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Cavity output field suppression due to interference effects
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We show how interference effects are responsible for suppression of the output electromagnetic
field of an optical micro-resonator in the good-cavity limit. The system of interest consists in a
moderately strongly pumped two-level emitter embedded in the optical cavity. When an additional
weaker laser of the same frequency is pumping the combined system through one of the resonator’s
mirror then the output cavity electromagnetic field can be almost completely suppressed. This is
due to the interference among the scattered light by the strongly pumped atom into the cavity mode
and the incident weaker laser field. The result applies to photonic crystal environments as well.

PACS numbers: 42.25.Hz, 42.50.Ct, 42.50.Lc

I. INTRODUCTION

Light interference is a widely investigated topic and its
importance for various applications is enormous [1–5].
Due to quantum interference effects for instance elimi-
nation of spectral lines or complete cancellation of the
spontaneous decay can occur. Spatial interference shows
interesting features as well [2, 4, 5]. Furthermore, sup-
pression of the resonance fluorescence in a lossless cav-
ity was demonstrated in [6] whereas cavity-field-assisted
atomic relaxation and suppression of resonance fluores-
cence at high intensities was shown in [7], and suppres-
sion of fluorescence in a squeezed vacuum was demon-
strated in [8], respectively. Suppression of Bragg scatter-
ing by collective interference of spatially ordered atoms
within a high-Q cavity mode was demonstrated in [9]. On
the other side, cavity-enhanced single-atom spontaneous
emission was observed in Ref. [10], while suppression of
spontaneous decay at optical frequencies in [11]. A direct
measurement of the field of a radiating dipole in a trap
is provided in [12], while the pumped one-atom cavity
spectra is given in [13] and photon statistics in Ref. [14],
respectively. Actually, the bichromatic driving of single
atoms was intensively investigated recently emphasising
interesting interference phenomena. In particular, the
resonance fluorescence of a two-level atom in a strong
bichromatic field was analysed in [15] and the response
of a two-level system to two strong fields was experi-
mentally studied in [16], correspondingly. The decay of
bichromatically driven atom in a cavity was investigated
in [17]. Broadband high-resolution x-ray frequeny combs
were obtained via bichromatically pumping of three-level
Λ−type atoms [18]. Moreover, bicromatic driving of a
solid-state cavity quantum electrodynamics system was
investigated in Ref. [19]. Finally, photonic crystal’s influ-
ence on quantum dynamics of pumped few-level qubits
was investigated in detail as well [20–22].
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Here, we investigate the feasibility of controlling the
cavity output electromagnetic field in a system consist-
ing of a strongly pumped two-level emitter. If a second
coherent driving is applied through one of the mirrors
and perpendicular to the first laser-beam then the out-
put cavity field can be almost completely inhibited in the
good-cavity limit. Notice that the lasers are in resonance
with the cavity mode frequency. We have found that the
interference between the second weaker light beam and
the light scattered by the two-level radiator into the cav-
ity mode due to stronger pumping is responsible for the
suppression effect. Furthermore, the inhibition requires
the laser frequency to be out of atomic frequency reso-
nance while for photonic crystals surroundings it can be
even on resonance.
The article is organized as follows. In Sec. II we de-

scribe the analytical approach and the system of interest,
while in Sec. III we analyze the obtained results. The
summary is given in Sec. IV.

II. QUANTUM DYNAMICS OF A PUMPED

TWO-LEVEL ATOM INSIDE A DRIVEN

MICROCAVITY

The Hamiltonian describing a two-level atomic system
having the transition frequency ω0 and interacting with a
strong coherent source of frequency ω1 while embedded
in a pumped micro-cavity of frequency ωc, in a frame
rotating at ω = ω1 = ω2 (See Figure 1), is:

H = ~∆Sz + ~δa†a+ ~g(a†S− + aS+)

+ ~Ω(S+ + S−) + ~ǫ(a† + a), (1)

where ∆ = ω0 − ω, and δ = ωc − ω. In the Hamilto-
nian (1) the components, in order of appearance, describe
the atomic and the cavity free energies, the interaction
of the two-level emitter with the micro-cavity mode and
the atom’s interaction with the first laser field with Ω be-
ing the corresponding Rabi frequency, and respectively,
the interaction of the second driving field with the cav-
ity mode with ǫ being proportional to the input laser
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FIG. 1: (color online) The schematic of the model: A two-level
radiator possessing the transition frequency ω0 embedded in a
single-mode (ωc) micro-cavity is pumped with an intense laser
field of frequency ω1. A second coherent source of frequency
ω2 is driving the entire system through one of the mirrors. γ
is the single-atom spontaneous decay rate, while κ describes
the cavity photon leaking rate, respectively.

field strength amplitude. The atomic bare-state opera-
tors S+ = |e〉〈g| and S− = [S+]† obey the commuta-
tion relations for su(2) algebra, i.e., [S+, S−] = 2Sz and
[Sz, S

±] = ±S±. Here, Sz = (|e〉〈e| − |g〉〈g|)/2 is the
bare-state inversion operator. |e〉 and |g〉 are, respec-
tively, the excited and ground state of the atom while
a† and a are the creation and the annihilation opera-
tor of the electromagnetic field (EMF) in the resonator,
and satisfy the standard bosonic commutation relations,
namely, [a, a†] = 1, and [a, a] = [a†, a†] = 0 [23, 24].
We shall describe our system using the laser-qubit

semiclassical dressed-state formalism defined as [4]:

|+〉 = sin θ|g〉+ cos θ|e〉,

|−〉 = cos θ|g〉 − sin θ|e〉, (2)

with tan 2θ = 2Ω/∆. Applying this transformation to (1)
one arrives then at the following dressed-state Hamilto-
nian

H = H0 + ~g(cos2 θR− − sin2 θR+)a†

+ ~g(cos2 θR+ − sin2 θR−)a, (3)

with

H0 = ~Ω̄Rz + ~δa†a+ ~(ǫ+ g0Rz)(a
† + a). (4)

Here, Ω̄ =
√

Ω2 + (∆/2)2 while g0 = (g/2) sin 2θ. The

new quasi-spin operators, i.e., R+ = |+〉〈−|, R− = [R+]†

and Rz = |+〉〈+| − |−〉〈−| are operating in the dressed-
state picture. They obey the following commutation re-
lations: [R+, R−] = Rz and [Rz, R

±] = ±2R±.
Considering that δ ≪ Ω̄ the last two terms in Eq. (3)

can be ignored under the secular approximation. There-
fore, the master equation describing the laser-dressed
two-level atom inside a leaking pumped resonator and
damped via the vacuum modes of the surrounding EMF
reservoir is:

d

dt
ρ(t) +

i

~
[H0, ρ] = −κ[a†, aρ]− Γ0[Rz, Rzρ]

− Γ+[R
+, R−ρ]− Γ−[R

−, R+ρ] +H.c.. (5)

Here

Γ0 = (γ0 sin
2 2θ + γd cos

2 2θ)/4,

Γ+ = γ+ cos4 θ + (γd/4) sin
2 2θ,

Γ− = γ− sin4 θ + (γd/4) sin
2 2θ.

Respectively, γ0,± are the single-atom spontaneous de-
cay rates at the dressed-state frequencies {ωL, ωL± 2Ω̄},
while γd signifies the pure dephasing rate. Note that the
master equation (5) was obtained under the intense-field
approximation, i.e., it is valid when Ω̄ ≫ {δ, g, ǫ,Γ0,Γ±}.
The equations of motion for the variables of inter-

est can be easily obtained from the Master Equation
(5). Therefore, the steady-state quantum dynamics is de-
scribed by the following system of linear algebraic equa-
tions:

0 = −ig0〈Rza〉s − iǫ〈a〉s + ig0〈Rza
†〉s + iǫ〈a†〉s

+ 2κ〈a†a〉s,

0 = (κ+ iδ + 2Γ+ + 2Γ−)〈Rza〉s

+ 2(Γ+ − Γ−)〈a〉s + iǫ〈Rz〉s + ig0,

0 = (κ− iδ + 2Γ+ + 2Γ−)〈Rza
†〉s

+ 2(Γ+ − Γ−)〈a
†〉s − iǫ〈Rz〉s − ig0,

0 = (κ+ iδ)〈a〉s + ig0〈Rz〉s + iǫ,

0 = (κ− iδ)〈a†〉s − ig0〈Rz〉s − iǫ. (6)

In the system of equations (6), we have used the fact that
the steady-state dressed-state inversion is

〈Rz〉s = −(Γ+ − Γ−)/(Γ+ + Γ−),

together with the trivial condition R2
z = 1 which is the

case for a single-qubit system.
In the following Section, we shall discuss our results,

i.e., the possibility of inhibiting the cavity output field
via interference effects.

III. OUTPUT CAVITY FIELD SUPPRESSION

One of the solutions of system (6) represents the
steady-state mean-photon number in the micro-cavity
mode, namely:

〈a†a〉s = Aǫ2 +Bǫ+ C. (7)

For δ = 0 and γ0 = γ± ≡ γ, the coefficients A, B and C
are given by the following expressions:

A =
1

κ2
,

B = −
2gγ∆Ω

κ2(γ∆2 + 2(γ + γd)Ω2)
,

C =
g2Ω2

κ2(γ∆2 + 2(γ + γd)Ω2)

×
γ(κ+ 2γ)∆2 + 2κ(γ + γd)Ω

2

(κ+ 2γ)∆2 + 4(κ+ γ + γd)Ω2
. (8)
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FIG. 2: (color online) The steady-state dependence of the
micro-cavity mean photon number 〈a†a〉s versus the variables
ǫ/γ and δ/γ. Other parameters are: γd/γ = 0.01, κ/γ = 0.1,
g/γ = 2, ∆/Ω = 3.

FIG. 3: The steady-state dependences of the mean-photon
number 〈a†a〉s as a function of ǫ/γ∗. The solid-line is for
γ∗ ≡ γ+ = γ−, while the long-dashed curve stands for γ∗ = γ−
and γ+ → 0. Further, the short-dashed line is for γ∗ = γ+ and
γ− → 0, whereas the dotted curve corresponds to ∆ = δ = 0.
Other parameters are the same as in Fig. (2) with ∆/Ω = 1
and δ/γ∗ = 0.

Because of the quadratic dependence on ǫ, the minimum
value of the mean-photon number is:

〈a†a〉min
s = C −

B2

4A
. (9)

The above value is achieved at:

ǫmin = −B/(2A).

Based on Eqs. (8) and (9) it follows that ǫmin is inde-

pendent on {κ, δ} and its value does not exceed g
√
2

4
(1 +

γd/γ)
−1/2. Particularly, in Fig. (2) the minimum value of

the steady-state mean-photon number is 〈a†a〉min
s ≈ 0.06

and is achieved when (ǫ/γ)min ≈ 0.54. An explanation
of the steady-state behaviours shown in Fig. (2) can be
found if one represents the mean-photon number given
by (7) as follows:

〈a†a〉s =
ǫ

κ2
{ǫ+ g0〈Rz〉s}+

g0
κ(κ+ 2Γ+ + 2Γ−)

× {g0 + ǫ〈Rz〉s − 2(Γ+ − Γ−)(g0〈Rz〉s + ǫ)/κ}.

(10)

From the above expression (10), one can see that for δ = 0
the mean-photon number due to weaker external pump-
ing of the cavity mode is proportional to ǫ2 while that due
to stronger driving of the two-level qubit to g20 , respec-
tively. There is also a cross-contribution proportional
to ǫg0. All these terms demonstrate interference effects
among the contributions due to two pumping lasers and,
hence, the minima’s nature in Fig. (2). Notice that on
resonance, i.e., ∆ = 0, the inhibition effects are absent
when γ+ = γ− since 〈Rz〉s = 0 (see Eq. 10). Also, one
can obtain small values for 〈a†a〉s if κ > γ. However,
in this case we are in the bad-cavity limit and, therefore,
lower values for mean-photon number or even zero are ex-
pected [14, 23, 25]. Thus, in contrary, the cavity output
field suppression reported here occurs in the good-cavity
limit, i.e., when γ > κ and g > {κ, γ}.

Figure (3) shows the mean-photon numbers when the
two-level radiator is surrounded by a photonic crystal
environment. In this case, the output cavity field can
be suppressed even on atom-laser frequency resonance,
i.e., when ∆ = 0 (see the dotted curve). This is due to
the fact that in photonic crystal environments γ+ can be
different than γ− [20–22] and, thus, the population will
be distributed unequally among the dressed states, that
is,

〈Rz〉s =
γ− − γ+

γ− + γ+ + 2γd
6= 0, if ∆ = 0.

Negative values for the dressed-state inversion lead to
cavity output field suppression (see Fig. 3). For the
sake of comparison, the solid curve stands for ordinary
vacuum-cavity environments. Thus, finalizing, we have
shown here how the output cavity field can be minimized
due to interference effects.

IV. SUMMARY

Summarizing, we have demonstrated cavity output
field suppression due to interference effects. The sys-
tem of interest is formed from a strongly pumped two-
level atom placed in an optical micro-resonator. A second
weak laser being in resonance with the cavity mode fre-
quency is probing the whole system through one of the
cavity’s mirror. Interference effects occur among the light
scattered in the cavity mode by the strongly pumped
atom and the incident weaker laser field leading to out-
put cavity field inhibition. The idea works for photonic
crystal environments as well.
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