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Abstract.  Gravitational waves contain taiffects that are due to the backscattering
of linear waves in the curved space-time geometry arounddbiece. The knowledge
as well as the accuracy of the two-body inspiraling post-téeian (PN) dynamics and
of the gravitational-wave signal has been recently impdowetably by computing the
spin-orbit (SO) terms induced by taiffects in the gravitational-wave energy flux at the
3PN order. Here we sketch this derivation, which yields thaging formula including
SO tall dfects through the same 3PN order. Those results can be erdpiraprove
the accuracy of analytical templates aimed at describiagwhole process of inspiral,
merger, and ringdown.

1. Introduction

By 2016- 2018, the ground-based gravitational-wave detectorsovéngd LIGO will be up-
graded to such a sensitivity that event rates for coaleduimayy systems will increase by ap-
proximately a factor one thousand, making likely the firgedgon of gravitational waves from
those systems. The search for gravitational waves fromesogilg binary systems and the ex-
traction of source parameters require a rather accuratel&dge of the waveform of the incom-
ing signal. The post-Newtonian (PN) expansion is the mostgpful approximation scheme in
analytical relativity capable of describing the two-bodsndmics and the gravitational-wave
emission of inspiraling compact binary systems (Blancio€g).

The presence of spirffects adds substantial complexity to the gravitational fawes,
making it indispensable to include them into search tereplat

We have recently improved (Blanchet et al. 2011) the knogdednd accuracy of the
two-body inspiraling dynamics and gravitational-wavensigoy computing the spin-orbit (SO)
terms induced by tail contributions due to the back-scatgeof linear waves in the curved
space-time geometry around the source. Here we shall sumertais work, which is the
continuation of Faye et al. (2006) and Blanchet et al. (20@&re we obtained the 2.5PN SO
contributions in the equations of motion and gravitatiewale energy flux.

After briefly reviewing the post-Newtonian multipole monméarmalism and discussing
relevant properties of tails, we describe how sfiiees are included to our scheme and de-
rive the binary’s evolution equations when black holesyapins. Next, we investigate the
time evolution of the moving triad and solve the precessiymgathics at the relevant PN order.
We then compute the tails, which depend on the recent pasirisf the source, restricting
ourselves to quasi-circular adiabatic inspiral. At last, derive the 3PN SO tailfkects in the
energy flux and in the gravitational phasing.
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2. Wave generation formalism

I T . .
The gravitational Waveforrhij , generated by an isolated source described by a stresgyener

tensorT#” with compact support, and propagating in the asymptotioregof the source, is
the transverse trace-free (TT) projection of the metridatean at the leading-order/Rin the
distance to the source. It is parametrized by symmetrietfeee (STF) mass-type moments
UL and current-type oneg,, referred to as radiative moments, which constitute olagdev
guantities at infinity from the source. The general expoessf the TT waveform, in a suitable
radiative coordinate systedt = (c T, X), reads (Thorne 1980), when neglecting teXis/R?)
with R = [X|
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The momentd), andV, are functions of the retarded tifig = T — R/c. The integef refers
to the multipolar order anl = X /R s the unit vector pointing from the source to the far away
detector. The tensdP[}, denotes the transverse-traceless (TT) projeBigf; — PijPu/2,
where®jj = §i; — NiN; is the projector orthogonal th. The quantitye;j is the Levi-Civita
symbol such thati,3 = 1. Round parentheses indicate symmetrization. After phaggqg. (1)
into the standard expression for the gravitational-waw@nflux, we get
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where the superscript (1) stands for the first time deriegfihorne 1980).

In the multipolar-post-Minkowskian formalism, develogadBlanchet & Damour (1986,
1988, 1992), the radiative moments are linked to six setsulfipole moments characterizing
the source, collectively called the “source” moments anmtbtied! , J., W, X., Y., Z.. The
relation betweerJ,, V| and the former quantities encode all the non-linearitieheéwave
propagation between the source and the detector. Afteglbetexpanded in a PN way, they are
seen to contain the contribution of the so-called gravtetl-wave tails, due to backscattering
of linear waves onto the space-time curvature associatidtié total mass of the source itself.
The expression fod| (Tr) at the 1.5PN order, where the taffects first appear, is

2GM (TR Tr-t 1
UL(Tr) = 1(TR) + = im deiff 2)(t)|”( ;TE) )+O(§)nomai|' )

Herery, is a freely specifiable time scale (Blanchet 1995). A singlgmation linksV (Tr) to J..

For the present applicatioly,, X., Y. andZ,, associated to a possible gauge transformation
performed at linear order, play no role. It will befSaient to considet, at 1.5PN andJ, at
0.5PN order. The 1.5PN mass moments are given by an integealding over the mass density
o = (T%%4+T)/c? and the current density, = T%/c of the matter source (Blanchet et al. 2006):

= fd x|k o3 7 e pary P0G @

The 0.5PN part 0, is obtained by substitutingayi, X —1ya 0 10 X o in the first term.

To control the past behavior of the tail integral in Eq. (3% assume that, at early times,
the source was formed from a bunch of freely falling partialeoving on some hyperbolic-
like orbits, and forming at a later time a gravitationallyuma system by emission of grav-
itational radiation. This ensures that the integtal(Tr) = f,T: dtIE”Z)(t) In[(Tr — t)/27]
is convergent. To compute it, it is convenient to perform Foairier decompositiot, (t) =
LT: dQ/(27) 1L(Q) e, and commute the tail integral with the Fourier one. We ebtai



Third Post-Newtonian Spin-orbitfiect 217

closed-form expression by resorting to standard mathealdiormulae for the integrals of

e Int. The result reads (with §) = % andyg being the Euler constant)

U (Tr) = i f m%Q(—iQ)MTL(Q)e-iQTR[%s(Q)+i(ln(2|sz|ra)+yE)]. (5)

oo

3. Applications to spinning binaries

3.1. Spin vectors for point-like objects

Following our previous works (Faye et al. 2006; Blanchet €2@06), we base our calculations
on the model of point-particles with spins (Mathisson 193apapetrou 1951; Tulczyjew 1959;

Bailey & Israel 1980). The stress-energy tensét of a system of spinning particles is the sum
of a monopolar piece, made of Dirac delta-functions, plesdipolar or spin piece, made of

gradients of delta-functions:

, +00 , S@(x — 1 ey 5P (x —
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wheres™ is the four-dimensional Dirac function is the field pointy, is the world-line of
particle A, Uy = dy,/(cdra) is the four-velocity such thag,uyuy = -1 (with g, = g (ya)
denoting the metric at the particle’s locatiom}, is the linear momentum of the particle, and
S}’ denotes its antisymmetric spin angular momentum. Our spilables has been rescaled by
a factorc (S*” = ¢ Si;,¢) SO as to have a non-zero Newtonian limit for fast rotatingpact ob-
jects. Imposing that the antisymmetric parfléf should vanish yields the covariant equations
of evolution for the spin, while the covariant equations aftion follow from the conservation
relationVv, T# = 0 (Papapetrou 1951).

In order to fix unphysical degrees of freedom associatedavithrbitrariness in the defini-
tion of S#” in the case of point particles (due to the freedom in the @&ofthe location of the
center-of-mass worldline within the extended bodies), depa the covariant supplementary
spin conditionS}” p/* = 0 (Tulczyjew 1959). We restrict the computation to lineants in the
spins, neglecting(S3). Then the masen = (-p,p}/c*)"? is conserved an8),” is parallel
transported along the worldline of body As is standard, we introduce a spin vector variable
S}, with constant magnitude (see e.g., Kidder 1995), for irsey projectingS,” onto some
orthonormal basis of tha-particle rest space and taking the Hodge dual with

The post-Newtonian expressions of the densities; entering the source moments (4),
as well as the stress density; = T'!, are obtained iteratively from the truncated components
of the stress-energy tensor (6). They are used in turn to ataripe metric at the next iteration
step of the perturbative scheme.

Inserting the former matter densities into Eq. (4) (or itamm@rpart forV,), we see that
spins arise at 1.5PN order in and 0.5PN order id, . By virtue of Eq. (2), leading SO terms
in the gravitational-wave flux are thus seen to be of hakkgetr PN order. However, due to
the 1/c® factor in front of the tail integrals, as shown in Eq. (3)nerof integer orders may
also appear: (i) when the source moments are contained taithetegrands, or (ii) when they
are multiplied by non-spin tail integrals. The leading 3RNris coming frony;; andV;; are
precisely those we want to compute.

3.2.  1.5PN dynamics with spin-orbit &ects

To reduce the accelerations generated by the tirfierdntiations of;; and J;; and, most im-
portantly, to find the time dependencel{‘ﬁ and Ji(j“) required for calculating integrals such as

the one in Eq (3), we shall rely on the 1.5PN dynamics. Theesponding PN equations of
evolution at this order are derived by inserting the 1.5PNrimito the covariant equations and
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discarding)(1/c*) remainders. Going to the center-of-mass frame, we denyotey; —y» the
relative position of the particles (amd= |x|, v = dx/dt). Following Kidder (1995) we introduce
an orthonormal moving tria¢h, 4, £} defined byn = x/r, € = L/|L.|, whereL, = nvx x v
denotes the Newtonian orbital angular momentum (wit m; + m, andy = mymy/n?), and
A = £ xn. For general orbits, the time derivatives of those vectayg bre written in the form

an _ a ot
A at

The angular frequenay at which the separatiom rotates in the instantaneous orbital plane is
the so-called orbital frequency, while the third equatidhdefines the precessional frequency
wpree Which gives thus the variation éfin the direction ofd.

Instead of writing the equations of motion in the form of &limetweendv/dt and the
kinematic variables, we give the expressiongtuprec. Focusing from now on to the case of
guasi-circular motion, for which is constant apart from the 2.5PN secular radiation damping,
we have (see e.g., Faye et al. 2006)

=—-wh-— wprecg, = wprec/l. (7)

W? = Gr—3m{1+)/(—3+v) +9%?(~5s; — 350—5)} +O(é), (8)
Wprec = —W 73/2(75‘1 + 360'n) + O(é) , (9)

where the dimensionless spin variables are definesibyS; + S;)/(Gn?) ando = (Sp/mp —
S1/my)/(Gm), whereas = X; — Xo, s = s-£ands, = s-n; y = Gmy/(rc?) is the PN parameter.
The spin vector§, satisfy the usual-looking precession equations

das . 3 3
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showing that the spins, at the 1.5PN order, precess aroandirtbaction off, and at the quasi-
constant rat€, = |Q|. To obtain®, we simply have to changginto —6.

4. Computation of the tails

The only time dependence in the source moments composirtgithietegrals occurs through
the triad vectors and the spins at the 1.5PN order. We adegbtlowing strategy to integrate
Egs. (7): (i) we express the three moving triad vectors imgeof the Euler angles that link the
latter triad to some orthonormal fixed triad whose third vesipoints to the direction of the
total angular momentum at some titae(ii) we express the appropriate brick combinations of
those angles as a function 8f, S?, St and¢ = [ dtw(t); (iii) we solve for the precession
equations (10) in the triad basis and insert the resultstiredormulae we got fon, 4, £ in the
previous step.

Although the binary continuous spectrum of frequencies (@ should contain all orbital
frequencies at any epoch in the past, s4f) with t < Tg, differing from the current orbital
frequencyw(Tr) due to gravitational radiation damping, we can actualiypate the tail inte-
gral by considering only theurrentfrequencyw(Tgr), modulo small error terms of negligible
orderO(Inc/c%). Similarly, we can regard the precession frequenSig) of the two spins as
constant in the calculation. Thus, we may replai® by w(t — to) + ¢(to) andQa(t) by Qa(Tr)
in the tail integrand. This takes the form of a sum of complexamentials of the type @,
With wnpg = Nw + pQy + qQp, times certain caéicientsA'™. It is then straightforward to take
the Fourier transform of the source moments, &.¢), and apply formula (5), which leads to

. . i v/ .
ULTR) = )| ATPY— wnpg) et ennaTs [Es(wnp(,) +i(IN(2wnpdh) + yE)] N KD
n.p.q
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5. Energy flux and orbital phasing

Inserting the explicit expressions fok; andV;; into the energy flux (2) yields the net SO tail
contribution at 3PN order, in terms of the gauge-invariatfarametex = (Gnw/c®)%2 and
the spins. The SO terms have to be included in either thentastaous moments in front of the
tail integrals, or in the tail integrals themselves. Thigegiseveral “direct” SO contributions
coming from tails at relative 1.5PN order (for the mass qupdle tail) or 0.5PN order (for
the current quadrupole tail) which are then added togetherddition there is the crucial
contribution due to the reduction to circular orbits of thanglard (non-spin) tail integral at
1.5PN order, for which the relation between the orbital safi@nr and the orbital frequenay
[as given by the inverse of Eq. (8)] provides a supplemers@yterm at relative 1.5PN order,
which contributesn fineat the same 3PN level as the “direct” SO tail terms. Finallyolv&in

57—“—3—2§x8 [

3
-5 s, (12)
Using an energy balance argument, we finally equate thegaervolution of the binding
energy of the binary reduced for quasi-circular orbE{x] s;, o7¢)/dt (see e.g., Blanchet et al.
2006) to—F (X, s, o¢), whereF is the sum of the 2PN SO flux obtained by Kidder (1995), the
3PN non-spin contribution investigated by Blanchet et200@, 2004) and the correction (12)
we just calculated. The time derivative applied&acts only to the frequency variable since, as
we have checkedy ando, are secularly conserved (neglecting SS contributions)fildethe
following secular variation of frequency, denotedor simplicity, at the 3PN order including
SO dfects:

w 743 11 47 25
2 = x5/2{ X[~ gme - o)+ X*an - s - oo
(34103+ 13661 59 2)
18144 2016 18
4159 5861 809 189 1001 281
o e~ ggo g v o)
(16447322263; 1—6712 B 1712 856| n(16%) - 188785 B ﬁ&?’f
139708800 3 105 105 3 6

[ 56198689 451 2] 5412 5605 )}

T 217728 896 2592 (13)
Integrating this, we get the “carrier” phagé) = fw dt. The total phasé® = ¢ — a + O(1/c?),
whereq is the precessional phase, can be computed numerically rmuafs.
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