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Using the main result of a companion paper, in which the binding energy of a circular-orbit nonspinning

compact binary system is computed at leading-order beyond the test-particle approximation, the exact

expression of the effective-one-body (EOB) metric component gefftt is obtained through first order in the

mass ratio. Combining these results with the recent gravitational self-force calculation of the periastron

advance for circular orbits in the Schwarzschild geometry, the EOB metric component geffrr is also

determined at linear order in the mass ratio. These results assume that the mapping between the real and

effective Hamiltonians at the second and third post-Newtonian (PN) orders holds at all PN orders. Our

findings also confirm the advantage of resumming the PN dynamics around the test-particle limit if the

goal is to obtain a flexible model that can smoothly connect the test-mass and equal-mass limits.
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I. INTRODUCTION

Although the ‘‘two-body problem’’ cannot be solved
analytically in the general theory of relativity, at least
two approximation methods can be used to tackle it. The
first one dates back to Einstein’s 1915 calculation of the
relativistic perihelion advance of Mercury’s orbit [1], and
is based on a perturbative treatment in powers of the ratio
v=c between the binary’s relative velocity v (in the center-
of-mass frame) and the vacuum speed of light c. At the
lowest order of approximation, this approach gives back
the well-known Newtonian solution, and is therefore
dubbed ‘‘post-Newtonian’’ (PN) expansion; see e.g.
Ref. [2] and references therein. Currently, the two-body
dynamics of nonspinning compact objects is known
through 3PN order1 [3,4], and the gravitational-wave fluxes
of energy and angular momentum through 3.5PN [5–7]
and 3PN [8] orders for circular and eccentric orbits, re-
spectively. Spin effects have also been computed in the
dynamics and gravitational radiation [9–11] using both
Hamiltonian [12–16] and Lagrangian [9,17] formulations.
The effective-field-theory approach applied to gravity [18]
has confirmed some of these results [19,20], and has
pushed the calculations to higher PN orders for spinning
bodies [20–27].

The second approximation method also dates back to
1915, namely, to Karl Schwarzschild’s famous wartime
calculation of the gravitational field of a spherically sym-
metric body [28,29]. While nonrotating black holes are
described by the Schwarzschild metric, rotating black
holes are represented by the Kerr solution [30]. The motion
of test masses in the Schwarzschild or Kerr geometries is

naturally described by the geodesic equations, which are
valid for arbitrarily high values of the orbital velocity v
(i.e. the geodesic equations formally include all PN cor-
rections). If the finite mass of the particle and its back-
reaction on the background geometry are taken into
account, the orbits will deviate from geodesic motion
under the effect of the gravitational self-force (GSF)
[31]. More formally, Schwarzschild or Kerr geodesics
can be seen as the orbital motion of the binary at the zeroth
order of approximation in the mass ratio, while at first
order the two-body dynamics is regulated by the so-called
‘‘MiSaTaQuWa’’ equation [32,33]. The GSF can be split
into a dissipative component related to gravitational-wave
emission, which is described by the Regge-Wheeler and
Zerilli equations in a Schwarzschild background [34,35],
and by the Teukolsky equation in Kerr [36,37], and a
conservative component responsible for secular effects
such as the periastron advance [38–40].
A notable event in the history of the general relativistic

two-body problem took place almost a century after
Einstein’s and Schwarzschild’s early work, in 2005, with
the first numerical simulations of the inspiral, merger,
and ringdown of a system of two nonspinning black holes
[41–43]. While these results constitute a truly remarkable
achievement, current ‘‘state-of-the-art’’ numerical relativ-
ity (NR) simulations are still too time-consuming to provide
gravitational waveforms covering the whole parameter
space of binary black-hole systems, especially for small
mass ratios [44] and black holes with large spins [45,46].
A semi-analytical approach that is flexible enough to

incorporate information from both PN expansions and
black-hole perturbations, as well as from NR simulations,
is the effective-one-body (EOB) method [47]. The basic
idea behind this construction is to map the orbital dynamics
of an arbitrary mass-ratio compact binary system onto that
of a test particle in a suitable background spacetime. In

1As usual we refer to nPN as the order corresponding to terms
Oðc�2nÞ with respect to the Newtonian acceleration in the
equations of motion, or with respect to the quadrupole formula
in the radiation field.
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order for the EOB model to have the correct test-particle
limit, this effective background metric, geff��, must clearly

reduce to that of a Schwarzschild black hole when one of
the masses goes to zero (for nonspinning binaries). In
addition, such a mapping is known to exist for any mass
ratio at the Newtonian level, because in Newtonian gravity
one can always map the dynamics of a binary system with
masses m1 and m2 onto the motion of an effective particle
with reduced mass � ¼ m1m2=ðm1 þm2Þ around a body
with total massM ¼ m1 þm2. It is therefore natural to try
to achieve the EOB mapping by considering an effective
particle with mass � moving in a time-independent and
spherically symmetric deformed Schwarzschild spacetime
with total mass M,2

ds2eff ¼ gefftt ðr;�Þdt2 þ geffrr ðr;�Þdr2 þ r2d�2; (1.1)

where the deformation is regulated by the symmetric mass
ratio � � �=M. In the test-particle limit � ! 0, we re-
cover (by construction) the Schwarzschild result gefftt ¼
�1=geffrr ¼ �1þ 2M=r. Beyond that limit, the
�-dependence of the EOB potentials gefftt and geffrr encodes
crucial information about the dynamics of the real binary
system.

Buonanno and Damour [47] showed that, for spinless
binaries, the EOB mapping can be achieved not only at the
Newtonian level, but also at the 1PN and 2PN orders,
obtaining the following relation between the Hamiltonian
Hreal of the real binary system and the Hamiltonian Heff of
the effective particle:

Hreal ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
: (1.2)

Remarkably, this formula coincides with that introduced
by Brézin, Itzykson, and Zinn-Justin [48] in quantum
electrodynamics to map the one-body relativistic Balmer
formula with the two-body one; for example, it can relate
some of the energy levels of positronium (an equal-mass
system comprised of an electron and an antielectron, de-
scribed by the real two-body HamiltonianHreal) to those of
the hydrogen atom (an ‘‘extreme’’ mass-ratio system de-
scribed by the effective Hamiltonian Heff).

Since the original paper [47], the EOB mapping has
been extended to 3PN order for nonspinning binaries
[49], and shown to exist also for spinning binaries, through
3.5PN order in the spin-orbit terms, and 2PN order in the
spin-spin terms [50–55]. Furthermore, the EOB construc-
tion has grown to include a model for the gravitational
waveforms [56–60], allowing detailed comparisons (and
calibrations of the EOB model’s unknown parameters)
with NR waveforms for nonspinning and spinning
comparable-mass binaries [61–71], as well as with

Regge-Wheeler-Zerilli [57,72–75] and Teukolsky wave-
forms [60,76–78] for small and extreme mass-ratios.
More recently, information coming from GSF calcula-

tions has started to be included into the EOB model.
References [53,71,79] used the frequency shift of the
Schwarzschild innermost stable circular orbit (ISCO) in-
duced by the conservative GSF, as recently calculated by
Barack and Sago [39] (see also Ref. [80]), to constrain
some unknown parameters entering the gefftt component of
the EOB effective metric (1.1) for spinless binaries, and
regulating the unknown higher PN orders. Reference [79]
also suggested using GSF data to determine a certain
combination �SF of the free functions parametrizing the
gefftt and geffrr components of the EOB effective metric, at
linear order in the mass ratio. That suggestion was then
realized in Ref. [81], which calculated the strong-field
behavior of �SF using the GSF contribution to the perias-
tron advance for quasicircular orbits in a Schwarzschild
background.
Besides the ISCO frequency shift and the periastron

advance, a third physically meaningful (i.e. coordinate
invariant) perturbative result that has been obtained
within the GSF framework is the conservative effect of
the self-force on the ‘‘redshift observable’’ z � �u�K

�,
u� being the particle’s four-velocity and K� the helical
Killing vector of the perturbed Schwarzschild geometry
[38,82–85]. References [38,84,85] (see also [86]) demon-
strated a very good agreement between the numerical GSF
result and the PN prediction.
The quantity zmeasures the redshift of light rays emitted

from the particle, and received far away from the binary
system, along the helical symmetry axis perpendicular to
the orbital plane [38]. In the companion paper [87], we put
forward a different interpretation for the redshift observ-
able. Building on the first law of binary point-particle
mechanics recently established in Ref. [88], we relate z
to the binding energy of a binary system of nonspinning
compact objects through next-to-leading order in the mass-
ratio. Using the numerical results of Refs. [38,82–85], in
which the GSF contribution to the redshift observable of a
nonspinning particle moving on a circular orbit around a
Schwarzschild black hole was calculated, we derive an
explicit expression for the binding energy.
In this paper, we use this new result for the binding

energy, assuming that the mapping (1.2) holds at all PN
orders, to derive the exact expression of the gefftt component
of the EOB effective metric (1.1) for nonspinning binaries,
through linear order in the mass ratio. The resulting ex-
pression exactly reproduces the ISCO frequency shift cal-
culated by Barack and Sago, and goes far beyond the
results of Refs. [53,71,79] that could only constrain certain
combinations of unknown parameters appearing in the
EOB potential gefftt .
Moreover, thanks to the exact knowledge (at least

through linear order in the mass ratio) of gefftt , we are2Throughout this paper we use geometrical unit G ¼ c ¼ 1.
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able to use the GSF results of Refs. [79,81] for the perias-
tron advance to determine the EOB metric component geffrr

exactly (through linear order in the mass ratio) for non-
spinning binaries. This constitutes significant advance over
earlier results that could only constrain combinations of
unknown functions entering gefftt and geffrr . Our results there-
fore completely determine the EOB effective metric (1.1)
for a system of nonspinning compact objects, at first order
in the mass ratio.

This paper is organized as follows. In Sec. II, after
briefly reviewing the EOB effective metric and
Hamiltonian dynamics, we use the binding energy com-
puted in Ref. [87] to derive the exact correction to gefftt that
is linear in the mass ratio. Moreover, employing the results
of the periastron advance for circular orbits from
Refs. [79,81], we also derive the exact term linear in the
mass ratio in geffrr . In Sec. III we use the binding energy
computed through 6PN order in Ref. [88], together with
several constraints among the EOB metric coefficients
derived in Refs. [79,81], to compute gefftt and geffrr through
6PN and 5PN orders, respectively, at linear order in the
mass ratio. Finally, in Sec. IV we discuss the main results
of the paper and comment on future work. The structure of
the EOB Hamiltonian used in the rest of this paper is
detailed in an Appendix.

II. SELF-FORCE CONTRIBUTIONS TO THE
EOB POTENTIALS

Within the EOB framework, the real Hamiltonian Hreal

encoding the orbital dynamics of two nonspinning compact
objects is mapped to an effective Hamiltonian Heff

describing a test particle of mass � ¼ m1m2=ðm1 þm2Þ
moving in a deformed Schwarzschild metric of mass
M ¼ m1 þm2. The deformation is regulated by the bi-
nary’s symmetric mass ratio � ¼ �=M, and disappears
in the test-particle limit � ! 0. The EOB effective met-
ric reads [47]

ds2eff ¼ �AðrÞdt2 þ BðrÞdr2 þ r2d�2; (2.1)

where the potentials A � �gefftt and B � geffrr are known
through 3PN order [47,49]. We find it more convenient
to work with the potential �D � ðABÞ�1, so that

AðuÞ ¼ 1� 2uþ 2�u3 þ
�
94

3
� 41

32
�2

�
�u4 þOðu5Þ;

(2.2a)

�DðuÞ ¼ 1þ 6�u2 þ ð52� 6�Þ�u3 þOðu4Þ; (2.2b)

where u � M=r denotes the inverse Schwarzschild-like
EOB radial coordinate. In the test-particle limit � ! 0,
we recover (by construction) the Schwarzschild results
AðuÞ ¼ 1� 2u and �DðuÞ ¼ 1. Through 3PN order, the
effective Hamiltonian is given by [47,49]

H2
effðr;pÞ ¼ �2AðrÞ½1þ p̂2 þ ðBðrÞ�1 � 1Þðn�p̂Þ2

þ 2ð4� 3�Þ�u2ðn�p̂Þ4�; (2.3)

where we introduced the reduced conjugate momentum
p̂ ¼ p=� and the unit vector n ¼ r=r. Finally, the so-
called improved real (or EOB) Hamiltonian reads [47]

HEOB � Himproved
real ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
: (2.4)

When extending the EOB Hamiltonian (2.4) to higher
PN orders, one needs to modify the effective dynamics
with terms depending on higher-order powers of the mo-
mentum p̂ [49], thus resulting in sextic and higher powers
ofp̂ inside the square brackets of the effective Hamiltonian
(2.3). However, as shown in Ref. [49] and discussed in the
Appendix, the mapping between the real and the effective
descriptions can always be arranged in such a way that
these ‘‘nongeodesic’’ terms are proportional to the radial
momentum p̂r � n � p̂, thus vanishing for circular orbits,
at all PN orders. Moreover, we will show in the Appendix
that this holds true even if the mapping (2.4) between the
real and the effective Hamiltonians is assumed to be valid
at all PN orders. This standpoint was also adopted in
Ref. [79], and it is the one that we embrace in this paper.
In other words, our results are valid for the class of EOB
models that adopt the mapping (2.4) at all PN orders, and
for which the nongeodesic higher-order momentum terms
are proportional to p̂r, thus vanishing for circular orbits.
We notice that the 3PN-accurate expression (2.2a) of the

EOB potential AðrÞ does not contain terms proportional to
�2 and �3, despite the fact the PN binding energy does
contain such terms. By contrast, at 3PN order, the EOB
‘‘radial’’ potential BðrÞ—and hence the inverse product
�D ¼ ðABÞ�1 [cf. Eq. (2.2b)]—contains a term proportional
to �2. The GSF results will allow us to control the exact
contributions proportional to the binary’s mass ratio
q � m1=m2 ¼ �þOð�2Þ,3 thus only the terms linear in
� in AðrÞ and �DðrÞ.
In the next two subsections, we will derive the GSF

contributions to the EOB potentials, namely, the functions
ASFðuÞ and �DSFðuÞ such that4

AðuÞ ¼ 1� 2uþ �ASFðuÞ þOð�2Þ; (2.5a)

�DðuÞ ¼ 1þ � �DSFðuÞ þOð�2Þ: (2.5b)

A. Self-force contribution to the EOB effective
metric potential A

We will restrict the discussion to circular orbits, com-
puting first the EOB energy EEOB for such orbits. Now, the

3Without any loss of generality, we assume m1 � m2.
4In the notations of Refs. [79,81], we have ASF ¼ a and

�DSF ¼ �d.
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angular momentum L � p� can be determined as a func-

tion of the inverse separation u by solving the equation

_pr ¼ �@HEOB

@r
ðr; pr ¼ 0; p�Þ ¼ 0; (2.6)

which is valid for circular orbits only. From the expressions
(2.3) and (2.4) of the effective and EOB Hamiltonians, this
gives

L2ðuÞ
�2M2

¼ � A0ðuÞ
2uAðuÞ þ u2A0ðuÞ ; (2.7)

where we denote A0 � dA=du. Replacing this result in the
expressions for the Hamiltonians, we obtain the circular-
orbit EOB energy as

EEOBðuÞ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
EeffðuÞ
�

� 1

�s
; (2.8a)

EeffðuÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A2ðuÞ

2AðuÞ þ uA0ðuÞ

s
: (2.8b)

We also introduce the dimensionless coordinate-invariant

quantity x � ðM�Þ2=3, where � is the constant circular-
orbit frequency, given by

� ¼ @HEOB

@p�

ðr; pr ¼ 0; p�Þ; (2.9)

as well as r� � M=x, a convenient invariant measure of
the orbital separation.

Since we are interested in improving the EOB
Hamiltonian using GSF results, we will work at linear
order in the symmetric mass ratio �, thus neglecting terms
Oð�2Þ or higher. Inverting Eq. (2.9) and making use of the
expression (2.7) for the angular momentum yields [79]

u ¼ xþ �

�
x

6
A0
SFðxÞ þ

2

3
x

�
1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1

��
þOð�2Þ:

(2.10)

Next, we compute the (specific) EOB binding energy

ÊEOB � ðEEOB �MÞ=� at linear order in �, for circular
orbits. From Eqs. (2.8), in which we substitute the
coordinate-dependent variable u in favor of the invariant
variable x using (2.10), we obtain

ÊEOBðxÞ¼ 1�2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3x

p �1þ�

�
1�4x

ð1�3xÞ3=2
ASFðxÞ

2

� xffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3x

p A0
SFðxÞ
3

�
�
1�2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3x

p �1

�

�
�
x

3

1�6x

ð1�3xÞ3=2þ
1

2

�
1�2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3x

p �1

���
þOð�2Þ:

(2.11)

Recently, Ref. [87] used the first law of binary point-
particle mechanics [88], together with GSF results for the
redshift observable z [38,82–85], to compute the binding

energy E and total angular momentum L of a circular-orbit
nonspinning compact binary, through next-to-leading order
in the symmetric mass ratio � (at all PN orders). In par-

ticular, the specific binding energy Ê � E=� reads [87]

ÊðxÞ ¼ 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1þ �

�
1

2
zSFðxÞ � x

3
z0SFðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p

� 1þ x

6

7� 24x

ð1� 3xÞ3=2
�
þOð�2Þ; (2.12)

where zSFðxÞ is the self-force contribution to the redshift z
of the lightest point mass, which is known numerically,
with high accuracy, for circular orbits down to r� ¼ 5M
(see below for more details).
By construction of the EOB model, the EOB binding

energy ÊEOB must coincide with the binding energy Ê of
the real binary system when expanded in powers of �.
Equating Eqs. (2.11) and (2.12) yields the following linear
first-order ordinary differential equation for ASFðxÞ:

2xA0
SFðxÞ � 3

1� 4x

1� 3x
A SFðxÞ

¼ x
1� 6x

1� 3x
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

�
�
2x z0 SFðxÞ � 3z SFðxÞ þ x

1� 5xþ 12x2

ð1� 3xÞ2
�
: (2.13)

Interestingly, this differential equation can be solved ana-
lytically in terms of zSFðxÞ. The solution is particularly
simple, and explicitly reads5

A SFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
zSFðxÞ � x

�
1þ 1� 4xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

�
: (2.14)

This is one of the most important results of this paper: we
have succeeded in relating the known GSF contribution
zSFðxÞ in the redshift observable to the EOB dynamics for
circular orbits. As a result, we can now compute the EOB
radial potential AðrÞ given in Eq. (2.5a) including all PN
corrections, at linear order in �. As a consistency check, the
PN expansion of zSFðxÞ, as given by Eq. (4.16) and Table I
of Ref. [88], can be used with Eq. (2.14) to recover the 3PN
expansion (2.2a) of ASFðxÞ.
We stress that the EOB model with this form of the

potential AðrÞ automatically reproduces the shift of the
ISCO frequency under the effect of the conservative part
of the GSF, as calculated by Barack and Sago in
Refs. [39,80]. This is because the notion of ISCO coincides
with that of minimum energy circular orbit (MECO) for
any orbital dynamics that can be derived from a
Hamiltonian [89], and the MECO as computed from
Eq. (2.12) returns the correct ISCO frequency shift [87].
This is a considerable improvement over earlier versions of
the EOB potential AðrÞ, which were resorting to free

5The homogeneous solution must vanish because the PN
expansion of ASFðxÞ cannot involve half-integer powers of x.
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parameters regulating unknown high-order PN effects
[53,71,79] in order to reproduce the ISCO frequency shift
due to the conservative GSF.

Furthermore, if we use our newly derived potential AðrÞ
together with Eqs. (2.7) and (2.10) to compute the dimen-

sionless angular momentum L̂ � L=ð�MÞ for circular or-
bits, expressed in terms of the coordinate-invariant quantity
x, we recover the result obtained in Ref. [87], namely,

L̂ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� 3xÞp þ �

�
� 1

3
ffiffiffi
x

p z0SFðxÞ

þ 1

6
ffiffiffi
x

p 4� 15x

ð1� 3xÞ3=2
�
þOð�2Þ; (2.15)

which holds at all PN orders and at linear order in �. This
comes at no surprise because the binding energy and total
angular momentum for circular orbits satisfy the exact

relation @Ê=@L̂ ¼ M� in the EOB model. Therefore,
once the energy coincides with the exact expression estab-
lished in Ref. [87], so must the angular momentum.

The GSF contribution zSFðxÞ to the redshift observable
has been calculated numerically in Refs. [38,82–85] for a
variety of orbital separations, in the range 5M � r� �
500M. In the companion paper [87], we established that
this numerical data can conveniently be represented with
an accuracy better than a part in 105, using the compact
analytical formula

zSFðxÞ ¼ 2x
1þ a1xþ a2x

2

1þ a3xþ a4x
2 þ a5x

3
; (2.16)

with the coefficients a1 ¼ �2:185 22, a2 ¼ 1:051 85,
a3 ¼ �2:433 95, a4 ¼ 0:400 665, and a5 ¼ �5:9991.
This fitting formula accounts for the leading-order (1PN)
behavior zSFðxÞ ¼ 2xþOðx2Þ when x ! 0 [88]. Since
current GSF data for zSFðxÞ is limited to orbital separations
r� � 5M, the GSF-accurate EOB potential AðuÞ given by
Eqs. (2.5a) and (2.14) is (for now) only known in the range
0 � x � 1=5.

B. Self-force contribution to the EOB effective
metric potential �D

The noncircular conservative dynamics of spinless bi-
naries is regulated by the radial frequency �r and by the
averaged angular frequency ��, respectively defined by

�r � 2�

P
; (2.17a)

�� � 1

P

Z P

0

_�ðtÞdt ¼ K�r; (2.17b)

where P is the radial period, namely, the time interval

between two successive periastron passages, _� � d�=dt
is the time derivative of the orbital phase �ðtÞ, and
��=ð2�Þ ¼ K � 1 is the fractional advance of the perias-
tron per radial period. In the circular-orbit limit, by

definition the radial frequency vanishes at the ISCO; hence
the periastron advance K ¼ ��=�r blows up there. For

this reason, Refs. [79,81] found it convenient to work with
the quantity W � 1=K2, which is regular at the ISCO.
Reference [81] calculated numerically the GSF contribu-
tion to W, i.e. the function �SFðxÞ such that

WðxÞ ¼ 1� 6xþ ��SFðxÞ þOð�2Þ: (2.18)

The authors performed several fits of the GSF data for
�SFðxÞ (in the range 6M � r� � 80M). In particular,
they found that this data can be accurately reproduced at
the 2:4� 10�3 level by means of the compact analytic
formula

�SFðxÞ ¼ 14x2
1þ b1x

1þ b2xþ b3x
2
; (2.19)

with b1 ¼ 13:368 7, b2 ¼ 4:609 58, and b3 ¼ �9:476 96.
(Using a denser data set in a more limited frequency range,
Ref. [90] later found that the values b1 ¼ 12:9906, b2 ¼
4:577 24, and b3 ¼ �10:3124 yield a fit accurate at the
10�5 level.) As with Eq. (2.16), the fitting formula (2.19)
accounts for the leading-order (2PN) behavior of �SFðxÞ
when x ! 0 [81].
Reference [79] recently studied the dynamics of slightly

eccentric orbits within the EOB formalism, and found that
the GSF correction �SFðxÞ to the periastron advance is
related to the EOB potentials ASFðxÞ and �DSFðxÞ by6

�SFðxÞ ¼ 4x

�
1� 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

�
þ ASFðxÞ þ xA0

SFðxÞ

þ x

2
ð1� 2xÞA00

SFðxÞ þ ð1� 6xÞ �DSFðxÞ: (2.20)

Solving the above equation for the unknown �DSFðxÞ, we
immediately obtain

�DSFðxÞ ¼ 1

1� 6x

�
�SFðxÞ þ 4x

�
1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1

�
� ASFðxÞ

� xA0
SFðxÞ �

x

2
ð1� 2xÞA00

SFðxÞ
�
; (2.21)

where ASFðxÞ is given explicitly in terms of zSFðxÞ by
Eq. (2.14) above. Equation (2.21) is another important
result of this paper: the EOB potential �DðrÞ governing
the nonradialmotion, as given by Eq. (2.5b), is now known
exactly at linear order in �, through the known GSF con-
tributions zSFðxÞ and �SFðxÞ to the redshift observable and
periastron advance.
Note that the apparent pole at the Schwarzschild ISCO

(x ¼ 1=6) in Eq. (2.21) must be canceled out by a factor
(1� 6x) in the numerator, because the potential �DðrÞ is

6This result requires that the quartic power in the radial
momentum pr inside the square brackets of Eq. (2.3) be ne-
glected. This is correct in the limit of small eccentricity e � 1,
for which pr 	 e; see Ref. [79] for more details.
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perfectly regular at the ISCO. This can be verified using the
fit (2.16) for zSFðxÞ, which is accurate to within 10�5,
together with the fit (2.19) for �SFðxÞ, which is accurate
to within 2:4� 10�3 using the coefficients b1, b2 and b3
from Ref. [81], and to within 10�5, although in a more
limited frequency range, using the coefficients b1, b2,
and b3 from Ref. [90]. Using these fits, the behavior of
�DSFðxÞ near the ISCO is of the form �DSFðxÞ ¼ �=ðx�
1=6Þ þOð1Þ, where the dimensionless parameter � is
about 4� 10�5 with the coefficients b1, b2, and b3 from
Ref. [81], and 3:4� 10�5 with the coefficients b1, b2, and
b3 from Ref. [90]. One can therefore argue that the value of
� is comparable to the accuracy of the fits and thus com-
patible with zero.

Finally, when using the known PN expansions of the
GSF contributions �SFðxÞ and zSFðxÞ to the redshift observ-

able and periastron advance (see e.g. Eqs. (5.32) and (5.39)
of Ref. [79], and Eq. (4.16) and Table I of Ref. [88]), we
recover, as expected, the 3PN expansion (2.2b) of �DSFðxÞ.

III. HIGH-ORDER POST-NEWTONIAN TERMS
IN THE EOB POTENTIALS

Recently, the authors of Ref. [88] derived a first law of
mechanics for nonspinning compact objects modeled as
point particles, and moving along exactly circular orbits.
By making use of previous GSF results for the redshift
observable [38,84,85], they could determine the numerical
values of some previously unknown coefficients entering
the expression of the circular-orbit binding energy E.
Through 6PN order, the (specific) binding energy explicitly
reads

ÊðxÞ ¼ � x

2

�
1þ

�
� 3

4
� �

12

�
xþ

�
� 27

8
þ 19

8
�� �2

24

�
x2 þ

�
� 675

64
þ

�
34445

576
� 205

96
�2

�
�� 155

96
�2 � 35

5184
�3

�
x3

þ
�
� 3969

128
þ �e4ð�Þ þ 448

15
� lnx

�
x4 þ

�
� 45927

512
þ �e5ð�Þ þ

�
� 4988

35
� 1904

15
�

�
� lnx

�
x5

þ
�
� 264627

1024
þ �e6ð�Þ þ �eln6 ð�Þ lnx

�
x6 þ oðx6Þ

�
; (3.1)

where the numerical values of the 4PN, 5PN, and 6PN
coefficients e4ð0Þ, e5ð0Þ, e6ð0Þ, and eln6 ð0Þ were found to
be [88]

e4ð0Þ ¼ þ153:8803ð1Þ; (3.2a)

e5ð0Þ ¼ �55:13ð3Þ; (3.2b)

e6ð0Þ ¼ þ588ð7Þ; (3.2c)

eln6 ð0Þ ¼ �1144ð2Þ: (3.2d)

(The uncertainty in the last digit is indicated in paren-
thesis.) Note that the leading-order 4PN and next-to-
leading order 5PN logarithmic contributions to the
binding energy are known analytically [85]. The value
of the post-GSF coefficient (term / �2) in the 5PN
logarithmic contribution is that corresponding to the
‘‘physical problem’’ in the language of Ref. [88], i.e.
when the helical symmetry is not imposed (see [88] for
more details).

In the next two subsections, we will use Eqs. (3.1) and
(3.2), together with the results of Ref. [81], to compute the
4PN, 5PN, and 6PN coefficients in AðuÞ, as well as the 4PN
and 5PN coefficients in �DðuÞ, at linear order in the sym-
metric mass ratio �.

A. High-order post-Newtonian terms in the EOB
metric potential A

Similarly to what was done in Sec. II, we restrict here to
the class of EOB models that adopt the mapping (2.4) at all
PN orders, and for which the nongeodesic higher-order

momentum terms are proportional to the radial momen-
tum. As a consequence, the 4PN, 5PN, and 6PN corrections
determined in Eqs. (3.1) and (3.2) enter the effective
Hamiltonian only through the radial potential AðrÞ, i.e.,
through the coefficients a5ð�Þ, aln5 ð�Þ, a6ð�Þ, aln6 ð�Þ, a7ð�Þ,
and aln7 ð�Þ in the PN expansion

AðuÞ ¼ 1� 2uþ 2�u3 þ
�
94

3
� 41�2

32

�
�u4 þ �½a5ð�Þ

þ aln5 ð�Þ lnu�u5 þ �½a6ð�Þ þ aln6 ð�Þ lnu�u6
þ �½a7ð�Þ þ aln7 ð�Þ lnu�u7 þ oðu7Þ: (3.3)

A comment regarding the general structure of the PN
expansion of AðuÞ is in order. It was argued in Ref. [85]
that terms involving powers of logarithms should not occur
in the conservative part of the dynamics of a compact
binary system before the very high 7PN order. Within the
class of EOB Hamiltonians that we consider in this paper,
the potential A is directly related to the conserved binding
energy E of the real binary system. Hence we expect no
term of the type ðlnuÞp, with p � 2, in the 6PN-accurate
expansion (3.3) of AðuÞ.
Now, in order to derive the � ! 0 limits of the coef-

ficients aið�Þ and alni ð�Þ (with i ¼ 5, 6, 7), we first deter-
mine the angular momentum L ¼ p� as a function of the

circular-orbit frequency � by solving Eqs. (2.6) and (2.9).
Second, we insert L ¼ Lð�Þ in Eqs. (2.3) and (2.4), set
pr ¼ 0, and expand Eq. (2.4) in PN orders. Third, after
subtracting the rest-mass contribution, we equate the result
to Eq. (3.1), and finally obtain
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a5ð0Þ ¼ � 275139

4480
þ 3

7
e4ð0Þ þ 123

64
�2; (3.4a)

aln5 ð0Þ ¼
64

5
; (3.4b)

a6ð0Þ ¼ � 277 212 5

967 68
� 9

14
e4ð0Þ þ 1

3
e5ð0Þ þ 369

256
�2;

(3.4c)

aln6 ð0Þ ¼ � 7004

105
; (3.4d)

a7ð0Þ ¼ � 238 212 23

322 560
� 27

56
e4ð0Þ � 1

2
e5ð0Þ

þ 3

11
e6ð0Þ � 6

121
eln6 ð0Þ þ

1107

512
�2; (3.4e)

aln7 ð0Þ ¼
398

7
þ 3

11
eln6 ð0Þ: (3.4f)

Note that the values of the 4PN and 5PN log-coefficients
aln5 ð0Þ and aln6 ð0Þ are known analytically.7 Using the nu-

merical results (3.2) for the binding energy, we find for the
other 4PN, 5PN, and 6PN unknown coefficients:

a5ð0Þ ¼ þ23:501 90ð5Þ; (3.5a)

a6ð0Þ ¼ �131:72ð1Þ; (3.5b)

a7ð0Þ ¼ þ118ð2Þ; (3.5c)

aln7 ð0Þ ¼ �255:0ð5Þ: (3.5d)

As a consistency check, we verified that the same values
for these coefficients also follow from expanding in PN
orders the potential A given by Eqs. (2.5a) and (2.14), using
the 6PN-accurate fit to zSFðxÞ given in Eq. (4.16) and
Table II of Ref. [88].

Finally, we note that the values of the coefficients a5ð0Þ
and a6ð0Þ, as determined in Ref. [79] [see Eq. (4.46) there]
by combining the EOB/NR comparison of Ref. [70] with
the constraint coming from the GSF calculation of the
ISCO frequency shift, are in poor agreement with the exact
results (3.5a) and (3.5b); in particular, the signs of both
coefficients are wrongly predicted. Even without taking
into account the constraint from the GSF, the correct values
(3.5a) and (3.5b) lie far outside the (banana-shaped) region
of the a5ð0Þ, a6ð0Þ plane favored by a comparison of the
EOB prediction with the NR waveform of an equal-mass
binary black-hole simulation [70,91]. This disagreement
does not surprise us. Indeed, several causes can affect
the correct values of the coefficients a5ð0Þ and a6ð0Þ
when they are extracted from a EOB/NR calibration,
such as radiation-reaction effects and all higher-order PN
contributions in AðrÞ, which become important during the
plunge and close to merger, but are neglected in those
calibrations.

B. High-order post-Newtonian terms in the EOB
metric potential �D

We will now show that by combining the results of this
paper with those of Ref. [81], we can also determine the
exact or approximate numerical values of the nonlogarith-
mic and logarithmic coefficients �d4ð�Þ, �d5ð�Þ, �dln4 ð�Þ, and
�dln5 ð�Þ appearing at 4PN and 5PN order in the potential �D:

�DðuÞ¼1þ6�u2þð52�6�Þ�u3þ�½ �d4ð�Þþ �dln4 ð�Þlnu�u4
þ�½ �d5ð�Þþ �dln5 ð�Þ lnu�u5þoðu5Þ: (3.6)

The authors of Ref. [81] extracted numerically some un-
known high-order PN terms in the function �SFðxÞ, and
used the relation (2.20) between �SF, ASF, and �DSF to
put constraints on some unknown high-order PN coeffi-
cients appearing in the EOB potentials AðuÞ and �DðuÞ. In
particular, Ref. [81] derived the following constraints on
the � ! 0 limit of the PN coefficients �d4ð�Þ and �d5ð�Þ:

10a5ð0Þ þ �d4ð0Þ þ 9

2
aln5 ð0Þ ¼ 518:6þ7�4; (3.7a)

14a5ð0Þ þ 6 �d4ð0Þ � 15a6ð0Þ
� �d5ð0Þ þ 8aln5 ð0Þ �

11

2
aln6 ð0Þ ¼ 4779�400

þ1200; (3.7b)

as well as the following exact relations between the � ! 0
limit of the PN coefficients �dln4 ð�Þ and �dln5 ð�Þ:

10aln5 ð0Þ þ �dln4 ð0Þ ¼
2512

15
; (3.8a)

14aln5 ð0Þ � 15aln6 ð0Þ þ 6 �dln4 ð0Þ � �dln5 ð0Þ ¼
113 36

7
: (3.8b)

Substituting Eqs. (3.4b), (3.4d), and (3.5) in the above
equations, we get

�d4ð0Þ ¼ þ226:0þ7
�4; (3.9a)

�dln4 ð0Þ ¼ þ 592

15
; (3.9b)

�d5ð0Þ ¼ �649�1200
þ400 ; (3.9c)

�dln5 ð0Þ ¼ � 1420

7
: (3.9d)

As a consistency check, we verified that the values (3.9)
can be recovered by inserting the PN fits to zSFðxÞ and
�SFðxÞ given in Refs. [81,88] into the exact expression
(2.5b) and (2.21) for �D.
In summary, building on the results of Refs. [81,88], we

have computed the 4PN, 5PN, and 6PN terms in the EOB
potential AðuÞ, as well as the 4PN and 5PN terms in the
potential �DðuÞ, at linear order in �.

IV. DISCUSSION AND CONCLUSIONS

The potential AðuÞ given by Eqs. (2.5a) and (2.14)
ensures that the EOB binding energy for circular orbits
coincides, at linear order in �, with the exact result (2.12).

7Actually these logarithmic terms are known for all mass
ratios: aln5 ð�Þ ¼ 64

5 and aln6 ð�Þ ¼ � 7004
105 � 144

5 �.
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In order to investigate the properties of the EOB resumma-
tion, as opposed to the standard PN expansion, we will here
compare this exact result for the binding energy to the PN
predictions, as well as to the EOB binding energy, as
computed with the PN-expanded version of the potential
AðuÞ [cf. Eq. (3.3)].

In Figs. 1 and 2 we show the fractional difference

between the GSF-accurate (specific) binding energy ÊðxÞ
given by Eq. (2.12), and either the EOB (specific) binding
energy obtained from Eqs. (2.8) using the PN-expanded
potential A (at linear order in �), or the PN (specific)
binding energy given in Eq. (3.1), including only the terms
linear in �. The fractional difference is presented as a

function of x ¼ ðM�Þ2=3 up to x ¼ 1=5. We consider three
representative symmetric mass ratios, namely, � ¼ 0:01,
0.1, and 0.25, and several PN orders.8

From Figs. 1 and 2 we observe that up to x ¼ 1=5 the
EOB-approximants are much closer than the PN-
approximants to the exact GSF result for the small mass-
ratio case � ¼ 0:01, and are (roughly) comparable, with
some differences depending on the PN order, to the exact
GSF result for the comparable mass-ratio cases � ¼ 0:1
and � ¼ 0:25.

These results confirm the utility of resumming the PN
dynamics around the test-mass limit if the goal is to obtain
a flexible model that can smoothly bridge between the test-
mass and equal-mass limits. This flexibility exists in the

EOB model not only at the level of the binding energy for
circular orbits, but more importantly at the level of the
Hamiltonian, thus for generic orbits and beyond the inner-
most stable circular orbit. It is a crucial feature that
has allowed to build faithful inspiral-merger-ringdown
templates that can span the entire binary’s mass-ratio range
[57,60–78].
We leave to future work a detailed study of how the EOB

model, augmented with the gravitational self-force results
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FIG. 1 (color online). The fractional difference between the GSF-accurate (specific) binding energy and the (specific) binding energy
calculated at linear order in � using standard PN-approximants (upper plot), and EOB-approximants (lower plot), for � ¼ 0:01 (left
panel) and � ¼ 0:1 (right panel).
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FIG. 2 (color online). Same as in Fig. 1, for an equal-mass
binary (� ¼ 0:25).

8In order to express the EOB binding energy (2.8) at nPN order
as a function of x rather than u, we insert Eq. (2.7) into the
relation x3=2 ¼ M@HEOB=@Lðr ¼ 1=u; pr ¼ 0; LÞ, and invert
the latter to obtain u as a PN expansion in x.
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in AðuÞ and �DðuÞ, performs against numerical-relativity
simulations of comparable-mass black-hole binaries [71].
Comparisons using a 4PN, 5PN, or even 6PN-accurate
EOB model can already be pursued. However, in order to
use the EOB potentials with all PN terms linear in �, more
self-force data is needed for the redshift observable zSFðxÞ
beyond x ¼ 1=5, and for the periastron advance �SFðxÞ
beyond x ¼ 1=6.
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APPENDIX: ON THE GENERIC STRUCTURE OF
THE EFFECTIVE-ONE-BODY HAMILTONIAN

Following Ref. [49], but including also the logarithmic
contributions that were left out of their analysis, we show
that it is possible to build EOB Hamiltonians such that
(i) the mapping (2.4) holds at all PN orders and (ii) the
nongeodesic terms in the square brackets of Eq. (2.3) are
proportional to the radial momentum, at all PN orders, thus
vanishing for circular orbits.

We start by considering the generic structure of the
(specific) two-body Hamiltonian in the center-of-mass
frame, at a given PN order, as a function of the reduced
canonical variables p̂ ¼ p=� and q ¼ r=M:

Ĥðn;kÞ PNðr;pÞ ¼ ðlnqÞk
�
p̂2ðnþ1Þ þ 1

q
½p̂2n þ p̂2n�2ðnp̂Þ2

þ � � � þ ðnp̂Þ2n� þ 1

q2
½p̂2ðn�1Þ þ � � �

þ ðnp̂Þ2ðn�1Þ� þ � � � þ 1

qnþ1

�
; (A1)

where we introduce the notations q � ffiffiffiffiffiffiffiffiffiffi
q � qp

and ðnp̂Þ �
n � p̂, and where we use a subscript ðn; kÞPN to denote the
contribution to the nPN-accurate Hamiltonian which is
Oðc�2nÞ and proportional to ðlnqÞk, with k � 0. Indeed,
the general structure of the near-zone expansion (formally
r=c ! 0) of the PN metric is known to be of the type
½lnðr=cÞ�kðr=cÞn [92], yielding terms proportional to
ðlnqÞk in the conservative dynamics starting at 4PN order
[93] (see also [85] for a more recent discussion).

The number of independent coefficients in the
Hamiltonian (A1) is easily found to be [49]

CHðn; kÞ ¼ ðnþ 1Þðnþ 2Þ
2

þ 1: (A2)

The mapping of the real Hamiltonian onto the effective
Hamiltonian can be achieved through a canonical trans-
formation [47,49]. The most general generating function
reads

Gðn;kÞPNðr;pÞ ¼ ðlnqÞkðr � pÞ
�
p̂2n þ 1

q
½p̂2ðn�1Þ þ � � �

þ ðnp̂Þ2ðn�1Þ� þ � � � þ 1

qn

�
: (A3)

Thus, the number of independent coefficients in the gen-
erating function is [49]

CGðn; kÞ ¼ nðnþ 1Þ
2

þ 1: (A4)

At 3PN or higher orders, nongeodesic (NG) terms resulting
in quartic or higher powers of the momentum p̂ can appear
inside the square brackets of the effective Hamiltonian
(2.3). At 3PN order, the NG terms symbolically read

Q 3PNðr;pÞ ¼ 1

q2
½p̂4 þ p̂2ðnp̂Þ2 þ ðnp̂Þ4�: (A5)

(The first logarithms appear at 4PN order.) At higher PN
orders (n > 3), the generic structure is

Qðn;kÞ PNðr;pÞ ¼ ðlnqÞk
�
1

q2
½p̂2n�2 þ p̂2n�4ðnp̂Þ2

þ � � � þ ðnp̂Þ2n�2� þ � � �
þ 1

qn�1
½p̂4 þ p̂2ðnp̂Þ2 þ ðnp̂Þ4�

�
: (A6)

It is straightforward to derive that the number of arbitrary
coefficients in Qðn;kÞPN is

CNGðn; kÞ ¼ ðnþ 3Þðn� 2Þ
2

; (A7)

hence the number of NG terms that depend on the radial
momentum ðnp̂Þ is

Ccirc
NG ðn; kÞ ¼ CNGðn; kÞ � ðn� 2Þ ¼ ðnþ 1Þðn� 2Þ

2
:

(A8)

Given that at the PN order ðn; kÞ we have two new coef-
ficients in the effective metric potentials A and �D, multi-
plied, respectively, by unþ1ðlnuÞk and unðlnuÞk, but no new
coefficient in the mapping between the real and effective
Hamiltonians, because we assume that (2.4) is valid at all
PN orders, we obtain that the difference between the
number of equations to satisfy and the number of un-
knowns is

	ðn; kÞ ¼ CHðn; kÞ � CGðn; kÞ � 2� Ccirc
NGðn; kÞ

¼ �nðn� 3Þ
2

; (A9)

which is always zero or negative starting at 3PN (n ¼ 3).
This proves that for all n � 3 (and any k � 0), it is possible
to build the mapping between the real and the effective
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descriptions in such a way that Eq. (2.4) holds, and circular
orbits follow from a ‘‘geodesic’’ effective Hamiltonian
[i.e., all the higher-momentum terms inside the square
brackets in Eq. (2.3) can be chosen to be proportional to

the radial momentum ðnp̂Þ]. It is for this class of EOB
Hamiltonians that we have determined the effective metric
potentials A and �D at all PN orders, linearly in the sym-
metric mass ratio �.
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