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We calculate the gravitational waveform for spinning, precessing compact binary inspirals through

second post-Newtonian order in the amplitude. When spins are collinear with the orbital angular

momentum and the orbits are quasicircular, we further provide explicit expressions for the

gravitational-wave polarizations and the decomposition into spin-weighted spherical-harmonic modes.

Knowledge of the second post-Newtonian spin terms in the waveform could be used to improve the

physical content of analytical templates for data analysis of compact binary inspirals and for more

accurate comparisons with numerical-relativity simulations.
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I. INTRODUCTION

Coalescing compact binary systems are a key source
of gravitational radiation for ground-based gravitational-
wave detectors such as the advanced Laser Interferometer
Gravitational Wave Observatory (LIGO) [1], the advanced
Virgo [2], the GEO-HF [3], the Large Cryogenic
Gravitational Telescope (LCGT) (or KAGRA) [4], coming
into operation within the next few years, and future space-
based detectors [5,6]. For this class of gravitational-wave
sources, the signal detection and interpretation will be based
on the method of matched filtering [7,8], where the noisy
detector output is cross correlated with a bank of theoretical
templates. The accuracy requirement on the templates is
that they remain as much as possible phase coherent with
the signal over the hundreds to thousands of cycles of
inspiral that are within the detector’s sensitive bandwidth.

Constructing such accurate templates has motivated a
significant research effort during the past 30 years. In the
regime where the separation between the two bodies is
large, gravitational waveforms can be computed using the
post-Newtonian (PN) approximation method [9–11]. In the
post-Newtonian scheme, the results are written as an asymp-
totic expansion in powers of vA=c, with vA being the
magnitude of the orbital coordinate velocity vA of body A
at a given time. This approximation is physically relevant
for vA=c � 1, i.e., in the so-called inspiraling regimewhere
the radiation reaction forces, of order �ðvA=cÞ5, are negli-
gible over an orbital period and act adiabatically on a
quasiconservative system. In the domain of validity of the
post-Newtonian scheme, the separation r� ðGmA=v

2Þ �
ðc=vÞ2, with m ¼ m1 þm2 and v ¼ jvj � jv1 � v2j,
remains large with respect to the radii of both compact
objects �GmA=c

2 or, in other words, the bodies can be
regarded effectively as point particles.

Post-Newtonian waveforms cease to be reliable near the
end of the inspiral and the coalescence phase, where

numerical-relativity simulations should be used to predict
the gravitational-wave signal [12–14]. By combining the
information from post-Newtonian predictions and the
numerical-relativity simulations it is possible to accurately
and analytically describe the gravitational-wave signal
during the entire inspiral, plunge, merger and ringdown
process [15–23].
For nonspinning binaries, the post-Newtonian expansion

has been iterated to 3.5PN order beyond the leading
Newtonian order in the gravitational-wave phasing [24–26].
The gravitational-wave amplitude has been computed
through 3PN order [27–30] and the quadrupole mode
through 3.5PN order [31]. However, black hole binaries
could potentially have large spins [32], which may be
misaligned with the orbital angular momentum, in which
case the precession effects add significant complexity to
the emitted gravitational waves [33]. Ignoring the effects of
black hole spins could lead to a reduction in the signal-to-
noise ratio and decrease the detection efficiency [34,35]
although this should be overcome with phenomenological
and physical models [21,36–43]. To maximize the payoffs
for astrophysics will require extracting the source parame-
ters from the gravitational-wave signal using template
models computed from the most accurate physical predic-
tion available [44–47]. Spin effects in the waveform are
currently known through much lower post-Newtonian
order than for nonspinning binaries. More specifically,
spin effects are known through 2.5PN order in the phase
[48–50], 1.5PN order in the polarizations for spin-orbit
effects [51,52], 2PN order for the spin1-spin2 effects
[51,53] and partially 3PN order in the polarizations for
the tail-induced spin-orbit effects [54].
In this paper, we compute all spin effects in the

gravitational-wave strain tensor through 2PN order. This
requires knowledge of the influence of the spins on the
system’s orbital dynamics as well as on the radiative multi-
pole moments. At this PN order, nonlinear spin effects
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attributable to the spin-induced quadrupole moments of
the compact objects first appear. Using results from
Refs. [55–58], we derive the stress-energy tensor with
self-spin terms and compute the self-induced quadrupole
terms in the equations of motion and in the source multi-
pole moments at 2PN order. Our results are in agreement
with previous calculations [59–62].

The two main inputs entering our calculation of the
gravitational-wave strain tensor through 2PN order are
(i) the results of Refs. [50,51,59] for the influence of the
spins on the system’s orbital dynamics, which have also
been derived by effective field theory and canonical meth-
ods [56,63–68], and (ii) the spin effects in the system’s
radiative multipole moments [50]. Recently, the necessary
knowledge to compute the waveform at 2.5PN order was
obtained using the effective field theory approach [62,64].
Here we use (i) and (ii) in the multipolar wave generation
formalism [69–71] to obtain the waveform for spinning,
precessing binaries through 2PN order. To compute the
gravitational polarizations from this result, one must
specify an appropriate source frame and project the
strain tensor onto a polarization triad. For precessing sys-
tems, there are several frames that could be employed
[8,35,51,72–76]. For nonprecessing binaries with the spins
collinear to the orbital angular momentum, the most natu-
ral frame is the one used for nonspinning binaries.
Therefore, instead of choosing one frame, for simplicity,
we specialize to the nonprecessing case and quasicircular
orbits and provide the explicit expressions for the gravita-
tional polarizations. Lengthy calculations are performed
with the help of the scientific software MATHEMATICA�,
supplemented by the package xTensor [77] dedicated to
tensor calculus. Our generic, precessing result is available
in MATHEMATICA format upon request and can be used to
compute the polarizations for specific choices of frame. We
notice that the 2PN terms in the polarizations, for circular
orbits, linear in the spins were also computed in Ref. [78].
However, these results contain errors in the multipole
moments, which were corrected in Ref. [50].

For future work at the interface of analytical and
numerical relativity, we also explicitly compute the
decomposition of the strain tensor into spin-weighted
spherical-harmonic modes for nonprecessing spinning
binaries on circular orbits. The test-particle limit of these
results can also be directly compared with the black-hole
perturbation calculations of Refs. [79,80], and we verify
that the relevant terms agree.

The organization of the paper is as follows. In Sec. II,
we review the Lagrangian for compact objects with
self-induced spin effects [55–57,61], compute the stress-
energy tensor and derive the self-induced spin couplings in
the two-body acceleration and source multipole moments
[59–62]. In Sec. III we summarize the necessary informa-
tion about spin effects in the equations of motion and the
wave generation necessary for our calculation. In Sec. IVB

we calculate the spin-orbit effects at 2PN order in the strain
tensor for generic precessing binaries. In Sec. IVC we
complete the knowledge of 2PN spin-spin terms by includ-
ing the spin self-induced quadrupole terms in addition to
the spin1-spin2 terms obtained in Ref. [51]. In Sec. IVE
we specialize to quasicircular orbits and explicitly give
the polarization tensors for nonprecessing systems. Then,
in Sec. IV F we decompose the polarizations into spin-
weighted spherical-harmonic modes. Finally, Sec. V sum-
marizes our main findings.
We use lowercase Latin letters a; b; . . . ; i; j; . . . , for indi-

ces of spatial tensors. Spatial indices are contracted with the
Euclidean metric, with up or down placement of the indices
having no meaning and repeated indices summed over. We
use angular brackets to denote the symmetric, trace-free
(STF) projection of tensors, e.g., Thiji ¼ STF½Tij� ¼
TðijÞ � 1

3�ijTkk, where the round parentheses indicate the

symmetrization operation. Square parentheses indicate
antisymmetrized indices, e.g., T½ij� ¼ 1

2 ðTij � TjiÞ. The let-
ter L ¼ i1 . . . i‘ signifies a multi-index composed of ‘ STF
indices. The transverse-traceless (TT) projection operator is
denoted P TT

ijab ¼ P aðiP jÞb � 1
2P ijP ab, where P ij ¼ �ij �

NiNj is the projector orthogonal to the unit direction N ¼
X=R of a radiative coordinate system X� ¼ ðcT;XÞ, where
the boldface denotes a spatial three-vector. As usual, g��

represents the space-time metric and g its determinant. The
quantity "ijk is the antisymmetric Levi-Cività symbol, with

"123 ¼ 1, and ����� stands for the Levi-Cività four-volume

form, with �0123 ¼ þ ffiffiffiffiffiffiffi�g
p

. Henceforth, we shall indicate

the spin1-spin2 terms with S1S2, the spin
2
1, spin

2
2 terms with

S2 and the total spin-spin terms with SS. Throughout the
paper, we retain only the terms relevant to our calculations
and omit all other terms, which either are already known or
appear at a higher post-Newtonian order than required for
our purposes.

II. MODELING SPINNING COMPACT OBJECTS
WITH SELF-INDUCED QUADRUPOLES

In this section we review the construction of a
Lagrangian for compact objects with self-induced quadru-
pole spin effects [55–57,61,81], compute the stress-energy
tensor and derive the self-induced spin couplings in the
two-body acceleration and source multipole moments. Our
findings are in agreement with previous results [59–62].

A. Lagrangian for compact objects
with self-induced spin effects

A Lagrangian for a system of spinning compact objects
with nondynamical1 self-induced quadrupole moments can
be obtained by augmenting the Lagrangian for point

1We shall not include kinetic terms in the Lagrangian for the
quadrupole moment that can describe resonance effects in
neutron stars.
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particles with LS2

A describing the quadrupole-curvature

coupling for each body A. Since the action for body A
must admit a covariant representation, the corresponding

Lagrangian LS2

A should be a function of the four-velocity

u�A , the metric g��, the Riemann tensor R�
��� and its

covariant derivatives, evaluated at the worldline point y
�
A ,

and the spin variables entering via the antisymmetric spin
tensor S��

A .

The spin tensor S
��
A contains six degrees of freedom. It is

well known that in order to reduce them to the three
physical degrees of freedom a spin supplementary condi-
tion (SSC) should be imposed [82]. This is equivalent to
performing a shift of the worldline y�A . In this paper we

specialize to the SSC S
��
A pA

� ¼ 0, which is equivalent to
S��
A uA� ¼ 0 since p�

A � mAcu
�
A through 2.5PN order. To

ensure the preservation of the SSC under the evolution, we

follow Ref. [57] and introduce the spin tensor S��
A ¼

S
��
A þ 2u

½�
A S���A uA�. The spin tensor S��

A automatically sat-

isfies the algebraic identity S��
A uA� ¼ 0, which provides

three constraints that can be used to reduce the spin degrees
of freedom from six to three.

From the above discussion and Refs. [56,83], we
assume that the Lagrangian of particle A is of the form

LS2

A ¼ LA����S
��
A S��

A , where LA���� is a polynomial

in the Riemann tensor and its derivatives, as well as the
4-velocity u�A . As noticed in Ref. [84], any term propor-

tional to r...R�	 evaluated at point y�A can be recast into a

redefinition of the gravitational field. As a result, the
Riemann tensor may be replaced for each of its occurrences
by the Weyl tensor C�

���, which can be decomposed into a

combination of the gravitoelectric- and gravitomagnetic-

type STF tidal quadrupole moments GA
�� � G��ðy�AÞ �

�c2R���	u
�
Au

	
A and HA

�� � H��ðy�AÞ � 2c3RA�
���	u

�
Au

	
A

with R�
���	 � 1

2 �����R
��

�	. More generally, the multiple

space derivatives of C�
��� at point y

�
A may be expressed in

terms of some STF tidal multipole moments GA
�1...�‘

and

HA
�1...�‘

, of parity 1 and �1, respectively. However, those

higher-order moments will play no role in this paper.
Taking into account that the contraction of the velocity

vector u�A with both GA
�� and S��

A vanishes, that the spin

and tidal multipole tensors are traceless, and that the
Lagrangian must obey parity and time-reversal symme-
tries, we obtain [55–57,83]

LS2

A ¼ � 
A

2mAc
2
G��S

�
A�S

��
A : (2.1)

Here, we have also assumed that the rotating body
is axially symmetric, and we have replaced S��

A with

S
��
A since the difference between these spin variables

contributes to the equations of motion at OðS3AÞ, where
SA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS�ASA�j

q
with SA� ¼ �����S

��
A p�

A=ð2mAcÞ.

For a neutron star the numerical constant 
A in Eq. (2.1)
depends on the equation of state of the fluid [85]. For an
isolated black hole 
A ¼ 1 [59,60], but for a black hole in a
compact binary 
A can deviate from 1. However, these
deviations occur at PN orders that are much higher than the
ones considered here. We notice that the leading contribu-
tion 
A ¼ 1 can be obtained by computing the acceleration
of body A from Eq. (2.1) in a compact binary for mA � m
and match it with the acceleration of a test particle in the
gravitational field of a Kerr black hole of mass m [83].

B. Effective stress-energy tensor
with self-induced quadrupoles

The piece of the stress-energy tensor encoding the
self-induced quadrupole dynamics of body A reads by
definition

T
��
quad;A ¼ 2ffiffiffiffiffiffiffi�g

p �

�g��ðxÞ
Z

d�AL
S2

A ½y�Að�AÞ; S�	A ð�AÞ�;

(2.2)

where LS2

A is the Lagrangian (2.1). To determine the
action of the operator �=�g��, which stands for the usual

‘‘functional derivative’’ with respect to the field g��, we

need to adopt a specific model for the spin. The rotational
state of the extended object A is usually represented by a
tetrad of orthonormal vectors e

�
A ��ð�AÞ with �� 2 f0; 1; 2; 3g

along the worldline y
�
A with affine parameter �A. The

corresponding angular rotation tensor is then defined as

�
��
A ¼ � �� �	e

�
A ��De�

A �	
=d�A. We now make the reasonable

physical hypothesis that the rotation of the axially sym-
metric object takes place about the symmetry axis. The
moment of inertia IA along that direction is a 2PN-order
quantity �G2m3

A=c
4 for compactness parameters of order

1, whereas ���
A � VA=RA, RA being the radius of body A

and VA its typical internal velocity, is roughly equal to
c3=ðGmAÞ. In the weak field limit whereG goes formally to
zero, the spin must satisfy the relation S

��
A ¼ IA�

��
A , as in

special relativity [86]. In the presence of a nonnegligible
gravitational field, this relation is expected to be modified
by nonminimal coupled terms proportional to positive
powers of RA

���	 times positive powers of IA and S
��
A [83]:

Ŝ
��
A ¼ IA

�
�

��
A þO

�
ŜA
c2

��
: (2.3)

Here we use a hat to distinguish the generic spin
variable from the one related to our specific spin model.

The corrections IA �OðŜA=c2Þ are not relevant for the
two-body dynamics in this paper because they correspond
to the 4.5PN order when taking into account the factor
Oð1=cÞ contained in the spin variable.
Using the definition (2.3) for the spin variables, we

compute in a covariant manner the variation of the action
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AS2 ¼
Z

d�AL
S2

A ð�AÞ

¼
Z d4x

c

ffiffiffiffiffiffiffi�g
p Z

d�AL
S2

A ð�AÞ�
4ðx� � y�Að�AÞÞffiffiffiffiffiffiffi�g

p ;

(2.4)

when the metric varies by �g��ðxÞ, and find the following

quadrupolar piece of the stress-energy tensor:

T
��
quad;A ¼ 
A

mAc
2

�
n�A
2

�
�3u

�
Au

�
AG

A
��Ŝ

��
A ŜA��

� c2Rð�
A���u

�Þ
A Ŝ

�
A�Ŝ

��
A u�A þGð�

A�Ŝ
�Þ
A�Ŝ

��
A

�
þr�

�
IAcn

�
A

�
G

Að�
� u�ÞA Ŝ

��
A �G

A�
� Ŝ

�ð�
A u�ÞA

���
� 2r�r�

h
n�AŜ

�½�
A u

ð��
A ŜA½�Þ� u

��
A

i
; (2.5)

where we have indicated with n�A the Dirac-type scalar

density n�Aðx�Þ ¼
R
d�A�

4ðx� � y�A ð�AÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx�Þp

and,

in the last term, we have adopted the convention that
symmetrization of indices applies after antisymmetriza-
tion. As derived in Ref. [81], the most general form of
the effective stress-energy tensor is

T
��
skel;Aðx�Þ ¼

Xþ1

‘¼0

r�1
r�2

. . .r�‘
½t��j�1�2...�‘

A ð�AÞn�Aðx�Þ�;

(2.6)

where �A is the proper time of the Ath worldline at event y
�
A

with y0A ¼ x0 and the coefficients t��j�1�2...�‘

A ð�AÞ are the

‘‘skeleton’’ multipole moments. The latter are not arbitrary
but satisfy algebraic constraints imposed by the equation of
conservation r�T

��
skel ¼ 0. Let us check that we can indeed

recast the total stress-energy tensor, including the monop-
olar, dipolar and quadrupolar pieces, in the form of (2.6). If
we add T

��
quad to the monopolar and dipolar contributions

[49,81,87–89]

T��
monþdipole ¼

X
A

½n�A ~pð�
A u�ÞA cþr�ðn�Acuð�A ~S�Þ�A Þ�; (2.7)

and redefine the spin variable entering the quadrupolar
piece as

S
��
A ¼ ~S

��
A � 2
A

mAc
2
IAŜ

�½�
A G��

A�; (2.8)

we obtain the total stress-energy tensor in the form

T�� ¼ X
A

�
n�A

�
p
ð�
A u�ÞA cþ

1

3
R
ð�
A���J

�Þ���
A c2

�

þr�ðn�Acuð�A S�Þ�A Þ � 2

3
r�r�ðn�Ac2J�ð��Þ�

A Þ
�
;

(2.9a)

where the four-rank tensor J
����
A takes the following

expression in our effective description:

J
����
A ¼ 3
A

mAc
2
S�½�A u

��
A S

A½�
� u��A : (2.9b)

Consistently with the approximation already made in the
spin model (2.3), we have neglected here the difference of

order IA �OðŜA=c2Þ between the spins Ŝ��
A and S

��
A in the

above formula. The net result is that Eq. (2.9a) matches
Eq. (2.6) for ‘ ¼ 0, 1, 2 as expected. Moreover, Eq. (2.9b)
agrees with Refs. [58,61].
Lastly, the conservation of the stress-energy tensor

(2.9a) is equivalent to the equation of motion for the
particle worldline, supplemented by the spin precession
equation [58]. They read

Dp
�
A

d�A
¼ � c

2
R�
A���u

�
AS

��
A � c2

3
r�R

�
A���J

����
A ; (2.10a)

DS��

d�A
¼ 2cp

½�
A u��A þ 4c2

3
R
½�
A���J

�����
A : (2.10b)

Those equations are in full agreement with the equations of
evolution derived from the Dixon formalism truncated at
the quadrupolar order [90].

C. Self-induced quadrupole terms in the 2PN binary
dynamics and source multipole moments

Once the stress-energy tensor has been derived, the
post-Newtonian equations of motion and the source
multipole moments parametrizing the linearized gravita-
tional field outside the system can be computed by means
of the usual standard techniques [10]. At 2PN order, the
accelerations including the self-spin interactions were
obtained in Refs. [59,60], but the self-induced quadrupole
effects in the source multipole moments were never explic-
itly included in the standard version of the post-Newtonian
scheme, although recently they were calculated at 3PN
order using effective-field-theory techniques [91]. Here
we can use the results of the previous section, which
constitutes a natural extension of the standard post-
Newtonian approximation for spinning compact bodies
[49], and explicitly derive the self-induced quadrupole
couplings in the 2PN dynamics and source multipole
moments.
Henceforth, we define the spin vectors SiA by the relation

SAi =c ¼ gAijS
j
A, where SAi is the three-form induced on the

hypersurface t ¼ const by SA�. Note that it is S
i
A=c that has

the dimension of a spin, while SiA has been rescaled in order
to have a nonzero Newtonian limit for compact objects.
In the post-Newtonian formalism for point particles in

the harmonic gauge, it is convenient to represent effec-
tively the source by the mass density � ¼ ðT00 þ TiiÞ=c2,
the current density �i ¼ T0i=c, and the stress density
�ij ¼ Tij. They are essentially the components of the

stress-energy tensor rescaled so as not to vanish in the
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formal limit c ! 0 for weakly stressed, standard matter. At
2PN order, the second term in the right-hand side of
Eq. (2.9a) does not contribute. From the last term, we
obtain the following self-spin contributions:

�S2 ¼ 
1

2m1c
2
@ij½�1S

ki
1 S

kj
1 � þ 1 $ 2þO

�
S2A
c4

�
; (2.11a)

�S2

i ¼ O
�
S2A
c2

�
; (2.11b)

�S2

ij ¼ O
�
S2A
c2

�
; (2.11c)

where 1 $ 2 represents the counterpart of the pre-
ceding term with particles 1 and 2 exchanged, and
�1 � �3ðx� y1Þ.

At 2PN order, the spin2 part of the equations of motion
(2.10a) for, say, the first particle, reduce to

Dðu1i cÞ
d�1

¼ non-S21 terms� 
1

2m2
1

@kR
1
i0j0S

lk
1 S

lj
1 þO

�
S21
c4

�
:

(2.12)

The only occurrence of self-spin interactions at 2PN order
on the left-hand side of the above equation comes from the
gradient of the time component of the metric, g00 ¼ �1þ
2V=c2 þOð1=c4Þ, where the Newton-like potential V sat-
isfies hV ¼ �4
G�. Although V coincides with the
Newtonian potential U in the leading approximation, it
contains higher order corrections, including quadratic-in-
spin terms coming from the mass density (2.11a), which
are smaller than U by a factor Oð1=c4Þ. They read

VS2 ¼ � 2
G
1

m1c
2

@ij�
�1½�1S

ki
1 S

kj
1 � þ 1 $ 2þO

�
S2A
c4

�

¼ G
1

2m1c
2
@ij

1

r1
Ski1 S

kj
1 þ 1 $ 2þO

�
S2A
c4

�
; (2.13)

with @i ¼ @=@xi and r1 � jx� y1j, the symbol ��1 hold-
ing for the retarded integral operator. Other potentials
appear at the 1PN approximation or beyond, but their
sources cannot contain a self-induced quadrupole below
Oð1=c4Þ; thus they are negligible here. The self-induced
spin part of the acceleration a1 of the first particle is
therefore given by

ðai1ÞS2 ¼ �c2ð�0
0iÞS2 �


1

2m2
1

@kR
1
i0j0S

lk
1 S

lj
1 þO

�
S2A
c4

�
:

(2.14)

Replacement of the Christoffel symbols ��
�� and the

Riemann tensor by the leading order values

�0
0i ¼ � @iV

c2
þO

�
1

c4

�
; Ri0j0 ¼ �@ijU

c2
þO

�
1

c4

�
;

(2.15)

with U ¼ Gm1=r1 þGm2=r2 þOð1=c2Þ yields the more
explicit result (posing @1i � @=@yi1):

ðai1ÞS2 ¼ � G

2c2
@1ijk

1

r

�

2

m2

Sj2S
k
2 þ

m2
1

m2
1

Sj1S
k
1

�
þO

�
1

c4

�
;

(2.16)

which agrees with Refs. [59,60] in the center-of-mass
frame, for SiA=c ¼ "ijkS

jk þOð1=c3Þ.
Self-induced quadrupolar deformations of the bodies

also produce 2PN-order terms in the source multipole
moments IL and JL. Those are defined as volume integrals
whose integrands are certain polynomials in the densities
�, �i and �ij as well as some gravitational potentials, such

as V, that parametrize the metric. Now, since those poten-
tials are multiplied by prefactors of order Oð1=c2Þ and
cannot contain themselves spin2 interactions below the
2PN order, monomials involving one potential or more
may be ignored for the calculation. The remaining sources
are linear in the � variables. With the help of the general
formula (5.15) of Ref. [92], it is then immediate to get the
self-spin contribution to IL:

IS
2

L ¼
Z

d3xxhi1 . . . xi‘i�S2 þO
�
S2A
c4

�
: (2.17)

Inserting expression (2.11a) for �S2 and performing a
straightforward integration, we arrive at

IS
2

L ¼ 
1

2m1c
2
@1ijðyhi11 . . . yi‘i1 ÞSki1 Skj1 þ 1 $ 2þO

�
S2A
c4

�
:

(2.18)

We can show similarly that JL is of order OðS2A=c2Þ. As a
result, at the accuracy level required for the 2PN wave-
form, the only terms quadratic in one of the spins that
originate from the source moments come from the quad-
rupole ‘ ¼ 2, for which we have

IS
2

ij ¼ � 
1

m1c
4
Shi1S

ji
1 þ 1 $ 2þO

�
1

c6

�
; (2.19)

whereas similar terms in ðILÞ‘	3 or ðJLÞ‘	2 lie beyond
our approximation. The above correction to the mass
quadrupole agrees with that of Porto et al. [91] truncated
at 2PN order. It is formally of order Oð1=c4Þ but, because
_SA ¼ Oð1=c2Þ, it is cast to the 3PN order in the waveform
expansion given below [see Eq. (4.1)] after the second time
derivative is applied. This result was already argued in
Ref. [93].

III. TWO-BODY DYNAMICS WITH SPIN
EFFECTS THROUGH 2PN ORDER

The equations of motion in harmonic coordinates for the
relative orbital separation x ¼ rn in the center of mass
frame are [10]
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d2xi

dt2
¼aiNewtþ

1

c2
ai1PNþ

1

c3
aiSOþ

1

c4
½aiS1S2 þai

S2
þai2PN�;

(3.1a)

where

aNewt ¼ �Gm

r2
n; (3.1b)

a1PN ¼ �Gm

r2

��
ð1þ 3�Þv2 � 3

2
� _r2 � 2ð2þ �ÞGm

r

�
n

� 2 _rð2� �Þv
	
; (3.1c)

with m � m1 þm2, � � m1m2=m
2, n ¼ x=r and

v ¼ dx=dt. The 2PN acceleration given, e.g., in
Ref. [51] will not be needed for our calculation. The
spin-orbit terms are [51]

aSO ¼ G

r3
f6½ðn� vÞ 
 ð2Sþ ��Þ�n� ½v� ð7Sþ 3��Þ�

þ 3 _r½n� ð3Sþ ��Þ�g; (3.1d)

where we denote with � ¼ ðm1 �m2Þ=m and

S � S1 þ S2; (3.2a)

� � m

�
S2

m2

� S1

m1

�
: (3.2b)

The spin1-spin2 interaction terms are [51]

aS1S2 ¼ � 3G

m�r4
f½ðS1 
 S2Þ � 5ðn 
 S1Þðn 
 S2Þ�n

þ ðn 
 S1ÞS2 þ ðn 
 S2ÞS1g: (3.3a)

As originally computed in Ref. [59] [see Eq. (2.16) above],
an additional term due to the influence of the spin-induced
mass quadrupole moment on the motion arises at 2PN
order:

aS2 ¼ � 3G

2m�r4

�
n

�

1

q
S21 þ q
2S

2
2

�

þ 2

�

1

q
ðn 
 S1ÞS1 þ q
2ðn 
 S2ÞS2

�

� n

�
5
1

q
ðn 
 S1Þ2 þ 5q
2ðn 
 S2Þ2

�	
: (3.3b)

Here, q ¼ m1=m2 is the mass ratio, and we recall that the
parameters 
A characterize the mass quadrupole moments
of the bodies.

We find that the quadratic spin contribution to the
acceleration can be rewritten in a simpler way by introduc-
ing the spin variables

Sþ
0 ¼ m

m1

�

1


2

�
1=4ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 
1
2

p Þ1=2S1

þ m

m2

�

2


1

�
1=4ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 
1
2

p Þ1=2S2; (3.4)

and S�
0 , which is obtained by exchanging the labels 1 and 2

in the above equation.2 Those variables generalize the
quantity S0 of Ref. [60] in the case where the two bodies
are not black holes. In terms of these spin variables the
spin-spin part of the acceleration reads

aS1S2 þ aS2 ¼ � 3G

2mr4
½nðSþ

0 
 S�
0 Þ þ ðn 
 Sþ

0 ÞS�
0

þ ðn 
 S�
0 ÞSþ

0 � 5nðn 
 Sþ
0 Þðn 
 S�

0 Þ�:
(3.5)

The spin precession equations through 2PN order are
[51,94]

dS

dt
¼ Gm�

c2r2
f½�4ðv 
 SÞ � 2�ðv 
�Þ�n

þ ½3ðn 
 SÞ þ �ðn 
 �Þ�vþ _r½2Sþ ���g; (3.6a)

d�

dt
¼ Gm

c2r2
f½�2�ðv 
 SÞ � 2ð1� 2�Þðv 
�Þ�n

þ ½�ðn 
 SÞ þ ð1� �Þðn 
 �Þ�v
þ _r½�Sþ ð1� 2�Þ��g: (3.6b)

It is often convenient to use a different set of spin
variables ScAi whose magnitude remains constant and that
obey precession equations of the form dSc

A=dt ¼ �A �
Sc
A. The relationship between the spin variables appearing

in the equations of motion above and the constant spin
variables is [50]

Sc ¼ SþGm�

rc2
½2Sþ ��� � �

2c2
½ðv 
 SÞ þ �ðv 
 �Þ�v;

(3.7a)

�c ¼ �þGm

rc2
½�Sþ ð1� 2�Þ��

� 1

2c2
½�ðv 
 SÞ þ ð1� 3�Þðv 
 �Þ�v: (3.7b)

IV. WAVEFORMS WITH SPIN
EFFECTS AT 2PN ORDER

A. General formalism

The gravitational radiation from the two-body system is
calculated from symmetric trace-free radiative multipole
moments IL and JL using the general formula from
Ref. [69] truncated at 2PN order

2In the formal limit where the induced quadrupole of at least
one body vanishes, so that e.g., 
2 ! 0, we may define the
effective spins as Sþ

0 ¼ m
m1

ffiffiffi
2

p
S1, S

�
0 ¼ m

m1


1ffiffi
2

p S1 þ m
m2

ffiffiffi
2

p
S2.
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hTTij ¼ 2G

Rc4

�
Ið2Þab þ 1

3c
Ið3ÞabcN

c þ 1

12c2
Ið4ÞabcdN

cNd

þ 1

60c3
Ið5ÞabcdeN

cNdNe þ 1

360c4
Ið6ÞabcdefN

cNdNeNf

þ Nk"cka

�
4

3c
Jð2Þbc þ 1

2c2
Jð3ÞbcdN

d þ 2

15c3
Jð4ÞbcdeN

dNe

þ 1

36c4
Jð5ÞbcdefN

dNeNf

�	
P TT

ijab; (4.1)

where N is the unit vector pointing from the center of
mass of the source to the observer’s location and R is the
distance between the source and the observer. Here,
the superscript (n) signifies the nth time derivative, and
the transverse-traceless projection operator is

P TT
ijab ¼ P aðiP jÞb � 1

2
P ijP ab; (4.2)

with P ij ¼ �ij � NiNj.

The gravitational radiation (4.1) can be rewritten in a
post-Newtonian expansion as

hTTij ¼ 1

c4

�
hNewtij TT þ

1

c2
h1PNij TT þ

1

c2
h1PNSOij TT þ 1

c3
h1:5PNSOij TT

þ 1

c4
h2PNij TT þ

1

c4
h2PNSOij TT þ 1

c4
h2PNSSij TT þ 
 
 


�
:

(4.3)

The 1PN and 1.5PN spin terms are given explicitly in
Refs. [51,52]. The terms in the source multipole moments
that are a priori needed to compute the spin-orbit wave-
form exactly at 2PN order are identified by considering
their schematic structure,

IL ¼ INewtL þ 1

c2
I1PNL þ 1

c3
ISOL þ 1

c4
ðI2PNL þ ISSL Þ; (4.4a)

JL ¼ JNewtL þ 1

c
JSOL þ 1

c2
J1PNL þ 1

c3
J1:5PNSOL ; (4.4b)

together with the scalings of Eqs. (4.1) and (3.1a).

Specifically, the following pieces are required: ðINewtabc Þð3Þ
using the 1.5PN motion and ðISOabcÞð3Þ with aNewt, ðJSOab Þð2Þ
with the 1PN motion and the spin evolution, ðJ1:5PNSOab Þð2Þ
with aNewt, ðJNewtab Þð2Þ with the 1.5PN accurate motion, and

ðJSOabcdÞð4Þ with aNewt. For the SS part, we need ðINewtab Þð2Þ
with aSS, as the time derivative of ISSab does not contribute at
2PN order. When we write the waveform in terms of the
constant magnitude spin variables, there is an additional
contribution to the 2PN spin piece of the waveform coming
from JSOab with aNewt and the 1PN conversion factor in �c.

The relevant spin contributions to the multipole moments
are [50]

J
spin
ij ¼�

c

�
�3

2
rnhi�ji

	
þ �

c3

��
3

7
�16

7
�

�
r _rvhi�jiþ3

7
�r _rvhiSjiþ

��
27

14
�109

14
�

�
ðv
�Þþ27

14
�ðv
SÞ

�
rnhivji

þ
��

�11

14
þ47

14
�

�
ðn
�Þ�11

14
�ðn
SÞ

�
rvhivjiþ

��
19

28
þ13

28
�

�
Gm

r
þ
�
�29

28
þ143

28
�

�
v2

�
rnhi�ji

þ
��

�4

7
þ31

14
�

�
ðn
�Þ�29

14
�ðn
SÞ

�
Gmnhinjiþ

�
� 1

14

Gm

r
�2

7
v2

�
�rnhiSji

	
; (4.5a)

I
spin
ijk ¼ �

c3
r2
�
�9

2
�nhinjðv�SÞki�3

2
ð3�11�Þnhinjðv��Þkiþ3�nhivjðn�SÞkiþ3ð1�3�Þnhivjðn��Þki

	
; (4.5b)

Jspinijkl ¼�5�

2c
r3f�nhinjnkSliþð1�3�Þnhinjnk�lig: (4.5c)

The nonspinning contributions to the multipole moments that we employed in our calculation are

Iij ¼ m�r2nhinji; (4.6a)

Iijk ¼ �m�r3�nhinjnki; (4.6b)

Jij ¼ �m�r2�"abhinjinavb: (4.6c)

B. Spin-orbit effects

Using the multipole moments of Eqs. (4.5) and (4.6) in Eq. (4.1) and substituting the equations of motion (3.1) and
(3.3b), we find the following 2PN spin-orbit piece:
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h2PNSOij TT ¼ 2G2m�

r2R
P TT

ijab

�
nanb

�
5

2
ð3� 13�Þ _r2ðn��cÞ 
Nþ 30ð1� 4�Þðn 
NÞ _rðn�vÞ 
�c

� ð7� 29�Þ _rðv��cÞ 
N� 6ð1� 4�Þðv 
NÞðn�vÞ 
�c � 1

2
ð3� 13�Þv2ðn��cÞ 
N

� 2Gm

3r
ð1� 5�Þðn��cÞ 
Nþ�

�
35

2
_r2ðn�ScÞ 
N� 7

2
v2ðn�ScÞ 
Nþ 60ðn 
NÞ _rðn�vÞ 
Sc

� 12ðv 
NÞðn�vÞ 
Sc � 13 _rðv�ScÞ 
N
��

þ naðn�ScÞb�
�
35ðn 
NÞ _r2 � 14ðv 
NÞ _r� 7ðn 
NÞv2

�

þ naðn�NÞb
�
5

2
ð3� 13�Þ _r2ðn 
�cÞ � 1

2
ð3� 13�Þv2ðn 
�cÞ þ 15

2
ð1� 3�Þ _r2ðn 
NÞðN 
�cÞ

� 5ð1� 3�Þ _rðv 
NÞðN 
�cÞ � 3

2
ð1� 3�Þv2ðn 
NÞðN 
�cÞ � 2Gm

r
ð1� 3�Þðn 
NÞðN 
�cÞ

þ 4Gm

3r
ð1� 5�Þðn 
�cÞ � ð3þ 11�Þ _rðv 
�cÞ þ�

�
4Gm

r
ðn 
ScÞ þ 35

2
_r2ðn 
ScÞ � 7

2
v2ðn 
 ScÞ

þ 15

2
_r2ðn 
NÞðN 
ScÞ � 2Gm

r
ðn 
NÞðN 
ScÞ � 3

2
v2ðn 
NÞðN 
ScÞ � 5 _rðv 
NÞðN 
ScÞ þ _rðv 
ScÞ

��

þ naðn��cÞb
�
5ð3� 13�Þðn 
NÞ _r2 � ð3� 13�Þðn 
NÞv2 � 2ð3� 14�Þðv 
NÞ _r� 4Gm

3r
ð1� 5�Þðn 
NÞ

�

þ naðn�vÞb _r½2ð1� 4�ÞðN 
�cÞ þ 6�ðN 
ScÞ� þ ðn�NÞa�b
c

�
5

4
ð1þ 7�Þ _r2 þ 15

4
ð1� 3�Þðn 
NÞ2 _r2

� 5ð1� 3�Þðn 
NÞðv 
NÞ _rþ 5

3
ð1� 3�Þðv 
NÞ2 þ 1

12
ð11� 25�Þv2 � 3

4
ð1� 3�Þðn 
NÞ2v2 �Gm

3r
ð11þ 2�Þ

�Gm

r
ð1� 3�Þðn 
NÞ2

�
þ ðn�NÞaSbc�

�
�5

4
_r2 þ 15

4
ðn 
NÞ2 _r2 � 5ðn 
NÞðv 
NÞ _r

þ 5

3
ðv 
NÞ2 þ 1

4
v2 � 3

4
ðn 
NÞ2v2 �Gm

r
ðn 
NÞ2

�
þ ðn�vÞa�b

cð1� 4�Þ½2ðv 
NÞ � 2ðn 
NÞ _r�

þ navb

�
36ð�1þ 4�Þðn 
NÞðn�vÞ 
�c � 4ð2� 9�Þ _rðn��cÞ 
Nþ 2

3
ð13� 55�Þðv��cÞ 
N

þ�

�
�72ðn 
NÞðn�vÞ 
Sc � 20 _rðn�ScÞ 
Nþ 50

3
ðv�ScÞ 
N

��
þ ðn�vÞaSbc�

�
�6ðn 
NÞ _rþ 14

3
ðv 
NÞ

�

þ naðv�ScÞb�½�26 _rðn 
NÞ þ 12ðv 
NÞ�þ naðv��cÞb
�
2ð�7þ 29�Þ _rðn 
NÞ þ 2

3
ð10� 43�Þðv 
NÞ

�

þ vaðv�ScÞb�643 ðn 
NÞ þvaðn��cÞb
�
�2ð5� 22�Þ _rðn 
NÞ þ 4

3
ð1� 6�Þðv 
NÞ

�

þ vaðv��cÞb 23 ð16� 67�Þðn 
NÞ þ vaðn�ScÞb�
�
�26 _rðn 
NÞ þ 4

3
ðv 
NÞ

�

þ vaðn�vÞb
�
2ð�1þ 4�ÞðN 
�cÞ � 14

3
�ðN 
ScÞ

�
þvaðn�NÞb

�
�ð3� 23�Þ _rðn 
�cÞ

� 5ð1� 3�Þ _rðn 
NÞðN 
�cÞ þ 2

3
ð1þ 8�Þðv 
�cÞ þ 10

3
ð1� 3�Þðv 
NÞðN 
�cÞ þ�

�
10

3
ðv 
NÞðN 
 ScÞ

� 11 _rðn 
ScÞ � 5 _rðn 
NÞðN 
ScÞ � 2

3
ðv 
ScÞ

��
þ Sac ðv�NÞb�

�
5

6
_r� 5

2
_rðn 
NÞ2 þ 10

3
ðv 
NÞðn 
NÞ

�

þ�a
c ðv�NÞb

�
�29

6
ð1þ �Þ _r� 5

2
ð1� 3�Þ _rðn 
NÞ2 þ 10

3
ð1� 3�Þðv 
NÞðn 
NÞ

�

þ vaðv�NÞb
�
�40�

3
ðn 
�cÞ þ 10

3
ð1� 3�Þðn 
NÞðN 
�cÞ þ�

�
20

3
ðn 
ScÞ þ 10

3
ðn 
NÞðN 
ScÞ

��

þ vavb

��
2

3
� 4�

�
ðn��cÞ 
Nþ 2

3
�ðn�ScÞ 
N

�
þ ð�c �NÞanb

�
5

4
ð1þ 7�Þ _r2 þ 15

4
ð1� 3�Þ _r2ðn 
NÞ2
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þ 5ð�1þ 3�Þ _rðn 
NÞðv 
NÞ þ 5

3
ð1� 3�Þðv 
NÞ2 þ 1

12
ð11� 25�Þv2 þ 3

4
ð�1þ 3�Þðn 
NÞ2v2

þGm

3r
ð�17þ 10�Þ þGm

r
ð�1þ 3�Þðn 
NÞ2

�
þ ðSc �NÞanb�

�
�5

4
_r2 þ 15

4
_r2ðn 
NÞ2 � 5 _rðn 
NÞðv 
NÞ

þ 5

3
ðv 
NÞ2 þ 1

4
v2 � 3

4
v2ðn 
NÞ2 � 2Gm

r
�Gm

r
ðn 
NÞ2

�
þ ð�c �NÞavb

�
�29

6
ð1þ �Þ _r

þ 5

2
ð�1þ 3�Þ _rðn 
NÞ2 þ 10

3
ð1� 3�Þðn 
NÞðv 
NÞ

�
þ ðSc �NÞavb�

�
5

6
_r� 5

2
_rðn 
NÞ2 þ 10

3
ðn 
NÞðv 
NÞ

�

þ ðv�NÞanb
�
ð�3þ 23�Þ _rðn 
�cÞ þ 5ð�1þ 3�Þ _rðn 
NÞð�c 
NÞ þ 1

3
ð5þ 7�Þðv 
�cÞ

þ 10

3
ð1� 3�Þðv 
NÞð�c 
NÞ þ�

�
�11 _rðn 
 ScÞ � 5 _rðn 
NÞðSc 
NÞ þ 1

3
ðv 
ScÞ þ 10

3
ðv 
NÞðSc 
NÞ

��
: (4.7)

These contributions add linearly to the other known terms
in the waveform. Note that in Eq. (4.7) we have already
anticipated the transverse-traceless projection and simpli-
fied the expression (4.7) using �ij

TT ¼ Ni
TT ¼ Nj

TT ¼ 0 and
the interchange identity [51]

P TT
ijabA

aðB�NÞb ¼ P TT
ijabB

aðA�NÞb; (4.8)

for any vectors A and B.

C. Spin-spin effects

Spin-spin terms in the waveform at 2PN order are
entirely attributable to the equations of motion; they arise
when substituting aSS in the time derivatives of INewtab . The

second time derivative of the contribution IS
2

ab given in

Eq. (2.19) is at least of 3PN order (because of the fact
that spins are constant at leading approximation) and there-
fore vanishes for our calculation. We derive

h2PNSSij TT ¼ 6G2�

r3R
P TT

ijabfnanb½5ðn 
Sþ
0 Þðn 
S�

0 Þ
� ðSþ

0 
S�
0 Þ��naSþb

0 ðn 
S�
0 Þ�naS�b

0 ðn 
Sþ
0 Þg:
(4.9)

We notice that the spin-orbit contributions at 2PN order are
zero for an equal-mass, equal-spin black-hole binary. This
is a consequence of the multipoles (4.5) being zero for this
highly symmetric binary configuration.

The general results (4.7) and (4.9) are available as a
MATHEMATICA notebook upon request to be used to com-

pute the gravitational polarizations and spherical harmonic
modes for precessing binaries for any choice of the source
frame and the polarization triad [8,35,51,72–76]. Below,
we shall derive the polarizations and spin-weighted
spherical-harmonic modes for the case of nonprecessing
compact binaries on circular orbits.

D. Reduction to quasicircular orbits

We now specialize Eqs. (4.7) and (4.9) to the case
of orbits that have a constant separation r in the absence
of radiation reaction and for which the precession time
scale is much longer than an orbital period. The details
of the derivation of the modified Kepler law relating
the orbit-averaged orbital angular frequency ! and the
orbit-averaged orbital separation are discussed in
Ref. [93]. The instantaneous accelerations (3.1) and (3.5)
are projected onto a triad consisting of the following unit
vectors: n ¼ x=r, the vector ‘ ¼ LN=jLNj orthogonal to
the instantaneous orbital plane, where LN ¼ m�x� v
denotes the Newtonian orbital angular momentum, and
� ¼ ‘� n. The orbital separation r and angular frequency
! are decomposed into their orbit averaged piece, indi-
cated by an overbar, and remaining fluctuating pieces, r ¼
�rþ �r and ! ¼ �!þ �!. Projecting the equations of
motion along � yields the equality 2! _rþ _!r or, equiv-
alently [93],

d

dt
ð!r2Þ ¼ � 3G

2m!r3c4
d

dt
ðn 
 Sþ

0 Þðn 
 S�
0 Þ: (4.10)

At the 2PN order, r and! can be replaced by the constants
�r and �!, respectively, on the right-hand side. The expres-
sion for !r2 follows from (i) dropping the time derivatives
in the above equation, and (ii) adding an integration con-
stant determined by averaging !r2 over an orbit. Inserting
the result in the projection along n of the equations of
motion,

€r�!2r ¼ ðn 
 aÞ; (4.11)

and linearizing in �r, we find an explicit solution to the
differential equation given by
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_r ¼ d�r

dt
¼ � !

2m2rc4
½ðn 
 Sþ

0 Þð� 
 S�
0 Þ þ ð� 
 Sþ

0 Þðn 
 S�
0 Þ�; (4.12a)

!2 ¼ €r� ðn 
 aÞ
r

¼ Gm

r3

�
1� ð3� �ÞGm

rc2
�

�
Gm

rc2

�1
2 5ð‘ 
 ScÞ þ 3�ð‘ 
�cÞ

mrc2

þ 1

2m2r2c4
ððSþ

0 
 S�
0 Þ þ 2ð‘ 
 Sþ

0 Þð‘ 
 S�
0 Þ � 5ðn 
 Sþ

0 Þðn 
 S�
0 ÞÞ

�
: (4.12b)

Inverting Eq. (4.12b) to write r as a function of! in Eq. (4.7) and inserting there the expression (4.12a) of _r, we obtain the
following spin-orbit terms in the waveform:

h2PNSOij TT ¼ G2�m!2

3R
P TT

ijabfnanb½4ð1� 7�Þð‘ 
�cÞð� 
NÞ � ð13� 59�Þðn��cÞ 
N� 21�ðn� ScÞ 
N�
þ �a�b½4ð7� 24�Þð‘ 
�cÞð� 
NÞ þ 4ð1� 6�Þðn��cÞ 
Nþ �ð4ðn� ScÞ 
Nþ 52ð‘ 
 ScÞð� 
NÞÞ�
þ �anb½4ð13� 55�Þð���cÞ 
Nþ 2ð�63þ 239�Þðn 
NÞð‘ 
�cÞ þ �ð100ð�� ScÞ 
N
� 262ðn 
NÞð‘ 
 ScÞÞ� þ �a

c‘
b12ð1� 4�Þð� 
NÞ þ �a‘b½12ð�1þ 4�ÞðN 
�cÞ þ 8ð1� 6�Þð� 
�cÞð� 
NÞ

þ 4ð�16þ 67�Þðn 
 �cÞðn 
NÞ þ �ð�28ðN 
 ScÞ þ 8ð� 
 ScÞð� 
NÞ � 128ðn 
 ScÞðn 
NÞÞ�
þ na‘b½2ð�13þ 59�Þð� 
 �cÞðn 
NÞ þ 4ð�10þ 43�Þðn 
�cÞð� 
NÞ þ �ð�42ð� 
 ScÞðn 
NÞ
� 72ðn 
 ScÞð� 
NÞÞ� þ Sac‘

b28�ð� 
NÞ þ naðn�NÞb½�ð1þ �Þðn 
 �cÞ � 21ð1� 3�Þðn 
NÞðN 
 �cÞ
þ �ð3ðn 
 ScÞ � 21ðn 
NÞðN 
 ScÞÞ� þ �aðn�NÞb½2ð7þ 23�Þð� 
 �cÞ þ 40ð1� 3�ÞðN 
 �cÞð� 
NÞ
þ �ð40ðN 
 ScÞð� 
NÞ � 2ð� 
 ScÞÞ� þ�a

c ðn�NÞb½�ð21þ 17�Þ þ 20ð1� 3�Þð� 
NÞ2
þ 21ð�1þ 3�Þðn 
NÞ2� þ Sac ðn�NÞb�½�9þ 20ð� 
NÞ2 � 21ðn 
NÞ2� þ Sac ð��NÞb40�ð� 
NÞðn 
NÞ
þ �að��NÞb½�80�ðn 
 �cÞ þ 20ð1� 3�Þðn 
NÞðN 
 �cÞ þ �ð40ðn 
 ScÞ þ 20ðN 
 ScÞðn 
NÞÞ�
þ�a

c ð��NÞb40ð1� 3�Þð� 
NÞðn 
NÞg: (4.13)

Here, we have used that

ðn� ScÞi ¼ ��ið‘ 
 ScÞ þ ‘ið� 
 ScÞ; (4.14)

and similarly for �c.
Finally, we derive the 2PN spin-spin terms for circular orbits. They read

h2PNSSij TT ¼ 2G�!2

mR
P TT

ijab

�
nanb

�
� 8

3
ðSþ

0 
 S�
0 Þ þ

2

3
ð‘ 
 Sþ

0 Þð‘ 
 S�
0 Þ þ

40

3
ðn 
 Sþ

0 Þðn 
 S�
0 Þ
�

þ �a�b

�
2

3
ðSþ

0 
 S�
0 Þ þ

4

3
ð‘ 
 Sþ

0 Þð‘ 
 S�
0 Þ �

10

3
ðn 
 Sþ

0 Þðn 
 S�
0 Þ
�
� 2na�b½ðn 
 Sþ

0 Þð� 
 S�
0 Þ

þ ðn 
 S�
0 Þð� 
 Sþ

0 Þ� � 3ðn 
 Sþ
0 ÞnðaS�bÞ

0 � 3ðn 
 S�
0 ÞnðaSþbÞ

0

	
: (4.15)

E. Polarizations for nonprecessing,
spinning compact bodies

The two polarization states hþ and h� are obtained by
choosing a coordinate system and taking linear combina-
tions of the components of hTTij . Using an orthonormal triad

consisting of N and two polarization vectors P and Q, the
polarizations are

hþ ¼ 1

2
ðPiPj �QiQjÞhTTij ; (4.16a)

h� ¼ 1

2
ðPiQj þQiPjÞhTTij : (4.16b)

Although different choices of P andQ give different polar-
izations, the particular linear combination of hþ and h�
corresponding to the physical strain measured in a detector

is independent of the convention used. For nonspinning
binaries, one usually chooses a coordinate system such that
the orbital plane lies in the x-y plane, and the direction of
gravitational-wave propagation N is in the x-z plane.
When the spins of the bodies are aligned or antialigned

with the orbital angular momentum, the system’s evolution
is qualitatively similar to the case of nonspinning bodies.
This case is characterized by the absence of precession of
the spins and orbital angular momentum, and thus the
orbital plane remains fixed in space. However, the effect
of the spins gives a contribution to the phase and a correc-
tion to the amplitude of the waveform, which we explicitly
provide in this subsection. We use the conventions that the
z axis coincides with ‘ and the vectors n, � andN have the
following ðx; y; zÞ components:
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‘ ¼ ð0; 0; 1Þ; N ¼ ðsin�; 0; cos�Þ; (4.17a)

n ¼ ðsin�;� cos�; 0Þ; � ¼ ðcos�; sin�; 0Þ; (4.17b)
where � is the orbital phase defined such that at the initial
time, n points in the x direction. We use the following
polarization vectors:

P ¼ N� ‘; Q ¼ N� P: (4.18)

The vector P is the ascending node where the orbital
separation vector crosses the plane of the sky from below.
With these conventions, Eqs. (4.16) with Eqs. (4.13), spe-
cialized to the case that the only nonvanishing spin com-
ponents are ð�c 
 ‘Þ and ðSc 
 ‘Þ, become

h2PNþ spin ¼ �G2�m!2

12R
cos� sin�f3�ð‘ 
 ScÞð�33þ cos2�Þ þ ½ð�93þ 167�Þ þ 9ð1� 3�Þcos2��ð‘ 
 �cÞg

� 9G2�m!2

4R
cosð3�Þ sin�f�ð5� cos2�Þð‘ 
 ScÞ þ 3ð1� 3�Þsin2�ð‘ 
�cÞg

� 2G�!2

mR
cosð2�Þð1þ cos2�Þð‘ 
 Sþ

0 Þð‘ 
 S�
0 Þ; (4.19)

h2PN� spin ¼ �G2�m!2

48R
sin� sinð2�Þf6�ð‘ 
 ScÞð�33þ cos2�Þ þ ½ð�171þ 289�Þ þ 3ð1� 3�Þ cosð2�Þ�ð‘ 
�cÞg

� 9G2�m!2

8R
sinð3�Þ sinð2�Þf�ð‘ 
 ScÞð7� 3cos2�Þ þ 3ð1� 3�Þsin2�ð‘ 
 �cÞg

� 4G�!2

mR
sinð2�Þ cos�ð‘ 
 Sþ

0 Þð‘ 
 S�
0 Þ: (4.20)

Here, the convention for the 2PN spin pieces of the polar-
izations is analogous to that adopted for the PN expansion
of the waveform (4.3), with the expansion coefficients
related by Eqs. (4.16) at each PN order.

F. Gravitational modes for nonprecessing,
spinning compact bodies

The gravitational wave modes are obtained by expand-
ing the complex polarization

h ¼ hþ � ih�; (4.21)

into spin-weighted s ¼ �2 spherical harmonics as

hð�;�Þ ¼ Xþ1

‘¼2

X‘
m¼�‘

h‘m�2Y
‘mð�;�Þ; (4.22)

where

�sY
‘mð�;�Þ ¼ ð�1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4


s
d‘smð�Þeim�; (4.23)

with

d‘smð�Þ ¼
Xminð‘þm;‘�sÞ

k¼maxð0;m�sÞ

ð�1Þk
k!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞ!ð‘�mÞ!ð‘þ sÞ!ð‘� sÞ!p

ðk�mþ sÞ!ð‘þm� kÞ!ð‘� k� sÞ!
� ðcosð�=2ÞÞ2‘þm�2k�sðsinð�=2ÞÞ2k�mþs: (4.24)

The modes h‘m can be extracted by computing

h‘m ¼
Z

d�hð�;�Þ �2Y
‘m�ð�;�Þ; (4.25)

where the integration is over the solid angle
R
d� ¼R



0 sin�d�

R
2

0 d�, and using the orthogonality propertyR

d��sY
‘mð�;�Þ �sY

‘0m0�ð�;�Þ ¼ �‘‘0�mm0
, where �‘‘0

is the Kronecker symbol and the star denotes complex
conjugation. Using Eqs. (4.19) and (4.20) in Eq. (4.25)
we find the following nonvanishing modes:

ðh‘mÞ2PNspin ¼ � 2G2m�!2

R

ffiffiffiffiffiffiffiffiffi
16


5

s
e�im�ĥ‘m; (4.26)

ĥ21 ¼ � 43

21
�ð‘ 
 ScÞ þ 1

42
ð�79þ 139�Þð‘ 
�cÞ; (4.27a)

ĥ22 ¼ ð‘ 
 Sþ
0 Þð‘ 
 S�

0 Þ
Gm2

; (4.27b)

ĥ31 ¼ 1

24
ffiffiffiffiffiffi
14

p �ð‘ 
 ScÞ þ 5

24
ffiffiffiffiffiffi
14

p ð1� 3�Þð‘ 
 �cÞ; (4.27c)

ĥ33 ¼ � 3
ffiffiffiffiffiffiffiffi
105

p

8
ffiffiffi
2

p �ð‘ 
 ScÞ � 9

8

ffiffiffiffiffiffi
15

14

s
ð1� 3�Þð‘ 
 �cÞ;

(4.27d)

ĥ41 ¼
ffiffiffi
5

p

168
ffiffiffi
2

p �ð‘ 
 ScÞ þ
ffiffiffi
5

p

168
ffiffiffi
2

p ð1� 3�Þð‘ 
 �cÞ; (4.27e)

ĥ43 ¼ 9
ffiffiffi
5

p

8
ffiffiffiffiffiffi
14

p �ð‘ 
 ScÞ þ 9
ffiffiffi
5

p

8
ffiffiffiffiffiffi
14

p ð1� 3�Þð‘ 
�cÞ: (4.27f )

We have explicitly checked that in the test-mass limit
� ! 0, Eqs. (4.27) reduce to the 2PN OðqÞ and Oðq2Þ
terms given in Eqs. (22) of Ref. [80] (see also Ref. [79]),
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after accounting for the factor of ð�iÞm attributable to the
different conventions for the phase origin, as explained in
Ref. [52].

It is interesting to note from Eq. (4.27b) that in the
nonprecessing case, the dominant h22 mode contains only
terms that are quadratic in the spin at 2PN order. By
contrast, for precessing binaries, the 2PN spin-orbit terms
will give a nonvanishing contribution to the 22-mode.

V. CONCLUSIONS

We have extended the knowledge of the spin terms in the
gravitational-wave strain tensor to 2PN accuracy for pre-
cessing binaries. Our result includes the spin-orbit as well
as the spin1-spin2 and spin21, spin

2
2 effects. The quadratic-

in-spin terms are entirely from the equations of motion,
whereas the 2PN spin-orbit terms come from both the
corrections to the orbital dynamics and the radiation field.

For a given choice of an orthonormal polarization
triad and a source frame, the gravitational-wave polariza-
tions can be obtained by projecting our result for the
gravitational-wave strain tensor given in Secs. IVB and
IVC orthogonal to the propagation direction. For precess-
ing binaries, there is no preferred unique choice of the
source frame [8,35,51,72–76], but in the case that the spins
are collinear with the orbital angular momentum, the
procedure to obtain the polarizations can be carried out
in a similar fashion as for nonspinning binaries. For the
nonprecessing case and circular orbits, we provided ready-
to-use expressions for the gravitational polarizations in
Sec. IVE, which could be directly employed in time-
domain post-Newtonian, phenomenological and effective-
one-body–based template models [19–23,51,52].

In view of the current interest in interfacing analyt-
ical and numerical relativity, we also provided the decom-
position of the waveform into spin-weighted spherical
harmonic modes for nonprecessing binaries and quasicircu-
lar orbits. We verified that the test-particle limit of our result
reduces to the expressions obtained from black-hole pertur-
bation theory [79,80]. We noted that for spins collinear
with the orbital angular momentum, the dominant h22
mode of thewaveform contains only quadratic-in-spin effects
since the spin-orbit contributions vanish in this case, although
they are nonzero for generic, precessing configurations.
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APPENDIX: USEFUL IDENTITIES

According to the way the waveform is computed, the
result may take various forms, which are not immediately
seen to be equivalent. Their difference vanishes because
of some dimensional identities valid in three dimensions.
They all amount to expressing the fact that a tensor
with four antisymmetrized indices must vanish. We shall
present here two of such identities, which turned out to be
particularly useful for our checks, together with Eqs. (5.2)
of Ref. [49].
Let UA ¼ Ui

A, for A 2 f1; 2; 3g, be three vectors of R3.
The first identity tells us that for any vector U, we must
have

ðU1 � U2Þði½UjÞ
3 ðU4 
 UÞ �UjÞ

4 ðU3 
 UÞ�
¼ Uði

4 ½ðU � U1ÞjÞðU2 
 U3Þ � ðU � U2ÞjÞðU1 
 U3Þ�
þUði

3 ½ðU � U2ÞjÞðU1 
 U4Þ � ðU � U1ÞjÞðU2 
 U4Þ�:
(A1)

To show this, we compute "iab"
mjk"mpqU

a
1U

b
2U

p
3U

q
4 in two

different manners: (i) we group the first two epsilons, which
are next expanded in terms of the identity tensor �i

j using

the standard formula "iab"
mjk ¼ 3!�m

½i�
j
a�

k
b�; (ii) we

group the last two epsilons and apply the contracted version
of the previous equation: "mjk"mpq ¼ 2�j

½p�
k
q�. One of the

remaining free indices, say k, is finally contracted with Uk.
The second identity reads

�ij½U2
1U

2
2U

2
3 �U2

1ðU2 
 U3Þ2 �U2
2ðU3 
 U1Þ2 �U2

3ðU1 
 U2Þ2 þ 2ðU1 
 U2ÞðU2 
 U3ÞðU3 
 U1Þ�
þ 2Uði

1U
jÞ
3 ½U2

2ðU3 
 U1Þ � ðU1 
 U2ÞðU2 
 U3Þ� þ 2Uði
1U

jÞ
2 ½U2

3ðU1 
 U2Þ � ðU2 
 U3ÞðU3 
 U1Þ�
þ 2Uði

2U
jÞ
3 ½U2

1ðU2 
 U3Þ � ðU1 
 U2ÞðU1 
 U3Þ� þUi
1U

j
1½ðU2 
 U3Þ2 �U2

2U
2
3� þUi

2U
j
2½ðU1 
 U3Þ2 �U2

1U
2
3�

þUi
3U

j
3½ðU1 
 U2Þ2 �U2

1U
2
2� ¼ 0: (A2)

It is proved by contracting the equalityU½a
1 U

b
2U

c
3�

i�j ¼ 0withU1aU2bU3c and expanding. As the trace of the left-hand side
of Eq. (A2) is identically zero, the nontrivial content of this identity consists of its STF part.
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Rev. D 69, 124007 (2004).

[26] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Classical Quantum Gravity 21, 3771 (2004).

[27] L. Blanchet, B. R. Iyer, C.M. Will, and A.G. Wiseman,
Classical Quantum Gravity 13, 575 (1996).

[28] L. E. Kidder, L. Blanchet, and B. R. Iyer, Classical
Quantum Gravity 24, 5307 (2007).

[29] L. E. Kidder, Phys. Rev. D 77, 044016 (2008).
[30] L. Blanchet, G. Faye, B. R. Iyer, and S. Sinha, Classical

Quantum Gravity 25, 165003 (2008).
[31] G. Faye, S. Marsat, L. Blanchet, and B. R. Iyer, Classical

Quantum Gravity 29, 175004 (2012).
[32] J.M. Miller, C. S. Reynolds, A. C. Fabian, G. Miniutti, and

L. C. Gallo, Astrophys. J. 697, 900 (2009).

[33] T.A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.
Thorne, Phys. Rev. D 49, 6274 (1994).

[34] T.A. Apostolatos, Phys. Rev. D 54, 2421 (1996).
[35] A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67,

104025 (2003).
[36] Y. Pan, A. Buonanno, Y. Chen, and M. Vallisneri, Phys.

Rev. D 69, 104017 (2004).
[37] A. Buonanno, Y. Chen, Y. Pan, and M. Vallisneri, Phys.

Rev. D 70, 104003 (2004).
[38] A. Buonanno, Y. Chen, Y. Pan, H. Tagoshi, and M.

Vallisneri, Phys. Rev. D 72, 084027 (2005).
[39] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74,

104005 (2006).
[40] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Bruegmann, N.

Dorband, D. Mueller, F. Ohme, D. Pollney, C. Reisswig,
L. Santamarı́a, and J. Seiler, Phys. Rev. Lett. 106, 241101
(2011).

[41] P. Ajith, Phys. Rev. D 84, 084037 (2011).
[42] D. A. Brown, A. Lundgren, and R. O’Shaughnessy, Phys.

Rev. D 86, 064020 (2012).
[43] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse,

M. Boyle, T. Chu, G. Lovelace, H. P. Pfeiffer, and M.A.
Scheel, Phys. Rev. D 86, 024011 (2012).

[44] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994).
[45] E. Poisson and C.M. Will, Phys. Rev. D 52, 848 (1995).
[46] M.V. van der Sluys, C. Röver, A. Stroeer, V. Raymond,
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