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We calculate the gravitational waveform for spinning, precessing compact binary inspirals through
second post-Newtonian order in the amplitude. When spins are collinear with the orbital an-
gular momentum and the orbits are quasi-circular, we further provide explicit expressions for
the gravitational-wave polarizations and the decomposition into spin-weighted spherical-harmonic
modes. Knowledge of the second post-Newtonian spin terms in the waveform could be used to
improve the physical content of analytical templates for data analysis of compact binary inspirals
and for more accurate comparisons with numerical-relativity simulations.
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I. INTRODUCTION

Coalescing compact binary systems are a key source
of gravitational radiation for ground-based gravitational-
wave detectors such as the advanced Laser Interferom-
eter Gravitational Wave Observatory (LIGO) [1], the
advanced Virgo [2], the GEO-HF [3], the Large Cryo-
genic Gravitational Telescope (LCGT) (or KAGRA) [4],
coming into operation within the next few years, and
future space-based detectors [5, 6]. For this class of
gravitational-wave sources, the signal detection and in-
terpretation will be based on the method of matched fil-
tering [7, 8], where the noisy detector output is cross
correlated with a bank of theoretical templates. The ac-
curacy requirement on the templates is that they remain
as much as possible phase coherent with the signal over
the hundreds to thousands of cycles of inspiral that are
within the detector’s sensitive bandwidth.

Constructing such accurate templates has motivated a
significant research effort during the past 30 years. In
the regime where the separation between the two bodies
is large, gravitational waveforms can be computed using
the post-Newtonian (PN) approximation method [9–11].
In the post-Newtonian scheme, the results are written
as an asymptotic expansion in powers of vA/c, with vA
being the magnitude of the orbital coordinate velocity
vA of body A at a given time. This approximation is
physically relevant for vA/c ≪ 1, i.e. in the so-called
inspiraling regime where the radiation reaction forces, of
order ∼ (vA/c)

5 are negligible over an orbital period and
act adiabatically on a quasiconservative system. In the
domain of validity of the post-Newtonian scheme, the
separation r ∼ (GmA/v

2) ∼ (c/v)2, with m = m1 +m2

and v = |v| ≡ |v1 − v2|, remains large with respect to
the radii of both compact objects ∼ GmA/c

2 or, in other
words, the bodies can be regarded effectively as point
particles.

Post-Newtonian waveforms cease to be reliable near

the end of the inspiral and the coalescence phase, where
numerical-relativity simulations should be used to pre-
dict the gravitational-wave signal [12–14]. By combin-
ing the information from post-Newtonian predictions and
the numerical-relativity simulations it is possible to ac-
curately and analytically describe the gravitational-wave
signal during the entire inspiral, plunge, merger and ring-
down process [15–23].
For nonspinning binaries, the post-Newtonian expan-

sion has been iterated to 3.5PN order beyond the leading
Newtonian order in the gravitational-wave phasing [24–
26]. The gravitational-wave amplitude has been com-
puted through 3PN order [27–30] and the quadrupole
mode through 3.5PN order [31]. However, black hole bi-
naries could potentially have large spins [32] which may
be misaligned with the orbital angular momentum, in
which case the precession effects add significant complex-
ity to the emitted gravitational waves [33]. Ignoring the
effects of black hole spins could lead to a reduction in
the signal-to-noise ratio and decrease the detection ef-
ficiency [34, 35] although this should be overcome with
phenomenological and physical models [21, 36–43]. To
maximize the payoffs for astrophysics will require extract-
ing the source parameters from the gravitational-wave
signal using template models computed from the most
accurate physical prediction available [44–47]. Spin ef-
fects in the waveform are currently known through much
lower post-Newtonian order than for nonspinning bina-
ries. More specifically, spin effects are known through
2.5PN order in the phase [48–50], 1.5PN order in the po-
larizations for spin-orbit effects [51, 52], 2PN order for the
spin1-spin2 effects [51, 53] and partially 3PN order in the
polarizations for the tail-induced spin-orbit effects [54].
In this paper, we compute all spin effects in the

gravitational-wave strain tensor through 2PN order. This
requires knowledge of the influence of the spins on the
system’s orbital dynamics as well as on the radiative
multipole moments. At this PN order, nonlinear spin
effects attributable to the spin-induced quadrupole mo-

http://arxiv.org/abs/1209.6349v2


2

ments of the compact objects first appear. Using results
from Ref. [55–58], we derive the stress-energy tensor with
self-spin terms and compute the self-induced quadrupole
terms in the equations of motion and in the source multi-
pole moments at 2PN order. Our results are in agreement
with previous calculations [59–62].

The two main inputs entering our calculation of the
gravitational-wave strain tensor through 2PN order are
(i) the results of Refs. [50, 51, 59] for the influence of the
spins on the system’s orbital dynamics, which have also
been derived by effective field theory and canonical meth-
ods [56, 63–68], and (ii) the spin effects in the system’s ra-
diative multipole moments [50]. Recently, the necessary
knowledge to compute the waveform at 2.5PN order was
obtained using the effective field theory approach [62, 64].
Here we use (i) and (ii) in the multipolar wave genera-
tion formalism [69–71] to obtain the waveform for spin-
ning, precessing binaries through 2PN order. To com-
pute the gravitational polarizations from this result, one
must specify an appropriate source frame and project
the strain tensor onto a polarization triad. For precess-
ing systems, there are several frames that could be em-
ployed [8, 35, 51, 72–76]. For nonprecessing binaries with
the spins collinear to the orbital angular momentum, the
most natural frame is the one used for nonspinning bina-
ries. Therefore, instead of choosing one frame, for sim-
plicity, we specialize to the nonprecessing case and qua-
sicircular orbits and provide the explicit expressions for
the gravitational polarizations. Lengthy calculations are
performed with the help of the scientific software math-
ematicaR©, supplemented by the package xTensor [77]
dedicated to tensor calculus. Our generic, precessing re-
sult is available in mathematica format upon request
and can be used to compute the polarizations for spe-
cific choices of frame. We notice that the 2PN terms in
the polarizations, for circular orbits, linear in the spins
were also computed in Ref. [78]. However, these results
contain errors in the multipole moments, which were cor-
rected in Ref. [50].

For future work at the interface of analytical and nu-
merical relativity, we also explicitly compute the decom-
position of the strain tensor into spin-weighted spherical-
harmonic modes for nonprecessing spinning binaries on
circular orbits. The test-particle limit of these results can
also be directly compared with the black-hole perturba-
tion calculations of Refs. [79, 80], and we verify that the
relevant terms agree.

The organization of the paper is as follows. In Sec. II,
we review the Lagrangian for compact objects with self-
induced spin effects [55–57, 61], compute the stress-
energy tensor and derive the self-induced spin couplings
in the two-body acceleration and source multipole mo-
ments [59–62]. In Sec. III we summarize the necessary
information about spin effects in the equations of motion
and the wave generation necessary for our calculation.
In Sec. IVB we calculate the spin-orbit effects at 2PN
order in the strain tensor for generic precessing binaries.
In Sec. IVC we complete the knowledge of 2PN spin-

spin terms by including the spin self-induced quadrupole
terms in addition to the spin1-spin2 terms obtained in
Ref. [51]. In Sec. IVE we specialize to quasicircular or-
bits and explicitly give the polarization tensors for non-
precessing systems. Then, in Sec. IVF we decompose
the polarizations into spin-weighted spherical-harmonic
modes. Finally, Sec. V summarizes our main findings.
We use lowercase Latin letters a, b, ..., i, j, ... for in-

dices of spatial tensors. Spatial indices are contracted
with the Euclidean metric, with up or down place-
ment of the indices having no meaning and repeated
indices summed over. We use angular brackets to de-
note the symmetric, trace-free (STF) projection of ten-
sors, e.g., T〈ij〉 = STF[Tij ] = T(ij) − 1

3δijTkk, where
the round parentheses indicate the symmetrization oper-
ation. Square parentheses indicate antisymmetrized in-
dices, e.g., T[ij] = 1

2 (Tij − Tji). The letter L = i1...iℓ
signifies a multi-index composed of ℓ STF indices. The
transverse-traceless (TT) projection operator is denoted
PTT
ijab = Pa(iPj)b− 1

2PijPab, where Pij = δij−NiNj is the

projector orthogonal to the unit direction N = X/R of
a radiative coordinate system Xµ = (cT,X), where the
boldface denotes a spatial three-vector. As usual, gµν
represents the space-time metric and g its determinant.
The quantity εijk is the antisymmetric Levi-Cività sym-
bol, with ε123 = 1, and ǫµνρσ stands for the Levi-Cività
four-volume form, with ǫ0123 = +

√−g. Henceforth, we
shall indicate the spin1-spin2 terms with S1S2, the spin

2
1,

spin22 terms with S2 and the total spin-spin terms with
SS. Throughout the paper, we retain only the terms
relevant to our calculations and omit all other terms,
which either are already known or appear at a higher
post-Newtonian order than required for our purposes.

II. MODELING SPINNING COMPACT

OBJECTS WITH SELF-INDUCED

QUADRUPOLES

In this section we review the construction of
a Lagrangian for compact objects with self-induced
quadrupole spin effects [55–57, 61, 81], compute the
stress-energy tensor and derive the self-induced spin cou-
plings in the two-body acceleration and source multipole
moments. Our findings are in agreement with previous
results [59–62].

A. Lagrangian for compact objects with

self-induced spin effects

A Lagrangian for a system of spinning compact ob-
jects with nondynamical1 self-induced quadrupole mo-

1 We shall not include kinetic terms in the Lagrangian for the

quadrupole moment that can describe resonance effects in neu-
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ments can be obtained by augmenting the Lagrangian

for point particles with LS2

A describing the quadrupole-
curvature coupling for each body A. Since the action
for body A must admit a covariant representation, the

corresponding Lagrangian LS2

A should be a function of
the four-velocity uµ

A, the metric gµν , the Riemann ten-
sor Rλ

ρµν and its covariant derivatives, evaluated at the

worldline point yµA, and the spin variables entering via
the antisymmetric spin tensor Sµν

A .
The spin tensor Sµν

A contains six degrees of freedom.
It is well known that in order to reduce them to the three
physical degrees of freedom a spin supplementary condi-
tion (SSC) should be imposed [82]. This is equivalent
to performing a shift of the worldline yµA. In this paper
we specialize to the SSC Sµν

A pAν = 0 which is equivalent
to Sµν

A uA
ν = 0 since pµA ≈ mAcu

µ
A through 2.5PN order.

To ensure the preservation of the SSC under the evolu-
tion, we follow Ref. [57] and introduce the spin tensor

Sµν
A = Sµν

A + 2u
[µ
AS

ν]λ
A uA

λ . The spin tensor Sµν
A automat-

ically satisfies the algebraic identity Sµν
A uA

ν = 0, which
provides three constraints that can be used to reduce the
spin degrees of freedom from six to three.
From the above discussion and Refs. [56, 83], we as-

sume that the Lagrangian of particle A is of the form

LS2

A = LAµνλρSµν
A Sλρ

A , where LAµνλρ is a polynomial in
the Riemann tensor and its derivatives, as well as the
four-velocity uµ

A. As noticed in Ref. [84], any term pro-
portional to ∇...Rαβ evaluated at point yµA can be re-
cast into a redefinition of the gravitational field. As a
result, the Riemann tensor may be replaced in each of
its occurrences by the Weyl tensor Cλ

ρµν , which can be
decomposed into a combination of the gravitoelectric-
and gravitomagnetic-type STF tidal quadrupole mo-

ments GA
µν ≡ Gµν(y

α
A) ≡ −c2Rµανβu

α
Au

β
A and HA

µν ≡
Hµν(y

α
A) ≡ 2c3RA∗

µανβu
α
Au

β
A with R∗

µναβ ≡ 1
2ǫµνρσR

ρσ
αβ .

More generally, the multiple space derivatives of Cλ
ρµν

at point yµA may be expressed in terms of some STF tidal
multipole moments GA

µ1...µℓ
and HA

µ1...µℓ
of parity 1 and

−1 respectively. However, those higher-order moments
will play no role in this paper.
Taking into account that the contraction of the veloc-

ity vector uν
A with both GA

µν and Sµν
A vanishes, that the

spin and tidal multipole tensors are traceless, and that
the Lagrangian must obey parity and time-reversal sym-
metries we obtain [55–57, 83]

LS2

A = − κA

2mAc2
GµνS

µ
Aλ S

λν
A . (2.1)

Here, we have also assumed that the rotating body is ax-
ially symmetric and we have replaced Sµν

A with Sµν
A since

the difference between these spin variables contributes to

the equations of motion at O(S3
A), where SA =

√

|Sµ
AS

A
µ |

with SA
µ = ǫρσνµS

ρσ
A pνA/(2mAc).

tron stars.

For a neutron star the numerical constant κA in
Eq. (2.1) depends on the equation of state of the fluid
[85]. For an isolated black hole κA = 1 [59, 60], but for
a black hole in a compact binary κA can deviate from 1.
However, these deviations occur at PN orders that are
much higher than the ones considered here. We notice
that the leading contribution κA = 1 can be obtained by
computing the acceleration of body A from Eq. (2.1) in
a compact binary for mA ≪ m and matching it with the
acceleration of a test particle in the gravitational field of
a Kerr black hole of mass m [83].

B. Effective stress-energy tensor with self-induced

quadrupoles

The piece of the stress-energy tensor encoding the self-
induced quadrupole dynamics of body A reads by defini-
tion

T µν
quad,A =

2√−g

δ

δgµν(x)

∫

dτA LS2

A [yαA(τA), S
αβ
A (τA)] ,

(2.2)

where LS2

A is the Lagrangian (2.1). To determine the ac-
tion of the operator δ/δgµν , which stands for the usual
“functional derivative” with respect to the field gµν , we
need to adopt a specific model for the spin. The rota-
tional state of the extended object A is usually repre-
sented by a tetrad of orthonormal vectors eµAα(τA) with
α ∈ {0, 1, 2, 3} along the worldline yµA with affine parame-
ter τA. The corresponding angular rotation tensor is then

defined as Ωµν
A = ηαβeµAαDeν

Aβ
/dτA. We now make the

reasonable physical hypothesis that the rotation of the
axially symmetric object takes place about the symme-
try axis. The moment of inertia IA along that direction
is a 2PN-order quantity ∼ G2m3

A/c
4 for compactness pa-

rameters of order 1, whereas Ωµν
A ∼ VA/RA, RA being the

radius of body A and VA its typical internal velocity, is
roughly equal to c3/(GmA). In the weak field limit where
G goes formally to zero, the spin must satisfy the relation
Sµν
A = IAΩ

µν
A , as in special relativity [86]. In the pres-

ence of a nonnegligible gravitational field, this relation
is expected to be modified by nonminimal coupled terms
proportional to positive powers of RA

µναβ times positive

powers of IA and Sµν
A [83]:

Ŝµν
A = IA

[

Ωµν
A +O

( ŜA

c2

)]

. (2.3)

Here we use a hat to distinguish the generic spin variable
from the one related to our specific spin model. The
corrections IA × O(ŜA/c

2) are not relevant for the two-
body dynamics in this paper because they correspond
to the 4.5PN order when taking into account the factor
O(1/c) contained in the spin variable.
Using the definition (2.3) for the spin variables, we

compute in a covariant manner the variation of the action

AS2

=

∫

dτAL
S2

A (τA)
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=

∫

d4x

c

√−g

∫

dλAL
S2

A (λA)
δ4(xα − yαA(λA))√−g

,

(2.4)

when the metric varies by δgµν(x), and find the following
quadrupolar piece of the stress-energy tensor

T µν
quad,A =

κA

mAc2

[n∗
A

2

(

− 3uµ
Au

ν
AG

A
λρŜ

λσ
A ŜAρ

σ

− c2R
(µ
Aλρτu

ν)
A Ŝλ

AσŜ
σρ
A uτ

A +G
(µ
AλŜ

ν)
AρŜ

ρλ
A

)

+∇ρ

(

IAc n
∗
A(G

A(µ
λ u

ν)
A Ŝλρ

A −GAρ
λ Ŝ

λ(µ
A u

ν)
A )

)]

− 2∇λ∇ρ

[

n∗
AŜ

σ[λ
A u

(µ]
A ŜA[ν)

σ u
ρ]
A

]

, (2.5)

where we have indicated with n∗
A the Dirac-type scalar

density n∗
A(x

µ) =
∫

dλA δ4(xµ − yµA(λA))/
√

−g(xν) and,
in the last term, we have adopted the convention that
symmetrization of indices applies after antisymmetriza-
tion. As derived in Ref. [81], the most general form of
the effective stress-energy tensor is

T µν
skel,A(x

µ) =

+∞
∑

ℓ=0

∇λ1
∇λ2

...∇λℓ

[

t
µν|λ1λ2...λℓ

A (τA)n
∗
A(x

µ)
]

, (2.6)

where τA is the proper time of the Ath worldline at event

yµA with y0A = x0 and the coefficients t
µν|λ1λ2...λℓ

A (τA) are
the “skeleton” multipole moments. The latter are not ar-
bitrary but satisfy algebraic constraints imposed by the
equation of conservation ∇νT

µν
skel = 0. Let us check that

we can indeed recast the total stress-energy tensor, in-
cluding the monopolar, dipolar and quadrupolar pieces,
in the form (2.6). If we add T µν

quad to the monopolar and

dipolar contributions [49, 81, 87–89]

T µν
mon+dipole =

∑

A

[

n∗
Ap̃

(µ
A u

ν)
A c+∇λ

(

n∗
Ac u

(µ
A S̃

ν)λ
A

)]

,

(2.7)

and redefine the spin variable entering the quadrupolar
piece as

Sµν
A = S̃µν

A − 2κA

mAc2
IAŜ

λ[µ
A G

ν]
Aλ , (2.8)

we obtain the total stress-energy tensor in the form

T µν =
∑

A

[

n∗
A

(

p
(µ
A u

ν)
A c+

1

3
R

(µ
AτλρJ

ν)τλρ
A c2

)

+∇λ

(

n∗
Ac u

(µ
A S

ν)λ
A

)

− 2

3
∇λ∇ρ

(

n∗
Ac

2J
λ(µν)ρ
A

)]

, (2.9a)

where the four-rank tensor Jλρµν
A takes the following ex-

pression in our effective description:

Jλρµν
A =

3κA

mAc2
S
σ[λ
A u

ρ]
AS

A[µ
σ u

ν]
A . (2.9b)

Consistently with the approximation already made in the
spin model (2.3), we have neglected here the difference

of order IA × O(ŜA/c
2) between the spins Ŝµν

A and Sµν
A

in the above formula. The net result is that Eq. (2.9a)
matches Eq. (2.6) for ℓ = 0, 1, 2 as expected. Moreover,
Eqs. (2.9) agree with Refs. [58, 61].
Lastly, the conservation of the stress-energy ten-

sor (2.9a) is equivalent to the equation of motion for the
particle worldline, supplemented by the spin precession
equation [58]. They read

DpµA
dτA

= − c

2
Rµ

Aρνλu
ρ
AS

νλ
A − c2

3
∇τR

µ
AρνλJ

τρνλ
A ,

(2.10a)

DSµν

dτA
= 2c p

[µ
Au

ν]
A +

4c2

3
R

[µ
AτλρJ

ν]τλρ
A . (2.10b)

Those equations are in full agreement with the equations
of evolution derived from the Dixon formalism truncated
at the quadrupolar order [90].

C. Self-induced quadrupole terms in the 2PN

binary dynamics and source multipole moments

Once the stress-energy tensor has been derived, the
post-Newtonian equations of motion and the source
multipole moments parametrizing the linearized gravi-
tational field outside the system can be computed by
means of the usual standard techniques [10]. At 2PN
order, the accelerations including the self-spin interac-
tions were obtained in Refs. [59, 60], but the self-induced
quadrupole effects in the source multipole moments were
never explicitly included in the standard version of the
post-Newtonian scheme, although recently they were cal-
culated at 3PN order using effective-field-theory tech-
niques [91]. Here we can use the results of the previous
section, which constitutes a natural extension of the stan-
dard post-Newtonian approximation for spinning com-
pact bodies [49], and explicitly derive the self-induced
quadrupole couplings in the 2PN dynamics and source
multipole moments.
Henceforth, we define the spin vectors Si

A by the rela-

tion SA
i /c = gAijS

j
A, where SA

i is the three-form induced

on the hypersurface t = const by SA
µ . Note that it is

Si
A/c that has the dimension of a spin, while Si

A has
been rescaled in order to have a nonzero Newtonian limit
for compact objects.
In the post-Newtonian formalism for point particles in

the harmonic gauge, it is convenient to represent effec-
tively the source by the mass density σ = (T 00+T ii)/c2,
the current density σi = T 0i/c, and the stress density
σij = T ij. They are essentially the components of the
stress-energy tensor rescaled so as not to vanish in the
formal limit c → 0 for weakly stressed, standard matter.
At 2PN order, the second term in the right-hand side of
Eq. (2.9a) does not contribute. From the last term, we
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obtain the following self-spin contributions:

σS2

=
κ1

2m1c2
∂ij [δ1S

ki
1 Skj

1 ] + 1 ↔ 2 +O
(S2

A

c4

)

, (2.11a)

σS2

i = O
(S2

A

c2

)

, (2.11b)

σS2

ij = O
(S2

A

c2

)

. (2.11c)

where 1 ↔ 2 represents the counterpart of the preceding
term with particles 1 and 2 exchanged, and δ1 ≡ δ3(x−
y1).
At 2PN order, the spin2 part of the equations of mo-

tion (2.10a) for, say, the first particle, reduce to

D(u1
i c)

dτ1
= non-S2

1 terms− κ1

2m2
1

∂kR
1
i0j0S

lk
1 Slj

1 +O
(S2

1

c4

)

.

(2.12)
The only occurrence of self-spin interactions at 2PN order
on the left-hand side of the above equation comes from
the gradient of the time component of the metric, g00 =
−1+2V/c2+O(1/c4), where the Newton-like potential V
satisfies �V = −4πGσ. Although V coincides with the
Newtonian potential U in the leading approximation, it
contains higher order corrections, including quadratic-in-
spin terms coming from the mass density (2.11a), which
are smaller than U by a factor O(1/c4). They read

VS2 = −2πGκ1

m1c2
∂ij∆

−1[δ1S
ki
1 Skj

1 ] + 1 ↔ 2 +O
(S2

A

c4

)

=
Gκ1

2m1c2
∂ij

1

r1
Ski
1 Skj

1 + 1 ↔ 2 +O
(S2

A

c4

)

, (2.13)

with ∂i = ∂/∂xi and r1 ≡ |x−y1|, the symbol ∆−1 hold-
ing for the retarded integral operator. Other potentials
appear at the 1PN approximation or beyond, but their
sources cannot contain a self-induced quadrupole below
O(1/c4); thus they are negligible here. The self-induced
spin part of the acceleration a1 of the first particle is
therefore given by

(ai1)S2 = −c2(Γ0
0i)S2 − κ1

2m2
1

∂kR
1
i0j0S

lk
1 Slj

1 +O
(S2

A

c4

)

.

(2.14)
Replacement of the Christoffel symbols Γλ

µν and the Rie-
mann tensor by the leading order values

Γ0
0i = −∂iV

c2
+O

( 1

c4

)

, Ri0j0 = −∂ijU

c2
+O

( 1

c4

)

,

(2.15)

with U = Gm1/r1 +Gm2/r2 +O(1/c2) yields the more
explicit result (posing ∂1i ≡ ∂/∂yi1):

(ai1)S2 = − G

2c2
∂1ijk

1

r

[ κ2

m2
Sj
2S

k
2 +

m2κ1

m2
1

Sj
1S

k
1

]

+O
( 1

c4

)

, (2.16)

which agrees with Refs. [59, 60] in the center-of-mass
frame, for Si

A/c = εijkS
jk +O(1/c3).

Self-induced quadrupolar deformations of the bodies
also produce 2PN-order terms in the source multipole
moments IL and JL. Those are defined as volume in-
tegrals whose integrands are certain polynomials in the
densities σ, σi and σij as well as some gravitational po-
tentials, such as V , that parametrize the metric. Now,
since those potentials are multiplied by prefactors of or-
der O(1/c2) and cannot contain themselves spin2 interac-
tions below the 2PN order, monomials involving one po-
tential or more may be ignored for the calculation. The
remaining sources are linear in the σ variables. With the
help of the general formula (5.15) of Ref. [92], it is then
immediate to get the self-spin contribution to IL:

IS
2

L =

∫

d3x x〈i1... xiℓ〉σS2 +O
(S2

A

c4

)

. (2.17)

Inserting expression (2.11a) for σS2 and performing a
straightforward integration, we arrive at

IS
2

L =
κ1

2m1c2
∂1ij(y

〈i1
1 ... y

iℓ〉
1 )Ski

1 Skj
1 + 1 ↔ 2 +O

(S2
A

c4

)

.

(2.18)
We can show similarly that JL is of order O(S2

A/c
2).

As a result, at the accuracy level required for the 2PN
waveform, the only terms quadratic in one of the spins
that originate from the source moments come from the
quadrupole ℓ = 2, for which we have

IS
2

ij = − κ1

m1c4
S
〈i
1 S

j〉
1 + 1 ↔ 2 +O

( 1

c6

)

, (2.19)

whereas similar terms in (IL)ℓ≥3 or (JL)ℓ≥2 lie beyond
our approximation. The above correction to the mass
quadrupole agrees with that of Porto et al. [91] trun-
cated at 2PN order. It is formally of order O(1/c4) but,

because ṠA = O(1/c2), it is cast to the 3PN order in the
waveform expansion given below [see Eq. (4.1)] after the
second time derivative is applied. This result was already
argued in Ref. [93].

III. TWO-BODY DYNAMICS WITH SPIN

EFFECTS THROUGH 2PN ORDER

The equations of motion in harmonic coordinates for
the relative orbital separation x = rn in the center of
mass frame are [10]

d2xi

dt2
= aiNewt +

1

c2
ai1PN +

1

c3
aiSO

+
1

c4
[

aiS1S2
+ aiS2 + ai2PN

]

, (3.1a)

where

aNewt = −Gm

r2
n , (3.1b)
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a1PN = −Gm

r2

{[

(1 + 3ν)v2 − 3

2
νṙ2 − 2(2 + ν)

Gm

r

]

n

− 2ṙ(2− ν)v

}

, (3.1c)

with m ≡ m1 + m2, ν ≡ m1 m2/m
2, n = x/r and v =

dx/dt. The 2PN acceleration given, e.g., in Ref. [51] will
not be needed for our calculation. The spin-orbit terms
are [51]

aSO =
G

r3
{6 [(n× v) · (2S + δΣ)]n (3.1d)

− [v × (7S + 3δΣ)] + 3ṙ [n× (3S + δΣ)]} ,

where we denote with δ = (m1 −m2)/m and

S ≡ S1 + S2 , (3.2a)

Σ ≡ m

[

S2

m2
− S1

m1

]

. (3.2b)

The spin1-spin2 interaction terms are [51]

aS1S2
= − 3G

mνr4

[

[(S1 · S2)− 5(n · S1)(n · S2)]n

+ (n · S1)S2 + (n · S2)S1

]

. (3.3a)

As originally computed in Ref. [59] [see Eq. (2.16) above],
an additional term due to the influence of the spin-
induced mass quadrupole moment on the motion arises
at 2PN order:

aS2 = − 3G

2mνr4

{

n

[

κ1

q
S2
1 + q κ2S

2
2

]

+ 2

[

κ1

q
(n · S1)S1 + q κ2(n · S2)S2

]

− n

[

5κ1

q
(n · S1)

2 + 5q κ2(n · S2)
2

]}

. (3.3b)

Here, q = m1/m2 is the mass ratio and we recall that
the parameters κA characterize the mass quadrupole mo-
ments of the bodies.
We find that the quadratic spin contribution to the

acceleration can be rewritten in a simpler way by intro-
ducing the spin variables

S+
0 =

m

m1

(

κ1

κ2

)1/4

(1 +
√
1− κ1κ2)

1/2S1

+
m

m2

(

κ2

κ1

)1/4

(1−
√
1− κ1κ2)

1/2S2 , (3.4)

and S−
0 , which is obtained by exchanging the labels 1 and

2 in the above equation. 2 Those variables generalize the

2 In the formal limit where the induced quadrupole of at least one

body vanishes, so that e.g. κ2 → 0, we may define the effective

spins as: S
+
0

= m

m1

√
2S1, S

−

0
= m

m1

κ1
√

2
S1 + m

m2

√
2S2.

quantity S0 of Ref. [60] in the case where the two bodies
are not black holes. In terms of these spin variables the
spin-spin part of the acceleration reads

aS1S2
+ aS2 = − 3G

2mr4
[n (S+

0 · S−
0 ) + (n · S+

0 )S
−
0

+ (n · S−
0 )S+

0 − 5n (n · S+
0 )(n · S−

0 )] . (3.5)

The spin precession equations through 2PN order
are [51, 94]

dS

dt
=

Gmν

c2r2

{

[−4(v · S)− 2δ (v ·Σ)]n

+ [3(n · S) + δ (n ·Σ)]v + ṙ [2S + δΣ]

}

, (3.6a)

dΣ

dt
=

Gm

c2r2

{

[−2δ (v · S)− 2(1− 2ν)(v ·Σ)]n

+ [δ (n · S) + (1− ν)(n ·Σ)]v

+ ṙ [δS + (1− 2ν)Σ]

}

. (3.6b)

It is often convenient to use a different set of spin
variables Sc

Ai whose magnitude remains constant and
that obey precession equations of the form dSc

A/dt =
ΩA × Sc

A. The relationship between the spin variables
appearing in the equations of motion above and the con-
stant magnitude spin variables is [50]

Sc = S +
Gmν

rc2
[2S + δΣ]

− ν

2c2
[(v · S) + δ (v ·Σ)] v , (3.7a)

Σc = Σ+
Gm

rc2
[δS + (1− 2ν)Σ]

− 1

2c2
[δ (v · S) + (1− 3ν)(v ·Σ)]v. (3.7b)

IV. WAVEFORMS WITH SPIN EFFECTS AT

2PN ORDER

A. General formalism

The gravitational radiation from the two-body system
is calculated from symmetric trace-free radiative multi-
pole moments IL and JL using the general formula from
Ref. [69] truncated at 2PN order

hTT
ij =

2G

Rc4

{

I
(2)
ab +

1

3c
I
(3)
abcN

c +
1

12c2
I
(4)
abcdN

cNd

+
1

60c3
I
(5)
abcdeN

cNdNe +
1

360c4
I
(6)
abcdefN

cNdNeNf

+Nkεcka

[

4

3c
J
(2)
bc +

1

2c2
J
(3)
bcdN

d +
2

15c3
J
(4)
bcdeN

dNe

+
1

36c4
J
(5)
bcdefN

dNeNf

]}

PTT
ijab, (4.1)
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where N is the unit vector pointing from the center of
mass of the source to the observer’s location and R is the
distance between the source and the observer. Here, the
superscript (n) signifies the nth time derivative, and the
transverse-traceless projection operator is

PTT
ijab = Pa(iPj)b −

1

2
PijPab, (4.2)

with Pij = δij −NiNj .
The gravitational radiation (4.1) can be rewritten in a

post-Newtonian expansion as

hTT
ij =

1

c4

[

hNewt
ij TT +

1

c2
h1PN
ij TT +

1

c2
h1PNSO
ij TT +

1

c3
h1.5PNSO
ij TT

+
1

c4
h2PN
ij TT +

1

c4
h2PNSO
ij TT +

1

c4
h2PNSS
ij TT + · · ·

]

.

(4.3)

The 1PN and 1.5PN spin terms are given explicitly in
Refs. [51, 52]. The terms in the source multipole mo-
ments that are a priori needed to compute the spin-orbit
waveform exactly at 2PN order are identified by consid-
ering their schematic structure,

IL = INewt
L +

1

c2
I1PN
L +

1

c3
ISOL

+
1

c4
(I2PN

L + ISSL ) , (4.4a)

JL = JNewt
L +

1

c
JSO
L +

1

c2
J1PN
L

+
1

c3
J1.5PNSO
L , (4.4b)

together with the scalings of Eqs. (4.1) and (3.1a).
Specifically, the following pieces are required: (INewt

abc )(3)

using the 1.5PN motion and (ISOabc)
(3) with aNewt,

(JSO
ab )(2) with the 1PN motion and the spin evolution,

(J1.5PNSO
ab )(2) with aNewt, (JNewt

ab )(2) with the 1.5PN ac-

curate motion, and (JSO
abcd)

(4) with aNewt. For the SS

part, we need (INewt
ab )(2) with aSS, as the time derivative

of ISSab does not contribute at 2PN order. When we write
the waveform in terms of the constant magnitude spin
variables, there is an additional contribution to the 2PN
spin piece of the waveform coming from JSO

ab with aNewt

and the 1PN conversion factor in Σc. The relevant spin
contributions to the multipole moments are [50]

J spin
ij =

ν

c

{

−3

2
r n〈iΣj〉

}

+
ν

c3

{(

3

7
− 16

7
ν

)

r ṙ v〈iΣj〉 +
3

7
δ r ṙ v〈i Sj〉 +

[(

27

14
− 109

14
ν

)

(v ·Σ) +
27

14
δ (v · S)

]

r n〈i vj〉

+

[(

−11

14
+

47

14
ν

)

(n ·Σ)− 11

14
δ (n · S)

]

r v〈i vj〉 +

[(

19

28
+

13

28
ν

)

Gm

r
+

(

−29

28
+

143

28
ν

)

v2
]

r n〈i Σj〉

+

[(

−4

7
+

31

14
ν

)

(n ·Σ)− 29

14
δ (n · S)

]

Gmn〈i nj〉 +

[

− 1

14

Gm

r
− 2

7
v2
]

δ r n〈i Sj〉

}

, (4.5a)

Ispinijk =
ν

c3
r2

{

−9

2
δ n〈inj(v × S)k〉 − 3

2
(3− 11ν)n〈inj(v ×Σ)k〉

+ 3 δ n〈ivj(n× S)k〉 + 3 (1− 3ν)n〈ivj(n×Σ)k〉
}

, (4.5b)

J spin
ijkl = −5ν

2c
r3

{

δ n〈injnkSl〉 + (1 − 3ν)n〈injnkΣl〉
}

. (4.5c)

The nonspinning contributions to the multipole mo-
ments that we employed in our calculation are

Iij = mν r2 n〈inj〉 , (4.6a)

Iijk = −mν r3 δ n〈injnk〉 , (4.6b)

Jij = −mν r2 δ εab〈in
j〉navb . (4.6c)

B. Spin-orbit effects

Using the multipole moments of Eqs. (4.5) and (4.6) in
Eq. (4.1) and substituting the equations of motion (3.1)
and (3.3b), we find the following 2PN spin-orbit piece:
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h2PNSO
ij TT =

2G2mν

r2R
PTT
ijab

{

na nb

[

5

2
(3− 13ν) ṙ2 (n×Σc) ·N + 30(1− 4ν)(n ·N) ṙ (n× v) ·Σc

−(7− 29ν) ṙ (v ×Σc) ·N − 6(1− 4ν)(v ·N)(n × v) ·Σc −
1

2
(3− 13ν) v2 (n×Σc) ·N

−2Gm

3r
(1− 5ν)(n×Σc) ·N + δ

(

35

2
ṙ2 (n× Sc) ·N − 7

2
v2 (n× Sc) ·N + 60(n ·N) ṙ(n× v) · Sc

− 12(v ·N)(n × v) · Sc − 13 ṙ (v × Sc) ·N
)]

+ na(n× Sc)
bδ

[

35(n ·N) ṙ2 − 14(v ·N) ṙ − 7(n ·N) v2
]

+ na(n×N)b
[

5

2
(3− 13ν) ṙ2 (n ·Σc)−

1

2
(3− 13ν) v2 (n ·Σc) +

15

2
(1 − 3ν) ṙ2 (n ·N)(N ·Σc)

−5(1− 3ν) ṙ (v ·N)(N ·Σc)−
3

2
(1− 3ν) v2 (n ·N)(N ·Σc)−

2Gm

r
(1− 3ν)(n ·N)(N ·Σc)

+
4Gm

3r
(1− 5ν)(n ·Σc)− (3 + 11ν) ṙ (v ·Σc) + δ

(

4Gm

r
(n · Sc) +

35

2
ṙ2 (n · Sc)−

7

2
v2 (n · Sc)

+
15

2
ṙ2 (n ·N)(N · Sc)−

2Gm

r
(n ·N)(N · Sc)−

3

2
v2 (n ·N)(N · Sc)− 5 ṙ (v ·N)(N · Sc) + ṙ (v · Sc)

)]

+ na(n×Σc)
b

[

5(3− 13ν)(n ·N) ṙ2 − (3 − 13ν)(n ·N) v2 − 2(3− 14ν)(v ·N) ṙ

−4Gm

3r
(1− 5ν)(n ·N)

]

+ na(n× v)b ṙ [2(1− 4ν)(N ·Σc) + 6δ (N · Sc)]

+ (n×N)aΣb
c

[

5

4
(1 + 7ν) ṙ2 +

15

4
(1− 3ν)(n ·N)2 ṙ2 − 5(1− 3ν)(n ·N)(v ·N)ṙ +

5

3
(1− 3ν)(v ·N)2

+
1

12
(11− 25ν)v2 − 3

4
(1− 3ν)(n ·N)2 v2 − Gm

3r
(11 + 2ν)− Gm

r
(1− 3ν)(n ·N)2

]

+ (n×N)aSb
c δ

[

−5

4
ṙ2 +

15

4
(n ·N)2 ṙ2 − 5(n ·N)(v ·N) ṙ +

5

3
(v ·N)2 +

1

4
v2

−3

4
(n ·N)2 v2 − Gm

r
(n ·N)2

]

+ (n× v)aΣb
c (1− 4ν)

[

2(v ·N)− 2(n ·N)ṙ

]

+ na vb
[

36(−1 + 4ν)(n ·N)(n × v) ·Σc − 4(2− 9ν) ṙ (n×Σc) ·N +
2

3
(13− 55ν)(v ×Σc) ·N

+δ

(

−72(n ·N)(n × v) · Sc − 20 ṙ (n× Sc) ·N +
50

3
(v × Sc) ·N

)]

+ (n× v)aSb
cδ

[

−6(n ·N)ṙ +
14

3
(v ·N)

]

+ na(v × Sc)
bδ

[

− 26 ṙ (n ·N) + 12(v ·N)

]

+ na(v ×Σc)
b

[

2(−7 + 29ν) ṙ (n ·N) +
2

3
(10− 43ν)(v ·N)

]

+ va(v × Sc)
b δ

64

3
(n ·N)

+ va(n×Σc)
b

[

−2(5− 22ν) ṙ (n ·N) +
4

3
(1− 6ν) (v ·N)

]

+ va(v ×Σc)
b 2

3
(16− 67ν)(n ·N)

+ va(n× Sc)
bδ

[

−26 ṙ (n ·N) +
4

3
(v ·N)

]

+ va(n× v)b
[

2(−1 + 4ν)(N ·Σc)−
14

3
δ (N · Sc)

]

+ va(n×N)b
[

−(3− 23ν) ṙ (n ·Σc)− 5(1− 3ν) ṙ (n ·N)(N ·Σc) +
2

3
(1 + 8ν)(v ·Σc)

+
10

3
(1− 3ν)(v ·N)(N ·Σc) + δ

(

10

3
(v ·N)(N · Sc)− 11 ṙ (n · Sc)− 5 ṙ (n ·N)(N · Sc)

− 2

3
(v · Sc)

)]

+ Sa
c (v ×N)bδ

[

5

6
ṙ − 5

2
ṙ (n ·N)2 +

10

3
(v ·N)(n ·N)

]
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+ Σa
c (v ×N)b

[

−29

6
(1 + ν) ṙ − 5

2
(1 − 3ν) ṙ (n ·N)2 +

10

3
(1− 3ν)(v ·N)(n ·N)

]

+ va(v ×N)b
[

−40ν

3
(n ·Σc) +

10

3
(1 − 3ν)(n ·N)(N ·Σc) + δ

(

20

3
(n · Sc) +

10

3
(n ·N)(N · Sc)

)]

+ va vb
[(

2

3
− 4ν

)

(n×Σc) ·N +
2

3
δ (n× Sc) ·N

]

+ (Σc ×N)anb

[

5

4
(1 + 7ν)ṙ2 +

15

4
(1− 3ν)ṙ2(n ·N)2 + 5(−1 + 3ν)ṙ(n ·N)(v ·N) +

5

3
(1− 3ν)(v ·N)2

+
1

12
(11− 25ν)v2 +

3

4
(−1 + 3ν)(n ·N)2v2 +

Gm

3r
(−17 + 10ν) +

Gm

r
(−1 + 3ν)(n ·N)2

]

+ (Sc ×N)anbδ

[

− 5

4
ṙ2 +

15

4
ṙ2(n ·N)2 − 5ṙ(n ·N)(v ·N) +

5

3
(v ·N)2 +

1

4
v2 − 3

4
v2(n ·N)2

− 2Gm

r
− Gm

r
(n ·N)2

]

+ (Σc ×N)avb
[

− 29

6
(1 + ν)ṙ +

5

2
(−1 + 3ν)ṙ(n ·N)2 +

10

3
(1− 3ν)(n ·N)(v ·N)

]

+ (Sc ×N)avbδ

[

5

6
ṙ − 5

2
ṙ(n ·N)2 +

10

3
(n ·N)(v ·N)

]

+ (v ×N)anb

[

(−3 + 23ν)ṙ(n ·Σc) + 5(−1 + 3ν)ṙ(n ·N)(Σc ·N) +
1

3
(5 + 7ν)(v ·Σc)

+
10

3
(1− 3ν)(v ·N)(Σc ·N) + δ

(

−11ṙ(n · Sc)− 5ṙ(n ·N)(Sc ·N) +
1

3
(v · Sc) +

10

3
(v ·N)(Sc ·N)

)]

(4.7)

These contributions add linearly to the other known
terms in the waveform. Note that in Eq. (4.7) we have al-
ready anticipated the transverse-traceless projection and
simplified the expression using δijTT = N i

TT = N j
TT = 0

and the interchange identity [51]

PTT
ijab Aa(B ×N)b = PTT

ijab Ba(A×N)b, (4.8)

for any vectors A and B.

C. Spin-spin effects

Spin-spin terms in the waveform at 2PN order are en-
tirely attributable to the equations of motion; they arise
when substituting aSS in the time derivatives of INewt

ab .

The second time derivative of the contribution IS
2

ab given
in Eq. (2.19) is at least of 3PN order (because of the fact
that spins are constant at leading approximation) and
therefore vanishes for our calculation. We derive

h2PNSS
ij TT =

6G2ν

r3R
PTT
ijab

{

na nb
[

5(n · S+
0 )(n · S−

0 )− (S+
0 · S−

0 )
]

− na S+
0

b
(n · S−

0 )− na S−
0

b
(n · S+

0 )

}

.

(4.9)

We notice that the spin-orbit contributions at 2PN order
are zero for an equal-mass, equal-spin black-hole binary.
This is a consequence of the multipoles (4.5) being zero
for this highly symmetric binary configuration.
The general results (4.7) and (4.9) are available as a

mathematica notebook upon request to be used to com-
pute the gravitational polarizations and spherical har-
monic modes for precessing binaries for any choice of the
source frame and the polarization triad [8, 35, 51, 72–
76]. Below, we shall derive the polarizations and spin-
weighted spherical-harmonic modes for the case of non-
precessing compact binaries on circular orbits.

D. Reduction to quasicircular orbits

We now specialize Eqs. (4.7) and (4.9) to the case of
orbits that have a constant separation r in the absence
of radiation reaction and for which the precession time
scale is much longer than an orbital period. The details
of the derivation of the modified Kepler law relating the
orbit-averaged orbital angular frequency ω and the orbit-
averaged orbital separation are discussed in Ref. [93].
The instantaneous accelerations (3.1) and (3.5) are pro-
jected onto a triad consisting of the following unit vec-
tors: n = x/r, the vector ℓ = LN/|LN| orthogonal to
the instantaneous orbital plane, where LN = mν x × v

denotes the Newtonian orbital angular momentum, and
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λ = ℓ × n. The orbital separation r and angular
frequency ω are decomposed into their orbit averaged
piece, indicated by an overbar, and remaining fluctuat-
ing pieces, r = r̄ + δr and ω = ω̄ + δω. Projecting the
equations of motion along λ yields the equality 2ω ṙ+ ω̇ r
or, equivalently [93]

d

dt
(ω r2) = − 3G

2mω r3c4
d

dt
(n · S+

0 )(n · S−
0 ) . (4.10)

At the 2PN order, r and ω can be replaced by the con-
stants r and ω, respectively, on the right-hand side. The
expression for ω r2 follows from (i) dropping the time
derivatives in the above equation, and (ii) adding an in-
tegration constant determined by averaging ω r2 over an
orbit. Inserting the result in the projection along n of
the equations of motion,

r̈ − ω2r = (n · a) (4.11)

and linearizing in δr we find an explicit solution to the
differential equation given by

ṙ =
dδr

dt

= − ω

2m2rc4
[(n · S+

0 )(λ · S−
0 ) + (λ · S+

0 )(n · S−
0 )] ,

(4.12a)

ω2 =
r̈ − (n · a)

r

=
Gm

r3

[

1− (3− ν)
Gm

rc2

−
(Gm

rc2

)
1

2 5(ℓ · Sc) + 3δ (ℓ ·Σc)

mrc2

+
1

2m2r2c4

(

(S+
0 · S−

0 ) + 2(ℓ · S+
0 )(ℓ · S−

0 )

− 5(n · S+
0 )(n · S−

0 )
)]

. (4.12b)

Inverting Eq. (4.12b) to write r as a function of ω in Eq.
(4.7) and inserting there the expression (4.12a) of ṙ, we
obtain the following spin-orbit terms in the waveform:

h2PNSO
ij TT =

G2νmω2

3R
PTT
ijab

{

na nb [4(1− 7ν)(ℓ ·Σc)(λ ·N)− (13− 59ν)(n×Σc) ·N − 21δ (n× Sc) ·N ]

+λa λb

[

4(7− 24ν)(ℓ ·Σc)(λ ·N) + 4(1− 6ν)(n×Σ
c) ·N + δ

(

4(n× Sc) ·N + 52(ℓ · Sc)(λ ·N)

)]

+λa nb

[

4(13− 55ν)(λ×Σc) ·N + 2(−63 + 239ν)(n ·N)(ℓ ·Σc)

+δ

(

100(λ× Sc) ·N − 262(n ·N)(ℓ · Sc)

)]

+Σa
c ℓ

b 12(1− 4ν)(λ ·N)

+λa ℓb
[

12(−1 + 4ν)(N ·Σc) + 8(1− 6ν)(λ ·Σc)(λ ·N) + 4(−16 + 67ν)(n ·Σc)(n ·N)

+δ

(

− 28(N · Sc) + 8(λ · Sc)(λ ·N)− 128(n · Sc)(n ·N)

)]

+na ℓb
[

2(−13 + 59ν)(λ ·Σc)(n ·N) + 4(−10 + 43ν)(n ·Σc)(λ ·N)

+δ

(

− 42(λ · Sc)(n ·N)− 72(n · Sc)(λ ·N)

)]

+ Sa
c ℓ

b 28δ (λ ·N)

+na(n×N)b
[

−(1 + ν)(n ·Σc)− 21(1− 3ν)(n ·N)(N ·Σc) + δ

(

3(n · Sc)− 21(n ·N)(N · Sc)

)]

+λa(n×N)b
[

2(7 + 23ν)(λ ·Σc) + 40(1− 3ν)(N ·Σc)(λ ·N) + δ

(

40(N · Sc)(λ ·N)− 2(λ · Sc)

)]

+Σa
c (n×N)b

[

− (21 + 17ν) + 20(1− 3ν)(λ ·N)2 + 21(−1 + 3ν)(n ·N)2
]

+Sa
c (n×N)bδ

[

− 9 + 20(λ ·N)2 − 21(n ·N)2
]

+ Sa
c (λ ×N)b 40 δ (λ ·N)(n ·N)
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+λa (λ×N)b
[

−80ν(n ·Σc) + 20(1− 3ν)(n ·N)(N ·Σc) + δ

(

40(n · Sc) + 20(N · Sc)(n ·N)

)]

+Σa
c (λ ×N)b 40(1− 3ν)(λ ·N)(n ·N)

}

. (4.13)

Here, we have used that

(n× Sc)
i = −λi(ℓ · Sc) + ℓi(λ · Sc), (4.14)

and similarly for Σc.
Finally, we derive the 2PN spin-spin terms for circular

orbits. They read

h2PNSS
ij TT =

2Gνω2

mR
PTT
ijab

{

na nb
[

− 8

3
(S+

0 · S−
0 )

+
2

3
(ℓ · S+

0 )(ℓ · S−
0 ) +

40

3
(n · S+

0 )(n · S−
0 )

]

+ λa λb
[2

3
(S+

0 · S−
0 ) +

4

3
(ℓ · S+

0 )(ℓ · S−
0 )

− 10

3
(n · S+

0 )(n · S−
0 )

]

− 2na λb
[

(n · S+
0 )(λ · S−

0 ) + (n · S−
0 )(λ · S+

0 )
]

− 3(n · S+
0 )n

(a S−
0

b) − 3(n · S−
0 )n(a S+

0

b)
}

.

(4.15)

E. Polarizations for nonprecessing, spinning

compact bodies

The two polarization states h+ and h× are obtained by
choosing a coordinate system and taking linear combina-
tions of the components of hTT

ij . Using an orthonormal
triad consisting of N and two polarization vectors P and
Q, the polarizations are

h+ =
1

2

(

P iP j −QiQj
)

hTT
ij , (4.16a)

h× =
1

2

(

P iQj +QiP j
)

hTT
ij . (4.16b)

Although different choices of P and Q give different po-
larizations, the particular linear combination of h+ and
h× corresponding to the physical strain measured in a
detector is independent of the convention used. For non-
spinning binaries, one usually chooses a coordinate sys-
tem such that the orbital plane lies in the x-y plane, and
the direction of gravitational-wave propagation N is in
the x-z plane.

When the spins of the bodies are aligned or anti-
aligned with the orbital angular momentum, the system’s
evolution is qualitatively similar to the case of nonspin-
ning bodies. This case is characterized by the absence
of precession of the spins and orbital angular momen-
tum and thus the orbital plane remains fixed in space.
However, the effect of the spins gives a contribution to
the phase and a correction to the amplitude of the wave-
form, which we explicitly provide in this subsection. We
use the conventions that the z axis coincides with ℓ and
the vectors ℓ, N , n, and λ have the following (x, y, z)
components:

ℓ = (0, 0, 1), N = (sin θ, 0, cos θ), (4.17a)

n = (sinΦ,− cosΦ, 0), λ = (cosΦ, sinΦ, 0), (4.17b)

where Φ is the orbital phase defined such that at the
initial time, n points in the x direction. We use the
following polarization vectors:

P = N × ℓ, Q = N × P . (4.18)

The vector P is the ascending node where the orbital
separation vector crosses the plane of the sky from below.
With these conventions, Eqs. (4.16) with Eqs. (4.13),
specialized to the case where the only nonvanishing spin
components are (Σc · ℓ) and (Sc · ℓ), become

h2PN spin
+ = −G2νmω2

12R
cosΦ sin θ

{

3δ (ℓ · Sc)(−33 + cos2 θ) +
[

(−93 + 167ν) + 9(1− 3ν) cos2 θ
]

(ℓ ·Σc)
}

−9G2νmω2

4R
cos(3Φ) sin θ

{

δ (5 − cos2 θ)(ℓ · Sc) + 3(1− 3ν) sin2 θ(ℓ ·Σc)
}

−2Gνω2

mR
cos(2Φ)

(

1 + cos2 θ
)

(ℓ · S+
0 )(ℓ · S−

0 ) , (4.19)

h2PN spin
× = −G2νmω2

48R
sinΦ sin(2θ)

{

6δ (ℓ · Sc)
(

−33 + cos2 θ
)

+ [(−171 + 289ν) + 3(1− 3ν) cos(2θ)] (ℓ ·Σc)
}

−9G2νmω2

8R
sin(3Φ) sin(2θ)

{

δ (ℓ · Sc)
(

7− 3 cos2 θ
)

+ 3(1− 3ν) sin2 θ(ℓ ·Σc)
}
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−4Gνω2

mR
sin(2Φ) cos θ(ℓ · S+

0 )(ℓ · S−
0 ) . (4.20)

Here, the convention for the 2PN spin pieces of the polar-
izations is analogous to that adopted for the PN expan-
sion of the waveform (4.3), with the expansion coefficients
related by Eqs. (4.16) at each PN order.

F. Gravitational modes for nonprecessing, spinning

compact bodies

The gravitational wave modes are obtained by expand-
ing the complex polarization

h = h+ − ih× , (4.21)

into spin-weighted s = −2 spherical harmonics as

h(θ, φ) =

+∞
∑

ℓ=2

ℓ
∑

m=−ℓ

hℓm −2Y
ℓm(θ, φ) , (4.22)

where

−sY
ℓm(θ, φ) = (−1)s

√

2ℓ+ 1

4π
dℓsm(θ) eimφ , (4.23)

with

dℓsm(θ) =

min(ℓ+m,ℓ−s)
∑

k=max(0,m−s)

(−1)k

k!

×
√

(ℓ+m)!(ℓ −m)!(ℓ + s)!(ℓ− s)!

(k −m+ s)!(ℓ+m− k)!(ℓ− k − s)!

× (cos(θ/2))2ℓ+m−2k−s (sin(θ/2))2k−m+s . (4.24)

The modes hℓm can be extracted by computing

hℓm =

∫

dΩh(θ, φ)−2Y
ℓm∗(θ, φ) , (4.25)

where the integration is over the solid angle
∫

dΩ =
∫ π

0 sin θdθ
∫ 2π

0 dφ and using the orthogonality property
∫

dΩ −sY
ℓm(θ, φ)−sY

ℓ′m′∗(θ, φ) = δℓℓ
′

δmm′

, where δℓℓ
′

is the Kronecker symbol and the star denotes complex
conjugation. Using Eqs. (4.19) and (4.20) in Eq. (4.25)
we find the following nonvanishing modes:

(hℓm)2PN spin = −2G2mν ω2

R

√

16π

5
e−imΦ ĥℓm, (4.26)

ĥ21 = −43

21
δ (ℓ · Sc) +

1

42
(−79 + 139ν)(ℓ ·Σc) ,

(4.27a)

ĥ22 =
(ℓ · S+

0 )(ℓ · S−
0 )

Gm2
, (4.27b)

ĥ31 =
1

24
√
14

δ (ℓ · Sc) +
5

24
√
14

(1− 3ν)(ℓ ·Σc) ,

(4.27c)

ĥ33 = −3
√
105

8
√
2

δ (ℓ · Sc)−
9

8

√

15

14
(1− 3ν)(ℓ ·Σc) ,

(4.27d)

ĥ41 =

√
5

168
√
2
δ (ℓ · Sc) +

√
5

168
√
2
(1− 3ν)(ℓ ·Σc) ,

(4.27e)

ĥ43 =
9
√
5

8
√
14

δ (ℓ · Sc) +
9
√
5

8
√
14

(1− 3ν)(ℓ ·Σc) .

(4.27f)

We have explicitly checked that in the test-mass limit
ν → 0, Eqs. (4.27) reduce to the 2PN O(q) and O(q2)
terms given in Eqs. (22) of Ref. [80] (see also [79]), after
accounting for the factor of (−i)m attributable to the
different conventions for the phase origin, as explained in
Ref. [52].
It is interesting to note from Eq. (4.27b) that in

the nonprecessing case, the dominant h22 mode contains
only terms that are quadratic in the spin at 2PN order.
By contrast, for precessing binaries, the 2PN spin-orbit
terms will give a nonvanishing contribution to the 22-
mode.

V. CONCLUSIONS

We have extended the knowledge of the spin terms in
the gravitational-wave strain tensor to 2PN accuracy for
precessing binaries. Our result includes the spin-orbit
as well as the spin1-spin2 and spin21, spin

2
2 effects. The

quadratic-in-spin terms are entirely due to the equations
of motion, whereas the 2PN spin-orbit terms come from
both the corrections to the orbital dynamics and the ra-
diation field.
For a given choice of an orthonormal polarization

triad and a source frame, the gravitational-wave polar-
izations can be obtained by projecting our result for
the gravitational-wave strain tensor given in Secs. IVB
and IVC orthogonal to the propagation direction. For
precessing binaries, there is no preferred unique choice of
the source frame [8, 35, 51, 72–76], but in the case that
the spins are collinear with the orbital angular momen-
tum, the procedure to obtain the polarizations can be
carried out in a similar fashion as for nonspinning bina-
ries. For the nonprecessing case and circular orbits, we
provided ready-to-use expressions for the gravitational
polarizations in Sec. IVE, which could be directly em-
ployed in time-domain post-Newtonian, phenomenolog-
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ical and effective-one-body–based template models [19–
23, 51, 52].
In view of the current interest in interfacing analytical

and numerical relativity, we also provided the decompo-
sition of the waveform into spin-weighted spherical har-
monic modes for nonprecessing binaries and quasicircular
orbits. We verified that the test-particle limit of our re-
sult reduces to the expressions obtained from black-hole
perturbation theory [79, 80]. We noted that for spins
collinear with the orbital angular momentum, the domi-
nant h22 mode of the waveform contains only quadratic-
in-spin effects since the spin-orbit contributions vanish in
this case, although they are nonzero for generic, precess-
ing configurations.
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Appendix: USEFUL IDENTITIES

According to the way the waveform is computed, the
result may take various forms, which are not immedi-
ately seen to be equivalent. Their difference vanishes
because of some dimensional identities valid in three di-
mensions. They all amount to expressing the fact that
a tensor with four antisymmetrized indices must vanish.
We shall present here two of such identities, which turned
out to be particularly useful for our checks, together with
Eqs. (5.2) of Ref. [49].
Let UA = U i

A, for A ∈ {1, 2, 3}, be three vectors of R3.
The first identity tells us that for any vector U , we must
have

(U1 ×U2)
(i[U

j)
3 (U4 ·U) − U

j)
4 (U3 ·U)] (A.1)

= U
(i
4 [(U ×U1)

j)(U2 ·U3)− (U ×U2)
j)(U1 ·U3)]

+ U
(i
3 [(U ×U2)

j)(U1 ·U4)− (U ×U1)
j)(U2 ·U4)] .

To show this, we compute εiabε
mjkεmpqU

a
1U

b
2U

p
3U

q
4 in

two different manners: (i) we group the first two epsilons,
which are next expanded in terms of the identity tensor
δij using the standard formula εiabε

mjk = 3!δm[iδ
j
aδ

k
b];

(ii) we group the last two epsilons and apply the con-
tracted version of the previous equation: εmjkεmpq =
2δj[pδ

k
q]. One of the remaining free indices, say k, is fi-

nally contracted with Uk.

The second identity reads:

δij [U2
1U

2
2U

2
3 − U2

1 (U2 ·U3)
2 − U2

2 (U3 ·U1)
2 − U2

3 (U1 ·U2)
2 + 2(U1 ·U2)(U2 ·U3)(U3 ·U1)]

+ 2U
(i
1 U

j)
3 [U2

2 (U3 ·U1)− (U1 ·U2)(U2 ·U3)] + 2U
(i
1 U

j)
2 [U2

3 (U1 ·U2)− (U2 ·U3)(U3 ·U1)]

+ 2U
(i
2 U

j)
3 [U2

1 (U2 ·U3)− (U1 ·U2)(U1 ·U3)] + U i
1U

j
1 [(U2 ·U3)

2 − U2
2U

2
3 ] + U i

2U
j
2 [(U1 ·U3)

2 − U2
1U

2
3 ]

+ U i
3U

j
3 [(U1 ·U2)

2 − U2
1U

2
2 ] = 0 . (A.2)

It is proved by contracting the equality U
[a
1 U b

2U
c
3δ

i]j = 0
with U1aU2bU3c and expanding. As the trace of the left-

hand side of Eq. (A.2) is identically zero, the nontrivial
content of this identity consists of its STF part.
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wig, L. Santamaŕıa, and J. Seiler, Phys. Rev. Lett. 106,
241101 (2011)

[41] P. Ajith, Phys. Rev. D 84, 084037 (2011).
[42] D. A. Brown, A. Lundgren, and R. O’Shaughnessy, Phys.

Rev. D 86, 064020 (2012).
[43] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse,

M. Boyle, T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A.
Scheel Phys. Rev. D 86, 024011 (2012).

[44] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658
(1994).

[45] E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).
[46] M. V. van der Sluys, C. Röver, A. Stroeer, V. Raymond,
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