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Abstract. Gravitational waves contain tail effects that are due to the backscattering
of linear waves in the curved space-time geometry around thesource. The knowledge
as well as the accuracy of the two-body inspiraling post-Newtonian (PN) dynamics and
of the gravitational-wave signal has been recently improved, notably by computing the
spin-orbit (SO) terms induced by tail effects in the gravitational-wave energy flux at the
3PN order. Here we sketch this derivation, which yields the phasing formula including
SO tail effects through the same 3PN order. Those results can be employed to improve
the accuracy of analytical templates aimed at describing the whole process of inspiral,
merger, and ringdown.

1. Introduction

By 2016− 2018, the ground-based gravitational-wave detectors Virgo and LIGO will be up-
graded to such a sensitivity that event rates for coalescingbinary systems will increase by ap-
proximately a factor one thousand, making likely the first detection of gravitational waves from
those systems. The search for gravitational waves from coalescing binary systems and the ex-
traction of source parameters require a rather accurate knowledge of the waveform of the incom-
ing signal. The post-Newtonian (PN) expansion is the most powerful approximation scheme in
analytical relativity capable of describing the two-body dynamics and the gravitational-wave
emission of inspiraling compact binary systems (Blanchet 2006).

The presence of spin effects adds substantial complexity to the gravitational waveforms,
making it indispensable to include them into search templates.

We have recently improved (Blanchet et al. 2011) the knowledge and accuracy of the
two-body inspiraling dynamics and gravitational-wave signal by computing the spin-orbit (SO)
terms induced by tail contributions due to the back-scattering of linear waves in the curved
space-time geometry around the source. Here we shall summarize this work, which is the
continuation of Faye et al. (2006) and Blanchet et al. (2006)where we obtained the 2.5PN SO
contributions in the equations of motion and gravitational-wave energy flux.

After briefly reviewing the post-Newtonian multipole moment formalism and discussing
relevant properties of tails, we describe how spin effects are included to our scheme and de-
rive the binary’s evolution equations when black holes carry spins. Next, we investigate the
time evolution of the moving triad and solve the precessing dynamics at the relevant PN order.
We then compute the tails, which depend on the recent past history of the source, restricting
ourselves to quasi-circular adiabatic inspiral. At last, we derive the 3PN SO tail effects in the
energy flux and in the gravitational phasing.
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2. Wave generation formalism

The gravitational waveformhTT
i j , generated by an isolated source described by a stress-energy

tensorTµν with compact support, and propagating in the asymptotic regions of the source, is
the transverse trace-free (TT) projection of the metric deviation at the leading-order 1/R in the
distance to the source. It is parametrized by symmetric trace-free (STF) mass-type moments
UL and current-type onesVL, referred to as radiative moments, which constitute observable
quantities at infinity from the source. The general expression of the TT waveform, in a suitable
radiative coordinate systemXµ = (c T,X), reads (Thorne 1980), when neglecting termsO(1/R2)
with R= |X|

hTT
i j =

4G
c2R
PTT

i jkl

+∞∑

ℓ=2

NL−2

cℓℓ!

[
UklL−2 −

2ℓ
c(ℓ + 1)

Nmεmn(k Vl)nL−2

]
. (1)

The momentsUL andVL are functions of the retarded timeTR ≡ T − R/c. The integerℓ refers
to the multipolar order andN = X/R is the unit vector pointing from the source to the far away
detector. The tensorPTT

i jkl denotes the transverse-traceless (TT) projectorPi(kPl) j − Pi jPkl/2,
wherePi j = δi j − Ni N j is the projector orthogonal toN. The quantityεi jk is the Levi-Civita
symbol such thatε123 = 1. Round parentheses indicate symmetrization. After plugging Eq. (1)
into the standard expression for the gravitational-wave energy flux, we get

F =
+∞∑

ℓ=2

G
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[
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L U (1)
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]
, (2)

where the superscript (1) stands for the first time derivative (Thorne 1980).
In the multipolar-post-Minkowskian formalism, developedby Blanchet & Damour (1986,

1988, 1992), the radiative moments are linked to six sets of multipole moments characterizing
the source, collectively called the “source” moments and denotedIL, JL, WL, XL, YL, ZL. The
relation betweenUL, VL and the former quantities encode all the non-linearities inthe wave
propagation between the source and the detector. After being re-expanded in a PN way, they are
seen to contain the contribution of the so-called gravitational-wave tails, due to backscattering
of linear waves onto the space-time curvature associated with the total mass of the source itself.
The expression forUL(TR) at the 1.5PN order, where the tail effects first appear, is

UL(TR) = I (ℓ)
L (TR) +

2GM
c3

∫ TR

−∞
dt I (ℓ+2)

L (t) ln
(TR − t

2τ′0

)
+ O
( 1
c3

)
non−tail

. (3)

Hereτ′0 is a freely specifiable time scale (Blanchet 1995). A similarequation linksVL(TR) to JL.
For the present application,WL, XL, YL andZL, associated to a possible gauge transformation
performed at linear order, play no role. It will be sufficient to considerIL at 1.5PN andJL at
0.5PN order. The 1.5PN mass moments are given by an integral extending over the mass density
σ ≡ (T00

+T ii )/c2 and the current densityσi ≡ T0i/c of the matter source (Blanchet et al. 2006):

IL =

∫
d3x
[
x̂Lσ +

1
2c2(2ℓ + 3)

x̂L|x|2σ(2) − 4(2ℓ + 1)
c2(ℓ + 1)(2ℓ + 3)

x̂iL σ
(1)
i

]
+ O
( 1
c4

)
. (4)

The 0.5PN part ofJL is obtained by substitutingεab〈iℓ xL−1〉aσb to x̂L σ in the first term.
To control the past behavior of the tail integral in Eq. (3), we assume that, at early times,

the source was formed from a bunch of freely falling particles moving on some hyperbolic-
like orbits, and forming at a later time a gravitationally bound system by emission of grav-

itational radiation. This ensures that the integralUL(TR) ≡
∫ TR

−∞ dt I (ℓ+2)
L (t) ln[(TR − t)/2τ′0]

is convergent. To compute it, it is convenient to perform theFourier decompositionIL(t) =∫
+∞
−∞ dΩ/(2π) ĨL(Ω) e−iΩt, and commute the tail integral with the Fourier one. We obtain a
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closed-form expression by resorting to standard mathematical formulae for the integrals of
e−iΩt ln t. The result reads (with s(Ω) ≡ Ω

|Ω| andγE being the Euler constant)

UL(TR) = i
∫
+∞

−∞

dΩ
2π

(−iΩ)ℓ+1 ĨL(Ω) e−iΩTR

[
π

2
s(Ω) + i

(
ln(2|Ω|τ′0) + γE

)]
. (5)

3. Applications to spinning binaries

3.1. Spin vectors for point-like objects

Following our previous works (Faye et al. 2006; Blanchet et al. 2006), we base our calculations
on the model of point-particles with spins (Mathisson 1937;Papapetrou 1951; Tulczyjew 1959;
Bailey & Israel 1980). The stress-energy tensorTµν of a system of spinning particles is the sum
of a monopolar piece, made of Dirac delta-functions, plus the dipolar or spin piece, made of
gradients of delta-functions:

Tµν = c2
∑

A

∫
+∞

−∞
dτA
{
pµAuνA

δ(4)(x− yA)
√−gA

− 1
c
∇ρ
[
SρµA uνA

δ(4)(x− yA)
√−gA

]}
, (6)

whereδ(4) is the four-dimensional Dirac function,xµ is the field point,yµA is the world-line of
particleA, uµA = dyµA/(cdτA) is the four-velocity such thatgA

µνu
µ

AuνA = −1 (with gA
µν ≡ gµν(yA)

denoting the metric at the particle’s location),pµA is the linear momentum of the particle, and
SµνA denotes its antisymmetric spin angular momentum. Our spin variables has been rescaled by
a factorc (Sµν = c Sµνtrue) so as to have a non-zero Newtonian limit for fast rotating compact ob-
jects. Imposing that the antisymmetric part ofTµν should vanish yields the covariant equations
of evolution for the spin, while the covariant equations of motion follow from the conservation
relation∇νTµν = 0 (Papapetrou 1951).

In order to fix unphysical degrees of freedom associated withan arbitrariness in the defini-
tion of Sµν in the case of point particles (due to the freedom in the choice of the location of the
center-of-mass worldline within the extended bodies), we adopt the covariant supplementary
spin conditionSµνA pA

ν = 0 (Tulczyjew 1959). We restrict the computation to linear terms in the
spins, neglectingO(S2

A). Then the massmA ≡ (−pµApA
µ/c

2)1/2 is conserved andSµνA is parallel
transported along the worldline of bodyA. As is standard, we introduce a spin vector variable
Si

A with constant magnitude (see e.g., Kidder 1995), for instance by projectingSµνA onto some
orthonormal basis of theA-particle rest space and taking the Hodge dual withεi jk .

The post-Newtonian expressions of the densitiesσ, σi entering the source moments (4),
as well as the stress densityσi j ≡ T i j , are obtained iteratively from the truncated components
of the stress-energy tensor (6). They are used in turn to compute the metric at the next iteration
step of the perturbative scheme.

Inserting the former matter densities into Eq. (4) (or its counterpart forVL), we see that
spins arise at 1.5PN order inIL and 0.5PN order inJL. By virtue of Eq. (2), leading SO terms
in the gravitational-wave flux are thus seen to be of half-integer PN order. However, due to
the 1/c3 factor in front of the tail integrals, as shown in Eq. (3), terms of integer orders may
also appear: (i) when the source moments are contained in thetail integrands, or (ii) when they
are multiplied by non-spin tail integrals. The leading 3PN terms coming fromUi j andVi j are
precisely those we want to compute.

3.2. 1.5PN dynamics with spin-orbit effects

To reduce the accelerations generated by the time differentiations ofI i j andJi j and, most im-
portantly, to find the time dependence ofI (4)

i j andJ(4)
i j required for calculating integrals such as

the one in Eq (3), we shall rely on the 1.5PN dynamics. The corresponding PN equations of
evolution at this order are derived by inserting the 1.5PN metric into the covariant equations and
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discardingO(1/c4) remainders. Going to the center-of-mass frame, we denote by x = y1−y2 the
relative position of the particles (andr = |x|, v = dx/dt). Following Kidder (1995) we introduce
an orthonormal moving triad{n, λλ, ℓℓ} defined byn = x/r, ℓℓ = L N/|L N|, whereL N ≡ mν x × v
denotes the Newtonian orbital angular momentum (withm = m1 +m2 andν = m1m2/m2), and
λλ = ℓℓ × n. For general orbits, the time derivatives of those vectors may be written in the form

dn
dt
= ωλλ ,

dλλ
dt
= −ωn − ωprecℓℓ ,

dℓℓ
dt
= ωprecλλ . (7)

The angular frequencyω at which the separationn rotates in the instantaneous orbital plane is
the so-called orbital frequency, while the third equation (7) defines the precessional frequency
ωprec, which gives thus the variation ofℓℓ in the direction ofλλ.

Instead of writing the equations of motion in the form of a link betweendv/dt and the
kinematic variables, we give the expressions ofω, ωprec. Focusing from now on to the case of
quasi-circular motion, for whichr is constant apart from the 2.5PN secular radiation damping,
we have (see e.g., Faye et al. 2006)

ω2
=

G m
r3

{
1+ γ (−3+ ν) + γ3/2 (−5sℓ − 3δσℓ)

}
+ O
( 1
c4

)
, (8)

ωprec= −ωγ3/2
(
7sn + 3δσn

)
+ O
( 1
c4

)
, (9)

where the dimensionless spin variables are defined bys = (S1 + S2)/(Gm2) andσ = (S2/m2 −
S1/m1)/(Gm), whereasδ ≡ X1 − X2, sℓ ≡ s · ℓℓ andsn ≡ s · n; γ ≡ Gm/(rc2) is the PN parameter.
The spin vectorsSA satisfy the usual-looking precession equations

dSA

dt
= ΩA × SA , with Ω1 = ωγ

[3
4
+
ν

2
− 3

4
δ

]
ℓℓ + O

( 1
c4

)
, (10)

showing that the spins, at the 1.5PN order, precess around the direction ofℓℓ, and at the quasi-
constant rateΩA = |ΩA|. To obtainΩ2 we simply have to changeδ into−δ.

4. Computation of the tails

The only time dependence in the source moments composing thetail integrals occurs through
the triad vectors and the spins at the 1.5PN order. We adopt the following strategy to integrate
Eqs. (7): (i) we express the three moving triad vectors in terms of the Euler angles that link the
latter triad to some orthonormal fixed triad whose third vectors points to the direction of the
total angular momentum at some timet0; (ii) we express the appropriate brick combinations of
those angles as a function ofSA

n , SA
λ
, SA
ℓ

andφ ≡
∫

dtω(t); (iii) we solve for the precession
equations (10) in the triad basis and insert the results intothe formulae we got forn, λλ, ℓℓ in the
previous step.

Although the binary continuous spectrum of frequencies ofIL(t) should contain all orbital
frequencies at any epoch in the past, sayω(t) with t ≤ TR, differing from the current orbital
frequencyω(TR) due to gravitational radiation damping, we can actually compute the tail inte-
gral by considering only thecurrent frequencyω(TR), modulo small error terms of negligible
orderO(ln c/c5). Similarly, we can regard the precession frequenciesΩA(t) of the two spins as
constant in the calculation. Thus, we may replaceφ(t) byω(t − t0) + φ(t0) andΩA(t) byΩA(TR)
in the tail integrand. This takes the form of a sum of complex exponentials of the typeei ωnpqt,
with ωnpq = nω+ pΩ1+ qΩ2, times certain coefficientsAnpq

L . It is then straightforward to take
the Fourier transform of the source moments, e.g.IL(t), and apply formula (5), which leads to

UL(TR) =
∑

n,p,q

i Anpq
L (−i ωnpq)ℓ+1e−i ωnpqTR

[
π

2
s(ωnpq) + i

(
ln(2|ωnpq|τ′0) + γE

)]
. (11)
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5. Energy flux and orbital phasing

Inserting the explicit expressions forUi j andVi j into the energy flux (2) yields the net SO tail
contribution at 3PN order, in terms of the gauge-invariant PN parameterx ≡ (Gmω/c3)2/3 and
the spins. The SO terms have to be included in either the instantaneous moments in front of the
tail integrals, or in the tail integrals themselves. This gives several “direct” SO contributions
coming from tails at relative 1.5PN order (for the mass quadrupole tail) or 0.5PN order (for
the current quadrupole tail) which are then added together.In addition there is the crucial
contribution due to the reduction to circular orbits of the standard (non-spin) tail integral at
1.5PN order, for which the relation between the orbital separationr and the orbital frequencyω
[as given by the inverse of Eq. (8)] provides a supplementarySO term at relative 1.5PN order,
which contributesin fineat the same 3PN level as the “direct” SO tail terms. Finally weobtain

δF = 32
5

c5

G
x8 ν2
[
−16π sℓ −

31π
6
δ σℓ
]
, (12)

Using an energy balance argument, we finally equate the averaged evolution of the binding
energy of the binary reduced for quasi-circular orbits dE(x, sℓ, σℓ)/dt (see e.g., Blanchet et al.
2006) to−F (x, sℓ, σℓ), whereF is the sum of the 2PN SO flux obtained by Kidder (1995), the
3PN non-spin contribution investigated by Blanchet et al. (2002, 2004) and the correction (12)
we just calculated. The time derivative applied toE acts only to the frequency variable since, as
we have checked,sℓ andσℓ are secularly conserved (neglecting SS contributions). Wefind the
following secular variation of frequency, denoted ˙ω for simplicity, at the 3PN order including
SO effects:

ω̇

ω2
=

96
5
ν x5/2

{
1+ x

(
−743

336
− 11

4
ν
)
+ x3/2

(
4π − 47

3
sℓ −

25
4
δσℓ
)

+x2
(34103
18144

+
13661
2016

ν +
59
18
ν2
)

+x5/2
(
−4159

672
π − 5861

144
sℓ −

809
84
δσℓ + ν

[
−189

8
π +

1001
12

sℓ +
281
8
δσℓ
])

+x3
(16447322263

139708800
+

16
3
π2 − 1712

105
γE −

856
105

ln(16x) − 188π
3

sℓ −
151π

6
δσℓ

+ν
[
−56198689

217728
+

451
48
π2
]
+

541
896
ν2 − 5605

2592
ν3
)}
. (13)

Integrating this, we get the “carrier” phaseφ(t) =
∫
ωdt. The total phaseΦ = φ − α + O(1/c4),

whereα is the precessional phase, can be computed numerically or manually.
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