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Introduction

An ITER-like wall (ILW) of Beryllium and a Tungsten divertor were installed in JET in 2012 (see e.g. [1]) and a

first series of experiments in presence of this wall was performed at modest power and thus in L-mode that same year.

The logical focus in the 2013 JET campaign was the characterization of high power H-mode operation. One of the

critical issues to be addressed was whether the influx into the main plasma of high-Z materials coming from plasma

facing components can be kept low enough so that reaching fusion-relevant temperatures is not compromised. In the

past L-mode experiments [2, 3, 4], it was shown that ion cyclotron resonance heating (ICRH) or radio frequency (RF)

waves tend to give rise to increased impurity sources from the main chamber, the reason believed to be that ions

can be accelerated to high energies in the sheaths that form close to metallic surfaces - and antennas in particular

- in contact with a plasma and give rise to increased sputtering of wall material. Although the increased level of

ensuing radiation was seen as a bonus for safe operation rather than as a disadvantage (as it allowed to harmlessly

radiate away a significant fraction of the power that otherwise is deposited on the divertor), one crucial question to be

answered is if high RF power is beneficial for sustaining the H-mode. Just like for the earlier L-mode experiments,

Hydrogen minority fundamental cyclotron heating in a Deuterium plasma was chosen as the wave heating scheme.

Past experiments [5, 6, 7] with the carbon wall have shown that centrally deposited RF power is able to reduce or

annihilate the influx of impurities to the plasma core. Although further confirmation is needed, a series of JET studies

seeking optimization of ICRH for W control suggests this is still the case in presence of the ILW [8].

In the context of RF heating and apart from the study presented here, particular attention was paid recently to

optimizing the coupling in H-mode conditions (see [9, 10]). This was mainly done by ensuring a sufficiently high

density was present in front of the antenna and was realized by tuning the gas mix through which majority ions are

injected into the machine. The main finding was that for a given gas injection rate, divertor injection yields the poorest

results while mid plane injection yields the best coupling (recall that the RF antennas are located near the equatorial

plane); injection from the top yields intermediate results. Distributed main chamber injection not only helps improving

the coupling but as it impacts on the sheaths, it also helps to reduce sputtering. A related - be it yet unexplained -

observation was that the effect of the gas injection dies away exponentially in function of the distance of the injector

to the wave launching structure, hinting at a loss mechanism proportional to the density and inversely proportional to

a characteristic loss time.

General discussion of the experiments

The experiments were done using a toroidal magnetic field strength of Bo = 2.7T and a plasma current of IP =

2.5MA. A frequency of f = 42.5MHz was adopted to ensure core minority H fundamental ion cyclotron and majority

D second harmonic heating; 0π0π dipole phasing was adopted. H-mode conditions were guaranteed through the use
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of 14.5MW of (D) beam power. Each of the shots contained a phase in which auxiliary heating was absent, a beam

phase without ICRH power, then one with low RF power (3MW) and one with high RF power (5MW); finally there

was a low power (L-mode) ICRH phase without beam power in the so-called ’landing’ at the end of the shot (when

the density is decreased while a limited amount of auxiliary heating is kept to avoid a disruption to take place). The

Ohmic power was typically 0.5MW and the total radiated power 6− 7MW (i.e. ≈ 1/3 of the power). The adopted

density was about a factor of 2 higher than that used in earlier L-mode experiments: core densities of 7× 1019m−3

were reached; the line averaged density was typically 5× 1019m−3. The (electron) temperature peaking is typically

higher than that of the density: the difference between the core value and that at mid-radius was as high as 2.6 at low

minority concentrations and was always larger than 2. Electron heating was very efficient. Core electron temperatures

up to Te,o = 5keV were reached but large amplitude sawteeth (∆Te of 1− 2keV ) routinely occurred. The bulk ion

temperature remained more modest, TD,o < 3keV .

The heating efficiency was evaluated both in L- and in H-mode using break-in-slope (BIS) analysis (see e.g. [11])

of the plasma and diamagnetic energy; see Fig.1. Four different BIS methods were adopted: two ’classical’ versions

determining the gradients before and after the RF power break and fitting the data to linear curves (one imposing a

common hinge point, the other not requiring the fitted curves to connect), a BIS method that captures the saturation

due to losses and the time delay between the power jump and the temperature break, and finally a method where

a numerical rather than a simplified analytical equation is integrated to study the temperature response. The various

slightly different BIS models used in the analysis yield slightly different results with a spread of 20% on the efficiency

found, as was seen in earlier L-mode experiments [4]. At modest X [H] (6−8%), the heating efficiency is high both in

L- and in H-mode: in L-mode the peak efficiency is about 70%; in H-mode virtually everything is absorbed. At high

X [H], the L-mode efficiency drops significantly to 30% while the H-mode figure remains as high as ≈ 70%. At very

low X [H], the heating customarily becomes less efficient. The present data show hints for such behavior in L-mode

(optimal X [H] ≈ 6%). The density - a factor of 2 lower in the L-mode phase ’landing’ at the end of the shot than in

the H-mode phase - is believed to be responsible for that (see the section on modeling). For H-mode, however, low

enough concentrations were clearly not reached for the experimental maximum to convincingly occur.
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Figure 1: Heating efficiency in (a) L-mode and (b) H-mode as a function of the minority concentration. The symbols represent

the experimental data inferred from BIS analysis; the lines are the corresponding theoretical predictions for the absorption in a full

transit over the plasma.

It is known that the indirect heating of the electrons by RF-created fast ions causes a time delay between abrupt

changes in the launched power and the break this power drop or rise causes in the slope of e.g. the diamagnetic energy;

recall that the fast particle energy is Wf ast = 4/3(Wdia −Wplasma). Models - such as the classical BIS method - not

capturing this time delay tend to underestimate the absorbed power while models that do - such as more sophisticated

BIS models - provide a more accurate estimate (for more info, see e.g. [11]). While the various BIS methods estimat-

ing Wdia agree better at high X [H], it was found that the various predicted efficiencies differ up to a 50% at low X [H].

The hint provided by this difference that a fast particle population is formed at low X [H] is confirmed by fast particle

diagnostics: The TOFOR (time of flight) diagnostic sees a distinct D tail at low X [H] in H-mode, a rather weak tail
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at high X [H] in H-mode, and absence of a D tail in L-mode. Qualitatively in line with this observation, the neutral

particle analyzer sees a reduction of 2 orders of magnitude in the fast particle flux when the X [H] concentrations rises

from 2 to 20%.

Wave and Fokker-Planck modelling

Theory corroborates the results found. Modelling has been done using 1 and 2D wave equation solvers [12, 13]

and a 1D Fokker-Planck solver [14]. At the high densities and for the parameters adopted in the experiments, the

absorption in a full transit is almost complete at modest concentrations (see the lines in Fig.1), and drops to 70% at

X [H] = 25%. The electron heating fraction is fairly constant while the sum of the ion heating fractions is as well. At

very low H concentrations, D majority heating is significant, but it drops under the 10% level at X [H] ≈ 5%. In L-

mode the drop of the overall absorption both at low and high concentrations is much more pronounced. Interestingly,

Be absorption - although always low (< 15%) - is much more prominent in L- than in H-mode. Further more, Fokker-

Planck analysis confirms that fast particle tails preferentially slowing down on electrons rather than bulk ions are

easily formed at the applied power levels, even at the fairly high densities that were typical for the H-mode shots.

ICRH & impurities

The plasma energy, the diamagnetic energy and the temperature degrade when the hydrogen minority concentration

X [H] increases; see Fig.2. In contrast to the total radiation, the bulk radiation tends to decrease with X [H] as well (not

shown). There are various hints that a minimum is reached when X [H] ≈ 20% but the statistical spread on the data

and the fact that the minority concentration was not scanned well beyond 20% does not allow to draw this conclusion

firmly.
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Figure 2: Diamagnetic energy (a), plasma stored energy (b), total radiated power, (c) and ECE central electron temperature (d) as

a function of the minority concentration evaluated spectroscopically in the edge from the ratio of line intensities Hα/Dα (KT5P

diagnostic).

Whereas a clear minimum of the bulk radiated power was observed at intermediate concentrations in earlier L-mode

experiments at lower density - the radiation dropping by a factor of 1.7 when increasing X [H] from 12 to 20% for

PICRH ≈ 3.4MW - this effect was absent in higher density H-mode at similar ICRH power and only weakly observed at

higher PICRH : a modest reduction of only 1.2-1.3 was observed at PICRH ≈ 4.7MW at very low X [H]≈ 2%. Soft X-ray

analysis reveals a reduced central W concentration at small minority concentrations (X [W ] = 0.8×10−4 for operation
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at X [H] = 2% while X [W ] = 1.2×10−4 at X [H] = 10%) aside from X [W ] values insensitive to X [H] well inside the

plasma but away from the core. Spectroscopical data suggest that the core concentrations of impurities such as Ni

vary little with X[H] while the edge concentrations do increase with larger minority content. At small concentrations,

ICRH creates high energy H and D ions, both of which Coulomb collisionally slow down on electrons, giving rise

to strong electron heating. Both the Ni and W findings thus hint at the fact that efficient core electron heating is a

key asset for keeping high Z impurities out of the center, as was earlier found for the carbon wall. Increasing the

RF power level (either on top or substituting part of the NBI power) results in lower core W concentrations. One

mechanism proposed in the past is the RF induced change of the radial impurity density transport - or pinch - velocity

associated with the high electron temperature gradient [7]. Consistent with the interpretation that RF sheaths favor

impurity release from plasma facing components, higher levels of impurity concentrations were observed at the edge

at higher power levels. In the adopted high density, high power operation range the removal of impurities from the

core seems capable to overcome the increased influx at the edge provided sufficient RF power is available.

At low concentrations but high NBI+RF power, sawteeth were fully stabilized during 4s. On the other hand, high

amplitude sawteeth routinely occurred when either or both these conditions were not fulfilled. Interestingly, abrupt

and significant drops in the RF power (∆PICRH ≈ 3MW ) were observed to trigger sawteeth. This effect has often

been seen in RF power modulation experiments in presence of high energy ion tails when sawteeth tend to ’lock’

to the modulation frequency. Although further investigations are clearly needed for better understanding, this effect

possibly opens perspectives for ICRH sawtooth pacing i.e. exploiting ICRH power modulation to control the core

impurity level by imposing the rate at which sawteeth flush out particles from the plasma centre. This mechanism for

avoiding W accumulation in the core might be a natural complement for the pinch velocity effect. In TCV, sawtooth

pacing has proven to be possible using ECRH (see e.g. [15]) and the fact that the triggering effect is seen at modest

(X [H] ≈ 3−4%) but not extremely low minority concentrations at which the RF power dominantly passes from the

waves to the minority tail and then collisionally to the electrons, suggests that electron dynamics is crucial for the

underlying physics. More generally, the notion grows that magnetic instabilities can be used at one’s advantage to

help flushing the impurities from the core through sawteeth [16] and from the edge through ELMs [17].
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