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Electron-spin dynamics induced by photon spins
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Strong rotating magnetic fields may cause a precession of the electron’s spin around the rotation axis of the
magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite
helicity features such a rotating magnetic field component but also carries spin. The laser’s spin density, that
can be expressed in terms of the laser’s electromagnetic fields and potentials, couples to the electron’s spin via a
relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron’s
spin with the laser’s rotating magnetic field and with the laser’s spin density counteract each other in such a
way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one
would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the
laser’s electric field strength depending on if relativistic corrections are taken into account or not. Thus, the
relativistic coupling of the electron’s spin to the laser’s spin density changes the dynamics not only quantitatively
but also qualitatively as compared to the nonrelativistic theory. The electron’s spin dynamics is a genuine quantum

mechanical relativistic effect.
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1. Introduction

Driven by recent developments of novel light sources that en-
visage to provide field intensities in excess of 102 W/cm? and
field frequencies in the x-ray domain [1H6]] relativistic light
matter interaction has become an active field of experimental
and theoretical research in recent years [7H9]]. The spin degree
of freedom of a bound or free electron may show nontrivial
dynamics or may influence the electron’s motion in laser fields
at relativistic intensities. Spin effects for electrons in intense
linearly polarized laser fields were studied in [10} [11]]. Distinct
spin dynamics has been found in the relativistic Rabi effect
[12] as well as in the relativistic Kapitza-Dirac effect [13}|14];
in [[15] collapse-and-revival dynamics for the spin evolution of
laser-driven electrons was predicted at 10'® W/cm?, and also
the dynamics of plasmas can be modified by spin effects [[L6].
Furthermore, the spin orientation relative to the polarization
of the driving laser field affects the ionization rate of highly
charged ions [17]], correlations between electron spin and pho-
ton polarization in bremsstrahlung have been measured [18]
and pair-production rates differ for partices with spin one half
and spin zero [19,20].

Additionally, the electron also light carries angular momen-
tum [21]]. The (classical) densities of spin and orbital angular
momentum of light can be expressed in terms of the laser’s
electromagnetic fields and potentials. Spin and orbital angular
momentum of light are of particular interest in current research
[22H25]] and it appears natural to ask if the light’s spin density
or orbital momentum density can couple to massive particles
causing observable effects. In a pioneering work by Beth [26]
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circularly polarized light was transformed into linear polariza-
tion removing spin angular momentum from the light beam
and giving a measurable torque. Furthermore, in [27] a cou-
pling of the orbital angular momentum of light to microscopic
(classical) objects causing rotational or spinning motion was
demonstrated and in [28]] a direct coupling between the angular
momentum of light and magnetic moments was predicted by
classical considerations.

In this contribution, we examine electrons and the quantum
dynamics of their spin in a standing light wave formed by two
counterpropagating laser beams with elliptical polarization.
We will show that the electromagnetic wave’s spin density
couples to the electron’s spin causing electron spin precession.
This precession is identified as a genuine relativistic effect
that can only be explained by treating the electron quantum
mechanically and taking into account relativistic corrections to
the Pauli equation. The predicted spin effect may be realized
by employing hard x-ray laser pulses of ultra high power with
a stable pulse shape over a few hundred or more cycles.

2. Elliptically polarized laser beams

We consider an electron in two counterpropagating elliptically
polarized laser beams with the same wavelength A and the
same amplitude £ but having opposite helicity. The electric
and magnetic field components of the individual beams are
given by

E5(r,1) = E (cos(kx F wt)e, + cos(kx F wt +n)e;) , (la)

E
Bs(r,t) = — (Fcos(kx F wt £ n)e, + cos(kx F wi)e,) ,
c
(1b)
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with the wave number k = 27/, the angular frequency w = kc,
the speed of light ¢, the position r = (x, y,z)T, and the time ¢,
and e,, ¢,, and e, denoting unit-vectors along the coordinate
axes. The parameter € [0, 7/2] determines the degree of
ellipticity with = 0 corresponding to linear polarization and
n = m/2 to circular polarization. In the latter case, the total
electric and the magnetic components E;(r,t) + E,(r,t) and
B (r,t)+ B;(r, t) are parallel to each other and rotate around the
propagation direction. The laser fields’ intensity is independent
of the ellipticity and equals I = gycE?.

The spin angular momentum of light can be associated with
its circular or elliptical polarization. Introducing the Coulomb
gauge magnetic vector potentials A, of the fields (I)

N

E
Ajo(r,t) = - (Fsin(kx F wr)e, F sin(kx F wt £ n)e;) (2)

we find that each laser field carries a spin density of
gEi 2 XA = sol?z/l sinn e,/(2rmc). Thus, the spin density
of the two plane waves in (I points along the propagation axis
of the two waves and is proportional to the sine of the ellip-
ticity parameter 1. Note that the definition of the spin angular
momentum of light has been discussed controversially in the
literature [29]] and the total photonic spin density is
Ay
eoE1 X A1 +gE) X Ay = Me’x, (3)
nc
which is compatible with a now commonly accepted definition
of the photonic spin density [30H33] but it does not equal
Ao
coE X A = 2 cos? kx S0EASI, (4)
mc

where E = E| + E; and A = A| + A, denote the total electric
field and the total magnetic vector potential. Nevertheless, the
quantity 9 E X A is meaningful for characterizing the electro-
magnetic field’s degree of polarization because it equals (3) on
average over a wavelength.

3. Numerical simulations and
results

Due to the nonrelativistic electron velocities we assume that
the fields act on the electron but there is no backreaction of
the electron to the laser fields. This allows us to treat the
electromagnetic fields via the classical vector potential A(r, 7).
The evolution of the electron of mass m and charge g = —e
in the laser field, however, will be described fully quantum
mechanically via the Dirac equation

in¥(r,1) = (ca - (—ihV - gA(r,0) + mc*B) ¥(r,1) (5

with the Dirac matrices @ = (ay, @, az)T and S [34,135]]. The
combined vector potential of the two counterpropagating ellip-
tically polarized fields (I) is given by

A= 20

cos kx (sinwt e, + sin(wt —n)e;) , (6)

where we have deliberately introduced the window function

2 _nt

sin® = if0 <t <AT,
w(r) =141 if AT <t <T - AT, (7
sin? 2D T AT <t <T,

2AT

which allows for a smooth turn-on and turn-off of the elec-
tromagnetic fields. The variables T and AT denote the total
interaction time and the time of turn-on and turn-off.

Taking into account the quasi one-dimensional sinusoidal
structure of the vector potential (€ allows us to cast the partial
differential equation (5 into a set of coupled ordinary differen-
tial equations [14]. For this purpose, we make the ansatz

GOEIACTAG! (8)

ny

withy € {+ T,— T, + |, — |} and the basis functions

BL0) = e e ©)

with u), defined as

2 71
L R m) (102)
n nckho
28, En ErmeiX
2 (_ nckhoy . 1/1
w = = En + mc T & meX (10b)
n 28, XT/l ’

/\(T =(1,0)" and ! = (0, 1)", the Pauli matrix o, and the rel-
ativistic energy momentum relation &, = +/(mc?)? + (nckh)2.
The basis functions are common eigenfunctions of the free
Dirac Hamiltonian, the canonical momentum operator, and the
Foldy-Wouthuysen spin operator [36]. Thus, ¢, () and v, (r)
have positive energy &, each and positive and negative spin one
half, respectively, with respect to the z axis. Introducing the
quadruples c,(t) = (c,,T(t) Ch l(t) ch(t) cni(t))T yields from
([®) and (B) the Dirac equation in momentum space

lhcn(t) = anﬁcn(t) + Z Vn,n’(t)cn’(t) ) (1 1)
with the interaction Hamiltonian V,, ,,(¢) and its components
. NqE
VZ”Z/ (t) = % (6n,n’—1 + 6n n’+1) X

<u;y,1 au’ Csinwt + ) a.u!, " sin(wt — 17)) (12)

The electron is initially at rest with spin aligned to the z axis,
which corresponds to the initial condition cOT(O) 1 and

cr(0) = 0 else. We solve the Dirac equation numeri-
cally [[14] starting from this initial condition and calculate the
spin expectation value

A
siT) = 5 DT P +1e (P =6 DF =16, (DF (13)

after the field’s amplitude dropped to zero at time ¢ = T.[37]]
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FIG. 1: Expectation value of the quantum mechanical electron spin
in z direction s,(7) as a function of the total interaction time 7. The
wavelength and the amplitude of the applied circularly polarized fields

is 1 =0.992 A and E = 1.38 x 10" V/m, respectively, and the laser’s
switch-on-off interval AT corresponds to 20 laser cycles.
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FIG. 2: Angular frequency Q of the spin precession as a function of
the laser’s electric field strength £ and its intensity 7 for lasers of the
wavelength A = 0.992 A. Depending on the applied theory (the Dirac
equation (3), the relativistic Pauli equation (I6), the nonrelativistic
Pauli equation, or the classical equation (22)) the spin of an electron
in two counterpropagating circularly polarized light waves scales with
the second or fourth power of £. Theoretical predictions for the spin-
precession frequency are given by (T4) and (19), respectively.

Let us consider the special case of circular polarization first.
As shown in Fig. [T|the expectation value s,(7') oscillates peri-
odically with a period much larger than the laser’s period, i. e.,
it does not just follow the field adiabatically. The spin’s expec-
tation value in the y direction oscillates in a similar fashion
but with a /2 phase shift. Thus, the electron’s spin precesses
around the x axis, i. e., the propagation direction of the laser
field. Considering the interaction Hamiltonian V,,,,(¢) as a
perturbation to the free Dirac Hamiltonian, time-dependent
perturbation theory [14] for the Dirac equation yields the
angular frequency Q of the spin precession for the case of
circular polarization

(qE)' 2
Q= Q) h2m2cs (14)
One can show that the application of perturbation theory is
justified provided that both inequalities |g|E < k*fic and
lglE < 2kmc? hold. A comparison of this prediction for the
spin-precession angular frequency with results from the numer-
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FIG. 3: Spin-precession angular frequency Q (normalized to the
precession frequency for circular light) as a function of the ellipticity
parameter 7. The electric field strength was setto £ = 5.53x10'* V/m;
other parameters as in Fig.[I}

ical solution of the Dirac equation (TT]) shows a good agreement
between theory and simulations, see black solid line and circles
in Fig.[2] In particular, the numerical results confirm that the
spin-precession angular frequency Q growths with the fourth
power of the electric field strength E.

While Figs. [T] and [2] show results for circular polarization
Fig.[3|demonstrates the effect of an ellipticity parameter 1 # /2
by showing the spin-precession angular frequency € as a func-
tion of . Our numerical results indicate that Q is proportional
to sin 7. Thus, the spin-precession angular frequency for elec-
trons in counterpropagating elliptically polarized laser fields is
proportional to the product of the laser field’s intensity and the
spin density of the electromagnetic wave.

4. Electron dynamics in the weakly
relativistic limit

The Dirac equation (5) describes the fully relativistic quantum
dynamics of the electron. It is, however, not very transpar-
ent when it comes to physical interpretation. It is a standard
procedure to consider a nonrelativistic expansion of the Dirac
equation via a Foldy-Wouthuysen transformation [36} [38]]. The
resulting expansion

(-ihV — gA(r, 1))? B qh

o %0' -B(r,t) + gp(r, t)

(-ihV - qA@.0)* a1
8m3c? 8m3c*

h
+ o5 [0 Bl (<ihV - gA(r. 1))

inb(r, 1) = (

(*B(r,1)? - E@r,1)?)

i w2
—4’;]—2620'-(E(r, HX(~ihV—qA(r, r)))—#v-E(r, t))\I/(r, 0.

15)

with A givenby (6), B = VXA, E = —A, and the Pauli matrices
o = (0,0, O'Z)T allows for a manifest interpretation of the
individual corrections to the nonrelativistic Pauli equation. The
relativistic corrections ~ (=iiV — gA)* and ~ V - E (the so-
called Darwin term) account for relativistic mass effects and
field inhomogeneities, respectively, and the contribution ~ o -
(E X (ihV)) leads to the well-known spin-orbit effect, while



o - (E x A) couples the photonic spin density to the electronic
spin.

Conjecturing that the electromagnetic field’s spin density
is the only source for relativistic effects in the electron’s spin
dynamics, we consider now the relativistic Pauli equation where
only the relativistic correction due to the field’s spin density is
included, i.e.,

inb(r, 1) = (zi(-ihv — gA(r,0)* - 2q—ha' - B@r,1)
m m
2

qh
4m?c?

+ o-(E(r,t) X A(r,t)|¥(@r,1). (16)

This equation can be cast into a set of ordinary differential
equations by a plane wave ansatz [14] similar to (§) for the
Dirac equation. The angular frequency of the spin precession
that results from a numerical solution of (L6) agrees with the
frequency from the full Dirac equation (3); see Fig.[2l This
justifies our conjecture to utilize (T6) as an effective equation
for the full Dirac equation (3) and highlights the role of the
electromagnetic field’s spin density. Furthermore, the scaling
of the spin-precession angular frequency changes qualitatively
if the relativistic correction term in @I) is neglected. In fact,
the spin-precession angular frequency scales with the second
power of the electric field strength in this case; see squares in

Fig.[2|

5. Classical electron-spin dynamics

The spin precession in the oscillatory field of the two counter-
propagating elliptical laser fields may one remind on the Rabi
effect [39]. This problem can be well understood by a classical
model [40]. In the following we will adopt this approach to
study spin precession in elliptical laser fields. For simplicity
we assume circular polarization (7 = 7r/2). The quantum state
is delocalized over several laser wavelengths; thus we mimic
the quantum wave packet by an ensemble of classical particles
with spin angular momentum. These particles are placed along
the x axis. The dynamics of a classical electron spin s at fixed
position r in the magnetic field B(r,t) = B(r,t) + By (r, 1) is
governed by

§(1) = %s(t) X B(r.1). (17)

This equation of motion can be justified via the Pauli equation,
i.e., Eq. (I6) neglecting the correction term that is proportional
to E X A, by calculating the quantum mechanical equation of
motion for the spin observable in the Heisenberg picture [41].
For parameters such that Qp = qE/(mc) < w, where Qp de-
notes the oscillation frequency of a spin in a constant magnetic
field with amplitude E/c, the spin s(r) rotates with a position-
dependent angular frequency around the axis of rotation of the
magnetic field. For the initial condition s(0) = (0,0,7%/2)" the
solution of (T7) is given by

h . .2 .2 T
s(t) = 3 (O, sin(2Qpt sin” kx), cos(2Qpt sin kx)) (18)

with the angular frequency averaged over a wavelength

_ (gBya

P 2m2ed (19

The frequency agrees with the spin-precession angular
frequency for the nonrelativistic Pauli equation that can be
calculated via time-dependent perturbation theory and that is
also confirmed by our numerical simulations; see squares in
Fig.[2] Similarly, the relativistic correction in to the Pauli
equation leads to the classical equation

2
§(t) = ——L—s(t) x (E(r, 1) X A(r, 1)). (20)
2m?c?
For the initial condition s(0) = (0,0,7%/2)" the solution of (20)

is given by
h . 2 ) T
s(t) = 5(0, sin(—2Qpt cos” kx), cos(—2Qpt cos kx)) . (21

Note that due to the fast rotation of the magnetic field the net
effect of the spin term proportional to B in (T6) is of the same
order as the relativistic correction proportional to E X A. As a
consequence of and a classical spin under the effect
of both spin terms rotates in a short time interval Ar around the
angle 2Qp(sin kx — cos® kx)At. Averaged over a laser wave-
length this rotation angle vanishes and the effects of the two
spin terms chancel each other in our classical model. Thus, the
classical model explains how the effect of the laser fields’ spin
density ~ E x A leads to a breakdown of the quadratic scaling
of the spin-precession angular frequency in £ that results if only
the magnetic field is taken into account. The model, however,
is not able to reproduce the quartic scaling in £ that results
from the fully relativistic quantum mechanical Dirac equation
(). The quartic scaling results as a genuine quantum effect
from the fast temporal oscillations combined with the spatial
modulation of the electromagnetic fields. Unlike the Rabi effect
it does not solely result from the temporal oscillations of the
electromagnetic fields.

In order to confirm that the precession frequency (T4) is of
quantum mechanical origin we also solved the coupled clas-
sical equations of motion for the spin s, the position r, and
the canonical momentum p that correspond to the quantum
mechanical Hamiltonian (@) namely

O0H(r, p)

i) = , (22a)
dap
pt) = ——aHg’p ) , (22b)
r
. q q*
§(1) = Ls(t) x B(r, 1) — s(t) X (E(r,t) X A(r,1)),
m 2m2c?

(22¢)

with

1
H(r,p) = (%(p — qA(r, 1) - n%s(r) - B(r,1t)
q2

+ oz SO (Er, ) X Alr, t))), (22d)



for the initial conditions 7(0) = (0,0,0), p(0) = (0,0,0)", and
s(0) = (0,0,%/2)T. As we see in Fig. the spin-precession
frequency (stars) is reduced compared to (T9) (dashed line) but
also scales quadratically with the electric field amplitude.[42]
The action of the magnetic field on the electron’s spin is not
canceled by the action due to the laser fields’ spin-density be-
cause the time that the point-like electron spends in different
regions of the laser field is not distributed uniformly over a
laser wavelength.

6. Experimental realization

Let us shortly estimate for what kind of laser parameters the
electron’s spin precession in elliptical fields may be observed.
An experimental realization may utilize intense photon beams
at nearfuture x-ray laser facilities to form standing waves. Inten-
sity, frequency, and pulse length have to be carefully adjusted
to make the spin precession detectable. For a given wavelength
A and pulse length n (number of cycles) the required electric
field strength is bounded as

P 2n)ch

2r)°cOh2m? A
( ) lgl2? @)

2ng*A°

In an experimental test of the predicted effect one has to detect
a change of the electron’s spin orientation, which must be large
enough to be measurable. The lower bound in (23) results from
the fact that at lower intensities the electron must be confined in
the focus of the counterpropagating laser pulses for more cycles
to realize a full spin flip. Note that the lower bound in (23] can
be made arbitrarily small by inceasing the number of cycles n
and/or raising the wavelength A. Thus, the predicted coupling
between electronic and photonic spins and the resulting electron
spin precession are not intrinsic strong-field effects. Note that
an increase of the wavelength may has to be accompanied by
an extension of the pulse length n, otherwise the lower limit in
(23) may exceed the upper limit. To give a specific numerical
example, for n = 5000 the two bounds in (23) coincide for a
wavelength of A = 0.24 nm yielding £ = 1.32 x 10'* V/m and
an intensity of I = 4.64 x 10>! W/cm?. If the upper bound in
(23) is violated the spin precession becomes anharmonic.

7. Conclusions

We investigated electron motion in two counterpropagating el-
liptically polarized laser waves of opposite helicity and found

spin precession around the fields’ propagation direction. The
spin precession can be properly described via the fully rela-
tivistic Dirac equation or the nonrelativistic Pauli equation plus
a relativistic correction proportional to E X A. Because this
quantity is closely related to the spin angular momentum of
elliptically polarized light the relativistic correction can be in-
terpreted as a coupling of the laser field’s spin density to the
electron spin. The spin-precession frequency is proportional
to the product of the laser field’s spin density and its intensity.
The electron-spin dynamics has the remarkable feature that it
is a genuine relativistic quantum effect. The quartic scaling of
the spin-precession frequency with the electric field strength
can not be found within the nonrelativistic Pauli theory; and
also classical models that treat electrons as point-like particles
fail to reproduce the correct spin-precession frequency even
if relativistic effects due to the laser field’s spin density are
taken into account. This distinguishes the predicted spin ef-
fect from relativistic spin effects in other setups, e. g., in the
Kapitza-Dirac effect 13} 14], where relativistic signatures are
induced via relativistic system parameters, e. g., initial electron
momenta.

We demonstrated that the coupling of the photonic spin to the
electron’s spin is closely related to the well-known spin-orbit
effect. Both are examples for the interaction of two different
kinds of angular momentum, a generic mechanism that can
be observed also in very different contexts. For example, in
[43] the interaction of the angular momentum of phonons in
a magnetic crystal with the angular momentum of the crystal
was recently considered and in [44]] it is investigated how the
orbital angular momentum of light affects the internal degrees
of motion in molecules. In our setup of counterpropagating
plane waves, the spin angular momentum is the electromagnetic
field’s only angular momentum. More realistic focused beams
may also carry orbital angular momentum, which may also
couple to the electronic spin and in this way modify the spin
dynamics. Because of its fundamental nature we expect that
the demonstrated coupling of the photonic spin to the electron’s
spin is of interest also for researchers beyond the strong field
community.
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