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Common diffusion trapping models for modeling hydrogen transport in metals are

limited to traps with single de-trapping energies and a saturation occupancy of one.

While they are successful in predicting typical mono isotopic ion implantation and

thermal degassing experiments, they fail at describing recent experiments on isotope

exchange at low temperatures. This paper presents a new modified diffusion trapping

model with fill level dependent de-trapping energies that can also explain these new

isotope exchange experiments. DFT calculations predict that even mono vacancies

can store between 6 and 12 H atoms with de-trapping energies that depend on the

fill level of the mono vacancy. The new fill level dependent diffusion trapping model

allows to test these DFT results by bridging the gap in length and time scale between

DFT calculations and experiment.
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I. INTRODUCTION

The commonly accepted picture of hydrogen H in metals like Fe7 or W11 (endothermal

solution of H) is that H is stored partially as solute in tetrahedral or octahedral sites and

partially in defects. In the latter it is considered trapped and immobile until it de-traps into

a solute site and continues to diffuse according to Fick’s second law. The traps have fixed

binding energies, different for each trap type and do not depend on the occupancy level of hy-

drogen in the trap7,8,11. The de-trapping step is thermally activated and is usually described

by an Arrhenius type expression. This picture is very successful in describing experiments

where hydrogen is loaded into the material by ion implantation9,11. In these experiments

typically the sample is loaded at low temperature where little to no de-trapping occurs.

Then the depth profile of the implanted H, which decorates the trap sites, is measured and

thus an estimate of the total trap site concentration in the material is obtained. Finally the

sample is degassed with a linear heating ramp and the release rate of H is recorded, yield-

ing a thermal desorption spectra (TDS). The TDS contains information on the different

de-trapping activation energies and on the relative abundances of the different trap types.

After modeling both the implantation and the TDS measurement with diffusion trapping

codes one can infer a set of de-trapping energies and the trap site concentration depth pro-

file. Using this information predictions can be made on how the material retains hydrogen

species for instance as part of the fuel cycle in a magnetic confinement fusion experiment

with metal walls9. From these experiments and modeling calculations it was concluded, that

H is immobilized once trapped at a defect at low temperatures and can only be removed

from the material by heating until significant de-trapping into the solute occurred. Net

transport of H only occurs via diffusion when it is part of the solute population.

Recent experiments10 have shown that removal from trap sites is also possible at low temper-

atures where in the classic diffusion trapping picture no relevant de-trapping should occur

at all. In these low temperature experiments W samples were initially loaded by ion implan-

tation with Deuterium (D) and then subsequently implanted with H. In the classic diffusion

trapping model all traps up to a certain diffusion limited depth are filled during the ini-

tial loading with D. Therefore the subsequently implanted H should just diffuse past these

filled traps and be trapped beyond the initial depth profile deeper in the bulk. However

the experiment showed that there was strong isotope exchange starting at the surface until
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way beyond the implantation range. This means that there is a process which allows newly

implanted H to exchange with already trapped D which is not possible by Arrhenius type,

thermally activated, de-trapping with fixed de-trapping energies as assumed in the classic

diffusion trapping picture.

Here we propose a new diffusion trapping model based on fill level dependent de-trapping

energies. The idea is that every trap site (e.g. mono vacancy) can store a certain number

of hydrogen atoms and that the de-trapping energy de-crases with fill level. That means

that above a certain fill level it is no longer energetically favorable to bind more hydrogen

in that trap. The fill level dependence of the de-trapping energies allows to explain the low

temperature isotope experiments as follows: During the D-loading phase all traps are filled

to a maximum fill level in equilibrium with the solute D. Once the D incident flux is switched

off the highest fill levels are depopulated by de-trapping due to their low binding energies

and the lack of solute D to repopulate them. This leaves the traps in the system filled with

D to a level where the corresponding de-trapping energy is too high to de-trap at the current

temperature. Once the H flux is turned on the traps are re-populated by the replenished

solute population. This means that now the traps are filled with a mixture of D and H in

equilibrium with the solute population. This equilibrium is a dynamic one: De-trapping

from low binding energy high fill level states into the solute is compensated by trapping

from the solute into the traps. Therefore there is an exchange between the mixture of D

and H in the traps with the solute i.e. there is isotope exchange even at low temperature

where the highest de-trapping energies (low fill levels) would normally not allow exchange

with the solute.

This idea of fill level dependent de-trapping energies has been previously proposed by density

function theory calculations4,6,12. They predict a fill level dependence of the de-trapping en-

ergy. However up to now there was no way to experimentally test their predictions since the

experimental time and length scales are way beyond DFT capabilities. Therefore a diffusion

trapping model has been developed with fill level dependent de-trapping energies that can

directly use the DFT data. This allows to bridge the gap between DFT and experiment.

This paper describes the newly developed fill level dependent diffusion trapping model in

detail. Then test calculations are discussed that describe the implication of the fill level

dependent de-trapping both on mono- and dual isotopic experiments. Finally the model is

compared to real experimental data focussing on reproducing the experimental finding of
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isotope exchange at low temperatures.

II. MODEL DESCRIPTION

The idea is to describe the fill level dependent trapping using the same basic principles

as in conventional diffusion trapping models7,11. Diffusion follows Fick’s second law and

trapping is controlled by Arrhenius type pre-factors. The main difference is how trapping

and de-trapping into/from different fill levels is coupled. The coupling to the solute diffusion

equations is essentially identical to that in current diffusion trapping models.

In contrast to current diffusion trapping models this model describes not the concentration

of trapped H-atoms in a given trap type, but the concentration of H-atoms trapped in traps

of a particular type and fill level.

The description of the model starts with expressions for the change in the number of parti-

cles before moving to concentrations.

The model is formulated for the general case of different trap types ti (e.g. Mono-vancies,

dislocations etc.). However current calculations of the fill level dependence of the de-trapping

energies are limited to simple Mono-vacancies. Therefore the example calculations are gen-

erally limited to a single ti = 1. Still the ability of the model (or more accurately the

code that implements it) to handle multiple trap types is demonstrated in an ad-hoc fit of

experimental data in section IV.

A. Model for mono-isotopic case

The model describes the evolution of the number εtik of H-atoms trapped in traps of type

ti filled to level k. εtik changes due to two basic processes:

• Trapping of a solute atom into a trap of type ti filled to level k-1 increases εtik and

correspondingly decreases εtik−1

• De-trapping from a trap of type ti filled to level k decreases εtik and correspondingly

increases εtik−1

These two processes result in a tight coupling between time evolution of adjacent trap

fill levels.
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The trapping rate χti
k (x, t) (s

−1) at a position x and time t of a solute H-atom into a trap

of fill level k is proportional to:

• The number of solute atoms in lattice sites ns(x, t) a location x at time t

• The probability P ti
k−1(x, t) that a neighboring site is a non saturated trap site with fill

level k-1

• The success rate β(T ) (s−1) of jumping one lattice distance a0 (m) into the adjacent

trap site

P ti
k−1(x, t) is determined by ratio of the number of traps of type ti that are filled to level

k-1 (ϕti
k−1(x, t)) to the total number of unoccupied sites (trap + solute = Ω). β(T ) is derived

from the solute diffusion coefficient invoking ”Einsteins-Relation”. This results in eq. 1 for

χti
k (x, t).

χti
k (x, t) = β(T ) ns(x, t) P

ti
k−1(x, t) (1)

P ti
k−1(x, t) =

ϕti
k−1(x, t)

Ω

β(T ) =
DSolute(T )

a20
DSolute(T ) = Solute diffusion coefficient

In an average over a large ensemble of atoms ϕti
k−1(x, t) is simply given as the average of

the trap occupancy εtik−1 as in eq. 2.

ϕti
k−1(x, t) =

εtik−1(x, t)

k − 1
(2)

Eq. 2 is only valid for k > 1 since the number of traps of type ti with fill level 0 (i.e. empty

traps) has to be handled separately. It can not be derived from their average occupancy

which is zero by definition. Their number is derived from the total number N ti of traps of

type ti and from the values for ϕti
k (x, t) with k > 0 as in eq. 3 i.e. it simply equals the

number of remaining unfilled traps.
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ϕti
0 (x, t) = N ti(x, t)−

ktiMax∑
k=1

ϕti
k (x, t) (3)

ktiMax = Maximum fill level of trap type ti

Basically eq. 3 describes the saturation of the system of traps with a certain maximum

occupancy.

The de-trapping rate ψti
k (x, t) from traps of type ti filled to level k is given by a simple

Arrhenius type equation as in eq. 4

ψti
k (x, t) = αti

k (T )ε
ti
k (x, t) (4)

αti
k (T ) = ν0Exp(

−Eti
k

kB T
)

Eti
k = Activation energy to de-trap from trap type ti filled to level k

To derive the equations for the time evolution of εtik from the trapping (e.q. 1) and de-

trapping (eq. 4) rates the appropriate weight factors have to be derived. If a number of

particles ∆εtik de-traps from level k, εtik−1 is increased, on average, by (k− 1)×∆εtik and εtik

is decreased on average, by k×∆εtik . This can be seen by considering that each de-trapping

step from level k produces a new trap site at level (k-1) filled with (k-1) atoms.

Similarly trapping ∆εtik atoms from solute into level k, decreases level (k-1) by (k−1)×∆εtik

and increases level k by k×∆εtik . Based on this weighting considerations, the time evolution

of εtik can be written as in eq. 5.

∂εtik
∂t

= k ×
(
χti
k (x, t)− ψti

k (x, t)
)
− k ×

(
χti
k+1(x, t)− ψti

k+1(x, t)
)

(5)

for 1 < k < ktiMAX

∂εtik
∂t

= k ×
(
χti
k (x, t)− ψti

k (x, t)
)
for k = ktiMAX

∂εti1
∂t

= χti
1 (x, t)− ψti

1 (x, t)− 1×
(
χti
2 (x, t)− ψti

2 (x, t)
)
for k = 1

6



The total number of free sites Ω in eq. 1 can be written as in eq. 6 as the sum of free

solute sites and free trap sites.

Ω = (NS − ns) +
NTraps∑
ti=1

(N ti ktiMax −
ktiMax∑
k=1

εtik )

With

NS = Total number of solute sites

ns = Number of atoms on solute sites

NTraps = Total number of trap types ti

Assuming

NS ≫ ns

NS ≫ N ti

it follows

Ω ≈ NS = γNAtoms (6)

With

NAtoms = Number of host lattice atoms

γ = Number of solute sites per host atom

Based on the approximate value for Ω in the limit of low site occupancy eq. 5 can be

rewritten in terms of concentrations by dividing both sides of the equation by NAtoms as in

eq. 7
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∂Cti
k

∂t
= k

(
β(T )

γ
Cs

Cti
k−1

k − 1
− αti

k (T ) C
ti
k

)
− k

(
β(T )

γ
Cs

Cti
k

k
− αti

k+1(T ) C
ti
k+1

)
for 1 < k < ktiMax

∂Cti
k

∂t
= k ×

(
β(T )

γ
Cs

Cti
k−1

k − 1
− αti

k (T ) C
ti
k

)
for k = ktiMax (7)

∂Cti
1

∂t
=
β(T )

γ
Cs

ηti − ktiMax∑
k=1

Cti
k

k

− 1×
(
β(T )

γ
Cs

Cti
1

1
− αti

2 (T ) C
ti
2

)
for k = 1

With

Cs =
ns

NAtoms
Solute concentration

Cti
k =

εtik
NAtoms

Concentration trapped in trap type ti to fill level k

ηti =
N ti

NAtoms
Concentration of type ti traps

The explicit dependencies on time t and location x have been omitted in eq. 7 for clarity.

Eq. 7 can now be coupled to the solute diffusion transport equation (Fick’s second law) as

shown in eq. 8

∂Cs(x, t)

∂t
= DSolute(T )

∂2Cs(x, t)

∂2x
+ S(x, t)−

NTraps∑
ti=1

ktiMax∑
k=0

∂Cti
k (x, t)

∂t
(8)

S(x, t) = Source distribution (s−1)

The only difference in eq. 8 to conventional diffusion trapping codes (see e.g.11) is the

additional sum over the different fill levels.

Based on eq. 7 and eq. 8 the diffusion in a system with n-traps can be simulated by one

partial differential equation (PDE) for the diffusive transport plus
∑Ntraps

ti=1 ktiMax ordinary

differential equations (ODE) for the trapping / de-trapping dynamics.

B. Model for isotope exchange case

The approach outlined in section IIA for the mono-isotopic case can be extended to

also include two isotopes which then allows to model isotope exchange experiments. In the
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following the concepts and equations are developed for isotope A without loss of generality.

The corresponding equations for isotope B follow readily by exchanging A by B and vice

versa. The quantity modeled in the isotope resolved case is Cti
m,k the concentration of an

isotope of type m that is trapped in a trap of type ti with fill level k. The fill level k now

means that the sum of atoms of type A plus the sum of atoms of type B in the trap equals

k. In comparison to the model in section IIA this distinction of two isotopes (m ∈ {A,B})

adds an additional coupling level: Changes in the amount of isotope m at level k affects the

amount of both A and B at level k, k-1 and k+1. Therefore Cti
A,k is now modified by the

following processes:

• Trapping of a solute of type A or B into a trap of type ti filled to level k-1 increases

Cti
A,k according to the fractional occupancy of level (k-1) with type A atoms (Λti

A,k−1)

and accordingly decreases Cti
A,k−1.

• De-trapping of an atom of type A or B from a trap of type ti filled to level k decreases

Cti
A,k according to the fractional occupancy of level k with type A atoms (Λti

A,k) and

accordingly increases Cti
A,k−1.

The reason for introducing the fractional occupancy Λti
m,k is that since k is the occupancy

of A + B atoms, the actual occupancy of isotope A or B trapped at level k is not directly

accessible. The fractional occupancy Λti
m,k can be derived as the ratio of the number εtim,k of

isotopes of type m trapped in trap type ti at fill level k to the number ϕti
k of traps of type

ti at fill level k. Using a definition for ϕti
k analogous to that in eq. 2 one obtains eq. 9.

Λti
m,k =

εtim,k

ϕti
k

(9)

= k
εtim,k

εtiA,k + εtiB,k

Using εtim,k = NAtomsCti
m,k

Λti
m,k = k

Cti
m,k

Cti
A,k + Cti

B,k

Analogous to the mono-isotopic case the trapping χti
m,k(x, t) and de-trapping ψti

m,k(x, t)

rates for isotope m in trap type ti at fill level k can be written as in eq. 10.
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χti
m,k(x, t) =

β(T )

γ
Cm

S (x, t)
Cti

A,k−1(x, t) + Cti
B,k−1(x, t)

k − 1
(s−1) for k > 1 (10)

χti
m,1(x, t) =

β(T )

γ
Cm

S (x, t)

ηti − ktiMax∑
k̃=1

Cti
A,k̃

+ Cti
B,k̃

k̃

 (s−1) for k = 1

ψti
m,k(x, t) = αti

k (T )C
ti
A,k(x, t) (s

−1)

The weighing factors that describe how χti
m,k and ψti

m,k contribute to the time evolution

of Cti
A,k are slightly more complex than for the mono isotopic case:

Trapping of ∆A ≡ χti
A,k atoms of type A and ∆B ≡ χti

B,k atoms of type B into traps of type

ti at level (k-1) increases the concentration of atoms of type A at level k by:

∆Cti
A,k = (∆A+∆B)× Λti

A,k−1 +∆A (11)

Similarly it decreases concentration of atoms of type A at level k-1 by:

∆Cti
A,k−1 = (∆A+∆B))× Λti

A,k−1 (12)

This means that the trapping of solute A and B converts a fraction of the traps with fill

level(k-1), moving the atoms already stored there (according to their fractional occupancy)

plus the newly trapped atoms to level k.

In contrast detrapping ∆A ≡ ψti
A,k atoms of type A and ∆B ≡ ψti

B,k atoms of type B from

traps of type ti at level k decreases the concentration of atoms of type A at level k by:

∆Cti
A,k = (∆A+∆B)× Λti

A,k (13)

Similarly it increases the concentration of atoms of type A at level k-1 by:

∆Cti
A,k−1 = (∆A+∆B)× Λti

A,k −∆A (14)

This means that the de-trapping of A and B converts a fraction of the traps with fill level

k, moving the atoms already stored there (according to their fractional occupancy) minus

the newly de-trapped atoms (lost to the solute) to level k-1.
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Based on eq. 11 to 14 the time evolution of the trapped concentration Cti
m,k can now be

written similarly to eq. 7 but including the different weighing factors.

∂Cti
A,k

∂t
=

(
χti
A,k + χti

B,k

)
× Λti

A,k−1 + χti
A,k −

(
χti
A,k+1 + χti

B,k+1

)
× Λti

A,k − (15)(
ψti
A,k + ψti

B,k

)
× Λti

A,k +
(
ψti
A,k+1 + ψti

B,k+1

)
× Λti

A,k+1 − ψti
A,k+1

for 1 < k < ktiMax

∂Cti
A,k

∂t
=

(
χti
A,k + χti

B,k

)
× Λti

A,k−1 + χti
A,k −

(
ψti
A,k + ψti

B,k

)
× Λti

A,k for k ≡ ktiMax

∂Cti
A,1

∂t
= χti

A,k −
(
χti
A,2 + χti

B,2

)
× Λti

A,k −
(
ψti
A,1 + ψti

B,1

)
× Λti

A,1 +
(
ψti
A,2 + ψti

B,2

)
× Λti

A,2 − ψti
A,2

for K ≡ 1

When inserting eq. 10 into 15 the sum Cti
A,k + Cti

B,k appears both in the weighing factor

Λti
m,k and in χti

m,k and ψti
m,k and thus several factors cancel out, resulting in quite simple

ODE’s. Again the explicit dependencies of Cti
m,k and ηti on time t and location x have been

omitted in eq. 15 for clarity. The coupling term to the solute transport is identical to

the mono isotopic case except that there are now two solute transport equations, one for

each isotope. Based on eq. 8 and eq. 15 the diffusion of two isotopes in a system with n-

traps can be simulated by two partial differential equation (PDE) for the diffusive transport

plus 2×
∑Ntraps

ti=1 ktiMax ordinary differential equations (ODE) for the trapping / de-trapping

dynamics.

III. TEST CALCULATIONS WITHOUT DIFFUSION

To better understand the difference between the classic diffusion trapping model and the

here presented fill level dependent trapping it is instructive to compare the two approaches

in 0D without solute diffusive transport. This can be readily achieved by removing the

spacial dependence in eq. 7 and 15 and by imposing a certain time evolution of the solute

concentration, thus mimicking the uptake and out-diffusion of solute from a surface.

To compare the result of the classic diffusion trapping model, with the results from the

fill level dependent model, an equivalent set of classic trapping equations has to be setup.

For a fill level dependent case with fill level dependent de-trapping energies Eti
k one classic
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trapping equation (see eq. 16 and 17) is setup with its fixed de-trapping energy equal to Eti
k .

This will yield the same amount of equations and concentrations in the result but without

the inter-fill-level coupling terms. Also both models can store the same total amount of

trapped atoms: In the classic case k trap types each with trap site concentration ηti and

in the fill level dependent case one trap type at concentration ηti that can contain up to

ktiMAX-atoms.

For this model comparison a certain dependence of the de-trapping energy Eti
k (see eq. 4) on

the fill level k is required. To simplify the results of the test calculations only three energies

are used and only one trap type is assumed in the fill level dependent trapping equations:

E1
1 = 1.41, E1

2 = 1.14 and E1
3 = 0.91 eV. The exponential pre-factor in the Arrhenius terms

was set to ν0 = 1013 s−1. The rational behind the choice of these energies is as follows. For

a full model test there need to be at least three levels since k ≡ 1 and k ≡ ktiMax require

special treatment (see eq. 7. Also at least one level should show significant de-trapping at

the calculation temperatures in order to allow isotope exchange at low temperatures.

A. Mono-isotopic case

For the mono isotopic case the corresponding 0D trapping equations to solve for the

classic diffusion trapping model (see e.g.11) are summarized in eq. 16.

∂CT
ti,k(t)

∂t
=
β(T )

γ
CS(t)

(
ηti − CT

ti,k(t)
)
− αti(T )C

T
ti,k(t) (16)

CT
ti,k(t) = Concentration of atoms trapped in trap type ti

with de-trapping energy Eti
k

ηti = Concentration of trap sites of type ti

αti,k(T ) = Arrhenius de-trapping term with fixed activation energy Eti
k

CS = Imposed solute concentration

For the model comparison eq. 16 and 7 were solved at a temperature of 500 K where

two deepest chosen traps (E1
1 and E1

2) exhibit little de-trapping whereas the shallowest trap

E1
3 shows significant de-trapping. In Fig. 1 the imposed solute concentration evolution as
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function of time is plotted: It steeply increases at around 1000 s and decreases to 0 at around

105 s thus mimicking an implantation experiment where the solute rises quickly due to beam

on and then decays slowly by out-diffusion after beam off. The trap concentration η1 was

assumed to be 10−4, a typical value found in implantation experiments11.
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FIG. 1. The imposed solute concentration for the mono-isotopic test case calculations, mimicking

the solute evolution during an ion beam implantation experiment

The resulting evolution of the trapped concentration for the classic model based on eq.

16 is shown in Fig. 2. As expected, as the solute is increased (left part of Fig. 2) the three

traps are all filled to a level determined by the ratio of trapping to de-trapping. Therefore

the shallowest trap E1
3 is not entirely filled i.e. the trapped concentration is significantly

less than η1. As the solute source is decreasing (right part of Fig. 2), the de-trapping from

the trap sites is no longer compensated by trapping from the solute and net loss of atoms

occurs, the faster the lower their trapping energy.

It should be noted that at low enough temperatures no de-trapping would occur at all i.e.

all the trapped concentration would stay constant even after the solute level is decreased to

0.

For the fill level dependent trapping model based on eq. 7 the result of the test calculation

is shown in Fig. 3.

In contrast to the classic model the different fill levels (corresponding to single traps in

the classic case) are not all fully populated but are filled in stages: First the k = 1 level is

filled as long as the solute concentration is low then as more solute is available and becomes

trapped the k = 1 level is destroyed and converted into level k = 2 which finally as the traps

saturate is converted to level k = 3. This conversion from k = 2 to k = 3 is only partial
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FIG. 2. The time evolution of the trapped concentrations for the classic model test calculation at

500K. The left figure shows the time around the onset of the increase in solute concentration. The

right figure shows the time where the solute concentration decreases. (see also Fig. 1)
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FIG. 3. The time evolution of the trapped concentrations for the fill level dependent trapping

model test calculation 500K. The left figure shows the time around the onset of the increase in

solute concentration. The right figure shows the time where the solute concentration decreases.

(see also Fig. 1)

since due to the low de-trapping energy E1
3 there is steady loss from k = 3 which in turn

populates level k = 2. When the solute is decreased this afore described sequence is reversed

and the level depopulate starting from k = 3 ending with depopulation of level k = 1.

While this stepwise populating and depopulating of levels in the fill level dependent trapping

model at first looks very different from the classic picture, looking at the total amount stored

in the traps in Fig. 4 shows that the over all difference is small. The principal shape of

the two curves and thus the effective time scales are identical. The only difference is a

slightly lower total amount in the fill level dependent case. This is due to the fact that most

atoms are stored at the highest fill level (see also Fig. 3) which has the highest de-trapping
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rate and thus an equilibrium concentration CT
1,3 which is lower than the maximum value of

k1Max(≡ 3) × η1. This is in contrast to the equivalent classic model which contains most of

its atoms in traps at E1
1 and E1

2 which are both fully filled to their maximum concentration

η1. Thus this small difference is only present at elevated temperatures where significant

de-trapping can occur from some Eti
k . At low enough temperatures the models are identical.
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FIG. 4. Time evolution of the total trapped concentrations in all levels or individual traps with a

linear concentration scale at 500K.

The fact that for the same binding energies the new fill level dependent model reproduces

the classic model in the mono isotopic case is important, since the classic diffusion trapping

models match a wide range of existing experimental data. The main reason for introducing

the fill level dependence is the isotope exchange case at low temperatures for which the test

calculations are shown in the next section.

B. Isotope exchange case

For the isotope exchange case the corresponding classic diffusion trapping model is sum-

marized in eq. 17. Again only the equations for isotope A are shown the corresponding

equations for isotope B follow readily as before.
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∂CT,ti
A,k (t)

∂t
=
β(T )

γ
CA

S (t)
(
ηti − CT,ti

A,k (t)− CT,ti
B,k (t)

)
− αti,k(T )C

T,ti
A,k (t)) (17)

CT,ti
A,k (t) = Concentration of isotope A trapped in trap type ti

with de-trapping energy Eti
k

ηti = Concentration of trap sites of type ti

αti,k(T ) = Arrhenius de-trapping term with fixed activation energy Eti
k

CA
S (t) = Imposed solute concentration of isotope A

For the model comparison eq. 17 and 15 were solved at a temperature of 300 K where

two deepest chosen traps (E1
1 and E1

2) show no de-trapping whereas the shallowest trap

E1
3 still shows some de-trapping. In Fig. 5 the imposed solute concentration evolution of

isotopes A and B as function of time is plotted: The solute concentration of isotope A CA
S (t)

steeply increases at around 1000 s and decreases to 0 at around 3× 104 s. This followed by

an increase in CB
S (t) at 150 × 104 s which then subsequently decreases to 0 at 300 × 104 s.

This variation in CA
S (t) and C

B
S (t) mimics an isotope exchange experiment where first the

initially empty sample is loaded by isotope A and then, after a lag time of several hours

is loaded with isotope B. The trap concentration η1 was again assumed to be 10−4 and

constant with depth. The resulting evolution of trapped concentrations of isotope A and B
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FIG. 5. The imposed solute concentration for the mono-isotopic test case calculations, mimicking

the solute evolution during an ion beam implantation experiment at 300K

for the classic model based on eq. 17 is shown in Fig. 6. As CA
S (t) is increased all traps
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are filled and once CA
S (t) is reduced to 0 the atoms retained at E1

1 and E1
2 stay frozen in

the traps whereas the atoms trapped at E1
3 de-trap leaving empty traps behind. As CB

S (t)

is now subsequently increased only traps at E1
3 are available, so isotope B only occupies

the shallow traps and is thus lost when CB
S (t) is reduced back to 0. This shows that in the
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FIG. 6. Time evolution of the trapped concentrations of isotope A and B based on the classic

model at 300K

classic picture isotope exchange is only possible at temperature where traps present in the

sample de-trap the retained atoms, which is in contrast to recent experimental data.

For the fill level dependent trapping model based on eq. 15 the result of the test calculation

is shown in Fig. 7. Similar to the mono isotopic case the different levels in the fill level
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FIG. 7. The time evolution of the trapped concentrations for the fill level dependent trapping

model test calculation at 300K.

dependent trapping model are filled in stages as the CA
S (t) is increased again ending up in

an allmost fully populated level k = 3. Once CA
S (t) in decreased the shallow E1

3 results
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in de-trapping from k = 3 resulting in a transfer into level k = 2 which stays frozen even

after CA
S (t) has been reduced to 0. As CB

S (t) is increased the levels are again filled in stages

resulting in transfer into level k = 3 which now contains a mixture of isotope A and B. Since

there is continuous de-trapping from level k = 3 and there is no remaining solute source

of isotope A, this results in a continuous loss of isotope A from the sample i.e. Isotope A

is exchanged by isotope B at low temperatures where the classical picture does not predict

significant exchange. After CB
S (t) is reduced to 0 again there is a transfer from k = 3 to k =

2 which is now only populated by isotope B which at the low temperature is frozen in the

level k = 2 traps.

Looking at the total amounts of isotope A and B as function of time in Fig 8 the fundamental

differences between the two models become apparent: In the classic case the trapped atoms

are frozen whereas in the fill level dependent case trapping additional solute atoms of another

isotope changes the de-trapping energy for the already trapped atoms, thus allowing them

to de-trap even at low temperatures. As long as only isotope A is present the two models are
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FIG. 8. The time evolution of the total trapped concentrations of isotope A and B in all levels or

individual traps with a linear concentration scale.

essentially identical except for slightly different time scales: The fill level dependent model

depletes slightly faster due to a higher de-trapping rate when all atoms are stored in the

highest fill level which has the lowest de-trapping energy.

It should be noted that in the 0D treatment the exchanged isotope A is immediately lost

from the sample whereas in reality it would add to CA
S (t) and be potentially re-trapped.

The combined effect of trapping and diffusion will be treated in section IV.
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IV. COMPARISON TO EXPERIMENTAL DATA

As explained in section III the main difference between the new fill level dependent

model and the classic diffusion-trapping picture is expected in isotope exchange experiments.

Therefore experimental data from a D/H implantation experiment similar to10 was selected

for comparison. In the experiment a recrystallized polycrystalline Tungsten (W) sample was

bombarded with D at a flux of 1020 m−2s−1 to a fluence of 1024 m−2 at 290K. After a waiting

period of ≈ one day without implantation the sample was implanted with H-ions at a flux

of 1.59× 1020 m−2s−1 to a fluence of 0.75× 1024 m−2. The particle energy was 200 eV/atom

in both cases.

To model such an implantation experiment requires to include diffusion i.e. solve the full

version of eq. 15 coupled to the solute transport via eq. 8. When diffusion is included,

boundary conditions for the solute have to be chosen at the front and back surface of a

sample with thickness xMax. Currently diffusion limited boundary conditions are assumed

which amounts to Cs(0, t) ≡ Cs(xMax, t) ≡ 0 (similarly also for the two isotope case).

As additional input the solute diffusion coefficient is required. In this work the generally

accepted values of Frauenfelder5 are used. The values in5 are for Hydrogen (H). For isotope

exchange models also a diffusion coefficient for Deuterium (D) is required. This value for D

is derived from the value for H by scaling it with
√

mH

mD
= 1√

2
.

Another critical input in the model are the de-trapping energies Eti
k (see eq. 4) as function

of the fill level. Two sets of values (Johnson6 and Ferro4) for de-trapping of H from a W

mono vacancy are compared. Both are based on DFT calculations and are summarized in

table I.

Both predict the same number of 6 H atoms that can be stored in a W mono vacancy and

k Johnson Eti
k (eV ) Ferro Eti

k (eV )
1 1.41 1.43
2 1.40 1.42
3 1.14 1.25
4 1.12 1.17
5 0.91 1.11
6 0.79 0.86

TABLE I. Fill level dependence of the de-trapping energy in a W mono-vacancy according to

Johnson and Carter6 and Ferro at al4
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at first glance the predicted de-trapping energies are very similar. However the values by

Johnson decrease quicker with fill level than those of Ferro. This results in more ”active”

trapped states at a given temperature. ”Active” thereby refers to trapped states where

there is significant net loss by de-trapping that is not compensated by trapping from the

surrounding solute. This is in contrast to ”static” trapped states from which, at a given

temperature, there is no de-trapping. This can be made more quantitative based on the

equilibrium solution of eq. 16 which yields the trapped concentration CT,Eq in equilibrium

with a given solute concentration CS. As shown in eq. 18 the relative fill level (ratio of

trapped concentration to trap site concentration) is determined by the relative magnitude

of βti

αti
k
and 1

CS
: If βti

αti
k
≫ 1

CS
all trap sites are filled independent on CS whereas if βti

αti
k
≈ 1

CS

only a fraction of sites are filled due to significant net loss from the traps by de-trapping.

CT,Eq
ti,k

ηti
=

βti

αti
k

1
CS

+ βti

αti
k

(18)

In Fig 9 the r.h.s of eq. 18 is plotted for a typical value of CS = 10−7 and a temperature

of 290K. For both the Johnson and Ferro data the equilibrium fill fraction of states k = 1

to 4 are equal to unity but states k = 5 and 6 are only partially filled. For the de-trapping

energies from Johnson the equilibrium fill fraction of states k = 5 and 6 are significantly

lower than for Ferro’s energies resulting in more partially filled trap states in Johnson’s case.
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FIG. 9. Plot of the equilibrium fill level of a trap with de-trapping energies taken from the fill level

k dependent de-trapping energies from Johnson and Ferro
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In the work by Ferro not just the de-trapping energies but also the Arrhenius frequency

pre-factors are calculated as function of temperature. There is some strong variation at low

temperature but for temperatures above 300K the pre-factor is ≈ 1013 s−1. This value was

also used for the calculations using Johnson’s de-trapping energies.

Apart from the trap state (state ≡ filled to level k) Arrhenius parameters also the depth

distribution of trap sites ηti(x) is a key input parameter into the simulation. To estimate

ηti(x) in a surface the near surface depth profiles of D or H implanted at low energies and

temperature can be used. If the temperature is low enough such that no significant de-

trapping occurred, the D decorates all the trap sites and thus the depth profile corresponds

to the trap site profile. Of course the so determined ηti(x) is the sum over all trap types

ti. The relative abundance of each trap type can only be determined by modeling Thermal

Desorption Spectra (TDS) see e.g.11. In the case of the fill level dependent model this trap

site profile is only partially filled due to de-trapping from the high fill level states which are

not occupied due to their low binding energies. Therefore the ratio of the depth profile to

ηti(x) is a scaling factor Sη which is ≤ ktiMax, the maximum fill level. In the calculations here

only one trap type is assumed with a fill level dependent de-trapping energy, so ti = 1 and

Sη = ktiMax is assumed for simplicity. In Fig. 10 the chosen η1(x) is shown together with

experimental D depth profile obtained after low temperature and energy implantation.
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FIG. 10. Comparison of trap site concentration profile with D depth profile after low energy, low

temperature implantation (⇔”Defect decoration by D”)

In addition to the trap profile and trap energetics the source distribution SM(x) (see e.g. eq.

8) of isotope M has to be chosen according to the implantation conditions. SM(x) is well

described by a Gauss shaped profile with its center at the mean projected range RP and a
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width based on the range straggling ∆RP . Using the Monte Carlo program SDTrim.SP3,

which is a new version of TRIM.SP1,2 RP and ∆RP were calculated for 200eV D and H

ions. This calculation resulted in similar implantation range distributions for both D and H

with mean projected range RP = 6.2 nm and straggle of ∆RP = 3.4 nm. The SDTrim.SP

calculation also yielded a reflection yield of R ≈ 60%. To account for reflection the incident

ion flux was simply multiplied by R.

With the above choice of model input parameters (Trap energetics, Source distribution, Trap

site depth profile) no free parameters are left.

To model the experimental sequence of D implantation, waiting period and H implantation

the D, H flux time evolution depicted in Fig. 11 was used in the calculation. First the

sample is implanted for 104 sec. with D then the implantation flux is turned off and the

sample is kept at constant conditions (T = 290K) until at 80× 104 sec. the H implantation

flux is turned on.
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FIG. 11. Time evolution of D and H flux in the calculation

The implantation experiment can thus be divided into three phases:

• Loading: During the initial D implantation the traps in the sample are loaded with

D.

• Degas: During the waiting period some net de-trapping from shallow trap states occurs

and most of the solute is lost from the sample by outgassing.

• Isotope exchange: Finally the sample is implanted with H replenishing the fill level in

the shallow trap states resulting in gradual isotope exchange of D by H.
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The results of the full calculation (eq. 15 plus coupling to the solute transport via eq. 8)

of all three phases is shown in Fig. 12 for the Ferro de-trapping energies and in Fig. 13 for

the Johnson de-trapping energies. Both figures show the total D depth profile i.e. the sum

over all trap fill levels states:
∑k1Max

k=1 C1
D,k, which is also what is experimentally available.
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FIG. 12. Comparison of the calculated time evolution of the D depth profile with experimental

data using de-trapping energies according to Ferro4.
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FIG. 13. Comparison of the calculated time evolution of the D depth profile with experimental

data using de-trapping energies according to Johnson6

At first glance the calculation result based on the two de-trapping energies data sets look

very similar. After the loading phase all trap fill levels are fully occupied thus matching the

experimental depth profile. During the degas phase both show some loss from low binding

energy fill levels, with the Johnson data set based calculation showing slightly more loss by

de-trapping and outgassing as discussed above. During the isotope exchange phase strong
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exchange of D by H occurs in both cases. At low H fluences (graph at 4× 1021 H/m2) the

calculation for the Johnson data set shows more isotope exchange that the Ferro data set

based calculation. This can also be attributed to the lower de-trapping energies at high (k

= 5 and 6) fill levels in Johnson’s data set compared to Ferro’s data.

These differences can be more clearly seen in Fig. 14 where the calculations based on the

two de-trapping energy data sets are directly compared.
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FIG. 14. Direct comparison of the D depth profile evolution calculated with the de-trapping energy

data sets from Johnson and Ferro

Comparing either simulation to the experimental D depth profile obtained after the isotope

exchange phase one can see that the model reproduces the general trends: Strong isotope

exchange at low temperatures where classic diffusion trapping codes would predict essentially

none at all. A closer look reveals that the isotope exchange in the model is significantly faster

than in the experiment. The rate at which the isotope exchange takes place is determined

by the speed at which the solute H diffusion front propagates into depth and the de-trapping

rates from the shallow, high fill levels. At low temperatures and strong trapping the solute

propagation is limited by the trap sites: Due to the high trapping rates β the solute first has

to saturate all trap states before it can progress further into depth. Thus the more empty

trap states the slower the progress. During the isotope exchange phase most trap states

are already filled by D thus the H solute diffusion front can propagate faster than the D

solute diffusion front during the initial loading phase. In Fig 15 the position of the H solute

diffusion front as function of time during the isotope exchange phase is shown. One can

clearly see that based on Ferro’s data the diffusion front moves faster than for Johnson’s

data. This is again due to the fact that for Johnson’s data there is more de-trapping thus

24



there are more empty trap states to fill thus slowing down solute propagation.
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FIG. 15. Position of the H diffusion front during the isotope exchange phase for Ferro’s and

Johnson’s de-trapping data sets

Since the de-trapping energy data sets from Johnson and Ferro are only valid for mono

vacancies in W and since the polycrystalline material used in the experiment also contains

other defects, mainly dislocations, choosing another set of de-trapping energies is justified.

For instance one could assume different trap types, with different Eti
k and ktiMax values in

the implantation zone and the bulk and thus different isotope exchange rates. To keep the

number of free parameters as low as possible two traps (ti ∈ {1, 2}) with two fill levels each

(k ∈ {1, 2}) are introduced with ηti(x) as in Fig. 16. Eti
k was chosen such that trap type 1

(only present in the implantation zone) would show fast isotope exchange whereas trap type

2 (only present beyond the implantation zone) would show less isotope exchange. The so

chosen values are summarized in table II. The comparison of the so calculated total D depth

profile to the experimental D depth profile is shown in Fig. 16. The model reproduces the

experimental data well. Both the initial D loading phase and the isotope exchange phase

are reproduced reasonably well.

This example of two trap types with adjusted Eti
k is of course a rather ad-hock approach, but

ti k Eti
k (eV)

1 1 1.41
1 2 0.79
2 1 1.41
2 2 0.95

TABLE II. The fill level dependent trap energies used in the ad-hock fit to the experimental data
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FIG. 16. Comparison of ad-hock fit of experimental data with two fill level dependent traps. Also

shown are the assumed ηti profiles

shows that the model can reproduce the experimental data. Further progress in fundamental

modeling is required to also supply Eti
k data sets for other types of defects. The new fill

level dependent diffusion trapping model now allows to test these data sets by providing a

means for comparison with real experimental data.

V. SUMMARY

The recent experimental finding of isotope exchange during ion implantation experiments

at low temperatures in W can not be explained by classic diffusion trapping models since

they predict hydrogen to be ”frozen” in their trapped state at these temperatures. Following

predictions from DFT, that trap sites in metals like W can contain multiple hydrogen atoms

with fill level dependent de-trapping energies Eti
k , a modified diffusion trapping model was

developed that can describe fill level dependent trapping. This new model allows, for the

first time, to test the DFT predictions on the fill level dependence of de-trapping energies

against real experimental data.

First test calculations based on available DFT data for Eti
k have shown that while the

model qualitatively reproduces the experiment, the DFT data for single vacancies is not yet

sufficient to describe the Eti
k for all the trap types contributing in current experiments. A fit

of an available experimental data set with an ad-hock choice of Eti
k revealed that the newly

developed model can match the experimental data quite. More effort is need to yield sound

for Eti
k not just for mono-vacancies but also for other defects (e.g. dislocations). This may
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however require to move from DFT to molecular dynamics methods due to the extended

size of such defects.
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