL which play a
role only at high post-Newtonian orders. For our purpose, it will be sufficient to know that
ML and SL coincide with the source moments IL and JL up to small PN remainders O(c−5):

ML = IL +O
(

1

c5

)
, (2.6a)
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SL = JL +O
(

1

c5

)
. (2.6b)

The PN remainders O(c−5) in both Eqs. (2.3) and (2.6) contain different sorts of non-
linear interactions between (time derivatives of the) multipole moments. These can be
divided into hereditary terms [42], which involve various integrals over the whole past of the
multipole moments like in the tails (2.3), and instantaneous terms which depend only on
the current values of the multipole moments at instant TR. Here our nomenclature refers to
terms which are hereditary or instantaneous functionals of the source and gauge moments
IL, JL, WL, · · · , ZL (i.e. after due replacement of the canonical moments ML, SL in terms
of IL, JL, · · · , ZL). For instance the hereditary terms in Eqs. (2.3) comprise at order O(c−5)
the so-called non-linear memory effect which is a quadratic interaction between multipole
moments,3 and, at order O(c−6), the so-called tail-of-tail term which is cubic. The non-
linear memory integral is simply given by an anti-derivative of an instantaneous term, while
the tail-of-tail involves a logarithmic kernel similar to the one in Eqs. (2.3) — although
more complicated. In addition there are many couplings between moments which are just
instantaneous; see the explicit formulas given in Refs. [44, 45]. Recalling that spin-orbit
contributions bring at least an additional factor 1/c, we see that we should in principle
take into account all these instantaneous corrections up to the order O(c−7) in the mass
quadrupole moment Uij and O(c−5) in the current quadrupole moment Vij (as given in
Refs. [44, 45]).

B. Contributions to the flux for circular orbits

We now restrict ourselves to compact binaries whose orbit has been circularized by the
emission of gravitational radiation, so that it can be considered as quasi-circular. That is
to say, the orbital elements (except for precession effects due to the presence of spins) are
assumed to vary only on long timescales, because of radiation reaction. This restriction
to quasi-circular orbits will also allow us to model simply the dynamics of the binary in
the past and therefore to compute the hereditary tail integrals (2.3). Anticipating on the
notation used for compact binaries in the following section, the orbital separation r and
orbital frequency ω will thus be assumed to vary according to4

ṙ = O
(

1

c5

)
, ω̇ = O

(
1

c5

)
. (2.7)

An important point is that, when restricting the calculation to quasi-circular orbits,
purely instantaneous terms cannot give any spin-orbit contribution at 4PN order in the
energy flux (2.2). We show this fact by a simple dimensional analysis. Indeed, we can write
the general structure of such instantaneous terms in the flux as

(F)inst ∼
∑ (Gm)n

ca rk
(n, v, S) (v2)p (n · v)q , (2.8)

where m is any of the two masses in the binary system, v2 ≡ ṙ2 + r2ω2 is the squared
Euclidean norm of the relative velocity between the two bodies, and n·v ≡ ṙ is the Euclidean

3 Actually this effect appears only in the O(c−5) correction of the mass-type radiative multipole moment

UL, but not in the current-type radiative moment VL.
4 As we shall check later the orbital frequency for circular orbits is constant at linear order in the spins.
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scalar product between the unit separation vector between the two particles and their relative
velocity. We are assuming that the expression of the flux is given in the frame of the
center of mass. There is no dependence on the relative acceleration since it is supposed to
have been consistently replaced by the equations of motion — the normal practice in PN
approximations. Note that since we are dealing with instantaneous (non-hereditary) terms,
the velocity v and unit direction n are taken at the same time, which is the current instant
TR; there is no integration over some intermediate time in between which would couple
together some of these vectors at different instants.

The dependence on the two spin vectors can only arise through the mixed product
(n, v, S) ≡ εijkn

ivjSk, where Si denotes any of the two spin vectors, with any of the usual
conventions adopted for the spin vectors. This is easily proven if one remembers that the
spin vectors are actually pseudo-vectors with respect to parity transformations, while the
flux must be a scalar, i.e. not a pseudo-scalar. In Eq. (2.8) we are considering only terms
linear in the spins, neglecting quadratic spin-spin coupling terms.

As recalled in the Introduction, with our convention used in this series of papers [1–3],
the dimension of the spin tensor and of all spin variables are that of an angular momentum
times the speed of light c. With that convention it is easy to check that in order for the
flux to have the correct dimension of a power (energy per unit time), we need k = n + 2
and 2p + q + 2n = a. For a 4PN term, we should have a = 13 in Eq. (2.8) because this
corresponds to 4PN ∼ 1/c8 beyond the leading radiation reaction at 2.5PN ∼ 1/c5 order,
hence 6.5PN ∼ 1/c13 absolute order. Hence we deduce that q = 13− 2p− 2n. The point is
that q should be an odd integer for a 4PN term, and thus that this term contains at least
one factor n · v. Since for quasi-circular orbits we have n · v = ṙ = O(c−5), the real order
of magnitude of this term is very small, being at least 6.5PN (or 9PN absolute).

Thus, we have proved that instantaneous terms (i.e. which do not involve any hereditary
integral) will be negligible for our purposes. Now, let us show that the only truly hereditary
integrals which can contribute spin-orbit terms at 4PN order in the flux are the tails given
in (2.3). The tail-of-tail term which appears at order O(c−6) in Uij involves the mass
quadrupole moment, and therefore the spin-orbit contributions therein, which are O(c−3)
for mass moments, will appear only at higher order. On the other hand, we have already
remarked that the non-linear memory integrals at orders O(c−5) and O(c−7) are given by
some simple anti-derivatives. They become therefore instantaneous in the energy flux (2.2)
in which all the radiative moments are differentiated with time; so the previous argument
applies to such terms as well.

Our conclusion is that the only contributions coming from the spin-orbit effect at the
4PN order in the case of quasi-circular orbits are due to the hereditary tail integrals given in
Eqs. (2.3). There are no contributions from other hereditary terms nor instantaneous ones,
either coming from non-linear interactions between canonical moments in the remainders
of (2.3), or from the correspondance between canonical and source and gauge moments (2.6).
In particular, we can ignore the 4PN spin-orbit terms in the relative acceleration which is
used in this calculation to order reduce the time derivatives of the moments.5 Notice that this
argument about instantaneous terms shows that the arbitrary scale τ0 used to adimensionize
the logarithmic kernel of the tail integrals (2.3) will disappear from the final result as it is
in factor of an instantaneous term. The same is true for the numerical constants κ` and π`
which are irrelevant for this calculation. We emphasize that all these statements are limited

5 Such 4PN spin-orbit terms in the equations of motion are instantaneous, and correspond to a 1.5PN

spin-orbit modification of the standard 2.5PN radiation reaction force [46].
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to quasi-circular orbits, neglecting their possible eccentricity, and to the computation of
the energy flux. They do not apply to the computation of the full waveform with its two
polarizations. The two polarizations h+ and h×, although being scalars, depend on the
direction of the source and on the polarization vectors, so the structure analogous to (2.8)
is more complicated.

The calculation of hereditary integrals like the tail integrals in Eqs. (2.3) in principle
requires knowing explicitly the dynamics of the binary system in the past. One must first
supplement the computation with some physical assumption regarding the behaviour of the
source in the infinite past. Following Refs. [42, 47] and Paper I we can assume that at very
early times the binary system was formed from freely falling black holes moving initially
on some hyperbolic-like orbits. This ensures that the integrals in (2.3) are convergent (see
e.g. the discussion in Sec. II B of Paper I). It was then shown [42, 47] that under such an
assumption the tail integrals are very weakly sensitive over the past history of the source,
and can essentially be computed by inserting the current dynamics (at current time TR) of
the binary into the integrals — i.e. neglecting the secular changes of the orbit by radiation
reaction over the past. Quite naturally, as proved in the Appendix of Ref. [47], one can
proceed in that way modulo some PN remainder terms of the order of the radiation reaction
scale, i.e. O(c−5) and more precisely O(ln c/c5). Nevertheless, even if we can always neglect
the evolution of the orbit by gravitational radiation in the past, one has still to worry about
the details of the current dynamics which has to be plugged into the tail integrals and
consistently integrated. This is dealt with in the next section.

III. ANALYTICAL SOLUTION FOR THE SPIN-ORBIT DYNAMICS

In this section, we present an analytical solution for the dynamics of the binary of compact
spinning objects on quasi-circular orbits, including the precession effects due to the presence
of the spins. This solution will be valid formally at any post-Newtonian order, if radiation
reaction effects are neglected, but will be restricted to the linear order in spins. The leading
order solution was already obtained in Paper I, but we shall show that the solution found
there turns out to be in fact nicely valid to higher PN orders, provided that we restrict
to spin-orbit contributions. To show this, we parallel the presentation given in Paper I,
repeating all the necessary definitions for completeness, and pointing out where the validity
of the solution can in fact be extended to higher order.

A. Equations of motion and spin precession for quasi-circular orbits

Throughout this paper, we will work in the center-of-mass frame, defined by the can-
cellation of the center-of-mass integral of motion G = 0, and we will use conserved-norm
spin variables as they are defined in Ref. [2], where a systematic construction, fixing the
convention, is proposed.6 This choice allows one to write the evolution equations of the spin
vectors as simple precession equations, see Eq. (3.13) below, and, as discussed in Papers

6 Notice that the definition used here for the conserved-norm spin vectors is distinct from the one used

in Ref. [27]. However, the difference between the two variables is of order 2PN and vanishes in the

center-of-mass frame. For reference we give here the relation between these two conserved-norm variables:

S1 = SBBF
1 +

2Gm2

c4r12

[
(S1v1)v2 − (S1v2)v1

]
+O

( 1

c6

)
,

where r12 is the orbital separation and v1,2 are the two velocities. In Paper I we worked at leading-order

where all spin variables are equivalent. 7



I & II, it is crucial when applying the energy balance condition relating the emitted flux
and the decrease of the orbital energy, since these variables will be secularly constant. It is
convenient to introduce two combinations of the individuals spins defined by

S ≡ S1 + S2 , Σ ≡ m

m2

S2 −
m

m1

S1 , (3.1)

with m ≡ m1 + m2 the total mass. Later we will also use the symmetric mass ratio ν ≡
m1m2/m

2 and the mass difference δm ≡ m1 −m2.
6

B. Multipole moments with spin-orbit effects

The matter-source densities (2.9) depend on the com-
ponents of the stress-energy tensor. At the leading PN
order, the spin contribution therein (indicated by the
subscript S) reduce to

σ
S

= − 2

c3
εijk vi

1 Sj
1 ∂kδ1 + 1 ↔ 2 + O

( 1

c5

)
, (3.10a)

σ
S

i = − 1

2c
εijk Sj

1 ∂kδ1 + 1 ↔ 2 + O
( 1

c3

)
, (3.10b)

σ
S

ij = −1

c
εkl(i v

j)
1 Sk

1 ∂lδ1 + 1 ↔ 2 + O
( 1

c3

)
, (3.10c)

where δ1(x, t) = δ[x−y1(t)] means the three-dimensional
Dirac delta-function evaluated on the particle 1, and
1 ↔ 2 means the same quantity but corresponding to
the particle 2.

In Ref. [20] the SO terms have been computed in the
source mass quadrupole moment Iij up to next-to-leading
2.5PN order and the source current quadrupole moment
Jij up to next-to-leading 1.5PN order. All the other
source moments were computed at the leading SO order.
Those results are sufficient for our purpose. Actually, to
compute the specific contributions of tails we need only
the moments at leading SO order, given for general % by

I
S
L =

2%

c3(%+ 1)

[
%vi

1S
j
1εij〈i!

y
L−1〉
1 (3.11a)

− (%− 1)yi
1S

j
1εij〈i!

v
i!−1

1 y
L−2〉
1

]
+ 1 ↔ 2 + O

( 1

c5

)
,

J
S

L =
%+ 1

2c
y

〈L−1
1 S

i!〉
1 + 1 ↔ 2 + O

( 1

c3

)
. (3.11b)

Because the leading SO terms scale as O(1/c3) in the
mass source moments, and as O(1/c) in the current
source moments, the number of non-linear terms needed
in the radiative moments [Eqs. (5.1) below] is small. We
refer to Sec. V of [20] for higher-order expressions of SO
contributions of the source quadrupole moments.

C. Equations of motion with spin-orbit effects

Here we investigate the case where the binary’s orbit is
nearly circular, i.e., whose radius is constant apart from
small perturbations induced by the spins (as usual we
neglect the gravitational radiation damping at 2.5PN or-
der). We denote by x = y1 − y2 the relative position of
the particles (and v = dx/dt). Following Ref. [42] we in-
troduce an orthonormal moving triad {n, λ, "} defined by
n = x/r as before, " = LN/|LN| where LN ≡ mν x × v
with ν = X1X2 denotes the Newtonian orbital angu-
lar momentum and ν the symmetric mass ratio, and
λ = "×n. Those vectors are represented on Fig. 1, which
shows the geometry of the system. The orbital frequency
ω is defined for general, not necessarily circular orbits, by
v = ṙn+ rωλ where ṙ represents the derivative of r with

FIG. 1: We show (i) the source frame defined by the orthonor-
mal basis (x, y, z), (ii) the instantaneous orbital plane which
is described by the orthonormal basis (x!, y!, !), (iii) the mov-
ing triad (n, λ, !), and (iv) the direction of the total angular
momentum J (agreeing by definition with the z–direction).
Dashed lines show projections into the x–y plane.

respect to the coordinate time t. It is also equal to the
scalar product of n and v which we denote as (nv) = ṙ.
The components of the acceleration a = dv/dt along the
basis {n, λ, "} are then given by

n · a = r̈ − rω2 , (3.12a)

λ · a = rω̇ + 2ṙω , (3.12b)

" · a = −rω
(
λ · d"

dt

)
. (3.12c)

We project out the spins on this orthonormal basis, defin-
ing S = Snn + Sλλ + S"" and similarly for Σ. Next
we impose the restriction to quasi-circular precessing or-
bits which is defined by the conditions r̈ = 0 = ṙ so
that v2 = r2ω2 (neglecting radiation reaction damping
terms). In this way we find [19] that the equations of the
relative motion in the frame of the center-of-mass are

dv

dt
= −ω r

[
ωn + ωprec "

]
+ O

( 1

c6

)
. (3.13)

There is no component of the acceleration along λ. Com-
paring with Eqs. (3.12) in the case of circular orbits, we
see that ω is indeed the orbital frequency, while what
we call the “precessional frequency” ωprec = λ · d"/dt is
proportional to the variation of " in the direction of the
velocity v = rωλ. We know that ω2 is given by

ω2 =
Gm

r3

{
1 + γ (−3 + ν) + γ3/2 (−5s" − 3δσ")

}

+ O
( 1

c4

)
, (3.14)

where we denote δ ≡ X1 − X2 and s" ≡ (s%) = s · ",
where the spin variables are defined by Eq. (3.9). The PN

FIG. 1. Geometric definitions to describe the precessional motion of the binary, identical to the

ones used in Paper I. The conserved angular momentum J gives a fixed direction z, completed

with two constant unit vectors x and y forming with z an orthonormal triad; ` is the normal to

the instantaneous orbital plane (shown in yellow), described by the Euler angles α, ι, and defines

the auxiliary vectors x`, y`, see Eqs. (3.4). The position of the unit separation vector n defines

the third Euler angle Φ, and the moving triad is completed by λ = `× n.

In the following, we will extensively employ the total angular momentum of the system,
that we denote by J , and which is conserved,

dJ

dt
= 0 , (3.2)

neglecting radiation-reaction effects. It is customary to decompose the conserved angular
momentum as J = L + S/c, with S being specified by our choice of conserved-norm spin
variables, and with L including both spin and non-spin PN contributions. We shall give L
explicitly in Eq. (3.12) below for the case of circular orbits.

To describe the relative motion of the binary in the center-of-mass frame, we keep the
same geometric definitions as in Paper I, which are recalled in Fig. 1. We introduce an
orthonormal triad (n,λ, `) defined as follows: n is the unit-norm separation vector, such
that x = rn with x ≡ y1 − y2. From the relative velocity v ≡ v1 − v2, we define the unit
normal ` to the instantaneous orbital plane, as ` = n × v/|n × v| (excluding the head-on
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collision case). The orthonormal triad is then completed by λ = `×n. In the following, the
components of a vector on this basis will be denoted by a subscript, for instance An ≡ A ·n.

Next, denoting the time derivative by a dot, the orbital angular frequency ω and preces-
sion angular frequency $ are defined by ṅ = ωλ and ˙̀ = −$λ respectively. This leads to
the following system of equations for the time evolution of the triad vectors,7

ṅ = ωλ , (3.3a)

λ̇ = −ωn+$` , (3.3b)

˙̀ = −$λ . (3.3c)

We also introduce a fixed orthonormal basis (x,y, z), with the z direction along the total
angular momentum J (which is conserved, as we said, if we neglect radiation reaction effects).
It is convenient to introduce Euler angles to mark the position of the binary with respect to
this fixed basis. Two additional vectors lying in the orbital plane are defined according to

x` =
J × `
|J × `| , y` = `× x` , (3.4)

and the Euler angles α, ι, and Φ are defined as indicated in Fig. 1. The relation between
(n,λ) and (x`,y`) is then

n = cos Φx` + sin Φy` , (3.5a)

λ = − sin Φx` + cos Φy` . (3.5b)

We also have for the inclination angle ι:

sin ι =
|J × `|
|J | . (3.6)

Computing the product sin ιx` · (n+ iλ) in two different ways, using (3.4) and (3.5), yields
a relation which will be important in the following:

sin ι e−iΦ = −i
J+

|J | , (3.7)

where we defined J+ ≡ Jn + iJλ. Using the derivatives of the basis vectors as given by (3.3),
we arrive at the following system of equations for the time derivatives of the Euler angles:

dα

dt
= $

sin Φ

sin ι
, (3.8a)

dι

dt
= $ cos Φ , (3.8b)

dΦ

dt
= ω −$ sin Φ

tan ι
. (3.8c)

Notice that the only assumption we made in deriving Eqs. (3.8) was to treat the total angular
momentum as a constant, that is to say neglecting the radiation reaction effects. The above

7 Notice that we changed our notations with respect to Paper I; our $ corresponding to −ωprec there.
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relations are valid, in particular, for general orbits and not only for quasi-circular ones.
They are suitable for insertion into the tail integrals modulo negligible radiation reaction
corrections O(ln c/c5).

The general expression for the relative acceleration a ≡ dv/dt decomposed in the moving
frame is given by a = (r̈ − rω2)n+ (rω̇ + 2ṙω)λ+ rω$`. In the following, we will restrict
ourselves to quasi-circular orbits, where we can set Eqs. (2.7) namely ṙ, ω̇ = O(c−5). Thus,
the moving point will stay on a sphere of constant radius, and we have

a = −rω2n+ rω$`+O
( 1

c5

)
. (3.9)

The component of the acceleration along `, proportional to $ = O(S), is responsible for
the slow precession of the orbital plane. All the information about the orbital dynamics of
quasi-circular orbits is encoded in two equations: one relating the orbital frequency ω to the
orbital separation r, and one relating $ to ω. As usual we introduce two dimensionless PN
parameters γ and x, both being of order O(c−2) and respectively linked to r and to ω by

γ ≡ Gm

rc2
, x ≡

(
Gmω

c3

)2/3

. (3.10)

We give here ω and $ including the spin-orbit contribution to next-to-leading order, i.e. at
2.5PN order; we include all non-spin contributions up to this order, but notice that in fact
we shall only need the next-to-leading order for the non-spin terms, i.e. 1PN. We have (see
e.g. Ref. [2])

ω2 =
Gm

r3

{
1 + γ (−3 + ν) + γ2

(
6 +

41

4
ν + ν2

)
+
γ3/2

Gm2

[
−5S` − 3

δm

m
Σ`

]

+
γ5/2

Gm2

[(
45

2
− 27

2
ν

)
S` +

δm

m

(
27

2
− 13

2
ν

)
Σ`

]}
+O

(
1

c6

)
, (3.11a)

$ =
c3x3

G2m3

{[
7Sn + 3

δm

m
Σn

]
+ x

[
(−3− 12ν)Sn +

δm

m

(
−3− 11

2
ν

)
Σn

]}
+O

(
1

c7

)
.

(3.11b)

In the following, we will mostly use the PN parameter x instead of γ. In fact, we will
write down a solution for the dynamics directly from the conserved angular momentum J
without resorting to the acceleration, so that we will not use the expression of $ as such.
An important point is that, as shown in Eq. (3.11a), at linear order in the spins only the
components of the conserved-norm spin vectors along ` can contribute to ω. As we shall
show in Eq. (3.16c) below, these components are in fact constant at linear order in spin,
when neglecting radiation reaction effects. Thus we can treat the orbital frequency ω as a
constant for our purposes.

The central result that encompasses the information we need for our solution of the spin-
orbit dynamics is the expression of the conserved angular momentum J . Again, we give here
its expression at 2.5PN order but the non-spin part could be truncated at 1PN order for our
purposes. The leading-order spin contribution is just S/c. Having defined J = L+S/c, we
have then (see e.g. [2])

L =
Gm2ν

c x1/2

{
`

[
1 + x

(
3

2
+

1

6
ν

)
+ x2

(
27

8
− 19

8
ν +

1

24
ν2

)]
(3.12)
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+
x3/2

Gm2

(
`

[
−35

6
S` −

5

2

δm

m
Σ`

]
+ λ

[
−3Sλ −

δm

m
Σλ

]
+ n

[
1

2
Sn +

1

2

δm

m
Σn

])

+
x5/2

Gm2

(
`

[(
−77

8
+

427

72
ν

)
S` +

δm

m

(
−21

8
+

35

12
ν

)
Σ`

]

+ λ

[(
−7

2
+ 3ν

)
Sλ +

δm

m

(
−1

2
+

4

3
ν

)
Σλ

]

+ n

[(
11

8
− 19

24
ν

)
Sn +

δm

m

(
11

8
− 5

12
ν

)
Σn

])}
+O

(
1

c6

)
.

The use of Euclidean conserved-norm spin vectors allows us to write their evolution
equations as ordinary precession equations (with A = 1, 2)

dSA
dt

= ΩA × SA . (3.13)

As already argued in Paper II, the precession vectors ΩA are necessarily directed along ` at
linear order in spin, so we write ΩA ≡ ΩA`. We have ΩA = O(c−2), and the expression for
Ω1 reads

Ω1 = ω x

{(
3

4
+

1

2
ν − 3

4

δm

m

)
+ x

[
9

16
+

5

4
ν − 1

24
ν2 +

δm

m

(
− 9

16
+

5

8
ν

)]}
+O

(
1

c6

)
,

(3.14)

with Ω2 being obtained by replacing δm → −δm. Using the time derivatives of the basis
vectors (3.3) and the fact that ΩA ∝ `, the exact evolution equations of the components of
the spins are obtained as

dSAn
dt

= (ω − ΩA)SAλ , (3.15a)

dSAλ
dt

= −(ω − ΩA)SAn +$SA` , (3.15b)

dSA`
dt

= −$SAλ , (3.15c)

which readily translate, at linear order in spin, into

dSAn
dt

= (ω − ΩA)SAλ , (3.16a)

dSAλ
dt

= −(ω − ΩA)SAn +O(S2) , (3.16b)

dSA`
dt

= O(S2) . (3.16c)

We see, as stated before, that the spin components along ` are constant, and so is the orbital
frequency ω given by (3.11a).
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B. Analytical solution for the spin-orbit dynamics

We now turn to the derivation of the explicit solution for the dynamics of the binary.
We show that two relations from Paper I which were indicated to be valid neglecting higher
PN terms of order O(c−4) are in fact valid formally to any PN order, neglecting radiation
reaction and working at linear order in spin. First, considering Eqs. (3.8), we see that

d(Φ + α)

dt
= ω +$ sin Φ

1− cos ι

sin ι
= ω +O(S2) , (3.17)

since both the inclination angle ι and the precession frequency $ are of order O(S). Thus
we arrive at

Φ + α = φ+O(S2) , (3.18)

introducing the “carrier” phase φ as

φ ≡
∫

dt ω = ω(t− t0) + φ0 , (3.19)

with φ0 the reference phase at some time t0. Secondly, we turn to Eq. (3.6). From a structural
argument already presented in Paper II, the non-spin part of the angular momentum must
be directed along `, since it is a pseudo-vector built only from the vectors n and λ. Note
that this is valid in fact for general orbits and not only for circular ones. This means that
the components of the angular momentum along n and λ come only from the presence of
spins, i.e. J+ = O(S), as can be seen explicitly on (3.12). Thus, using also (3.18), we have

sin ι e−iΦ = −i
J+

|LNS|
+O(S2) , (3.20a)

sin ι eiα = −i
J+

|LNS|
eiφ +O(S2) , (3.20b)

with LNS denoting the non-spin part of L (or J). We will see later that these relations,
together with the post-Newtonian expansion of the angular momentum which is given by
(3.12) and of the spin precession frequencies (3.14), are the only ones we will need to write
down our dynamical solution.

If we introduce an arbitrary reference time t0, say the same as in Eq. (3.19), and relate
each of the triads (n,λ, `) at time t and (n0,λ0, `0) at time t0 to the fixed triad (x,y, z),
and then eliminate the triad (x,y, z), one obtains

n = cos(φ− φ0)n0 + sin(φ− φ0)λ0

+
(
sin ι sin(φ− α)− sin ι0 sin(φ− α0)

)
`0 +O(S2) , (3.21a)

λ =− sin(φ− φ0)n0 + cos(φ− φ0)λ0

+
(
sin ι cos(φ− α)− sin ι0 cos(φ− α0)

)
`0 +O(S2) , (3.21b)

` = `0 +
(
sin ι sin(α− φ0)− sin ι0 sin(α0 − φ0)

)
n0

+ (− sin ι cos(α− φ0) + sin ι0 cos(α0 − φ0))λ0 +O(S2) , (3.21c)

where we used (3.18) again together with cos ι = 1 + O(S2). The previous result can be
reformulated in a more compact form if we introduce the complex null vectorm ≡ 1√

2
(n+iλ)
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and its complex conjuguate m. The normalization is chosen so that m ·m = 1. In terms
of these vectors, the result (3.21) now becomes:

m = e−i(φ−φ0)m0 +
i√
2

(
sin ι eiα − sin ι0 e

iα0
)
e−iφ`0 +O(S2) , (3.22a)

` = `0 +

[
i√
2

(
sin ι e−iα − sin ι0 e

−iα0
)
eiφ0m0 + c.c.

]
+O(S2) , (3.22b)

and we see that the precession effects in the dynamical solution for the evolution of the basis
vectors (n,λ, `), which are represented by the second term in the above equations, are all
encompassed in the combination sin ι eiα and its complex conjugate sin ι e−iα, which is given
in terms of the spin and non-spin contributions to the angular momentum by Eq. (3.20b).
Now our program is to insert the latter solution for the dynamics, Eqs. (3.21) or (3.22), into
the tail integrals (2.3). For that purpose it is convenient to think of t0 as being the current
retarded time TR and to look at the orbital evolution backwards in time.

On the other hand, the solution of the evolution equations (3.16) for the components of
the spins is readily obtained as

SAn + iSAλ = SA⊥e
−iψA +O(S2) , (3.23a)

SA` = SA‖ +O(S2) , (3.23b)

in which we have introduced the two integration constants SA⊥ and SA‖ , and where the two
spin phases are defined by

ψA = (ω − ΩA)(t− t0) + ψA0 , (3.24)

with ψA0 the phases at the reference time t0.
We are now able to analyze in more detail the dependence on time of the solution for the

basis vectors and for the spins. In Eq. (3.20), |LNS| is simply a constant, and J+ depends
on the spin components SAn , S

A
λ which are given by Eqs. (3.23) and (3.24). Thus, we see

that the complete dependence in time in the triad (n,λ, `), at linear order in spin, takes
the simple form of complex exponentials e±iω and e±iψA , so that the general structure of the
time-dependent part of any product or combination of the latter basis vectors and of spin
vectors is of the type (see also Paper I):

ei(mω+pΩ1+qΩ2)t , with m ∈ Z and (p, q) ∈ {−1, 0, 1} . (3.25)

The restriction on the range of values for p and q comes from the fact that we are limited to
the linear order in spins. This general structure will also be that of the time dependence of
any of the source multipole moments, so that we shall be able to integrate the tail integrals
using a simple formula in the Fourier domain.

Finally, we turn to the leading PN order of precession effects. A superficial look at
Eqs. (3.22),(3.20) and (3.12) would tell us that precession effects in the dynamical solution
for the moving basis starts at order O(c−1), which is the order of the first spin contribution in
the angular momentum J . However, we notice that only the combination sin ι eiα−sin ι0 e

iα0

and its complex conjugate intervene into the solution (3.22). At leading order, since J+ =
(Sn + iSλ)/c+O(c−3), and using |LNS| = Gm2ν/(cx1/2) +O(c−2), we have

sin ι eiα = −i
x1/2

Gm2ν
S1
⊥e

i(φ−ψ1) + 1↔ 2 +O
(

1

c3

)

13



= −i
x1/2

Gm2ν
S1
⊥e

i[φ0−ψ1
0+Ω1(t−t0)] + 1↔ 2 +O

(
1

c3

)
, (3.26a)

where 1 ↔ 2 means the expression obtained by the exchange of the two particles. Now,
by Taylor-expanding around the reference time t0, we find that the combination sin ι eiα −
sin ι0 e

iα0 is made of terms proportional to Ω1/c or Ω2/c and therefore is of order O(c−3),
since the spin precession frequencies ΩA are small and known to be already of 1PN order; cf.
Eq. (3.14). Thus, we see that the precession effects due to the spins in our solution (3.22)
are in fact of order O(c−3) or 1.5PN, as one could expect from their corresponding order in
the acceleration.

IV. TAIL-INDUCED SPIN ORBIT EFFECTS IN THE FLUX

The spin-orbit couplings in the relevant source moments IL and JL have been computed
in Paper II up to next-to-next-to-leading order. To compute the 4PN spin-orbit tail contri-
butions, we will need the mass and current quadrupole moments Iij and Jij (with ` = 2)
at relative order 1PN (for both the spin-orbit terms and the non-spin ones), and the mass
and current octupoles Iijk and Jijk (` = 3) at Newtonian order. The non-spin terms are well
known at the corresponding 1PN order, see e.g. Ref. [44]. However, we point out that we
need for this computation not only the quadrupole and octupole moments at 1PN order,
but also the mass monopole M at 1PN order, since this is that mass monopole which is
responsible for the tails in Eqs. (2.3). The 1PN non-spin monopole for circular orbits reads

M = m
(

1− ν

2
x
)

+O
(

1

c4

)
. (4.1)

Similarly we need also to include the spin-orbit terms into the mass monopole moment
M . Remind that M = m + E/c2 where E is the conservative energy associated with the
equations of motion. The spin-orbit effects in E arise at 1.5PN order and have been given
in Eqs. (3.9) of Ref. [2]. This means that the dominant spin-orbit effect in M is not at order
1.5PN but rather at order 2.5PN; for the present computation we need only the dominant
2.5PN spin-orbit term given by

M
S

=
Gmν

c5r2

{
− (n, S, v)− δm

m
(n,Σ, v)

}
+O

(
1

c7

)
. (4.2)

The spin-orbit contribution is indicated by a subscript S and we give the result already
reduced to the center-of-mass frame. For the other moments we shall simply report the
results taken from Paper II:

I
S
ij =

rν

c3

{
− 8

3
(S× v)<inj> − 8

3

δm

m
(Σ× v)<inj>

− 4

3
(n× S)<ivj> − 4

3

δm

m
(n×Σ)<ivj>

}

+
rν

c5

[{
(S× v)<inj>

(
−26

21
+

26

7
ν

)
v2 + (Σ× v)<inj>

δm

m

(
−26

21
+

116

21
ν

)
v2
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+ (n× S)<ivj>
(
− 4

21
+

4

7
ν

)
v2 + (n×Σ)<ivj>

δm

m

(
− 4

21
+

12

7
ν

)
v2

+ (S× v)<ivj>
(

4

21
− 4

7
ν

)
(nv) + (Σ× v)<ivj>

δm

m

(
4

21
− 20

21
ν

)
(nv)

+ (n, S, v)v<ivj>
(
−3

7
+

9

7
ν

)
+ (n,Σ, v)v<ivj>

δm

m

(
−3

7
+

40

21
ν

)}

+
Gm

r

{
(n, S, v)n<inj>

(
−38

21
− 4

7
ν

)
+ (n,Σ, v)n<inj>

δm

m

(
−16

7
+

26

21
ν

)

+ (n× S)<inj>
(

17

21
+

61

21
ν

)
(nv) + (n×Σ)<inj>

δm

m

(
1 +

34

21
ν

)
(nv)

+ (nS)(n× v)<inj>
(
−2 +

10

3
ν

)
+ (nΣ)(n× v)<inj>

δm

m

(
−2 +

4

3
ν

)

+ (S× v)<inj>
(
−11

7
− 125

21
ν

)
+ (Σ× v)<inj>

δm

m

(
−1

3
− 16

3
ν

)

+ (n× S)<ivj>
(
−22

3
− 10

3
ν

)
+ (n×Σ)<ivj>

δm

m

(
−8

3
− 34

21
ν

)}]
+O

(
1

c7

)
,

(4.3a)

J
S
ij =

rν

c

{
− 3

2
Σ<inj>

}

+
rν

c3

[{
− 2

7

δm

m
v2S<inj> + Σ<inj>

(
−29

28
+

143

28
ν

)
v2

+
33

28

δm

m
(Sv)n<ivj> + (Σv)n<ivj>

(
33

28
− 155

28
ν

)

+
3

7

δm

m
(nv)S<ivj> + Σ<ivj>

(
3

7
− 16

7
ν

)
(nv)

− 11

14

δm

m
(nS)v<ivj> + (nΣ)v<ivj>

(
−11

14
+

47

14
ν

)}

+
Gm

r

{
− 29

14

δm

m
(nS)n<inj> + (nΣ)n<inj>

(
−4

7
+

31

14
ν

)

+
10

7

δm

m
S<inj> + Σ<inj>

(
61

28
− 71

28
ν

)}]
+O

(
1

c5

)
, (4.3b)

I
S
ijk =

r2ν

c3

{
9

2

δm

m
(S× v)<injnk> + (Σ× v)<injnk>

(
9

2
− 33

2
ν

)

+ 3
δm

m
(n× S)<injvk> + (n×Σ)<injvk> (3− 9ν)

}
+O

(
1

c5

)
, (4.3c)

J
S
ijk =

r2ν

c

{
2S<injnk> + 2

δm

m
Σ<injnk>

}
+O

(
1

c3

)
. (4.3d)

We recall that these spin parts of multipole moments are expressed in terms of the conserved-
magnitude spins and of the useful variables (3.1). We recall also our notation, e.g. (vS) ≡

15



v · S for the ordinary Euclidean scalar product, (x×Σ)i ≡ εijkxjΣk for the ordinary cross
product, and (S, x, v) ≡ S · (x× v) = εijkSixjvk for the mixed product.

We now turn to the calculation of the tail integrals (2.3), where, as we have already shown,
we can replace the canonical moments ML, SL by the source moments IL, JL. Following
Paper I, we found more convenient to do this computation in the Fourier domain. We denote
by KL a generic source moment IL or JL, and we define its Fourier transform as

KL(t) =

∫ +∞

−∞

dΩ

2π
K̃L(Ω) e−iΩt , K̃L(Ω) =

∫ +∞

−∞
dtKL(t) eiΩt . (4.4)

It was shown in Ref. [47] (see also Sec. II B in Paper I) that, under the assumption that
the binary formed in the remote past from some quasi-hyperbolic orbits by gravitational
radiation, a generic integral of the form

UL(TR) ≡
∫ +∞

0

dτ K
(`+2)
L (TR − τ) ln

(
τ

2τ̂0

)
, (4.5)

where τ̂0 means either τ0e
−κ` or τ0e

−π` , takes the following expression in the Fourier domain:

UL(TR) = i

∫ +∞

−∞

dΩ

2π
(−iΩ)`+1K̃L(Ω)e−iΩTR

[π
2
s(Ω) + i

(
ln(2|Ω|τ̂0) + γE

)]
, (4.6)

where s(Ω) is the sign of Ω and γE is the Euler constant. Now, given the general structure
of the frequency modes (3.25), we see that the Fourier coefficients K̃L(Ω) consist of a finite
sum over frequencies,

K̃L(Ω) = 2π
∑

m,p,q

Am,p,qL δ(Ω− ωm,p,q) , (4.7)

in which ωm,p,q = mω+pΩ1 + qΩ2, and where the sum is finite, limited to −1 6 p, q 6 1 and
with m taking a finite number of integer values (depending on the order of approximation).
The amplitudes Am,p,qL can be readily read off the explicit expressions of the source moments.
Then Eq. (4.6) transforms into

UL(TR) = i
∑

m,p,q

Am,p,qL (−iωm,p,q)
`+1e−iωm,p,qTR

[π
2
s(ωm,p,q) + i

(
ln(2|ωm,p,q|τ̂0) + γE

)]
. (4.8)

When applying this formula, in agreement with the dimensional argument presented in
Sec. II B, we find that the constant τ̂0 cancels out in the flux (and so does γE). It also
turns out that the various precessional corrections cancel out. That is to say, ignoring the
precessional contributions given by the second terms in Eqs. (3.22) would yield the same
final result for the flux. This is due to the fact that we are computing a scalar, and can be
explained by a structural argument presented in Appendix A.

Finally, we give our main result for the emitted energy flux of quasi-circular orbits. The
spin-orbit part of the flux up to 4PN order, thus including the new next-to-leading 4PN
tail-induced term, reads
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. (4.9)

As usual, the spin-orbit contributions due to the absorption by the black-hole horizons have
to be added to the post-Newtonian result computed here [48–51]. The result (4.9) for the
spin-orbit contribution to the energy flux is to be added to the non-spin contributions given
up to 3.5 PN by Eq. (230) in Ref. [40]. The spin-spin effects in the flux are known to leading
order from Refs. [20, 21, 52].

We have also derived the 4PN tail-induced terms in the energy flux through an alternative,
but equivalent computation that uses Eq. (2.9) in Ref. [53] extended through 4PN order (i.e.
we have added also the term that involves the current octupole moment). For this derivation
we have worked in the time domain, computed derivatives of the relevant multipole moments,
reduced to quasi-circular orbits and then calculated the tail integrals in the complex plane,
e.g., as described in Sec. IVB and Appendix C of Ref. [54]. Moreover, quite satisfactorily,
the result (4.9) is in complete agreement in the test-mass limit where ν → 0 with the result
of black-hole perturbation theory on a Kerr background [55].

To obtain the evolution of the orbital phase for quasi-circular orbits we apply like in
Papers I & II the usual energy balance equation. The conservative energy E in the balance
equation does not contain any spin-orbit term at 4PN order — this can be seen dimensionally
like for the absence of instantaneous terms in the flux. Therefore it is the same as used in
Paper II (and was computed at the right order in the previous works [1, 2]). We obtain the
secular evolution of the orbital frequency ω and carrier phase φ ≡

∫
ω dt as
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The expressions (4.9) and (4.10) constitute the main theoretical inputs needed for the con-
struction of gravitational wave templates. The non-spin terms in the carrier phase can be
found in Eq. (235) of Ref. [40], and those in ω̇/ω2 in e.g. Eq. (32) of Ref. [56]. However,
recall that in the case of precessional binaries we must add to the carrier phase φ the pre-
cessional correction arising from the precession of the orbital plane, namely Φ = φ − α in
the notation of Eq. (3.18). For this precessional correction one can use directly the results
of Sec. III B.

As an illustration of the significance of the new terms, we show in the Table I the con-
tribution of each post-Newtonian order to the number of accumulated gravitational-wave
cycles, computed using the so-called Taylor T2 approximant. For neutron star or stellar
mass black hole binaries targeted by ground-based detectors similar to LIGO and Virgo,
the number of cycles is between a minimal frequency corresponding to a seismic noise
cut-off at 10 Hz and a maximal frequency taken to be the Schwarzschild ISCO frequency
ωmax = ωISCO = c3/(63/2Gm). Recall that the parameter χ is small for a neutron star but
can be close to one for astrophysical black holes [15].

As we see, the 4PN spin-orbit terms computed in the present paper can be significant and

LIGO/Virgo 1.4M� + 1.4M� 10M� + 1.4M� 10M� + 10M�

Newtonian 15952.6 3558.9 598.8

1PN 439.5 212.4 59.1

1.5PN −210.3 + 65.6κ1χ1 + 65.6κ2χ2 −180.9 + 114.0κ1χ1 + 11.7κ2χ2 −51.2 + 16.0κ1χ1 + 16.0κ2χ2

2PN 9.9 9.8 4.0

2.5PN −11.7 + 9.3κ1χ1 + 9.3κ2χ2 −20.0 + 33.8κ1χ1 + 2.9κ2χ2 −7.1 + 5.7κ1χ1 + 5.7κ2χ2

3PN 2.6− 3.2κ1χ1 − 3.2κ2χ2 2.3− 13.2κ1χ1 − 1.3κ2χ2 2.2− 2.6κ1χ1 − 2.6κ2χ2

3.5PN −0.9 + 1.9κ1χ1 + 1.9κ2χ2 −1.8 + 11.1κ1χ1 + 0.8κ2χ2 −0.8 + 1.7κ1χ1 + 1.7κ2χ2

4PN (NS)− 1.5κ1χ1 − 1.5κ2χ2 (NS)− 8.0κ1χ1 − 0.7κ2χ2 (NS)− 1.5κ1χ1 − 1.5κ2χ2

TABLE I. Spin-orbit contributions to the number of gravitational-wave cycles NGW = (φmax −
φmin)/π. For binaries detectable by ground-based detectors LIGO/Virgo, we show the number of

cycles accumulated from ωmin = π × 10 Hz to ωmax = ωISCO = c3/(63/2Gm). For each compact

object we define the magnitude χA and the orientation κA of the spin by SA ≡ Gm2
A χA ŜA and

κA ≡ ŜA · `. For comparison, we give all the non-spin contributions up to 3.5PN order, but the

non-spin 4PN terms (NS) are yet unknown. We neglect all the spin-spin terms.
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are worth to be included in the gravitational wave templates. In particular, these terms are
comparable, although a bit smaller, to the previous 3.5PN spin-orbit terms. Interestingly,
notice that in fact the 4PN terms tend to significantly cancel out numerically the contribu-
tions of the 3.5PN terms. At the 3.5PN order the effect of spin-orbit terms can be larger
than the effect of the non-spinning terms, especially in the case of asymmetric binaries. At
the 4PN order we do not know if this happens since the 4PN non-spin terms have not yet
been computed.

We emphasize that it will be important in the future to improve the knowledge of the
phasing by computing spin-spin and even spin-spin-spin terms through at least 4PN and
3.5PN order, respectively, and also spin effects induced by the black-hole’s horizon-absorbed
energy flux [48–51]. Those terms may give a contribution to the phasing of the same order
as the one computed in this paper, especially when the black holes carry large spins and the
orbit approaches the ISCO.

As a last comment, one should obviously keep in mind that the numerical results in
Table I only give an illustration of the order of magnitude of the various contributions.
Indeed the precise analysis should take into account the details of the noise spectral density
of the detectors, and one should focus on studying the incidence of the various contributions
on the parameter estimation rather than simply counting the number of cycles. In addition,
note that the numerical values reported in Table I depend on the type of approximant
that one uses, here the T2 approximant. We find that using the Taylor T1 and Taylor T4
approximants leads to similar conclusions for our new 4PN tail contribution, i.e. a variation
of the order of one or a few cycles for maximally spinning black holes.
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Appendix A: Cancellation of precessional contributions in the flux

In this Appendix, we explain why the precessional contributions in the evolution of the
moving triad, given by the second terms in the right-hand sides of Eq. (3.22), identically
cancel in the final flux at linear order in spin. Let us consider the structure of the contribu-
tions of the tail terms in the flux. From (2.2), (2.3) and (2.6), we get that these contributions
take the form:

K
(`+1)
L (TR)

2GM

c3

∫ +∞

0

dτ K
(`+3)
L (TR − τ) ln

(
τ

2τ̂0

)
, (A1)

where KL is indifferently a source moment IL or JL. In the following, we will refer to
(n0,λ0, `0) as the moving triad evaluated at time TR. When expressing the time derivatives

K
(`+1)
L and K

(`+3)
L projected on the moving basis, we obtain an explicit spin-dependent

part and a “non-spin” part which depends on the spins only implicitly through the vectors
(n,λ, `). The spin part already displays a spin vector and, since the precessional terms
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in (3.22) are linear in spin, we can ignore them at the spin-orbit level and use the first
terms in (3.22), which correspond to the nonprecessional dynamics. Thus, we only have to
consider the non-spin part of Eq. (A1), and look at the implicit spin dependence through
the evolution of (n,λ, `).

Now, the non-spin contributions to the source moments, as given for instance in Ref. [44],
and their derivatives, will display only the vectors n and λ, but not the vector `; there will
also be a Levi-Civita symbol εijk for current-type moments, which we keep explicitly for the
argument. At the order considered here, we need only to consider Iij at 1PN order, and
Jij and Iijk at Newtonian order. We can expand their expressions using Eq. (3.22a) and
apply the Fourier-domain formula (4.8) for the term under the integral. The point is that
the vectorial structure is kept the same: the part that is proportional to `0 contains a spin
and comes from the second term of m in (3.22a). When considering the contraction of the
two terms of Eq. (A1), inside and outside the integral, to produce a scalar, we are left with
a combination of contractions of the basis vectors (n0,λ0, `0) (for current-type moments, a
product of Levi-Civita symbols appears, which reduces to a sum of products of Kronecker
deltas). The term outside the integral contains only the vectors n0,λ0, and the precessional
“non-spin” term inside the integral is proportional to the vector `0 at linear order in spin.
In the contraction, this vector is forced to enter a scalar product with n0 or λ0, and the
contribution cancels out. This argument, as the other results of this paper, is only valid at
linear order in spin.

However, notice that the precessional contributions will obviously not cancel out in the
individual radiative moments, and therefore will affect the waveform, as already found in Pa-
per I. Hence, the general calculations that we have explained in Sec. III, including precession,
will be useful for future investigations of the waveform.
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[2] A. Bohé, S. Marsat, G. Faye, and L. Blanchet, Class. Quant. Grav. 30, 075017 (2013),

1212.5520.
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[47] L. Blanchet and G. Schäfer, Class. Quant. Grav. 10, 2699 (1993).

21

http://www.cambridge.org/gb/knowledge/isbn/item2327562/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item2327562/?site_locale=en_GB
http://arxiv.org/abs/arXiv:astro-ph/0507409
http://dx.doi.org/10.1086/508146
http://arxiv.org/abs/arXiv:astro-ph/0608502
http://arxiv.org/abs/arXiv:astro-ph/0608502
http://arxiv.org/abs/1104.1172
http://arxiv.org/abs/1302.3260
http://arxiv.org/abs/gr-qc/9506022
http://arxiv.org/abs/gr-qc/0605139
http://dx.doi.org/10.1103/PhysRevD.82.104004
http://arxiv.org/abs/1006.4139
http://dx.doi.org/10.1088/0264-9381/27/20/205001
http://arxiv.org/abs/1005.5730
http://arxiv.org/abs/gr-qc/0605140
http://arxiv.org/abs/gr-qc/0409156
http://arxiv.org/abs/gr-qc/0511061
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://arxiv.org/abs/1209.6349
http://dx.doi.org/10.1088/0264-9381/27/13/135007
http://arxiv.org/abs/1002.2093
http://arxiv.org/abs/1002.2093
http://dx.doi.org/10.1103/PhysRevD.78.044012, 10.1103/PhysRevD.81.029904
http://arxiv.org/abs/0802.0720
http://dx.doi.org/10.1103/PhysRevD.78.044013
http://arxiv.org/abs/0804.0260
http://dx.doi.org/10.1103/PhysRevD.82.064029
http://arxiv.org/abs/0802.1508
http://dx.doi.org/10.1002/andp.201100163
http://arxiv.org/abs/1107.4294
http://dx.doi.org/10.1103/PhysRevD.85.064043
http://arxiv.org/abs/gr-qc/9801101
http://arxiv.org/abs/gr-qc/0202016
http://arxiv.org/abs/gr-qc/9501030
http://arxiv.org/abs/0802.1249
http://arxiv.org/abs/1204.1043
http://arxiv.org/abs/gr-qc/0502039


[48] E. Poisson and M. Sasaki, Phys. Rev. D 51, 5753 (1995).

[49] K. Alvi, Phys. Rev. D 64, 104020 (2001), arXiv:0107080 [gr-qc].

[50] H. Tagoshi, S. Mano, and E. Takasugi, Prog.Theor.Phys. 98, 829 (1997), arXiv:gr-qc/9711072

[gr-qc].

[51] K. Chatziioannou, E. Poisson, and N. Yunes, (2012), arXiv:1211.1686 [gr-qc].

[52] E. Poisson, Phys.Rev. D57, 5287 (1998), arXiv:gr-qc/9709032 [gr-qc].

[53] K. Arun, L. Blanchet, B. R. Iyer, and M. S. Qusailah, Phys. Rev. D 77, 064035 (2008).

[54] E. Racine, A. Buonanno, and L. E. Kidder, Phys.Rev. D80, 044010 (2009), arXiv:0812.4413

[gr-qc].

[55] H. Tagoshi, M. Shibata, T. Tanaka, and M. Sasaki, Phys. Rev. D 54, 1439 (1996).

[56] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D 75, 124018 (2007), gr-qc/0610122.
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