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In a recent experiment a plasma confined by a cusp magnetic field was set into rotation by

the j×B force due to a current between electrodes inserted into the edge of the plasma [1]. The

aim of a planned experiment is to the create a dynamo in the magnetic field free bulk plasma. In

order to find out how much momentum can be transferred to the plasma in such an experiment,

we studied the process of plasma acceleration with particle-in-cell simulations resolving the full

gyro-motion. The strong localised electric field can increase the ion gyro radius up to E⊥/Bωc

such that the usual expressions for particle drifts do not apply. The force on the plasma and the

resulting plasma velocity in the direction of j×B are calculated.

A slab model is used for modelling a plasma confined by a periodic array of magnets (period

2d) with alternating polarity at x = 0. A corresponding array of electrodes with alternating

potential is located at x = xs. The magnetic field is taken as Bx = B̂exp(−πx/d)cos(πy/d),

By = B̂exp(−πx/d)sin(πy/d). The simulation domain is a rectangle with dimensions Lx = 2d

and Ly = 2d, where d is the distance between the electrodes. The value of Lx is chosen such

that the magnetic field and the electric field are so small at Lx that the forces are negligible (the

decay length is d/π for B and for the electric vacuum field of the electrodes). The geometry of

the model is shown in Fig. 1, where half of the computational domain is depicted with magnetic

field lines and the position of the electrodes and magnets.

The simulations are performed with a 5D particle-in-cell (PIC) code (2 spatial dimensions, 3

velocity components) [2]. The full particle orbits are calculated by alternately solving the equa-

tions of motion for the particles and the Poisson equation for the electric potential in each time

step. Initially the simulation region is filled with a uniform charge neutral plasma of density

n0 and the particles have Maxwellian velocity distributions with a temperature ratio Te/Ti = 10

like in the experiment with ECR heating. All particles hitting the wall with the magnets are lost,

but their charge contributes to the local surface charge. This corresponds to an insulating wall.

At x = Lx particles are reflected by changing the sign of vx and periodic boundary conditions

in y are used. In a source layer near x = 0 electrons and ions are created in equal numbers with

Maxwellian velocity distributions with the same temperatures as the initial plasma. In most of

the calculations the cathode is strongly emitting electrons with Tem/Te ≈ 0.02. The plasma and

the fields in our model are uniform in z direction. The electric potential is split into two parts,
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Fig. 1 (left): Left half of the simulation domain with

field lines, current flow and position of magnets and

sources indicated. Figs. 2,3: Contour lines of parallel

el. current (left) and cross-field ion current (right).

Φ = Φ1 +Φ2. The first part, Φ1, is obtained by solving the Poisson equation ∆Φ1 = ρel/ε0,

where ρel is the charge density of the plasma which includes also the charge of those particles

that have hit the electrodes and were removed from the plasma. Their charges are assigned to the

volume of the electrodes. This corresponds to electrodes with a fixed potential difference, but

together floating with respect to the plasma potential. The boundary conditions are: at x = 0 the

electric field is given by the local surface charge density, corresponding to an insulating wall,

while at Lx the potential is set to zero. The second part of the electric potential, Φ2, is propor-

tional to the vacuum potential around two electrodes at opposite unit voltage fulfilling Ex = 0 at

x= 0. The amplitude factor of Φ2 is chosen so that the required potential difference ∆Φ between

the electrodes is obtained: ∆Φ2 = ∆Φ−∆Φ1, where ∆Φ1 is the potential difference due to the

plasma charge. A computer with many compute cores (Np = 160 or 320) is used. The rectan-

gular domain is divided into subdomains Lx× (Ly/Np), each of which (with additional guard

cells) is assigned to a compute core together with all the particles located in that subdomain.

The Poisson equation is solved on a grid with spacing 0.5λD with periodic boundary conditions

in y by employing the Fast Fourier Transform (FFT) in y and solving a matrix equation in x. For

the FFTs the grid is repartitioned into subgrids (Lx/Np)×Ly [2].

The parameters used are close to that in the experiment: distance d is varied between 300λD

and 800λD, which for n = 1011cm−3 and Te = 10eV equals about 6 cm. (ωce/ωpe)wall is varied

between 1 and 4. A mass ratio of mi/me = 7000 is used corresponding to He ions and a potential
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Fig. 4 (left): Density between wall and electrodes versus y/d in case without source.

Fig. 5 (right): F/I (force on plasma divided by the current) versus time. Top to bottom:

xs/d = 0.2,0.3,0.5,0.9

difference of 100V is applied to the electrodes. The particle source is located between 40λD

and 60λD. The results are: Without electron emission at the cathode the current is limited to

the ion saturation current as expected. With electron emission at the cathode a much higher

current is flowing. Near the electrodes the current is carried by electrons parallel to the field

lines, while the cross-field current is carried by ions (Fig. 2,3). Without a strong particle source

the current decays rapidly, since the flux tube connected with the anode is drained of particles as

shown in Fig. 4. The electrons are collected by the anode, while the ions are pushed across field

lines by the electric field. Therefore, a particle source as described above was included in the

simulations. The electrons emitted by the cathode cannot reach the anode, they are flowing to

the wall as indicated in Fig. 1. The density in the flux tube connected with the cathode increases

(see Fig. 4). The force on the plasma, F =
∫
( jxBy− jyBx)dV , is proportional to the electric

current between the electrodes (see Fig. 5). Expressing the magnetic field by derivatives of the

flux per unit length in z, Bx = ∂ψ/∂y, By =−∂ψ/∂x, we get with ∇ · j = 0

F =−
∫
( j ·∇ψ)dV =−

∫
∇ · (ψ j)dV =−

∫
ψ j ·dS = I(ψ2−ψ1), (1)

where I is the current and ψ2−ψ1 = ∆ψ is the magnetic flux passing between the electrodes.

The last equality holds if the current is flowing in the plasma ( j ·dS 6= 0 only at the electrodes)

and if the electrodes are sufficiently small for ψ1,2 = const. The symbols in Fig. 5 refer to

different ratios xs/d and the lines show the values of F/I = ∆ψ = 2(d/π)B̂exp(−πxs/d).

In Fig. 6 the force density in the plasma at the time t = 104ω−1
pe (2.9ω

−1
ci at the magnet,

1.1ω
−1
ci at the electrodes) is shown for three different values of d with fixed electrode position

xs = 150λD. The force is large near the magnets, but some cross field current further inside

the plasma also contributes to the force. The resulting plasma momentum at the same time is
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Fig. 6 (left): Force density
∫
( jxBy− jyBx)dy/en0csB0∆y versus x/λD for three values of d and

fixed electrode position. Fig. 7 (right): Plasma momentum
∫

miniuzdy/min0cs∆y for the same

cases. Positions of source (yellow) and electrodes (blue) are indicated, t = 104ω−1
pe .
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Fig. 8 (left): Plasma momentum
∫

miniuzdy/min0cs∆y for three values of d and xs/d = 0.3.

Fig. 9 (right): Ratio between momentum in the bulk plasma (x > xs) and time integrated force

(transferred momentum) for xs/d = 0.2(top),0.3,0.5,0.9; t ≤ 4 ·104ω−1
pe ∼ 6ω

−1
ci .

depicted in Fig. 7 for the same cases and in Fig. 8 for three different values of d with fixed xs/d.

The strong dependence of the momentum on d in Fig. 7 is due to the strong increase of the

force like d exp(−πxs/d). At fixed ratio xs/d (Fig. 8) the force increases only linearly with d.

The momentum density is small near the wall due to losses to the wall, since ions have to flow

towards the wall together with the electrons from the cathode. Only between 20 and 70 percent

of the transferred momentum reach the bulk plasma to the right of the electrodes (Fig. 9); when

the distance xs between the electrodes and the wall is larger, a larger fraction of the momentum

remains in the volume between the wall and the electrodes. Thus, with electrodes closer to the

wall the force (hence the transferred momentum) is larger and a higher fraction of the transferred

momentum reaches the bulk plasma.
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