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Gravitational waves contain tail effects which are due to the backscattering of linear waves in the

curved space-time geometry around the source. In this paper we improve the knowledge and accuracy of

the two-body inspiraling post-Newtonian (PN) dynamics and gravitational-wave signal by computing the

spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN order in the gravitational-

wave energy flux, and 2.5PN and 3PN orders in the wave polarizations. This is then used to derive the

spin-orbit tail effects in the phasing through 3PN order. Our results can be employed to carry out more

accurate comparisons with numerical-relativity simulations and to improve the accuracy of analytical

templates aimed at describing the whole process of inspiral, merger, and ringdown.
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I. INTRODUCTION

A. Motivation

During the last ten years a network of ground-based
laser-interferometer gravitational-wave detectors has
been built and has taken data at design sensitivity. It is a
worldwide network composed of the Laser Interferometer
Gravitational Wave Observatory (LIGO), Virgo, GEO-600,
and TAMA, and it has operated in the frequency range
10–103 Hz. Coalescing binary systems composed of black
holes and/or neutron stars are among the most promising
sources for those detectors. By 2016 the gravitational-wave
detectors will be upgraded to a sensitivity such that event
rates for coalescing binary systems will increase by ap-
proximately a factor 1000, thus making likely the first
detection of gravitational waves from those systems. In
the future, space-based detectors like LISA should detect
supermassive black-hole binary systems in the low fre-
quency band 10�4–10�2 Hz.

The search for gravitational waves from coalescing bi-
nary systems and the extraction of source parameters are
based on the matched-filtering technique, which requires a
rather accurate knowledge of the waveform of the incom-
ing signal. In particular, the detection and subsequent data
analysis are made by using a bank of templates modeling
the gravitational wave emitted by the source. The need for
a faithful template bank has driven the development of
accurate templates over the last 30 years.

The post-Newtonian (PN) expansion is the most power-
ful approximation scheme in analytical relativity capable
of describing the two-body dynamics and gravitational-
wave emission of inspiraling compact binary systems [1].
The PN expansion is an expansion in the ratio of the
characteristic orbital velocity of the binary v to the speed
of light c. However, as the black holes approach each other
toward merger, we expect the PN expansion to lose accu-
racy because the velocity of the holes approaches the speed

of light. At that point, numerical relativity [2–4] plays
a crucial role, providing us with the dynamics and
gravitational-wave emission of the last cycles of inspiral,
followed by the merger and ringdown phases. Furthermore,
by properly combining PN predictions and numerical rela-
tivity results, it is possible to describe analytically and/or
numerically with high accuracy the full gravitational-wave
signal [5–8].
Black holes in binary systems can carry spins, and when

spins are not aligned with the orbital angular momentum,
spins induce precession of the orbital plane (see e.g.
Ref. [9]). This adds substantial complexity to the gravita-
tional waveforms, making it indispensable to include spin
effects in templates used for the search. Moreover, as found
a long time ago [10–18], gravitational waves contain tail
effects which are due to the backscattering of linear waves
in the curved space-time geometry around the source
(and primarily generated by its mass). This causes the
gravitational-wave signal to depend on the entire history
of the binary system.
In this paper we improve the knowledge and accuracy of

the two-body inspiraling dynamics and gravitational-wave
signal by computing the spin-orbit (SO) terms induced by
tail effects. This is the continuation of our previous work
on spins [19,20], where we obtained the next-to-leading
2.5PN SO contributions in the equations of motion and
gravitational-wave energy flux. Here, we derive those
SO terms at 3PN order in the gravitational-wave energy
flux, where they are entirely due to tails. Furthermore, we
obtain the SO terms at 2.5PN and 3PN orders in the wave
polarizations that are specifically due to tails, leaving aside
other SO terms at these orders that come from instanta-
neous (nontail) linear contributions and which will not be
computed here.
We obtain the energy flux in two independent ways, first

directly using the radiative multipole moments, and second
by differentiating and squaring the gravitational-wave
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polarizations. To compute the SO-tail effects in the wave
polarizations we solve the two-body dynamics, taking into
account spin precession. Assuming quasicircular adiabatic
inspiral, we also compute the 3PN SO terms induced by
tails in the gravitational-wave phasing. These results can
be used to improve the accuracy of inspiraling templates, to
carry out a comparison with numerical-relativity predic-
tions, and to improve the accuracy of effective-one-body
and phenomenological templates [5–8].

As an important check of our results we obtain the 3PN
SO-tail terms in the energy flux in the test-particle limit,
and find perfect agreement with earlier PN computations
based on black-hole perturbation induced by the motion of
a test particle around a massive black hole [21].

This paper is organized as follows. In Sec. II we review
the post-Newtonian multipole moment formalism and dis-
cuss relevant properties of tails. In Sec. III we describe
how spin effects are included in the PN formalism and
derive the binary’s evolution equations when black holes
carry spins. In Sec. IV we obtain the time evolution of the
moving triad and solve the precessing dynamics at the
relevant PN order. In Sec. V we compute the 2.5PN and
3PN SO-tail effects in the gravitational waveform and
polarizations. Restricting ourselves to quasicircular
adiabatic inspiral, we derive in Sec. VI the 3PN SO-tail
effects in the energy flux and in the gravitational phasing.
Section VII contains our main conclusions. In Appendix A
we check that the equations of motion do not contain
physical SO effects at 3PN order. In Appendix B we
investigate the secular evolution of the spins, and finally
in Appendix C we give the explicit gravitational-wave
polarizations.

B. Notation

In this paper we adopt the following notations. G is the
Newton constant and c is the speed of light. As usual we
refer to nPN as the post-Newtonian terms with formal
order Oðc�2nÞ relative to the Newtonian acceleration in
the equations of motion, or to the lowest-order quadrupole-
moment formalism for the radiation field. Greek indices
are space-time indices, and the Latin ones are space in-
dices. The quantity L ¼ i1 � � � i‘ denotes a multi-index
composed of ‘multipolar spatial indices i1; � � � ; i‘ ranging
from 1 to 3. Similarly L� 1 ¼ i1 � � � i‘�1 and kL� 2 ¼
ki1 � � � i‘�2; NL ¼ Ni1 � � �Ni‘ is the product of ‘ spatial

vectors Ni (similarly for xL ¼ xi1 � � � xi‘). We indicate

with @L ¼ @i1 � � � @i‘ and @kL�2 ¼ @k@i1 � � � @i‘�2
the prod-

uct of partial derivatives @i ¼ @=@xi. In the case of
summed-up (dummy) multi-indices L, we do not write
the ‘ summations from 1 to 3 over their indices.
Furthermore, the symmetric-trace-free (STF) projection
is indicated using brackets, ThLi ¼ STF½TL�; thus UL ¼
UhLi and VL ¼ VhLi for STF moments. For instance, we

write xhivji ¼ 1
2 ðxivj þ xjviÞ � 1

3�ijx � v. The transverse-

traceless (TT) projection operator is denoted

P TT
ijkl ¼ P ikP jl � 1

2P ijP kl, where P ij ¼ �ij � NiNj is

the projector orthogonal to the unit direction N ¼ X=R
of a radiative coordinate system X� ¼ ðcT;XÞ. The quan-
tity "ijk is the Levi-Civita antisymmetric symbol such that

"123 ¼ 1. Finally, we denote time derivatives with a super-
script ðnÞ, and we indicate the symmetrization operation
with round parentheses.

II. WAVE GENERATION FORMALISM

The gravitational waveform hTTij , generated by an iso-

lated source described by a stress-energy tensor T�� with
compact support, and propagating in the asymptotic re-
gions of the source, is the TT projection of the metric
deviation at the leading-order 1=R in the distance to the
source. It is parametrized by STF mass-type moments UL

and current-type ones VL, which constitute the observables
of the waveform at infinity from the source and are called
the radiative moments [22]. The general expression of the
TT waveform, in a suitable radiative coordinate system
X� ¼ ðcT;XÞ, reads, when neglecting terms of the order
of 1=R2 or higher,

hTTij ¼ 4G

c2R
P TT

ijkl

Xþ1

‘¼2

NL�2

c‘‘!

�
�
UklL�2 � 2‘

cð‘þ 1ÞNm"mnðkVlÞnL�2

�
: (2.1)

Here the radiative moments UL and VL are functions of the
retarded time TR � T � R=c in the radiative coordinate
system (we denote R ¼ jXj). The integer ‘ refers to the
multipolar order, and N ¼ X=R ¼ ðNiÞ is the unit vector
pointing from the source to the far away detector. The TT
projection operator P TT

ijkl and other notations are defined in

Sec. I B. With P ¼ ðPiÞ and Q ¼ ðQiÞ denoting two unit
polarization vectors, orthogonal and transverse to the di-
rection of propagation N, the two ‘‘plus’’ and ‘‘cross’’
polarization states of the waveform read as

hþ ¼ PiPj �QiQj

2
hTTij ; (2.2a)

h� ¼ PiQj þ PjQi

2
hTTij : (2.2b)

Our convention for the choice of the polarization vectors P
and Q in the case of binary systems will be specified in
Fig. 2. Plugging Eq. (2.1) into the standard expression for
the gravitational-wave energy flux, we get [22]

F ¼ Xþ1

‘¼2

G

c2‘þ1

� ð‘þ 1Þð‘þ 2Þ
ð‘� 1Þ‘‘!ð2‘þ 1Þ!!U

ð1Þ
L Uð1Þ

L

þ 4‘ð‘þ 2Þ
c2ð‘� 1Þð‘þ 1Þ!ð2‘þ 1Þ!!V

ð1Þ
L Vð1Þ

L

�
: (2.3)

BLANCHET, BUONANNO, AND FAYE PHYSICAL REVIEW D 84, 064041 (2011)

064041-2



A. Expression of the radiative moments

In the multipolar-post-Minkowskian formalism [13–15],
the radiative moments are expressed in terms of two other
sets of moments, referred to as the ‘‘canonical’’ moments
ML, SL, and which are relevant to the description of the
source’s near zone. The relation between the radiative
moments UL, VL and the canonical ones ML, SL encodes
all the nonlinearities in the wave propagation between
the source and the detector [15]. Those relations may be
reexpanded in a PN way and are then seen to contain, at the
leading 1.5PN order, the contribution of the so-called
gravitational-wave tails, due to backscattering of linear
waves onto the space-time curvature associated with the
total mass of the source itself. The explicit expressions at
1.5PN order are [15,23]

ULðTRÞ¼Mð‘Þ
L þ2GM

c3

Z TR

�1
dtMð‘þ2Þ

L ðtÞ
�
ln

�
TR� t

2�0

�
þ�‘

�

þO
�
1

c3

�
nontail

; (2.4a)

VLðTRÞ¼Sð‘ÞL þ2GM

c3

Z TR

�1
dtSð‘þ2Þ

L ðtÞ
�
ln

�
TR� t

2�0

�
þ�‘

�

þO
�
1

c3

�
nontail

; (2.4b)

where M is the Arnowitt-Deser-Misner mass associated
with the source. It also coincides with the mass monopole
moment. The remainders Oðc�3Þnontail in Eqs. (2.4) denote
some correction terms which are at least of order 1.5PN
and are instantaneous or contain the nonlinear memory
effect which will not be considered in the present compu-
tation. Here �‘ and �‘ denote some numerical constants
given by [23]

�‘ ¼ 2‘2 þ 5‘þ 4

‘ð‘þ 1Þð‘þ 2Þ þ
X‘�2

k¼1

1

k
; (2.5a)

�‘ ¼ ‘� 1

‘ð‘þ 1Þ þ
X‘�1

k¼1

1

k
: (2.5b)

The constant �0 in Eqs. (2.4) is a freely specifiable time
scale entering the relation between the radiative time
TR and the corresponding retarded time in harmonic
coordinates.

The canonical moments ML and SL are themselves
linked to six sets of multipole moments characterizing
the source, collectively called the ‘‘source’’ moments and
denoted IL, JL, WL, XL, YL, ZL. The point is that those
source moments are known as explicit integrals extending
over the pseudo-energy-momentum tensor of the matter
fields and the gravitational field of the source [23,24]. In
the following we shall essentially need IL and JL which
represent the main mass and current moments of the
source. The other moments WL, XL, YL, and ZL play a
little role because they are associated with a possible gauge
transformation performed at linear order. It turns out that

the difference between the canonical momentsML, SL and
the source moments IL, JL arises only at the 2.5PN order:

ML ¼ IL þO
�
1

c5

�
; (2.6a)

SL ¼ JL þO
�
1

c5

�
: (2.6b)

For the present application it will be sufficient to con-
sider the source mass moments IL at 1PN order and the
current ones JL at Newtonian order (see the discussion in
Sec. III B). These are given by [25]

IL ¼
Z

d3x

�
x̂L�þ 1

2c2ð2‘þ 3Þ x̂Ljxj
2�ð2Þ

� 4ð2‘þ 1Þ
c2ð‘þ 1Þð2‘þ 3Þ x̂iL�

ð1Þ
i

�
þO

�
1

c4

�
; (2.7a)

JL ¼ "ijhi‘
Z

d3xx̂L�1ii�j þO
�
1

c2

�
: (2.7b)

The other moments we shall need are the mass monopole
moment M and the monopole of the moment WL, which
are given by

M ¼
Z

d3x�þO
�
1

c2

�
; (2.8a)

W ¼ 1

3

Z
d3xxi�i þO

�
1

c2

�
: (2.8b)

The mass, current, and tensor densities �, �i, �ij in

Eqs. (2.7) and (2.8), are defined as (where Tii � �ijT
ij)

� ¼ T00 þ Tii

c2
; �i ¼ T0i

c
; �ij ¼ Tij: (2.9)

We recall that, e.g., �ðnÞ in Eqs. (2.7) means taking n-time
derivatives.
The spin parts of the source moments in Eqs. (2.7) will

come from the model we adopt for the stress-energy tensor
T�� appropriate for spinning compact binaries (see details
in Sec. III). Importantly, we notice that for the accuracy
required by our calculation of the spin effects due to tails,
all integrands in Eqs. (2.7) have compact support. This is in
contrast with the spin effects at 2.5PN order which neces-
sitate noncompact supported higher-order terms in the
source moments [20]. (We also find that the second term
in IL can be ignored in the present application to spins.)

B. Computing the tail integrals

The tail integrals in Eqs. (2.4) extend over the entire past
of the evolving source and it is a priori a nontrivial task to
compute them. Here we recall, based on Refs. [15,16], that
the tails are actually very weakly sensitive (in a post-
Newtonian sense) to the past history of the source, and
can essentially be computed using the current dynamics,
i.e. at current time TR, of the source.
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We have to compute, e.g., the integral appearing in the
radiative mass multipole moment (2.4a), in which we can
replace, following (2.6a), the canonical momentML by the
source moment IL. Thus,

U LðTRÞ ¼
Z TR

�1
dtIð‘þ2Þ

L ðtÞ ln
�
TR � t

2�00

�
; (2.10)

where we pose �00 ¼ �0e
��‘ .

Let us introduce a constant time interval T to split the
integral (2.10) into some contribution coming from the
‘‘recent past’’ and extending from the current time TR

to TR �T , and the remaining contribution called the
‘‘remote past,’’ from TR �T to�1 in the past. The recent
past can be thought of as corresponding to the most recent
orbital period of a compact binary system, while the re-
mote past will include the details (eventually unknown) of
the formation and early past evolution of the compact
binary. However, we shall prove that our result is indepen-
dent of the chosen time scale T .

To control the convergence of the tail integral (2.10) in
the past we make a physical assumption regarding the
behavior of the multipole moment ILðtÞ when t ! �1.
We assume that at very early times the source was formed
from a bunch of freely falling particles initially moving on
some hyperbolic-like orbits, and forming at a later time a
gravitationally bound system by emission of gravitational
radiation. The gravitational motion of initially free parti-
cles is given by xiðtÞ ¼ VitþWi lnð�tÞ þ Xi þ oð1Þ,
where Vi and Xi denote constant vectors, and Wi ¼
GmVi=V3 (see Ref. [26] for a proof; to simplify we con-
sider the relative motion of two particles with total mass
m). Here the Landau remainder o symbol satisfies
@noð1Þ=@tn ¼ oð1=tnÞ. From that physical assumption we
find that the multipole moment behaves, when t ! �1,
like

ILðtÞ ¼ ALt
‘ þ BLt

‘�1 lnð�tÞ þ CLt
‘�1 þ oðt‘�1Þ;

(2.11)

where AL, BL, and CL are constant tensors. The time
derivatives of the moment appearing in Eq. (2.10) are
therefore dominantly like

Ið‘þ2Þ
L ðtÞ ¼ DLt

�3 þ oðt�3Þ; (2.12)

which ensures that the integral (2.10) is convergent.
Next we integrate the remote-past integral (from TR �

T to�1) by parts and make use of our assumption (2.11)
and (2.12) to arrive at (posing t ¼ TR �T x)

ULðTRÞ¼ Ið‘þ1Þ
L ðTRÞln

�
T
2�00

�
þT

Z 1

0
dxlnxIð‘þ2Þ

L ðTR�T xÞ

þ
Z þ1

1

dx

x
Ið‘þ1Þ
L ðTR�T xÞ: (2.13)

At this stage it is convenient to perform a Fourier decom-
position of the multipole moment, i.e.

ILðtÞ ¼
Z þ1

�1
d�

2�
~ILð�Þe�i�t: (2.14)

[The Fourier coefficients satisfy ~I�Lð�Þ ¼ ~ILð��Þ since
the moment is real.] Inserting (2.14) into (2.13) we obtain
a closed-form result in the Fourier domain thanks to the
mathematical formula [27]

�
Z 1

0
dxlnxei�xþ i

Z þ1

1

dx

x
ei�x¼��

2
sð�Þ� iðlnj�jþ	EÞ;

(2.15)

where � ¼ �T , with sð�Þ and j�j denoting the sign and
the absolute value, and 	E being the Euler constant. Finally
the result reads

ULðTRÞ ¼ i
Z þ1

�1
d�

2�
ð�i�Þ‘þ1~ILð�Þe�i�TR

�
�
�

2
sð�Þ þ iðlnð2j�j�00Þ þ 	EÞ

�
: (2.16)

We observe that the arbitrary time scale T has been
canceled from this result.
Later we shall apply this result to the computation of the

waveform and energy flux of a spinning compact binary
system. A priori, since the tail integral (2.10) depends on all
the past history of the binary (with the current binary’s
dynamics being the result of its long evolution by gravita-
tional radiation emission), we expect that the binary’s con-
tinuous spectrumof frequencies� should contain all orbital
frequencies at any epoch in the past, say !ðtÞ with t � TR,
besides the current orbital frequency!ðTRÞ. However, it has
been shown in the Appendix of Ref. [16] that one can
actually compute the tail integral by considering only the
current frequency !ðTRÞ. Indeed the error made by this
procedure is small in a post-Newtonian sense, being of the
order of Oð
 ln
Þ, where 
 ¼ _!=!2 denotes the adiabatic
parameter associated with the gravitational radiation emis-
sion, and evaluated at the current timeTR. In a PN expansion
we have 
ðTRÞ ¼ Oð1=c5Þ so the error made by replacing
the past dynamics by the current one is of the order of
Oðlnc=c5Þ and can be neglected. The proof given in
Ref. [16] is based on a simple model of binary evolution
in the past, where an always circular orbit is decaying by
radiation following the lowest-order quadrupole formula,
and spins are neglected. In this paper we shall assume that
this result remains valid for spinning binaries.

III. APPLICATIONS TO SPINNING BINARIES

A. Spin vectors for pointlike objects

Following our previous work [19,20] we base our
calculations on the model of point particles with spins
[28–40]. The stress-energy tensor T�� of a system of
spinning particles is the sum of a monopolar piece, made
of Dirac delta functions, plus the dipolar or spin piece,
made of gradients of delta functions:
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T�� ¼ c2
X
A

Z þ1

�1
d�A

�
p
ð�
A u�ÞA

�ð4Þðx� yAÞffiffiffiffiffiffiffiffiffiffi�gA
p

� 1

c
r�

�
�S�ð�A u�ÞA

�ð4Þðx� yAÞffiffiffiffiffiffiffiffiffiffi�gA
p

��
; (3.1)

where �ð4Þ is the four-dimensional Dirac function,
x� is the field point, y

�
A is the worldline of particle A, u

�
A ¼

dy
�
A=ðcd�AÞ is the four-velocity, such that gA��u

�
Au

�
A ¼ �1,

where gA�� � g��ðyAÞ denotes the metric at the particle’s

location, p
�
A is the linear momentum of the particle, and

�S��
A denotes its antisymmetric spin angular momentum.

Our notation and conventions are the same as in
Refs. [19,20] which provide more details, except that
here we shall denote using an overbar (i.e. �S

��
A ) the original

spin variable used in [19,20]. Note that with our convention
the spin variable has the dimension of an angular momen-
tum times c.

In order to fix unphysical degrees of freedom associated
with an arbitrariness in the definition of �S�� in the case of
point particles (and associated with the freedom in the
choice for the location of the center-of-mass worldline
of extended bodies), we adopt the covariant supple-
mentary spin condition, also called the Tulczyjew condi-
tion [33,34]:

�S ��
A pA

� ¼ 0; (3.2)

which allows the natural definition of the spin four-vector
�SA� in such a way that

�S
��
A ¼ � 1ffiffiffiffiffiffiffiffiffiffi�gA

p "����
pA
�

mAc
�SA�; (3.3)

where "���� is the four-dimensional antisymmetric Levi-
Civita symbol (such that "0123 ¼ 1). For the spin vector �SA�
itself, we choose a four-vector that is purely spatial in the
particle’s instantaneous rest frame, which means that in
any frame

�S A
�u

�
A ¼ 0: (3.4)

This choice is also adopted in Refs. [41–44]. As a conse-
quence of the condition (3.2), we can check that the mass
defined by m2

Ac
2 ¼ �p

�
Ap

A
� is constant along the trajecto-

ries, i.e. dmA=d�A ¼ 0.
Important simplifications occur in the case of SO inter-

actions, which are linear in the spins. Neglecting quadratic
(spin-spin) interactions, the linear momentum is simply
linked to the four-velocity as p�

A ¼ mAcu
�
A , so the supple-

mentary spin condition (3.2) reduces to �S
��
A uA� ¼ 0, and the

equation of evolution of the spins is given by

D �SA�

d�A
¼ 0; (3.5)

which means that the spin is parallely transported along the
particle’s trajectory.

Following [19,20] we adopt in a first stage as the vector
spin variable the contravariant components of the vector
�SiA, which are obtained by raising the index on

�SAi by means

of the spatial metric 	ij
A , denoting the inverse of the

covariant spatial metric 	A
ij � gAij evaluated at point A

(i.e. such that 	ik
A 	

A
kj ¼ �i

j). Hence our initial spin

variable is

�S i
A ¼ 	ij

A
�SAj : (3.6)

This definition of the spin vector �SA ¼ ð �SiAÞ agrees with the
choice already made in Refs. [43,44].
At the leading SO approximation, the contravariant spin

variables �SA defined by Eq. (3.6) coincide with the spin
variables with constant magnitude broadly used in the
literature (see, e.g., Ref. [42]). At the next-to-leading order,
the variables �SA differ from constant-magnitude spins, and
their relationship has been worked out at 2PN order in
Eq. (7.4) of Ref. [20]. In the present paper we shall denote
the constant-magnitude spins by SA (although they were
denoted Sc

A in Refs. [19,20]). We know that it is actually
better when presenting final results to switch to the
constant-magnitude spins SA since they have a simpler
precession equation (and turn out to be secularly con-
served, i.e., over a radiation-reaction time scale; see
Ref. [45] and Appendix B below).
For two bodies (A ¼ 1, 2) the relationship between the

constant-magnitude spins and the original spin variables up
to 1PN order is

S 1 ¼ �S1 þ 1

c2

�
� 1

2
ðv1

�S1Þv1 þGm2

r12
�S1

�
þO

�
1

c4

�
;

(3.7)

together with the relation for the other particle obtained by
exchanging all particle labels. We denote by vA ¼ dyA=dt
the coordinate velocity of the particle A (with mass mA)
and by r12 ¼ jy1 � y2j the relative distance. See Ref. [20]
for more accurate formulas extending (3.7) to 2PN order.
In the present paper we shall consistently work only with
the constant-magnitude spins SA.
In the case of binary systems it is convenient to pose

S ¼ S1 þ S2; (3.8a)

� ¼ S2

X2

� S1

X1

; (3.8b)

where X1 ¼ m1=m and X2 ¼ m2=m (with m ¼ m1 þm2).
In addition we find it useful to occasionally use the dimen-
sionless spin variables

s ¼ S

Gm2
; � ¼ �

Gm2
: (3.9)
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B. Multipole moments with spin-orbit effects

The matter-source densities (2.9) depend on the compo-
nents of the stress-energy tensor. At the leading PN order,
the spin contributions therein (indicated by the subscript S)
reduce to

�
S
¼ � 2

c3
"ijkv

i
1S

j
1@k�1 þ 1 $ 2þO

�
1

c5

�
; (3.10a)

�
Si
¼ � 1

2c
"ijkS

j
1@k�1 þ 1 $ 2þO

�
1

c3

�
; (3.10b)

�
Sij

¼ � 1

c
"klðiv

jÞ
1 S

k
1@l�1 þ 1 $ 2þO

�
1

c3

�
; (3.10c)

where �1ðx; tÞ ¼ �½x� y1ðtÞ� means the three-
dimensional Dirac delta function evaluated on particle 1,
and 1 $ 2 means the same quantity but corresponding to
particle 2.

In Ref. [20] the SO terms have been computed in the
source mass quadrupole moment Iij up to next-to-leading

2.5PN order and the source current quadrupole moment Jij
up to next-to-leading 1.5PN order. All the other source
moments were computed at the leading SO order. Those
results are sufficient for our purpose. Actually, to compute
the specific contributions of tails we need only the
moments at leading SO order, given for general ‘ by

I
S
L ¼ 2‘

c3ð‘þ 1Þ ½‘v
i
1S

j
1"ijhi‘y

L�1i
1

� ð‘� 1Þyi1Sj1"ijhi‘vi‘�1

1 yL�2i
1 � þ 1 $ 2þO

�
1

c5

�
;

(3.11a)

J
S
L ¼ ‘þ 1

2c
yhL�1
1 Si‘i1 þ 1 $ 2þO

�
1

c3

�
: (3.11b)

Because the leading SO terms scale asOð1=c3Þ in the mass
source moments, and as Oð1=cÞ in the current source mo-
ments, the number of nonlinear terms needed in the radia-
tive moments [Eqs. (5.1) below] is small. We refer to
Sec. V of [20] for higher-order expressions of SO contri-
butions of the source quadrupole moments.

C. Equations of motion with spin-orbit effects

Here we investigate the case where the binary’s orbit is
nearly circular, i.e., whose radius is constant apart from
small perturbations induced by the spins (as usual, we
neglect the gravitational radiation damping at 2.5PN or-
der). We denote by x ¼ y1 � y2 the relative position of the
particles (and v ¼ dx=dt). Following Ref. [42] we intro-
duce an orthonormal moving triad fn;�; ‘g defined by
n ¼ x=r as before, ‘ ¼ LN=jLNj, where LN � m�x� v
with � ¼ X1X2 denotes the Newtonian orbital angular
momentum and � the symmetric mass ratio, and � ¼
‘� n. Those vectors are represented on Fig. 1, which
shows the geometry of the system. The orbital frequency
! is defined for general, not necessarily circular orbits, by

v ¼ _rnþ r!�, where _r represents the derivative of r with
respect to the coordinate time t. It is also equal to the scalar
product of n and v which we denote as ðnvÞ ¼ _r. The
components of the acceleration a ¼ dv=dt along the basis
fn;�; ‘g are then given by

n � a ¼ €r� r!2; (3.12a)

� � a ¼ r _!þ 2 _r!; (3.12b)

‘ � a ¼ �r!

�
� � d‘

dt

�
: (3.12c)

We project out the spins on this orthonormal basis, defining
S ¼ Snnþ S��þ S‘‘, and similarly for �. Next we im-
pose the restriction to quasicircular precessing orbits which
is defined by the conditions €r ¼ 0 ¼ _r so that v2 ¼ r2!2

(neglecting radiation-reaction damping terms). In this way
we find [19] that the equations of the relative motion in the
frame of the center of mass are

dv

dt
¼ �!r½!nþ!prec‘� þO

�
1

c6

�
: (3.13)

There is no component of the acceleration along �.
Comparing with Eqs. (3.12) in the case of circular orbits,
we see that ! is indeed the orbital frequency, while what
we call the ‘‘precessional frequency’’ !prec ¼ � � d‘=dt is
proportional to the variation of ‘ in the direction of the
velocity v ¼ r!�. We know that !2 is given by

FIG. 1 (color online). We show (i) the source frame defined by
the orthonormal basis ðx; y; zÞ, (ii) the instantaneous orbital
plane which is described by the orthonormal basis ðx‘; y‘; ‘Þ,
(iii) the moving triad ðn;�; ‘Þ, and (iv) the direction of the
total angular momentum J (agreeing, by definition, with
the z direction). Dashed lines show projections into the
x� y plane.
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!2 ¼ Gm

r3
f1þ 	ð�3þ �Þ þ 	3=2ð�5s‘ � 3��‘Þg

þO
�
1

c4

�
; (3.14)

where we denote � � X1 � X2 and s‘ � ðs‘Þ ¼ s � ‘,
where the spin variables are defined by Eq. (3.9). The PN
parameter is 	 � Gm=ðrc2Þ and we have included only the
1PN nonspin term and the leading SO correction at 1.5PN
order. On the other hand, we get [19]

!prec ¼ �!	3=2ð7sn þ 3��nÞ þO
�
1

c4

�
; (3.15)

where sn � ðsnÞ ¼ s � n. At the leading 1.5PN SO order
the orbital frequency (3.14), as well as !prec, remain un-

changed if wewere to substitute some other variables to the
spins S, �. However, when working at a higher PN ap-
proximation, it is more convenient to use the spin variables
S, �, built from the constant-magnitude spins. The main
advantage of the spins SA is that they satisfy the usual-
looking precession equations

dSA

dt
¼ �A � SA; (3.16)

showing that the spins precess around the direction of �A,
and at the rate �A ¼ j�Aj. Equation (3.16) could, in
principle, be extended to any PN order (at the linear SO
level). The precession’s angular-frequency vectors �A

have been computed up to the 2PN order for circular orbits
in Ref. [20]. Here, we shall only need the 1PN leading
order:

�1 ¼ !	

�
3

4
þ �

2
� 3

4
�

�
‘þO

�
1

c4

�
: (3.17)

To obtain �2 we simply have to change � into ��. Both
precession frequencies are constant in magnitude and in-
dependent of the spins in the 1.5PN dynamics.

The equations of motion (3.13) and the precession equa-
tions (3.16) together leave invariant the total angular mo-
mentum,

J ¼ Lþ 1

c
S;

dJ

dt
¼ 0; (3.18)

whereL denotes the orbital angular momentum. For future
reference we give the components of L along the triad
basis at 1PN order for nonspin effects and at the leading
1.5PN order for spin ones [19,20]:

L‘ ¼ Gm2�

c
x�1=2

�
1þ

�
3

2
þ �

6

�
x

�
; (3.19a)

Ln ¼ �x

c

�
1

2
Sn þ 1

2
��n

�
; (3.19b)

L� ¼ �x

c
½�3S� � ����: (3.19c)

Note that the components Ln and L� are due to spin effects
arising at order Oðc�3Þ. See Eq. (7.10) of Ref. [20].

IV. EVOLUTION OF THE TRIAD fn;�; ‘g
Using Eq. (3.13) the time derivatives of the three moving

triad vectors fn;�; ‘g can be expressed with respect to that
triad basis as

dn

dt
¼ !�; (4.1a)

d�

dt
¼ �!n�!prec‘; (4.1b)

d‘

dt
¼ !prec�: (4.1c)

Equivalently, introducing the orbital precession vector
! ¼ !‘ and spin precession vector !prec ¼ �!precn,

these equations can be written as

dn

dt
¼ !� n; (4.2a)

d�

dt
¼ ð!þ!precÞ � �; (4.2b)

d‘

dt
¼ !prec � ‘: (4.2c)

We recall that the spin precession frequency is given by
Eq. (3.15) or, equivalently,

!prec ¼ �!x3=2ð7sn þ 3��nÞ þO
�
1

c4

�
; (4.3)

where we pose x � ðGm!=c3Þ2=3 which defines a gauge-
invariant PN parameter agreeing with 	 at leading order.
We shall now solve the evolution equations for the

moving triad fn;�; ‘g at the 1.5PN order in the conserva-
tive dynamics (i.e., neglecting radiation reaction). We
recall that the spin variables we use in this calculation
are those with constant magnitude, denoted here SA.
It is convenient to introduce a fixed (inertial) orthonor-

mal basis fx; y; zg; see Figs. 1 and 2. For a given value of
the total angular momentum J (a constant vector), and of
the direction N ¼ X=R of the detector as seen from the
source, a canonical choice of the basis vectors is as fol-
lows: (i) z is defined to be the normalized value of J,
namely, J=J; (ii) y is orthogonal to the plane spanned byN
and z and points to the direction that corresponds to
the positive orientation of the acute angle hz;Ni, i.e. y ¼
z�N=jz�Nj; (iii) x completes the triad. We see that x,
z, and N are coplanar by construction. Then, we introduce
the standard spherical coordinates with the inclination
angle measured from the zenith direction z and the azimu-
thal angle measured from x. The spherical coordinates of
N and ‘ are denoted as ð�; ’Þ and ð
; �Þ, respectively, and
since N lies in the same plane as x and z, we have ’ ¼ 0
(see Fig. 2). Since � is the angle between the total and
orbital angular momenta, we have
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sin� ¼ jJ� ‘j
J

: (4.4)

The angles ð
; �Þ are referred to as the precession angles.
We now derive the time evolution of our triad vectors

from that of the precession angles ð
; �Þ, and of an appro-
priate phase � that specifies the position of n with respect
to some reference direction. Following Ref. [46], we in-
troduce the unit vectors

x‘ ¼ J� ‘

jJ� ‘j ; y‘ ¼ ‘� x‘; (4.5)

such that fx‘; y‘; ‘g is an orthonormal basis. The phase
angle � is defined by (see Fig. 1)

� ¼ hx‘;ni ¼ hy‘;�i: (4.6)

The rotation takes place in the instantaneous orbital plane
spanned by n and �, and we have

n ¼ cos�x‘ þ sin�y‘; (4.7a)

� ¼ � sin�x‘ þ cos�y‘; (4.7b)

from which we deduce

e�i� ¼ x‘ � ðnþ i�Þ ¼ J� � iJnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2n þ J2�

q : (4.8)

Combining (4.8) with (4.4) we also get

sin�e�i� ¼ J� � iJn
J

: (4.9)

By identifying the right-hand sides of Eqs. (4.1) or (4.2)
with the time derivatives of the identities (4.7), we obtain
the following system of equations for the variations of 
, �,
and �, equivalent to the system (4.1),

d


dt
¼ �!prec

sin�

sin�
; (4.10a)

d�

dt
¼ �!prec cos�; (4.10b)

d�

dt
¼ !þ!prec

sin�

tan�
: (4.10c)

On the other hand, using the total angular momentum
(3.18) together with the components of the orbital angular
momentum given by Eqs. (3.19)—notably the fact that Ln

and L� are due to SO terms dominantly of order Oðc�3Þ—
we deduce that sin� is a small quantity of order Oð1=cÞ.
From this fact, we conclude by direct integration of the
sum of Eqs. (4.10a) and (4.10c) that

�þ 
 ¼ �þO
�
1

c4

�
; (4.11)

in which we have defined the ‘‘carrier’’ phase as

� ¼
Z

!dt ¼ !ðt� t0Þ þ�0; (4.12)

with �0 the value of the carrier phase at some arbitrary
initial time t0. We recall that the orbital frequency (3.14) is
constant in a first approximation for circular motion.
The combination �þ 
 being known by Eq. (4.11), we

can further express the precession angles � and 
 in a first
approximation in terms of the components Sn and S� of the
total spin S ¼ S1 þ S2. From (4.4) we find (discarding
nonlinear spin contributions)

sin� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2n þ S2�

q
cLN

þO
�
1

c3

�
; (4.13)

where we recall that LN ¼ m�r2! denotes the Newtonian
orbital angular momentum. On the other hand, using also
Eq. (4.9) and the relation (4.11) we obtain at leading order

ei
 ¼ S� � iSnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2n þ S2�

q ei� þO
�
1

c2

�
: (4.14)

[See also the more precise Eqs. (4.21) and (4.22).]
It remains now to obtain the explicit time variation of the

components of the individual spins SAn , S
A
�, and SA‘ . Using

(4.13) and (4.14) [and also (4.11)] we shall then be able to
obtain the explicit time variation of the precession angles
and phase. Combining (3.16) and (4.1) we obtain the
precession equations for the three unknowns SAn , S

A
�, and

SA‘ in the form of the following first-order system (valid at

any PN approximation):

FIG. 2 (color online). Similar to Fig. 1 but with the direction of
the source N indicated together with a choice of convention for
the two polarization vectors P and Q.
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dSAn
dt

¼ ð!��AÞSA�; (4.15a)

dSA�
dt

¼ �ð!��AÞSAn �!precS
A
‘ ; (4.15b)

dSA‘
dt

¼ !precS
A
�; (4.15c)

where�A is the norm of the precession vector of the spin A
as given by (3.17), and the precession frequency !prec is

explicitly given by (4.3). Actually, the terms involving
!prec in the right-hand sides of (4.15) can be neglected

because they are quadratic in the spins. Thus, staying at the
linear SO level, we find that Eqs. (4.15) can be decoupled
and integrated as

SAn ¼ SA? cosc A; (4.16a)

SA� ¼ �SA? sinc A; (4.16b)

SA‘ ¼ SAk : (4.16c)

Here SA? and SAk denote two constants for each spin A, and

agree with the projections (which are constant at the linear
SO level) of the spins perpendicular and parallel to the
direction of the orbital angular momentum ‘. The phase of
each of the spins is given by

c A ¼ ð!��AÞðt� t0Þ þ c 0
A; (4.17)

where c 0
A is the constant initial phase at time t0.

With those results we obtain an explicit solution for the
precession angles by substituting Eqs. (4.16) into the
results (4.13) and (4.14). We find that �ðtÞ is given at
the 0.5PN level by

sin� ¼ x1=2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1?Þ2 þ ðs2?Þ2 þ 2s1?s

2
? cosðc 1 � c 2Þ

q

þO
�
1

c3

�
; (4.18)

where we recall that sA? ¼ SA?=ðGm2Þ. Knowing �ðtÞ we
deduce 
ðtÞ from

sin�ei
 ¼ �i
x1=2

�
ei�ðs1?e�ic 1 þ s2?e

�ic 2Þ þO
�
1

c3

�
:

(4.19)

The difference of spin phases c 12 � c 1 � c 2 readily
follows from Eqs. (3.17) and (4.17) at 1PN order as

c 12 ¼ c 0
12 þ

3

2
!x�ðt� t0Þ þO

�
1

c4

�
: (4.20)

Moreover, Eq. (4.9) can be written more explicitly at the
1.5PN level as

sin�e�i� ¼ �i
Jþ
L‘

þO
�
1

c4

�
; (4.21)

where Jþ � Jn þ iJ� is given at the 1.5PN order by

Jþ ¼ S1?
c

�
e�ic 1

�
1þ x

�
� 1

8
� 3

4
�þ �

8

��

þ eic 1x

�
3

8
þ �

4
� 3�

8

��
þ 1 $ 2þO

�
1

c4

�
; (4.22)

and the 1PN orbital angular momentum L‘ is known
from Eq. (3.19a).
As a check of the previous solution we observe that if we

take the time derivative of Eq. (4.4), then evaluate the total
angular momentum J given by (3.18) together with the
components of the orbital angular momentum L provided
in (3.19), and use the solution (4.15) for the evolution of the
spin components, we obtain

d�

dt
¼ �!prec

S�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2n þ S2�

q þO
�
1

c4

�
; (4.23)

which is consistent with (4.10b) once (4.8) is employed.
Finally, we express the triad vectors nðtÞ, �ðtÞ, and ‘ðtÞ

in terms of the precession angles and the carrier phase, and
in terms of the initial triad and angles at the initial instant
t0, modulo terms of orderOðc�4Þ. To do this we notice that
the triad fn;�; ‘g at time t is obtained from the inertial
triad fx; y;zg by the rotation associated with the three Euler
angles 
, �, and�. Similarly, the initial triad fn0;�0; ‘0g at
time t0 is obtained by the rotation associated with 
0, �0,
and �0. So, combining those two rotations we readily
obtain fn;�; ‘g in terms of fn0;�0; ‘0g. Using Eq. (4.11)
to eliminate the phase � in favor of the carrier phase �—
this introduces small remainder terms Oðc�4Þ—and ne-
glecting all terms quadratic in the spins, we get

n¼cosð���0Þn0þsinð���0Þ�0þðsin�sinð��
Þ
�sin�0 sinð��
0ÞÞ‘0þO

�
1

c4

�
; (4.24a)

�¼�sinð���0Þn0þcosð���0Þ�0þðsin�cosð��
Þ
�sin�0cosð��
0ÞÞ‘0þO

�
1

c4

�
; (4.24b)

‘¼‘0þð�sin�sinð�0�
Þþsin�0 sinð�0�
0ÞÞn0

þð�sin�cosð�0�
Þþsin�0cosð�0�
0ÞÞ�0þO
�
1

c4

�
:

(4.24c)

Since we have found in Eqs. (4.18) and (4.19) an explicit
solution for the precession angles �ðtÞ and 
ðtÞ, the time
dependence of n, �, and ‘ is completely known. Note that
in practical computations it is often more convenient to
work not with n and � but with the complex null vector

m ¼ ðnþ i�Þ= ffiffiffi
2

p
and its conjugate.

V. COMPUTATION OF THE WAVEFORM

Here we shall compute the SO terms coming from all
nonlinear (i.e. of formal order G2) contributions associated
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with tails consistent with the 2.5PN and 3PN orders in the
waveform. We shall need only to focus on the tails entering
the mass and current quadrupoles Uij and Vij (having

‘ ¼ 2) and on the current octupole Vijk (‘ ¼ 3). They

indeed contain, when specialized to spinning compact
binary systems, the SO contributions we are interested in.
The reason is that the leading SO terms start at the
0.5PN order Oð1=cÞ in the current moments, but only
at the 1.5PN order Oð1=c3Þ in the mass moments [see
Eqs. (3.11) above].

In addition to the tail integrals shown in Eq. (2.4), we
shall also compute some terms of order G2 at 2.5PN or
1.5PN order, but which are nonhereditary, i.e., merely
depend on the instantaneous retarded time TR. Those cor-
rections are given in full form by Eqs. (5.4)–(5.6) of
Ref. [47], but here we shall need only, for the same reason
as before, two terms involving the source current dipole
moment or angular momentum Ji; the other terms will not
contribute to the SO effect at 3PN order. Furthermore, we
have to include some additional corrections of similar
nature originating from the differences between the ca-
nonical and the source moments in Eqs. (2.6). Those are
given in the general case by Eqs. (5.9)–(5.10) of Ref. [47],
but we can check that only the contribution in the mass
quadrupole Uij a priori matters here.

The relevant contributions in the radiative moments,
including only the terms needed for the applications below
(see Ref. [47] for more complete expressions) read

�Uij ¼ Ið2Þij þ 2Gm

c3

Z TR

�1
dt

�
ln

�
TR � t

2�0

�
þ 11

12

�
Ið4Þij ðtÞ

þ G

c5

�
1

3
"abhiI

ð4Þ
jiaJb þ 4½Wð2ÞIij �Wð1ÞIð1Þij �ð2Þ

�
;

(5.1a)

�Vij ¼ Jð2Þij þ 2Gm

c3

Z TR

�1
dt

�
ln

�
TR � t

2�0

�
þ 7

6

�
Jð4Þij ðtÞ;

(5.1b)

�Vijk ¼ Jð3Þijk þ
2Gm

c3

Z TR

�1
dt

�
ln

�
TR � t

2�0

�
þ 5

3

�
Jð5ÞijkðtÞ

� 2G

c3
JhiI

ð4Þ
jki; (5.1c)

where we have replaced M with m ¼ m1 þm2 which is
valid at the dominant order. Moreover, we shall find that
the terms in the right-hand side of Eq. (5.1a) which depend
on the moment W vanish at the considered order. Indeed,
by inserting the value of �i from (3.10b) into the potential
W defined by (2.8b) and integrating by parts, we find that
the result is zero.

The corresponding gravitational waveform, for which
all three moments Uij, Vij, and Vijk are important, is then

given by

�hTTij ¼ 2G

c4R
P TT

ijkl

�
�Ukl � 4

3c
Na"abhk�Vlib

� 1

2c2
Nam"abhk�Vlibm

�
: (5.2)

The main task consists in evaluating the tail integrals (2.10)
whose Fourier transforms have already been obtained in
Eq. (2.16). The result (2.16) heavily relied on a physical
assumption concerning the system in the remote past,
namely, that it was formed by freely falling incoming
particles; see Eq. (2.11).
We reviewed in Sec. II B that one can insert in the result

(2.16) the binary’s current frequency spectrum, i.e. at time
TR, modulo small error terms of the order of the adiabatic
parameter of the inspiral, or, more precisely, of negligible
order Oðlnc=c5Þ. In the case of spinning compact binaries
this means that we have to include in the spectrum the
current orbital frequency ! � !ðTRÞ, and also the preces-
sion frequencies �1 � �1ðTRÞ and �2 � �2ðTRÞ of the
two spins. This follows from the explicit solution of the
triad fn;�; ‘g and of the precession equations (see Sec. III).
[Notice that the precession angles 
 and � always appear
through the product sin�ei
 given by equations such as
(4.19).] Hence we can take for the Fourier components of
the multipole moments

~I Lð�Þ ¼ 2�
X

n;n1;n2

An;n1;n2
L �ð��!n;n1;n2Þ; (5.3)

where the frequency modes are some !n;n1;n2 ¼
n!þ n1�1 þ n2�2. The result (2.16) then becomes

ULðTRÞ ¼
X

n;n1;n2

iAn;n1;n2
L ð�i!n;n1;n2Þ‘þ1e�i!n;n1 ;n2

TR

�
�
�

2
sð!n;n1;n2Þ þ iðlnð2j!n;n1;n2 j�00Þ þ 	EÞ

�
:

(5.4)

We recall from Eq. (3.17) that the precession frequencies
�1 and �2 are small quantities of order 1PN. This means,
in particular, that because of the explicit factor !‘þ1

n;n1;n2 in

Eq. (5.4) (which arises from taking the time derivatives of
the multipole moment and integrating), the modes for
which n ¼ 0 in tail integrals are very small, at least of
order 4.5PN, and can be neglected.
The SO terms in the radiative tails originate primarily

from the spins present in the sources of the integrals, i.e.
appropriate derivatives of multipole moments as shown in
Eqs. (5.1). The SO contributions in the source moments
have been given in Eqs. (3.11). However, there are other
crucial SO terms which originate from the nonspin parts of
the moments. They come from time differentiations of the
triad vectors using the evolution equations (4.1), which
produce spin terms contained in the precession frequency
!prec, and from time differentiations of spins themselves

via the precession equations (3.16). SO contributions may
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also be generated by the tail integration itself due to the
precession of the triad basis fn;�; ‘g according to the
formula (4.24). On the other hand, other SO terms come
from the reduction to circular orbits when we eliminate the
orbital separation r in favor of a function of the orbital
frequency ! obtained from inverting the relation (3.14).
Note that since the two latter corrections are of 1.5PN
relative order, they cannot come from anywhere but the
tail integral of the Newtonian quadrupole moment.

During the practical computation, we make explicit the
time dependence of the derivatives of multipole moments,
computed in the center-of-mass frame as functions of

the relative position, the relative velocity, and both spins.
For circular orbits, x and v depend only on r and !, which
are approximately constant on dynamical time scales, and
on the unit vectors n and �. Thus, the whole time depen-
dence arises through that of n and � (and ‘ ¼ n� �), and
is provided by our explicit solution (4.24), together with
the precessing angles 
ðtÞ and �ðtÞ given by Eqs. (4.18) and
(4.19), or (4.21) and (4.22) with more precision.
The complete results for the spin-dependent parts of the

radiative moments, in which we use the shorthand notation
for spins (3.9) and where the basis vectors fn;�; ‘g are
evaluated at the current time TR, are then

�Uij ¼ 2m�x4c2
�
1

3
ð71sn þ 35��nÞ

�
�nði‘jÞ � 2�ði‘jÞ

�
lnð4!�0Þ þ 	E � 11

12

��
� 1

3
ð29s� þ 17���Þ

�
�
��ði‘jÞ þ 2nði‘jÞ

�
lnð4!�0Þ þ 	E � 11

12

��
þ 4

�
s‘ þ �

3
�‘

��
�4nði�jÞ

�
lnð4!�0Þ þ 	E � 11

12

�
þ �ðnij � �ijÞ

�

� 2

�
nði‘jÞ

�
19

3
s� þ 3���

�
þ �ði‘jÞ

�
19

3
sn þ 3��n

��
� 8

3
s‘n

ði�jÞ
�
; (5.5a)

�Vij ¼ �3m�x7=2c3
�
�hi�ji

�
lnð2!�0Þ þ 	E � 7

6

�
� �

2
nhi�ji

�
; (5.5b)

�Vijk ¼ �16m�x4c4
�
shkðniji � �ijiÞ þ 2ðshk þ ��hkÞ

�
ðniji � �ijiÞ

�
lnð4!�0Þ þ 	E � 5

3

�
þ �ni�ji

��
: (5.5c)

Insertion of the above quantities into Eq. (5.2) yields the nonlinearly induced SO contributions at 2.5PN and 3PN orders in
the waveform as

�ĥTTij ¼
�
x5=2

�
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�
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6

�
� �

2
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�
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þ 1

3
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; (5.6)

for which we have conveniently introduced the rescaled
waveform �ĥTTij defined by

�hTTij ¼ 4Gm�x

Rc2
�ĥTTij : (5.7)

The two gravitational-wave polarizations hþ and h� are
given in Appendix C. We have checked that the test-
particle limit � ! 0 of the �2 spin-weighted spherical
modes resulting from the above waveform agrees with
the results of Ref. [21] (given explicitly in Ref. [48]) based
on black-hole perturbation theory.

VI. ENERGY FLUX AND ORBITAL PHASING

The case of the gravitational energy flux is simpler
than for the waveform, notably because we need only the

contributions from the mass and current quadrupole mo-
ments, i.e.

�F ¼ G

c5

�
2

5
Uð1Þ

ij �U
ð1Þ
ij þ 32

45c2
Vð1Þ
ij �V

ð1Þ
ij

�
: (6.1)

The 3PN SO effects in the energy flux have been computed
in two different ways. In the first way, we compute the time
derivative of the radiative moments Uij and Vij whose

SO-tail contributions are given in Eqs. (5.5), and then
square these radiative moments to get the flux (6.1). The
second way is completely equivalent, but entirely done by
hand. It consists of writing all the separate pieces compos-
ing the energy flux (6.1), made of the coupling between
some instantaneous moment (evaluated at the current in-
stant TR) times a hereditary tail integral. The SO terms
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have to be included in either the instantaneous moment in
front of the integral, or in the tail integral itself. This then
gives several ‘‘direct’’ SO contributions coming from tails
at relative 1.5PN order (for the mass quadrupole tail) or
0.5PN order (for the current quadrupole tail) which are
then added together. In addition, there is the crucial con-
tribution due to the reduction to circular orbits of the
standard (nonspin) tail integral at 1.5PN order, for which
the relation between the orbital separation r and the orbital
frequency ! [as given by the inverse of Eq. (3.14)] pro-
vides a supplementary SO term at relative 1.5PN order,
which thus contributes in fine at the same 3PN level as the
direct SO-tail terms.

Finally, we obtain the following net result for the SO-tail
contribution at 3PN order in the total energy flux:

�F ¼ 32

5

c5

G
x8�2

�
�16�s‘ � 31�

6
��‘

�
; (6.2)

where we recall that s‘ ¼ s � ‘ and �‘ ¼ � � ‘, with the
spin variables s and � being defined by Eqs. (3.7), (3.8),
and (3.9). Let us remark that in the energy flux the 3PN SO
term is entirely constituted by the SO tails we have ob-
tained in (6.2). So the complete 3PN SO term in the flux is
provided by Eq. (6.2). Contrary to the waveform computed
in Sec. V, there are no other SO terms coming from linear
source moments at that order.
Because the energy flux and the resulting orbital phasing

are so important for gravitational-wave observations, we
shall now give the complete formula for the total flux,
including all nonspin terms and all linear SO terms up to
3PN order (but neglecting nonlinear SS interactions).
However, we shall not write the known nonspin 3.5PN
terms in the flux (due to nonspin tails [17]) because some
yet uncalculated SO effects should conjointly appear at
that order. The 3PN energy flux, complete except for SS
interactions, then reads

F ¼ 32
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��‘
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3
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��
: (6.3)

We are consistently using the constant-magnitude spins SA

that are related to the original variables �SA of Refs. [19,20]
by Eq. (3.7); see also Eqs. (7.4) of Ref. [20]. The nonspin
terms are given, e.g., in Ref. [1]. We find perfect agreement
in the perturbative limit � ! 0 with black-hole perturba-
tion calculations reported in Ref. [21]. On the other hand,
the total conservative energy E of the binary is not affected
by the SO terms at the 3PN order (we check this point in
Appendix A); hence we have

E ¼ � 1

2
m�c2x

�
1þ x

�
� 3

4
� �

12

�
þ x3=2

�
14

3
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þ x2
�
� 27

8
þ 19

8
�� �2

24

�
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�
11s‘ þ 3��‘
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�
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9
s‘ � 10

3
��‘
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þ x3

�
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64
þ

�
34 445

576

� 205

96
�2

�
�� 155

96
�2 � 35

5184
�3

��
: (6.4)

Following Ref. [20] we shall next use the standard energy
balance argument to deduce the evolution of the orbital
frequency even in the presence of spins. To this end we
have to check that the constant-magnitude spins are secu-
larly constant (i.e., constant over a long radiation-reaction
time scale) up to the right level, 1.5PN order in the present
case. In Ref. [20] we have referred to the work [45] for
proof that this is correct up to relative 1PN order, i.e.

considering radiation-reaction effects up to 3.5PN order.
In Appendix B below we extend the argument of Ref. [45]
to the relative 1.5PN order, which essentially means adding
the tail-induced part of the radiation reaction at 4PN order.
This check being done, we can thus neglect hds‘=dti and
hd�‘=dti in average over a radiation-reaction time scale.
An alternative way to see this is to directly compute

the variation of the projection of the spins along the
Newtonian orbital angular momentum, i.e. SA‘ ¼ SA � ‘,
using the precession equations (3.16) appropriate for
constant-magnitude spins. We readily find that dSA‘=dt ¼
SA � ½d‘=dtþ ‘��A�, which shows that dSA‘ =dt is at

least quadratic in the spins for circular orbits. This readily
follows from the facts that ‘ remains constant in the
absence of spins, and that, as we have seen in Eq. (3.17),
�A for circular orbits points in the direction of ‘ modulo
spin corrections. Thus we have dSA‘=dt ¼ 0 at the linear

SO level (neglecting quadratic SS couplings). The argu-
ment is, in principle, valid up to any PN order, but is
restricted to circular orbits.
The conclusion is that the constant-magnitude spin

terms can be considered as constant when computing
the averaged evolution hdE=dti of the energy given by
Eq. (6.4). Equating then hdE=dti to�F , where F is given
by (6.3), we obtain the secular variation of the frequency
h _!i—denoted _! for simplicity—as (neglecting SS contri-
butions)
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By integrating this out using standard PN rules for multiplying, dividing, and integrating PN expressions, we obtain the
secular evolution of the carrier phase [defined by � ¼ R

!dt; see Eq. (4.12)] as
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We recall that to the carrier phase we also have to add the
precessional correction, arising from the changing orienta-
tion of the orbital plane. We have proved in Eq. (4.11)
that at the 1PN order the total phase � is given by � ¼
�� 
þOðc�4Þ. Thus the precessional correction is
given by �
 and is explicitly provided by the solution
(4.18) and (4.19). Alternatively, the precessional correction
can be computed numerically [9].

VII. CONCLUSION

So far, the search for gravitational waves with LIGO and
Virgo detectors has focused on nonspinning compact bi-
naries [49–53], although in Ref. [54] single-spin templates
were employed, for the first time, to search for inspiraling
spinning compact objects. It is timely and necessary to
develop more accurate templates which include spin ef-
fects. Extrapolating results from the nonspinning case, we
expect that, for maximally spinning objects, reasonably
accurate templates would need to be computed at least
through 3.5PN order.

During the last years, motivated by the search for
gravitational waves, SO effects have been computed in
the two-body equations of motion through 3.5PN order
[19,41,43,44,55–57] and energy flux through 2.5PN order
[20,42–45]. Moreover, SS effects have been calculated
through 3PN order in the conservative dynamics
[41,42,58–68] and multipole moments [69].

In this paper, building on our previous work [19,20], we
have improved the accuracy of the energy flux and gravi-
tational waveform by computing SO terms induced by tail
effects [10–18]. Those effects are due to the backscattering
of linear waves in the curved space-time geometry around
the source. Using the multipolar PN formalism developed
in Refs. [13–15,23,24], we have identified and computed

the radiative multipole moments responsible of tail terms
involving SO couplings. More specifically, we have
computed those SO-tail contributions to the energy flux
at 3PN order and to the gravitational waveforms at 2.5PN
and 3PN order. Those SO tails constitute the complete
coefficient at 3PN order in the energy flux. In particular,
we find that the energy flux is in complete agreement with
the result of black-hole perturbations in the test-particle
limit [21]. Our computation is restricted to quasicircular
inspiraling orbits, and uses the two-body precessional
dynamics at 1.5PN order.
The computation of SO-tail terms in the waveform was

summarized in Sec. V, and some building blocks and
foundation for calculating tail effects in the PN formalism
were reviewed in Sec. II. For the first time, we have
computed tail terms when precession effects in the two-
body dynamics are also included. The relevant results for
the waveform are given in Eq. (5.6) and in Appendix C.
The SO-tail effects in the energy flux and phasing at 3PN
order are given in Sec. VI; see, in particular, Eqs. (6.2),
(6.3), and (6.6).
Considering the vigorous synergy which is currently

taking place between analytical and numerical relativity
for building faithful templates [5–8], we expect that the
results developed in this paper will help the construction of
more accurate analytical templates describing the entire
process of inspiral, merger, and ringdown of black holes in
the presence of spins.
In the near future we plan to complete the knowledge of

SO effects in the gravitational waveform at 3PN order, by
computing the nontail (i.e., instantaneous) SO couplings at
2PN and 3PN orders, and the corresponding �2 spin-
weighted spherical harmonics (or gravitational modes).
This will constitute a step further with respect to
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Ref. [46] which computed SO effects in the gravitational
modes through 1.5PN order.
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APPENDIX A: 3PN SPIN TERMS IN THE
EQUATIONS OF MOTION

In this appendix, we check that there are no SO terms at
the 3PN order in the total conservative invariant energy of
the binary given by Eq. (6.4). Indeed, we find that the 3PN
SO terms in the binary’s equations of motion (say, in
harmonic coordinates) can be gauged away. The result is
to be expected because we know that the first SO modifi-
cation of the radiation-reaction damping force arises at the
4PN order rather than 3PN [45].

We compute the near-zone PN metric by solving the
Einstein field equations in harmonic coordinates for the
stress-energy tensor (3.1). We find by direct PN iteration of
the metric, parametrized by means of retarded potentials
V; Vi; . . . (see Ref. [19] for more details), that the
contribution of SO terms at 3PN order in this gauge is
given by

�g00 ¼ 2Gm1

3c5
ðr1 _a1

S
Þ þ 4

3c8
"ijkS

j
1 €a

i
1r

k
1 þ

1

c8
cstðtÞ þ 1$ 2;

(A1a)

�g0i ¼ 4Gm1

c4
ai1
S

� 10G

3c7
"ijkS

j
1 _a

k
1 þ 1$ 2; (A1b)

�gij ¼ 0; (A1c)

where we indicate with cstðtÞ some irrelevant Oðc�8Þ con-
stant term in space, where we keep the SO parts of the
acceleration unreplaced, and where 1 $ 2 refers to the
same expression but for particle 2.

The metric (A1) yields a 3PN contribution in the equa-
tions of motion of spinning particles which can be calcu-
lated from the Papapetrou [28,29] equations of motion
(see e.g. Sec. III in [19]). The result for the acceleration
of particle 1 is

�ai1 ¼
G2

c6r4
"ijkðm1S

k
2 �m2S

k
1Þ
�
ð15ðnvÞ2 � 3v2Þnj

þ 2
Gm

r
nj � 6ðnvÞvj

�
: (A2)

We observe that �ai1 is symmetric under the exchange of
particles 1 and 2. A closer inspection reveals that it is in
fact given by the second total time derivative of a certain
vector, namely,

�ai1 ¼ �ai2 ¼
d2�Xi

dt2
; (A3)

and we find that �X ¼ �	3ðx� �Þ in the notation of
Sec. III C. This is precisely the effect of the gauge
transformation associated with a shift of coordinates x0i ¼
xi þ �Xi. We thus conclude that the 3PN SO terms in the
equations of motion are pure gauge and cannot affect the
binary’s invariant energy (6.4).

APPENDIX B: 4PN SPIN SECULAR EVOLUTION

Here we show that the constant-magnitude spins are
secularly constant, i.e. constant over a long radiation-
reaction time scale, up to the 4PN order corresponding to
the 1.5PN relative order. In Ref. [45] this has already been
proved up to 1PN relative order; here we extend the argu-
ment to 1.5PN order. [In the main text after Eq. (6.4) we
present an alternative argument valid at any PN order but
restricted to circular orbits.]
Following Ref. [45] we describe our source by a set

of well-separated extended bodies A, supposed to be
Newtonian in a first stage. We define the spin Si

A of each
of the bodies in the usual Newtonian way as an integral
extending over the volume of body A,

S i
A ¼ "ijk

Z
A
d3x��ðxj � xjAÞvk; (B1)

where �� denotes the Newtonian (baryonic) mass

density, and xjA is the Newtonian center-of-mass position

of the body A. At Newtonian level the spin (B1) agrees
with the definition employed in the present paper. The
‘‘baryonic’’ spin (B1) is only used for the purpose of this
appendix. The equation of evolution of the baryonic spin
reads as

dSi
A

dt
¼ "ijk

Z
A
d3x��ðxj � xjAÞak: (B2)

The spin precession equation follows from inserting
into (B2) an explicit solution for the acceleration in terms
of positions and velocities. The resulting equation is
then simplified using some virial relations appropriate to
the case where the compact body is ‘‘stationary’’; see
Ref. [45]. The secular evolution of the spin is then obtained
by considering the radiation-reaction piece of the accelera-
tion in Eq. (B2).
At the dominant 2.5PN level the radiation-reaction ac-

celeration inside an isolated body in harmonic coordinates
is given by (see, e.g., Ref. [70])

BLANCHET, BUONANNO, AND FAYE PHYSICAL REVIEW D 84, 064041 (2011)

064041-14



ai2:5PN ¼ G

c5

�
3

5
xjIð5Þij þ 2

d

dt
ðvjIð3Þij Þ þ Ið3Þjk @iUjk

�
; (B3)

where Iij is the source’s STF quadrupole moment (at

Newtonian order), and Uij is the Newtonian potential

tensor defined by

Uijðx; tÞ ¼ G
Z

d3x0��ðx0; tÞ ðx
i � x0iÞðxj � x0jÞ

jx� x0j3 : (B4)

(We have Uii ¼ U, the usual Newtonian scalar potential.)
It can be shown [45] that the only contribution at 2.5PN
order to the spin precession equation comes from the
velocity-dependent part of Eq. (B3), i.e.

ai2:5PN ¼ 2G

c5
vjIð4Þij þ � � � : (B5)

The other pieces in the 2.5PN acceleration vanish when the
size of the body tends to zero (compact-body limit) and
may be ignored. Using a virial relation [45] we readily
obtain

�
dSi

A

dt

�
2:5PN

¼ � G

c5
Ið4Þij ðtÞSj

A: (B6)

Because the spin is constant in the lowest approximation,
the latter result is a total time derivative:

�
dSi

A

dt

�
2:5PN

¼ d

dt

�
� G

c5
Ið3Þij ðtÞSj

A

�
; (B7)

which can be moved to the left-hand side and absorbed into
a negligible redefinition of the spin variable at 2.5PN order.
When specialized to two compact bodies the result (B7)
becomes

�
dSi

1

dt

�
2:5PN

¼ d

dt

�
G2m1m2

c5r2

�
�6ðnvÞðnS1Þni þ 4ðnS1Þvi

þ 4ðvS1Þni � 2

3
ðnvÞSi

1

��
: (B8)

[Note that the latter expression depends on the specific
definition of the spin one is using, i.e. in the present case
the Newtonian spin defined for extended bodies by (B1);
for the spin variable used in [19,20] the expression is
expected to be different, but still in the form of a total
time derivative.]

The results (B7) or (B8) show that there is no secular
evolution for the spin at the dominant 2.5PN order (see also
[71] and references therein for related discussions). Note
that this conclusion actually applies to any spin variable at
dominant order. However, it has been shown in Ref. [45]
that in the case of the constant-magnitude spin there is

also no secular evolution of the spins at the next-to-leading
3.5PN order in the radiation reaction. At next-to-leading
order this result [45] applies specifically to the constant-
magnitude spins and uses the radiation-reaction accelera-
tion up to the 3.5PN order.
We now extend the argument by including the higher-

order 4PN correction term (i.e. 1.5PN radiation-reaction
order) which is known to be due to gravitational-wave tails
[14,72]. That extension is actually straightforward since it
basically needs only the Newtonian result (B7). The reason
is that including the effect of tails in the radiation reaction
simply amounts to replacing the source Newtonian quad-
rupole moment Iij by the tail-corrected expression [72]

Itailij ðtÞ ¼ IijðtÞ þ 4GM

c3

Z t

�1
dt0Ið2Þij ðt0Þ ln

�
t� t0

2�0

�
; (B9)

where �0 denotes some arbitrary time scale, for instance,
the one which appears in Eqs. (2.4). Note the factor
4GM=c3 in front of the tail integral which is twice the
factor 2GM=c3 in front of the tail integrals in (2.4). This
factor ensures the consistency between the work done by
the radiation-reaction force in the local source and the total
energy flux radiated at infinity from the source [15].
Thus the radiation-reaction force including the 4PN

tails takes (in harmonic coordinates) the same form as in
Eq. (B3) but with Iij replaced by Itailij . This shows that

the previous Newtonian argument still holds for the
2:5PNþ 4PN radiation-reaction force and that the effect
on the precession equation is still in the form of some
irrelevant total time derivative:

�
dSi

A

dt

�
2:5PNþ4PN

¼ d

dt

�
� G

c5
Itailij

ð3Þ
ðtÞSj

A

�
: (B10)

Hence our conclusion is that the constant-magnitude spins
are secularly constant up to 4PN order corresponding to
1.5PN radiation-reaction order.

APPENDIX C: GRAVITATIONAL-WAVE
POLARIZATIONS

We derive in this appendix the two gravitational-wave
polarizations. They are computed from the projection
formulas (2.2), using the expression (5.6) [together with
Eq. (5.7)] for �hTTij . We adopt the convention shown in

Fig. 2 for the polarization vectors. To shorten the result, we
denote the projections of the polarization basis fN;P;Qg
onto the moving triad fn;�; ‘g by e.g. Pn, P�, P‘. With this
notation, we have
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The authors can provide on demand a file containing the results in MATHEMATICA input format.
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