
Hierarchic Superposition
With Weak Abstraction

Peter Baumgartner
Uwe Waldmann

MPI–I–2013–RG1–002 June 2013

Authors’ Addresses

Peter Baumgartner
NICTA and Australian National University
Tower A, 7 London Circuit
Canberra ACT 2601, Australia

Uwe Waldmann
Max-Planck-Institut für Informatik
Campus E 1 4
66123 Saarbrücken, Germany

Publication Notes

A shortened version of this research report will appear in M. P. Bonacina
(ed.), 24th International Conference on Automated Deduction – CADE-24,
LNCS 7898, Springer-Verlag.

Acknowledgements

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

We would like to thank the anonymous reviewers of CADE-24 for their helpful
comments.

Abstract

Many applications of automated deduction require reasoning in first-order
logic modulo background theories, in particular some form of integer arith-
metic. A major unsolved research challenge is to design theorem provers that
are “reasonably complete” even in the presence of free function symbols rang-
ing into a background theory sort. The hierarchic superposition calculus of
Bachmair, Ganzinger, and Waldmann already supports such symbols, but,
as we demonstrate, not optimally. This paper aims to rectify the situation
by introducing a novel form of clause abstraction, a core component in the
hierarchic superposition calculus for transforming clauses into a form needed
for internal operation. We argue for the benefits of the resulting calculus and
provide a new completeness result for the fragment where all background-
sorted terms are ground.

Keywords

Hierarchic theorem proving, superposition.

Contents

1 Introduction 2

2 Signatures, Clauses, and Interpretations 6

3 Hierarchic Theorem Proving 8

4 Orderings 11

5 Weak Abstraction 12

6 Base Inference System 19

7 Refutational Completeness 23

8 Sufficient Completeness by Define 31

9 Implementation and Experiments 37

10 Conclusions 42

1

1 Introduction

Many applications of automated deduction require reasoning with respect to
a combination of a background theory, say integer arithmetic, and a fore-
ground theory that extends the background theory by new sorts such as list ,
new operators, such as cons : int × list → list and length : list → int ,
and first-order axioms. Developing corresponding automated reasoning sys-
tems that are also able to deal with quantified formulas has recently been
an active area of research. One major line of research is concerned with ex-
tending (SMT-based) solvers [18] for the quantifier-free case by instantiation
heuristics for quantifiers [11, 12, e. g.]. Another line of research is concerned
with adding black-box reasoners for specific background theories to first-order
automated reasoning methods (resolution [5, 13, 1], sequent calculi [21], in-
stantiation methods [10, 7, 8], etc). In both cases, a major unsolved research
challenge is to provide reasoning support that is “reasonably complete” in
practice, so that the systems can be used more reliably for both proving
theorems and finding counterexamples.

In [5], Bachmair, Ganzinger, and Waldmann introduced the hierarchical
superposition calculus as a generalization of the superposition calculus for
black-box style theory reasoning. Their calculus works in a framework of
hierarchic specifications. It tries to prove the unsatisfiability of a set of clauses
with respect to interpretations that extend a background model such as the
integers with linear arithmetic conservatively, that is, without identifying
distinct elements of old sorts (“confusion”) and without adding new elements
to old sorts (“junk”). While confusion can be detected by first-order theorem
proving techniques, junk can not – in fact, the set of logical consequences of
a hierarchic specifications is usually not recursively enumerable. Refutational
completeness can therefore only be guaranteed if one restricts oneself to sets
of formulas where junk can be excluded a priori. The property introduced
by Bachmair, Ganzinger, and Waldmann for this purpose is called “sufficient
completeness with respect to simple instances”. Given this property, their
calculus is refutationally complete for clause sets that are fully abstracted
(i. e., where no literal contains both foreground and background symbols).
Unfortunately their full abstraction rule may destroy sufficient completeness
with respect to simple instances. We show that this problem can be avoided
by using a new form of clause abstraction and a suitably modified hierarchical

2

superposition calculus. Since the new hierarchical superposition calculus is
still refutationally complete and the new abstraction rule is guaranteed to
preserve sufficient completeness with respect to simple instances, the new
combination is strictly more powerful than the old one.

In practice, sufficient completeness is a rather restrictive property. While
there are application areas where one knows in advance that every input
is sufficiently complete, in most cases this does not hold. As a user of an
automated theorem prover, one would like to see a best effort behaviour:
The prover might for instance try to make the input sufficiently complete by
adding further theory axioms. In the calculus by Bachmair, Ganzinger, and
Waldmann, however, this does not help at all: The restriction to a particular
kind of instantiations (“simple instances”) renders theory axioms essentially
unusable in refutations. We show that this can be prevented by introducing
two kinds of variables of the background theory sorts instead of one, that
can be instantiated in different ways, making our calculus significantly “more
complete” in practice. We also include a definition rule in the calculus that
can be used to establish sufficient completeness by linking foreground terms
to background parameters, thus allowing the background prover to reason
about these terms.

The following trivial example demonstrates the problem. Consider the
clause set N = {C} where C = f(1) < f(1). Assume that the background
theory is integer arithmetic and that f is an integer-sorted operator from
the foreground (free) signature. Intuitively, one would expect N to be un-
satisfiable. However, N is not sufficiently complete, and it admits models in
which f(1) is interpreted as some junk element , an element of the domain
of the integer sort that is not a numeric constant. So both the calculus in [5]
and ours are excused to not find a refutation. To fix that, one could add
an instance C ′ = ¬(f(1) < f(1)) of the irreflexivity axiom ¬(x < x). The
resulting set N ′ = {C, C ′} is (trivially) sufficiently complete as it has no
models at all. However, the calculus in [5] is not helped by adding C ′, since
the abstracted version of N ′ is again not sufficiently complete and admits a
model that interprets f(1) as . Our abstraction mechanism always preserves
sufficient completeness and our calculus will find a refutation.

With this example one could think that replacing the abstraction mech-
anism in [5] with ours gives all the advantages of our calculus. This is not
the case, however. Let N ′′ = {C, ¬(x < x)} be obtained by adding the
more realistic axiom ¬(x < x). The set N ′′ is still sufficiently complete with
our approach thanks to having two kinds of variables at disposal, but it is
not sufficiently complete in the sense of [5]. Indeed, in that calculus adding
background theory axioms never helps to gain sufficient completeness, as
variables there have only one kind.

3

Another alternative to make N sufficiently complete is by adding a clause
that forces f(1) to be equal to some background domain element. For instance,
one can add a “definition” for f(1), that is, a clause f(1) ≈ α, where α is a
fresh symbolic constant belonging to the background signature (a “param-
eter”). The set N ′′′ = {C, f(1) ≈ α} is sufficiently complete and it admits
refutations with both calculi. The definition rule in our calculus mentioned
above will generate this definition automatically. Moreover, the set N belongs
to a syntactic fragment for which we can guarantee not only sufficient com-
pleteness (by means of the definition rule) but also refutational completeness.

We present the new calculus in detail and provide a general completeness
result, modulo compactness of the background theory, and a specific com-
pleteness result for clause sets over ground background-sorted terms that does
not require compactness. We also report on experiments with a prototypical
implementation on the TPTP problem library.

Related Work. The relation with the predecessor calculus in [5] is discussed
above and also further below. What we say there also applies to other devel-
opments rooted in that calculus, [1, e. g.]. The specialised version of hierarchic
superposition in [14] will be discussed in Sect. 8 below. The resolution calculus
in [13] has built-in inference rules for linear (rational) arithmetic, but is com-
plete only under restrictions that effectively prevent quantification over ratio-
nals. Earlier work on integrating theory reasoning into model evolution [7, 8]
lacks the treatment of background-sorted foreground function symbols. The
same applies to the sequent calculus in [21], which treats linear arithmetic
with built-in rules for quantifier elimination. The instantiation method in [10]
requires an answer-complete solver for the background theory to enumerate
concrete solutions of background constraints, not just a decision procedure.
All these approaches have in common that they integrate specialized reason-
ing for background theories into a general first-order reasoning method. A
conceptually different approach consists in using first-order theorem provers
as (semi-)decision procedures for specific theories in DPLL(T)(-like) architec-
tures [15, 2, 9]. Notice that in this context the theorem provers do not need
to reason modulo background theories themselves, and indeed they don’t.
The calculus and system in [15], for instance, integrates superposition and
DPLL(T). From DPLL(T) it inherits splitting of ground non-unit clauses
into their unit components, which determines a (backtrackable) model can-
didate M . The superposition inference rules are applied to elements from M
and a current clause set F . The superposition component guarantees refuta-
tional completeness for pure first-order clause logic. Beyond that, for clauses
containing background-sorted variables, (heuristic) instantiation is needed.

4

Instantiation is done with ground terms that are provably equal w. r. t. the
equations in M to some ground term in M in order to advance the derivation.
The limits of that method can be illustrated with an (artificial but simple)
example. Consider the unsatisfiable clause set {i ≤ j∨P(i+1, x)∨P(j+2, x),
i ≤ j ∨¬P(i+ 3, x)∨¬P(j+ 4, x)} where i and j are integer-sorted variables
and x is a foreground-sorted variable. Neither splitting into unit clauses, su-
perposition calculus rules, nor instantiation applies, and so the derivation
gets stuck with an inconclusive result. By contrast, the clause set belongs to
a fragment that entails sufficient completeness (“no background-sorted fore-
ground function symbols”) and hence is refutable by our calculus. On the
other hand, heuristic instantiation does have a place in our calculus, but we
leave that for future work.

5

2 Signatures, Clauses, and Interpretations

We work in the context of standard many-sorted logic with first-order signa-
tures comprised of sorts and operator (or function) symbols of given arities
over these sorts. A signature is a pair Σ = (Ξ,Ω), where Ξ is a set of sorts
and Ω is a set of operator symbols over Ξ. If X is a set of sorted variables with
sorts in Ξ, then the set of well-sorted terms over Σ = (Ξ,Ω) and X is denoted
by TΣ(X); TΣ is short for TΣ(∅). We require that Σ is a sensible signature,
i. e., that TΣ has no empty sorts. As usual, we write t[u] to indicate that the
term u is a (not necessarily proper) subterm of the term t. The position of u
in t is left implicit.

A Σ-equation is an unordered pair (s, t), usually written s ≈ t, where s
and t are terms from TΣ(X) of the same sort. For simplicity, we use equal-
ity as the only predicate in our language. Other predicates can always be
encoded as a function into a set with one distinguished element, so that a
non-equational atom is turned into an equation P (t1, . . . , tn) ≈ trueP ; this
is usually abbreviated by P (t1, . . . , tn).1 A literal is an equation s ≈ t or a
negated equation ¬(s ≈ t), also written as s 6≈ t. A clause is a multiset of
literals, usually written as a disjunction; the empty clause, denoted by � is a
contradiction. If F is a term, equation, literal or clause, we denote by vars(F)
the set of variables that occur in F . We say F is ground if vars(F) = ∅

A substitution σ is a mapping from variables to terms that is sort re-
specting, that is, maps each variable x ∈ X to a term of the same sort.
Substitutions are homomorphically extended to terms as usual. We write
substitution application in postfix form. A term s is an instance of a term
t if there is a substitution σ such that tσ = s. All these notions carry over
to equations, literals and clauses in the obvious way. The composition στ
of the substitutions σ and τ is the substitution that maps every variable x
to (xσ)τ .

The domain of a substitution σ is the set dom(σ) = {x | x 6= xσ}.
We work with substitutions with finite domains only, written as σ = [x1 7→
t1, . . . , xn 7→ tn] where dom(σ) = {x1, . . . , xn}. A ground substitution is a
substitution that maps every variable in its domain to a ground term. A
ground instance of F is obtained by applying some ground substitution with

1Without loss of generality we assume that there exists a distinct sort for every predi-
cate.

6

domain (at least) vars(F) to it.
A Σ-interpretation I consists of a Ξ-sorted family of carrier sets {Iξ}ξ∈Ξ

and of a function If : Iξ1×· · ·×Iξn → Iξ0 for every f : ξ1 . . . ξn → ξ0 in Ω. The
interpretation tI of a ground term t is defined recursively by f(t1, . . . , tn)I =
If (t

I
1, , . . . , t

I
n) for n ≥ 0. An interpretation I is called term-generated, if

every element of an Iξ is the interpretation of some ground term of sort ξ.
An interpretation I is said to satisfy a ground equation s ≈ t, if s and t have
the same interpretation in I; it is said to satisfy a negated ground equation
s 6≈ t, if s and t do not have the same interpretation in I. The interpretation
I satisfies a ground clause C if at least one of the literals of C is satisfied by
I. We also say that a ground clause C is true in I, if I satisfies C; and that
C is false in I, otherwise. A term-generated interpretation I is said to satisfy
a non-ground clause C if it satisfies all ground instances Cσ; it is called a
model of a set N of clauses, if it satisfies all clauses of N .2 We abbreviate
the fact that I is a model of N by I |= N ; I |= C is short for I |= {C}. We
say that N entails N ′, and write N |= N ′, if every model of N is a model of
N ′; N |= C is short for N |= {C}. We say that N and N ′ are equivalent, if
N |= N ′ and N ′ |= N .

If J is a class of Σ-interpretations, a Σ-clause or clause set is called J -
satisfiable if at least one I ∈ J satisfies the clause or clause set; otherwise it
is called J -unsatisfiable.

A specification is a pair SP = (Σ,J), where Σ is a signature and J is
a class of term-generated Σ-interpretations called models of the specification
SP . We assume that J is closed under isomorphisms.

We say that a class of Σ-interpretations J or a specification (Σ,J) is
compact, if every infinite set of Σ-clauses that is J -unsatisfiable has a finite
subset that is also J -unsatisfiable.

2This restriction to term-generated interpretations as models is possible since we are
only concerned with refutational theorem proving, i. e., with the derivation of a contradic-
tion.

7

3 Hierarchic Theorem Proving

In hierarchic theorem proving, we consider a scenario in which a general-
purpose foreground theorem prover and a specialized background prover co-
operate to derive a contradiction from a set of clauses. In the sequel, we will
usually abbreviate “foreground” and “background” by “FG” and “BG”.

The BG prover accepts as input sets of clauses over a BG signature ΣB =
(ΞB,ΩB). Elements of ΞB and ΩB are called BG sorts and BG operators,
respectively. We fix an infinite set XB of BG variables of sorts in ΞB. Every
BG variable has (is labeled with) a kind, which is either “abstraction” or
“ordinary”. Terms over ΣB and XB are called BG terms. A BG term is called
pure, if it does not contain ordinary variables; otherwise it is impure. These
notions apply analogously to equations, literals, clauses, and clause sets.

The BG prover decides the satisfiability of ΣB-clause sets with respect
to a BG specification (ΣB,B), where B is a class of term-generated ΣB-
interpretations called BG models. We assume that B is closed under iso-
morphisms.

In most applications of hierarchic theorem proving, the set of BG opera-
tors ΩB contains a set of distinguished constant symbols ΩD

B ⊆ ΩB that has
the property that dI1 6= dI2 for any two distinct d1, d2 ∈ ΩD

B and every BG
model I ∈ B. We refer to these constant symbols as (BG) domain elements.

While we permit arbitrary classes of BG models, in practice the following
three cases are most relevant:

(1) B consists of exactly one ΣB-interpretation (up to isomorphism), say,
the integer numbers over a signature containing all integer constants as
domain elements and ≤, <,+,− with the expected arities. In this case,
B is trivially compact; in fact, a set N of ΣB-clauses is B-unsatisfiable
if and only if some clause of N is B-unsatisfiable.

(2) ΣB is extended by an infinite number of parameters, that is, additional
constant symbols. While all interpretations in B share the same carrier
sets {Iξ}ξ∈ΞB

and interpretations of non-parameter symbols, parameters
may be interpreted freely by arbitrary elements of the appropriate Iξ.
The class B obtained in this way is in general not compact; for instance
the infinite set of clauses {n ≤ β | n ∈ N }, where β is a parameter, is
unsatisfiable in the integers, but every finite subset is satisfiable.

8

(3) ΣB is again extended by parameters, however, B is now the class of all
interpretations that satisfy some first-order theory, say, the first-order
theory of linear integer arithmetic.1 Since B corresponds to a first-
order theory, compactness is recovered. It should be noted, however,
that B contains non-standard models, so that for instance the clause
set {n ≤ β | n ∈ N } is now satisfiable (e. g., Q×Z with a lexicographic
ordering is a model).

The FG theorem prover accepts as inputs clauses over a signature Σ =
(Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ\ΞB and the operator
symbols in ΩF = Ω \ΩB are called FG sorts and FG operators. Again we fix
an infinite set XF of FG variables of sorts in ΞF. All FG variables have the
kind “ordinary”. We define X = XB ∪ XF.

In examples we will use {0, 1, 2, . . . } to denote BG domain elements,
{+,−, <,≤} to denote (non-parameter) BG operators, and the possibly sub-
scripted letters {x, y}, {X, Y }, {α, β}, and {a, b, c, f, g} to denote ordinary
variables, abstraction variables, parameters, and FG operators, respectively.
The letter ζ denotes an ordinary variable or an abstraction variable.

We call a term in TΣ(X) a FG term, if it is not a BG term, that is, if
it contains at least one FG operator or FG variable (and analogously for
equations, literals, or clauses). We emphasize that for a FG operator f :
ξ1 . . . ξn → ξ0 in ΩF any of the ξi may be a BG sort, and that consequently
FG terms may have BG sorts.

If I is a Σ-interpretation, the restriction of I to ΣB, written I|ΣB
, is the

ΣB-interpretation that is obtained from I by removing all carrier sets Iξ for
ξ ∈ ΞF and all functions If for f ∈ ΩF. Note that I|ΣB

is not necessarily
term-generated even if I is term-generated. In hierarchic theorem proving,
we are only interested in Σ-interpretations that extend some model in B and
neither collapse any of its sorts nor add new elements to them, that is, in
Σ-interpretations I for which I|ΣB

∈ B. We call such a Σ-interpretation a
B-interpretation.

Let N and N ′ be two sets of Σ-clauses. We say that N entails N ′ relative
to B (and write N |=B N ′), if every model of N whose restriction to ΣB is in
B is a model of N ′. Note that N |=B N ′ follows from N |= N ′. If N |=B �,
we call N B-unsatisfiable; otherwise, we call it B-satisfiable.2

1To satisfy the technical requirement that all interpretations in B are term-generated,
we assume that in this case ΣB is suitably extended by an infinite set of constants (or by
one constant and one unary function symbol) that are not used in any input formula or
theory axiom.

2If Σ = ΣB, this definition coincides with the definition of satisfiability w. r. t. a class
of interpretations that was given in Sect. 2. A set N of BG clauses is B-satisfiable if and
only if some interpretation of B is a model of N .

9

Our goal in refutational hierarchic theorem proving is to check whether
a given set of Σ-clauses N is false in all B-interpretations, or equivalently,
whether N is B-unsatisfiable.

We say that a substitution is simple if it maps every abstraction variable
in its domain to a pure BG term. For example, [x 7→ 1+Y+α], [X 7→ 1+Y+α]
and [x 7→ f(1)] all are simple, whereas [X 7→ 1 + y + α] and [X 7→ f(1)] are
not. Let F be a clause or (possibly infinite) clause set. By sgi(F) we denote
the set of simple ground instances of F , that is, the set of all ground instances
of (all clauses in) F obtained by simple ground substitutions.

Standard unification algorithms can be modified in a straightforward way
for computing simple mgus. Note that a simple mgu can map an ordinary
variable to an abstraction variable but not vice versa, as ordinary variables
are not pure BG terms. An impure BG term t and an abstraction variable X
can be unified, but the unifier has to map the ordinary variables in t to new
abstraction variables; this is similar to the use of weakening substitutions in
many-sorted logics with subsorts [24]. For example, a most general unifier of
x+ y and Z is [x 7→ X, y 7→ Y, Z 7→ X + Y].

For a BG specification (ΣB,B), we define GndTh(B) as the set of all
ground ΣB-formulas that are satisfied by every I ∈ B.

Definition 3.1 (Sufficient completeness) A Σ-clause set N is called suf-
ficiently complete w. r. t. simple instances iff for every Σ-model J of sgi(N) ∪
GndTh(B)3 and every ground BG-sorted FG term s there is a ground BG
term t such that J |= s ≈ t.4

For brevity, we will from now on omit the phrase “w. r. t. simple instances”
and speak only of “sufficient completeness”. It should be noted, though, that
our definition differs from the classical definition of sufficient completeness
in the literature on algebraic specifications.

3In contrast to [5], we include GndTh(B) in the definition of sufficient completeness.
(This is independent of the abstraction method used; it would also have been useful in [5].)

4Note that J need not be a B-interpretation.

10

4 Orderings

A hierarchic reduction ordering is a strict, well-founded ordering on terms
that is compatible with contexts, i. e., s � t implies u[s] � u[t], and stable
under simple substitutions, i. e., s � t implies sσ � tσ for every simple σ.
In the rest of this paper we assume such a hierarchic reduction ordering �
that satisfies all of the following: (i) � is total on ground terms, (ii) s � d
for every domain element d and every ground term s that is not a domain
element, and (iii) s � t for every ground FG term s and every ground BG
term t. These conditions are easily satisfied by an LPO with an operator
precedence in which FG operators are larger than BG operators and domain
elements are minimal with, for example, · · · � −2 � 2 � −1 � 1 � 0 to
achieve well-foundedness.

Condition (iii) and stability under simple substitutions together justify to
always order s � X where s is a non-variable FG term and X is an abstrac-
tion variable. By contrast, s � x can only hold if x ∈ vars(s). Intuitively,
the combination of hierarchic reduction orderings and abstraction variables
affords ordering more terms.

The ordering � is extended to literals over terms by identifying a positive
literal s ≈ t with the multiset {s, t}, a negative literal s 6≈ t with {s, s, t, t},
and using the multiset extension of �. Clauses are compared by the multiset
extension of �, also denoted by �.

The non-strict orderings � are defined as s � t iff s � t or s = t (the
latter is multiset equality in case of literals and clauses). We say that a literal
L is maximal (strictly maximal) in a clause L∨C iff there is no K ∈ C with
K � L (K � L).

11

5 Weak Abstraction

To refute an input set of Σ-clauses, hierarchic superposition calculi derive BG
clauses from them and pass the latter to a BG prover. In order to do this,
some separation of the FG and BG vocabulary in a clause is necessary. The
technique used for this separation is known as abstraction: One (repeatedly)
replaces some term q in a clause by a new variable and adds a disequations to
the clause, so that C[q] is converted into the equivalent clause ζ 6≈ q ∨ C[ζ],
where ζ is a new (abstraction or ordinary) variable.

The calculus by Bachmair, Ganzinger, and Waldmann [5] works on “fully
abstracted” clauses: Background terms occuring below a FG operator or in
an equation between a BG and a FG term or vice versa are abstracted out
until one arrives at a clause in which no literal contains both FG and BG
operator symbols.

A problematic aspect of any kind of abstraction is that it tends to increase
the number of incomparable terms in a clause, which leads to an undesirable
growth of the search space of a theorem prover. For instance, if we abstract
out the subterms t and t′ in a ground clause f(t) ≈ g(t′), we get x 6≈ t ∨ y 6≈
t′ ∨ f(x) ≈ g(y), and the two new terms f(x) and g(y) are incomparable in
any reduction ordering. The approach used in [5] to reduce this problem is to
consider only instances where BG-sorted variables are mapped to BG terms:
In the terminology of the current paper, all BG-sorted variables in [5] have
the kind “abstraction”. This means that, in the example above, we obtain
the two terms f(X) and g(Y). If we use an LPO with a precedence in which
f is larger than g and g is larger than every BG operator, then for every
simple ground substitution τ , f(X)τ is strictly larger that g(Y)τ , so we can
still consider f(X) as the only maximal term in the literal.

The advantage of full abstraction is that this clause structure is pre-
served by all inference rules. There is a serious drawback, however: Consider
the clause set N = { 1 + c 6≈ 1 + c }. Since N is ground, we have sgi(N) = N ,
and since sgi(N) is unsatisfiable, N is trivially sufficiently complete. Full ab-
straction turns N into N ′ = {X 6≈ c ∨ 1+X 6≈ 1+X }. In the simple ground
instances of N ′, X is mapped to all pure BG terms. However, there are Σ-
interpretations of sgi(N ′) in which c is interpreted differently from any pure
BG term, so sgi(N ′) ∪ GndTh(B) does have a Σ-model and N ′ is no longer
sufficiently complete. In other words, the calculus of [5] is refutationally com-

12

plete for clause sets that are fully abstracted and sufficiently complete, but
full abstraction may destroy sufficient completeness. (In fact, the calculus is
not able to refute N ′.)

The problem that we have seen is caused by the fact that full abstraction
replaces FG terms by abstraction variables, which may not be mapped to FG
terms later on. The obvious fix would be to use ordinary variables instead
of abstraction variables whenever the term to be abstracted out is not a
pure BG term, but as we have seen above, this would increase the number of
incomparable terms and it would therefore be detrimental to the performance
of the prover.

Full abstraction is a property that is stronger than actually necessary
for the completeness proof of [5]. In fact, it was claimed in a footnote in [5]
that the calculus could be optimized by abstracting out only non-variable
BG terms that occur below a FG operator. This is incorrect, however: Using
this abstraction rule, neither our calculus nor the calculus of [5] would not
be able to refute { 1 + 1 ≈ 2, (1 + 1) + c 6≈ 2 + c }, even though this set is
unsatisfiable and trivially sufficiently complete. We need a slightly different
abstraction rule to avoid this problem:

Definition 5.1 A BG term q occurring in a clause C is called target term
if q is neither a domain element nor a variable and if C has the form
C[f(s1, . . . , q, . . . , sn)], where f is a FG operator or at least one of the si
is a FG or impure BG term.1

A clause is called weakly abstracted if it does not have any target terms.
The weakly abstracted version of a clause is the clause that is obtained

by exhaustively replacing C[q] by

• C[X] ∨ X 6≈ q, where X is a new abstraction variable, if q is a pure
target term in C,

• C[y] ∨ y 6≈ q, where y is a new ordinary variable, if q is an impure
target term in C.

The weakly abstracted version of C is denoted by abstr(C).

For example, weak abstraction of the clause g(1, α, f(1) + (α + 1), z) ≈ β
yields g(1, X, f(1) + Y, z) ≈ β ∨ X 6≈ α ∨ Y 6≈ α + 1. Note that the terms
1, f(1) + (α + 1), z, and β are not abstracted out: 1 is a domain element;
f(1)+(α+1) has a BG sort, but it is not a BG term; z is a variable; and β is not
a proper subterm of any other term. The clause write(a, 2, read(a, 1) + 1) ≈

1The motivation for this definition and in particular the reason why it is permissible
to treat domain elements in a special way will become clear in Sect. 7.

13

b is already weakly abstracted. Every pure BG clause is trivially weakly
abstracted.

Nested abstraction is only necessary for certain impure BG terms. For
instance, the clause f(z + α) ≈ 1 has two target terms, namely α (since z is
an impure BG term) and z+α (since f is a FG operator). If we abstract out
z, we obtain f(z + X) ≈ 1 ∨ X 6≈ α. The new term z + X is still a target
term, so one more abstraction step yields f(y) ≈ 1 ∨ X 6≈ α ∨ y 6≈ z + X.
(Alternatively, we can first abstract out z+α, yielding f(y) ≈ 1∨ y 6≈ z+α,
and then α. The final result is the same.)

It is easy to see that the abstraction process described in Def. 5.1 does
in fact terminate. For any clause, we consider the multiset of the numbers
of non-variable occurrences in the left and right-hand sides of its literals: If
we abstract out a target term q, then q has k ≥ 1 non-variable occurrences
and it occurs as a subterm of a left or right-hand side s[q] with n > k non-
variable occurrences. After the abstraction step, s[ζ] has n−k non-variable
occurrences and the two terms ζ and q in the new abstraction literal have 0
and k non-variable occurrences. Since n−k, k, and 0 are strictly smaller than
n, the multiset decreases. Termination follows from the well-foundedness of
the multiset ordering.

Proposition 5.2 If N is a set of clauses and N ′ is obtained from N by
replacing one or more clauses by their weakly abstracted versions, then sgi(N)
and sgi(N ′) are equivalent and N ′ is sufficiently complete whenever N is.

Proof. Let us first consider the case of a single abstraction step applied
to a single clause. Let C[q] be a clause with a target term q and let D =
C[ζ]∨ ζ 6≈ q be the result of abstracting out q (where ζ is a new abstraction
variable, if q is pure, and a new ordinary variable, if q is impure). We will
show that sgi(C) and sgi(D) have the same models.

In one direction let I be an arbitrary model of sgi(C). We have to show
that I is also a model of every simple ground instance Dτ of D. If I satisfies
the disequation ζτ 6≈ qτ then this is trivial. Otherwise, ζτ and qτ have
the same interpretation in I. Since dom(τ) ⊇ vars(D) = vars(C) ∪ {ζ},
Cτ is a simple ground instance of C, so I is a model of Cτ = Cτ [qτ]. By
congruence, we conclude that I is also a model of Cτ [ζτ], hence it is a model
of Dτ = Cτ [ζτ] ∨ ζτ 6≈ qτ .

In the other direction let I be an arbitrary model of sgi(D). We have
to show that I is also a model of every simple ground instance Cτ of C.
Without loss of generality assume that ζ /∈ dom(τ). If ζ is an abstraction
variable, then q is a pure BG term, and since τ is a simple substitution, qτ
is a pure BG term as well. Consequently, the substitutions [ζ 7→ qτ] and

14

τ ′ = τ [ζ 7→ qτ] are again simple substitutions and Dτ ′ is a simple ground
instance of D. This implies that I is a model of Dτ ′. The clause Dτ ′ has the
form Dτ ′ = Cτ ′[ζτ ′] ∨ ζτ ′ 6≈ qτ ′; since ζτ ′ = qτ , Cτ ′ = Cτ and qτ ′ = qτ ,
this is equal to Cτ [qτ]∨qτ 6≈ qτ . Obviously, the literal qτ 6≈ qτ must be false
in I, so I must be a model of Cτ [qτ] = C[q]τ = Cτ .

By induction over the number of abstraction steps we conclude that for
any clause C, sgi(C) and sgi(abstr(C)) are equivalent. The extension to clause
setsN andN ′ follows then from the fact that I is a model of sgi(N) if and only
if it is a model of sgi(C) for all C ∈ N . Moreover, the equivalence of sgi(N)
and sgi(N ′) implies obviously that N ′ is sufficiently complete whenever N
is. �

In contrast to full abstraction, the weak abstraction rule does not require
abstraction of FG terms (which can destroy sufficient completeness, if done
using abstraction variables, and which is detrimental to the performance of
a prover if done using ordinary variables). BG terms are usually abstracted
out using abstraction variables. The exception are BG terms that are impure,
i. e., that contain ordinary variables themselves. In this case, we cannot avoid
to use ordinary variables for abstraction, otherwise, we might again destroy
sufficient completeness. For example, the clause set {P(1 + y), ¬P(1 + c) } is
sufficiently complete. If we used an abstraction variable instead of an ordinary
variable to abstract out the impure subterm 1+y, we would get {P(X)∨X 6≈
1 + y, ¬P(1 + c) }, which is no longer sufficiently complete.

In input clauses (that is, before abstraction), BG-sorted variables may
be declared as “ordinary” or “abstraction”. As we have seen above, using
abstraction variables can reduce the search space; on the other hand, ab-
straction variables may be detrimental to sufficient completeness. Consider
the following example: The set of clauses N = {¬f(x) > g(x) ∨ h(x) ≈ 1,
¬f(x) ≤ g(x) ∨ h(x) ≈ 2, ¬h(x) > 0 } is unsatisfiable w. r. t. linear inte-
ger arithmetic, but since it is not sufficiently complete, the hierarchic su-
perposition calculus does not detect the unsatisfiability. Adding the clause
X > Y ∨X ≤ Y to N does not help: Since the abstraction variables X and
Y may not be mapped to the FG terms f(x) and g(x) in a simple ground
instance, the resulting set is still not sufficiently complete. However, if we add
the clause x > y ∨ x ≤ y, the set of clauses becomes (vacuously) sufficiently
complete and its unsatisfiability is detected.

One might wonder whether it is also possible to gain anything if the ab-
straction process is performed using ordinary variables instead of abstraction
variables. The following proposition shows that this is not the case:

Proposition 5.3 Let N be a set of clauses, let N ′ be the result of weak
abstraction of N as defined above, and let N ′′ be the result of weak abstrac-

15

tion of N where all newly introduced variables are ordinary variables. Then
sgi(N ′) and sgi(N ′′) are equivalent and sgi(N ′) is sufficiently complete if and
only if sgi(N ′′) is.

Proof. By Prop. 5.2, we know already that sgi(N) and sgi(N ′) are equiva-
lent. Moreover, it is easy to check the proof of Prop. 5.2 is still valid if we
assume that the newly introduced variable ζ is always an ordinary variable.
(Note that the proof requires that abstraction variables are mapped only
to pure BG terms, but it does not require that a variable that is mapped
to a pure BG term must be an abstraction variable.) So we can conclude
in the same way that sgi(N) and sgi(N ′′) are equivalent, and hence, that
sgi(N ′) and sgi(N ′′) are equivalent. From the latter, we can conclude that N ′

is sufficiently complete whenever N ′′ is. �

In the rest of the paper we will need some technical lemmas that relate
clauses, their (partial) abstractions, instances of these clauses, and the target
terms in these clauses.

Lemma 5.4 Let w be a subterm of a literal L = [¬] v[w] ≈ v′. Let σ be a
simple substitution and let K be a literal [¬] vσ[wσ] ≈ v′′. If wσ is a target
term in K, then w is a variable or a target term in L.

Proof. If w is neither a variable nor a target term in L, then w is a FG term
or a domain element, or it equals v, or it occurs below a BG operator f and
all other terms occurring below f are pure BG terms. Each of these properties
is preserved by instantiation with a simple substitution. (Note that simple
instances of pure BG terms are again pure BG terms.) �

Lemma 5.5 Let w be a subterm of a literal L = [¬] v[w] ≈ v′. Let σ be
a substitution that maps all abstraction variables in its domain to pure BG
terms and all ordinary BG-sorted variables in its domain to impure BG terms,
and let K be a literal [¬] vσ[wσ] ≈ v′′. If w is a target term in L then wσ is
a target term in K.

Proof. The term w is a target term in L if and only if (i) w is a BG term
that is neither a domain element nor a variable, and (ii) w occurs in L in a
term f(s1, . . . , w, . . . , sn), where f is a FG operator or at least one of the si
is a FG or impure BG term. Obviously wσ cannot be a domain element or a
variable. Moreover it is easy to check that σ maps BG terms to BG terms,
impure BG terms to impure BG terms, and FG terms to FG terms, so both
properties (i) and (ii) are preserved by σ. �

16

Lemma 5.6 Let D0 be a clause. Let τ0 be a simple substitution such that
D0τ0 is a ground instance of D0 and let ρ0 be the identity substitution.
For n ∈ {0, . . . , k−1} let Dn+1 be clauses obtained from D0 by successively
abstracting out target terms as described in Def. 5.1, that is, let qn be a
target term in Dn = Dn[qn] and let Dn+1 = Dn[ζn] ∨ ζn 6≈ qn (where ζn is
a new abstraction variable, if qn is a pure target term, and a new ordinary
variable otherwise). Let τn+1 = τn[ζn 7→ qnτn] and ρn+1 = ρn[ζn 7→ qnρn].
Then the following properties hold:

(1) If n ∈ {0, . . . , k}, then τn and ρn are simple substitutions and ρn maps
all abstraction variables in its domain to pure BG terms and all ordinary
variables in its domain to impure BG terms.

(2) If n ∈ {0, . . . , k}, then τn = ρnτ0.

(3) If n ∈ {0, . . . , k} then Dnτn is a ground instance of Dn and has the
form Dnτn = D0τ0 ∨

∨
0≤i<n qiτi 6≈ qiτi, where the literals qiτi 6≈ qiτi

are ground instances of the abstraction literals introduced so far.

(4) If n ∈ {0, . . . , k} and if D′n is the subclause of Dn that is obtained by
dropping the abstraction literals introduced so far, then D′nρn = D0.

(5) If n ∈ {0, . . . , k−1} and if the target term qn occurs in the subclause
D′n of Dn, then there is a target term q̄n in D0 such that qnτn = q̄nτ0.

Proof. Property (1) follows by induction from the fact that all the mappings
[ζn 7→ qnτn] and [ζn 7→ qnρn] are simple and from the fact that [ζn 7→ qnρn]
maps an abstraction variable to a pure BG term or an ordinary variable to
an impure BG term.

Property (2) is obvious for n = 0. By induction, we obtain τn+1 = τn[ζn 7→
qnτn] = ρnτ0[ζn 7→ qnρnτ0] = ρn[ζn 7→ qnρn]τ0 = ρn+1τ0 as required.

Property (3) is again obvious for n = 0. By induction, we obtain Dn+1τn+1

= Dnτn+1[ζnτn+1] ∨ ζnτn+1 6≈ qnτn+1 = Dnτn[qnτn] ∨ qnτn 6≈ qnτn = Dnτn ∨
qnτn 6≈ qnτn = D0τ0∨

∨
0≤i<n qiτi 6≈ qiτi∨qnτn 6≈ qnτn = D0τ0∨

∨
0≤i<n+1 qiτi 6≈

qiτi as required. Since qn is a subterm of Dn and Dnτn is ground by induction,
we can conclude that qiτn 6≈ qiτn is ground as well.

To prove property (4), we write Dn in the form Dn = D′n∨En, where En
is the subclause consisting of all abstraction literals introduced so far. For
n = 0, there is nothing to prove. If qn occurs in D′n, then Dn = D′n[qn] ∨ En
and Dn+1 = D′n[ζn]∨En∨ ζn 6≈ qn, therefore D′n+1 = D′n[ζn] and D′n+1ρn+1 =
D′nρn+1[ζnρn+1] = D′nρn[qnρn] = D′nρn = D0. Otherwise qn occurs in En, then
Dn = D′n ∨ En[qn] and Dn+1 = D′n ∨ En[ζn] ∨ ζn 6≈ qn, therefore D′n+1 = D′n
and D′n+1ρn+1 = D′nρn+1 = D′nρn = D0.

17

It remains to prove property (5). According to property (4) ρn maps
D′n to D0; since qn occurs in D′n, qnρn is a subterm q̄n of D0. By property
(1) and Lemma 5.5, q̄n must be a target term in D0. Property (2) yields
q̄nτ0 = qnρnτ0 = qnτn. �

18

6 Base Inference System

An inference system I is a set of inference rules. By an I inference we mean
an instance of an inference rule from I such that all conditions are satisfied.

The base inference system HSPBase of the hierarchic superposition calcu-
lus consists of the inference rules Equality resolution, Negative superposition,
Positive superposition, Equality factoring, and Close defined below. All infer-
ence rules are applicable only to weakly abstracted premise clauses. The
calculus is parameterized by a hierarchic reduction ordering � and by a “se-
lection function” that assigns to every clause a (possibly empty) subset of its
negative FG literals.

Equality resolution
s 6≈ t ∨ C
abstr(Cσ)

if (i) neither s nor t is a pure BG term, (ii) σ is a simple mgu of s and t, and
(iii) if the premise has selected literals, then s 6≈ t is selected in the premise,
otherwise (s 6≈ t)σ is maximal in (s 6≈ t ∨ C)σ.1

For example, Equality resolution is applicable to 1 + c 6≈ 1 + x with the
simple mgu [x 7→ c], but it is not applicable to 1 + α 6≈ 1 + x, since 1 + α is
a pure BG term.

Negative superposition
l ≈ r ∨ C s[u] 6≈ t ∨D
abstr((s[r] 6≈ t ∨ C ∨D)σ)

if (i) neither l nor u is a pure BG term, (ii) u is not a variable, (iii) σ is
a simple mgu of l and u, (iv) rσ 6� lσ, (v) (l ≈ r)σ is strictly maximal
in (l ≈ r ∨ C)σ, (vi) the first premise does not have selected literals, (vii)
tσ 6� sσ, and (viii) if the second premise has selected literals, then s 6≈ t is
selected in the second premise, otherwise (s 6≈ t)σ is maximal in (s 6≈ t∨D)σ.

1As in [5], it is possible to strengthen the maximality condition by requiring that there
exists some simple ground substitution ψ such that (s 6≈ t)σψ is maximal in (s 6≈ t∨C)σψ
(and analogously for the other inference rules).

19

Positive superposition
l ≈ r ∨ C s[u] ≈ t ∨D
abstr((s[r] ≈ t ∨ C ∨D)σ)

if (i) neither l nor u is a pure BG term, (ii) u is not a variable, (iii) σ is
a simple mgu of l and u, (iv) rσ 6� lσ, (v) (l ≈ r)σ is strictly maximal in
(l ≈ r∨C)σ, (vi) tσ 6� sσ, (vii) (s 6≈ t)σ is strictly maximal in (s ≈ t∨D)σ,
and (viii) none of the premises has selected literals.

Equality factoring
s ≈ t ∨ l ≈ r ∨ C

abstr((l ≈ r ∨ t 6≈ r ∨ C)σ)

where (i) neither s nor l is a pure BG term, (ii) σ is a simple mgu of s and
l, (iii) (s ≈ t)σ is maximal in (s ≈ t∨ l ≈ r∨C)σ, (iv) tσ 6� sσ, (v) lσ 6� rσ,
and (vi) the premise does not have selected literals.

Close
C1 · · · Cn

�

if C1, . . . , Cn are BG clauses and {C1, . . . , Cn} is B-unsatisfiable, i. e., no
interpretation in B is a ΣB-model of {C1, . . . , Cn}.

Notice that Close is not restricted to take pure BG clauses only. The
reason is that also impure BG clauses admit simple ground instances that
are pure.

In contrast to [5], the inference rules above include an explicit weak ab-
straction in their conclusion. Without it, conclusions would not be weakly ab-
stracted in general. For example Positive superposition applied to the weakly
abstracted clauses f(X) ≈ 1 ∨ X 6≈ α and P(f(1) + 1) would then yield
P(1 + 1) ∨ 1 6≈ α, whose P-literal is not weakly abstracted. Additionally,
the side conditions of our rules differ somewhat from the corresponding rules
of [5], this is due on the one hand to the presence of impure BG terms (which
must sometimes be treated like FG terms), and on the other hand to the fact
that, after weak abstraction, literals may still contain both FG and BG op-
erators.

The inference rules are supplemented by a redundancy criterion, that is,
a mapping RCl from sets of formulae to sets of formulae and a mapping RInf

from sets of formulae to sets of inferences that are meant to specify formulae
that may be removed from N and inferences that need not be computed.
(RCl(N) need not be a subset of N and RInf(N) will usually also contain
inferences whose premises are not in N .)

20

Definition 6.1 A pair R = (RInf ,RCl) is called a redundancy criterion
(with respect to an inference system I and a consequence relation |=), if the
following conditions are satisfied for all sets of formulae N and N ′:

(i) N \ RCl(N) |= RCl(N).

(ii) If N ⊆ N ′, then RCl(N) ⊆ RCl(N
′).

(iii) If ι is an inference and its conclusion is in N , then ι ∈ RInf(N).

(iv) If N ′ ⊆ RCl(N), then RInf(N) ⊆ RInf(N \N ′).

Inferences in RInf(N) and formulae in RCl(N) are said to be redundant with
respect to N .

Let SSP be the ground standard superposition calculus using the inference
rules equality resolution, negative superposition, positive superposition, and
equality factoring (Bachmair and Ganzinger [3], Nieuwenhuis [17], Nieuwen-
huis and Rubio [19]). To define a redundancy criterion for HSPBase and to
prove the refutational completeness of the calculus, we use the same approach
as in [5] and relate HSPBase inferences to the corresponding SSP inferences.

For a set of ground clauses N , we defineRSCl(N) to be the set of all clauses
C such that there exist clauses C1, . . . , Cn ∈ N that are smaller than C with
respect to � and C1, . . . , Cn |= C. We define RSInf(N) to be the set of all
ground SSP inferences ι such that either a premise of ι is inRSCl(N) or else C0

is the conclusion of ι and there exist clauses C1, . . . , Cn ∈ N that are smaller
with respect to �c than the maximal premise of ι and C1, . . . , Cn |= C0.

The following results can be found in [3] and [17]:

Theorem 6.2 The (ground) standard superposition calculus SSP andRS =
(RSInf ,RSCl) satisfy the following properties:

(i) RS is a redundancy criterion with respect to |=.

(ii) SSP together with RS is refutationally complete.

(iii) N ⊆ N ′ implies RSInf(N) ⊆ RSInf(N
′).

(iv) N ′ ⊆ RSCl(N) implies RSCl(N) ⊆ RSCl(N \N ′).

Let ι be an HSPBase inference with premises C1, . . . , Cn and conclusion
abstr(C), where the clauses C1, . . . , Cn have no variables in common. Let ι′

be a ground SSP inference with premises C ′1, . . . , C
′
n and conclusion C ′. If σ

is a simple substitution such that C ′ = Cσ and C ′i = Ciσ for all i, and if
none of the C ′i is a BG clause, then ι′ is called a simple ground instance of ι.
The set of all simple ground instances of an inference ι is denoted by sgi(ι).

21

Definition 6.3 Let N be a set of weakly abstracted clauses. We define
RHInf(N) to be the set of all inferences ι such that either ι is not a Close
inference and sgi(ι) ⊆ RSInf(sgi(N) ∪ GndTh(B)), or else ι is a Close infer-
ence and � ∈ N . We define RHCl(N) to be the set of all weakly abstracted
clauses C such that sgi(C) ⊆ RSCl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B).2

2In contrast to [5], we include GndTh(B) in the redundancy criterion. (This is inde-
pendent of the abstraction method used; it would also have been useful in [5].)

22

7 Refutational Completeness

To prove that HSPBase and RH = (RHInf ,RHCl) are refutationally complete for
sets of weakly abstracted Σ-clauses and compact BG specifications (ΣB,B),
we use the same technique as in [5]:

First we show that RH is a redundancy criterion with respect to |=B, and
that a set of clauses remains sufficiently complete if new clauses are added or
if redundant clauses are deleted. The proofs for both properties are similar
to the corresponding ones in [5]; the differences are due, on the one hand, to
the fact that we include GndTh(B) in the redundancy criterion and in the
definition of sufficient completeness, and, on the other hand, to the explicit
abstraction steps in our inference rules.

Lemma 7.1 If sgi(N) ∪ GndTh(B) |= sgi(C), then N |=B C.

Proof. Suppose that sgi(N) ∪ GndTh(B) |= sgi(C) and let I ′ be an Σ-model
of N whose restriction to ΣB is contained in B. Obviously, I ′ is also a model
of GndTh(B). Since I ′ does not add new elements to the sorts of I = I ′|ΣB

and I is a term-generated ΣB-interpretation, we know that for every ground
Σ-term t′ of a BG sort there exists a ground BG term t, such that t and t′ have
the same interpretation in I ′. Consequently, for every ground substitution σ′

there exists an equivalent simple ground substitution σ; since Cσ is valid in
I ′, Cσ′ is also valid. �

We call the simple most general unifier σ that is computed during an
inference ι and applied to the conclusion the pivotal substitution of ι. (For
ground inferences, the pivotal substitution is the identity mapping.) If L is
the literal [¬] s ≈ t or [¬] s[u] ≈ t of the second or only premise that is
eliminated in ι, we call Lσ the pivotal literal of ι, and we call sσ or s[u]σ the
pivotal term of ι.

Lemma 7.2 Let ι be an HSPBase inference

C1

abstr(C0σ)
or

C2 C1

abstr(C0σ)

23

from weakly abstracted premises with pivotal substitution σ. Let ι′ be a
simple ground instance of ι of the form

C1τ

C0στ
or

C2τ C1τ

C0στ

Then there is a simple ground instance of abstr(C0σ) that has the form
C0στ ∨ E, where E is a (possibly empty) disjunction of literals s 6≈ s, and
each literal of E is smaller than the pivotal literal of ι′.

Proof. Without loss of generality, we may assume that σ is an idempotent
most general unifier over vars(C1) ∪ vars(C2) and that τ = σρ for some
substitution ρ; hence στ = σσρ = σρ = τ and in particular C0στ = C0τ .

Let τ0 = τ and let D0 = C0σ. Let Dn be the result of the nth abstraction
step starting from D0 for n ∈ {0, . . . , k}, and let abstr(C0σ) = Dk. According
to part (3) of Lemma 5.6, there are simple substitutions τn for 1 ≤ n ≤
k such that Dnτn is a ground instance of Dn and has the form Dnτn =
D0τ0 ∨

∨
0≤i<n qiτi 6≈ qiτi, where the literals qiτi 6≈ qiτi are ground instances

of the abstraction literals introduced so far and qi is a target term in Di.
Since C0στ = D0τ = D0τ0, this clause has essentially the required form. We
still have to prove, though, that each literal qiτi 6≈ qiτi is smaller than the
pivotal literal L of ι′.

If qi occurs in Di in a literal K that has been generated by the jth
abstraction step (j < i), then Kτj is a literal qjτj 6≈ qjτj and qiτi is a proper
subterm of qjτj. By induction on the number of abstraction steps we obtain
qiτi 6≈ qiτi ≺ qjτj 6≈ qjτj ≺ L.

If qi occurs in Di in a literal that has not been generated by a previous
abstraction step, then by part (5) of Lemma 5.6 there is a target term q̄i in
D0 = C0σ such that qiτi = q̄iτ0 = q̄iτ . The term q̄i is either a term from C1σ,
or a term from C2σ, or a subterm of the term s[r]σ (the last two cases are
possible only for superposition inferences). We analyze these cases separately.

Case 1: q̄i is a proper subterm of a term vσ, where [¬]vσ ≈ v′′ is a literal
of C0σ and [¬]v ≈ v′ is a literal of C1.

Case 1.1: C1 does not have selected literals. In this case, every literal of
C1τ is smaller than or equal to the pivotal literal L of ι′. Consequently, we
obtain qiτi = q̄iτ ≺ vστ = vτ , thus qiτi 6≈ qiτi ≺ [¬] vτ ≈ v′τ � L.

Case 1.2: C1 has selected literals. In this case, L is a selected literal in C1τ
and ι and ι′ are either Negative superposition or Equality resolution inferences.
Since q̄i is a target term in C0σ, it is not a variable.

If q̄i occurs in vσ below a variable position of v, then there is a ζ ∈
dom(σ) ∩ vars(C1) such that q̄i is a subterm of ζσ. Otherwise, there is

24

a subterm w of v such that q̄i = wσ. Since C1 is weakly abstracted, w
cannot be a target term, so by Lemma 5.4, w must be a variable ζ, and
again ζ ∈ dom(σ) ∩ vars(C1). So in both cases, q̄i is a subterm of ζσ, and
consequently, qiτi = q̄iτ is a subterm of ζστ = ζτ .

Let us first consider a Negative superposition inference operating on the
literal s[u] 6≈ t in C1, where L = (s[u] 6≈ t)τ . As σ is a simple most general
unifier of l and u and ζ ∈ dom(σ) ∩ vars(C1), we know that ζ must occur in
u. Moreover u is not a variable, so ζ is a proper subterm of u. This implies
qiτi � ζτ ≺ uτ � s[u]τ , hence qiτi 6≈ qiτi ≺ (s[u] 6≈ t)τ = L.

Otherwise ι is an Equality resolution inference operating on the literal s 6≈ t
in C1, where L = (s 6≈ t)τ . As σ is a simple most general unifier of s and t
and ζ ∈ dom(σ) ∩ vars(C1), we know that ζ must occur in s or t. Assume
without loss of generality that ζ occurs in s. If s = ζ, then by the restrictions
on selection functions t must be a FG term, so ζτ = tτ is a FG term as well.
Since the BG term qiτi is a subterm of the FG term ζτ , it must be a proper
subterm, hence qiτi ≺ ζτ = tτ and qiτi 6≈ qiτi ≺ (s 6≈ t)τ = L. Otherwise
ζ is a proper subterm of s, then qiτi � ζτ ≺ sτ = tτ and we obtain again
qiτi 6≈ qiτi ≺ (s 6≈ t)τ = L.

Case 2: q̄i is a proper subterm of a term vσ, where [¬]vσ ≈ v′′ is a literal
of C0σ and [¬]v ≈ v′ is a literal of C2. This case is proved similarly to case 1.1
above: By the structure of SSP inferences, the literal lτ ≈ rτ of C2τ that has
been used to replace sτ [lτ] by sτ [rτ] in the pivotal literal is strictly maximal
in C2τ and lτ � rτ . Consequently, we obtain qiτi = q̄iτ ≺ vστ = vτ � lτ �
sτ [lτ] and thus qiτi 6≈ qiτi ≺ [¬] sτ [lτ] ≈ tτ = L.

Case 3: It remains to consider the case that q̄i is a subterm of the term
s[r]σ produced in a superposition inference. Then qiτi = q̄iτ ≺ s[r]στ =
s[r]τ ≺ s[l]τ , hence qiτi 6≈ qiτi ≺ [¬] s[l]τ ≈ tτ = L. �

As M ⊆ M ′ implies RSInf(M) ⊆ RSInf(M
′), we obtain RSInf(sgi(N) \

sgi(N ′)) ⊆ RSInf(sgi(N \ N ′)). Furthermore, it is fairly easy to see that
sgi(N) \ (RSCl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B)) ⊆ sgi(N \RHCl(N)). Using
these two results we can prove the following lemma:

Lemma 7.3 RH = (RHInf ,RHCl) is a redundancy criterion with respect to |=B.

Proof. We have to check the four conditions of Def. 6.1. The proof of
property (ii) is rather trivial. To check property (i) let D be an arbitrary
clause from sgi(RHCl(N)). Consequently, D ∈ RSCl(sgi(N) ∪ GndTh(B)) ∪
GndTh(B). If D ∈ GndTh(B), then trivially sgi(N \RHCl(N)) ∪ GndTh(B) |=
D. Otherwise D ∈ RSCl(sgi(N) ∪ GndTh(B)), and this implies sgi(N) ∪
GndTh(B) \ RSCl(sgi(N) ∪ GndTh(B)) |= D. Since sgi(N) ∪ GndTh(B) \
RSCl(sgi(N)∪GndTh(B)) ⊆ sgi(N)\RSCl(sgi(N)∪GndTh(B))∪GndTh(B) =

25

sgi(N) \ (RSCl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B)) ∪ GndTh(B) ⊆ sgi(N \
RHCl(N)) ∪ GndTh(B), we obtain again sgi(N \RHCl(N)) ∪ GndTh(B) |= D.
By Lemma 7.1, we can conclude that N \ RHCl(N) |=B RHCl(N).

Condition (iii) is obviously satisfied for all Close inferences. Suppose that ι
is not a Close inference and its conclusion concl(ι) = abstr(C0) is in N . Show-
ing that ι ∈ RHInf(N) amounts to proving that every simple ground instance
of ι is redundant w. r. t. sgi(N) ∪ GndTh(B). Let ι′ be such a simple ground
instance with maximal premise C1τ and conclusion C0τ . By Lemma 7.2, there
is a simple ground instance of abstr(C0) that has the form C0τ ∨ E, where
E is a (possibly empty) disjunction of literals s 6≈ s, and each literal of E is
smaller than the pivotal literal of ι′.

By the structure of superposition inferences, the clause C0τ is obtained
from C1τ by replacing the pivotal literal in C1τ by (zero or more) smaller
literals. Since the literals in E are also smaller than the pivotal literal,
C0τ ∨ E is still smaller than C1τ . Moreover, C0τ ∨ E entails C0τ , so ι′ ∈
RSInf(sgi(N) ∪ GndTh(B)). As sgi(ι) ⊆ RSInf(sgi(N) ∪ GndTh(B)), the infer-
ence ι is contained in RHInf(N). This proves condition (iii).

We come now to the proof of condition (iv). Note that N ′ ⊆ RHCl(N)
implies sgi(N ′) ⊆ RSCl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B), and thus sgi(N ′)\
GndTh(B) ⊆ RSCl(sgi(N) ∪ GndTh(B)). If ι ∈ RHInf(N) is a Close inference,
then � ∈ N ; since � /∈ RHCl(N), ι is contained in RHInf(N \ N ′). Otherwise
sgi(ι) ⊆ RSInf(sgi(N) ∪ GndTh(B)) ⊆ RSInf(sgi(N) ∪ GndTh(B) \ (sgi(N ′) \
GndTh(B))) = RSInf(sgi(N) \ sgi(N ′) ∪ GndTh(B)) ⊆ RSInf(sgi(N \ N ′) ∪
GndTh(B)), hence ι is again contained in RHInf(N \N ′). Therefore RHInf(N) ⊆
RHInf(N \N ′). �

Lemma 7.4 Let N , N ′ and M be sets of weakly abstracted clauses such
that N ′ ⊆ RHCl(N). If N is sufficiently complete, then so are N ∪ M and
N \N ′.

Proof. The sufficient completeness of N ∪ M is obvious; the sufficient com-
pleteness of N \ N ′ is proved in a similar way as in part (i) of the proof of
Lemma 7.3. �

We now encode arbitrary term-generated ΣB-interpretation by sets of
unit ground clauses in the following way: Let I ∈ B be a term-generated ΣB-
interpretation. For every ΣB-ground term t let m(t) be the smallest ground
term of the congruence class of t in I. We define a rewrite system E′I by
E′I = { t → m(t) | t ∈ TΣ, t 6= m(t) }. Obviously, E′I is terminating, right-
reduced, and confluent. Now let EI be the set of all rules l → r in E′I such
that l is not reducible by E′I \ {l → r}. It is fairly easy to prove that E′I

26

and EI define the same set of normal forms, and from this we can conclude
that EI and E′I induce the same equality relation on ground ΣB-terms. We
identify EI with the set of clauses { t ≈ t′ | t→ t′ ∈ EI }. Let DI be the set of
all clauses t 6≈ t′, such that t and t′ are distinct ground ΣB-terms in normal
form with respect to EI .

1

Lemma 7.5 Let I ∈ B be a term-generated ΣB-interpretation and let C be
a ground BG clause. Then C is true in I if and only if there exist clauses
C1, . . . , Cn in EI ∪ DI such that C1, . . . , Cn |= C and C � Ci for 1 ≤ i ≤ n.

LetN be a set of weakly abstracted clauses and I ∈ B be a term-generated
ΣB-interpretation, thenNI denotes the set EI ∪DI ∪ {Cσ | σ simple, reduced
with respect to EI , C ∈ N , Cσ ground }.

Lemma 7.6 If N is a set of weakly abstracted clauses, then RSInf(sgi(N) ∪
GndTh(B)) ⊆ RSInf(NI).

Proof. By part (iii) of Thm. 6.2 we have obviouslyRSInf(sgi(N)) ⊆ RSInf(EI ∪
DI ∪ sgi(N)∪GndTh(B)). Let C be a clause in EI ∪DI ∪ sgi(N)∪GndTh(B)
and not in NI . If C ∈ GndTh(B), then it is true in I, so by Lemma 7.5 it
is either contained in EI ∪ DI ⊆ NI or it follows from smaller clauses in
EI ∪ DI and is therefore in RSCl(EI ∪ DI ∪ sgi(N)). If C /∈ GndTh(B), then
C = C ′σ for some C ′ ∈ N , so it follows from C ′ρ and EI ∪ DI , where ρ is the
substitution that maps every variable ζ to the EI-normal form of ζσ. Since
C follows from smaller clauses in EI ∪ DI ∪ sgi(N), it is in RSCl(EI ∪ DI ∪
sgi(N)). Hence RSInf(EI ∪ DI ∪ sgi(N) ∪ GndTh(B)) ⊆ RSInf(NI). �

Theorem 7.7 Let I ∈ B be a term-generated ΣB-interpretation and let N
be a set of weakly abstracted Σ-clauses. If I satisfies all BG clauses in sgi(N)
and N is saturated with respect to HSPBase and RH, then NI is saturated
with respect to SSP and RS .

Proof. We have to show that every SSP-inference from clauses of NI is re-
dundant with respect to NI , i. e., that it is contained in RSInf(NI). We demon-
strate this in detail for the equality resolution and the negative superposition
rule. The analysis of the other rules is similar. Note that by Lemma 7.5 ev-
ery BG clause that is true in I and is not contained in EI ∪ DI follows from
smaller clauses in EI ∪ DI , thus it is in RSCl(NI); every inference involving
such a clause is in RSInf(NI).

1Typically, EI contains two kinds of clauses, namely clauses that evaluate non-constant
BG terms, such as 2 + 3 ≈ 5, and clauses that map parameters to domain elements, such
as α ≈ 4.

27

The equality resolution rule is obviously not applicable to clauses from
EI ∪ DI . Suppose that ι is an equality resolution inference with a premise
Cσ, where C ∈ N and σ is a simple substitution and reduced with respect
to EI . If Cσ is a BG clause, then ι is in RSInf(NI). If Cσ is a FG clause, then
ι is a simple ground instance of a hierarchic inference ι′ from C. Since ι′ is in
RHInf(N), ι is in RSInf(sgi(N) ∪ GndTh(B)), by Lemma 7.6, this implies again
ι ∈ RSInf(NI).

Obviously a clause from DI cannot be the first premise of a negative su-
perposition inference. Suppose that the first premise is a clause from EI . The
second premise cannot be a FG clause, since the maximal sides of maximal
literals in a FG clause are reduced; as it is a BG clause, the inference is
redundant. Now suppose that ι is a negative superposition inference with a
first premise Cσ, where C ∈ N and σ is a simple substitution and reduced
with respect to EI . If Cσ is a BG clause, then ι is in RSInf(NI). Otherwise, we
can conclude that the second premise can be written as C ′σ, where C ′ ∈ N is
a FG clause (without loss of generality, C and C ′ do not have common vari-
ables). We have to distinguish between two cases: If the overlap takes place
below a variable occurrence, the conclusion of the inference follows from Cσ
and some instance C ′ρ, which are both smaller than C ′σ. Otherwise, ι is a
simple ground instance of a hierarchic inference ι′ from C. In both cases, ι is
contained in RSInf(NI). �

The crucial property of abstracted clauses that is needed in the proof of
this theorem is that there are no superposition inferences between clauses in
EI and FG ground instances Cσ in NI , or in other words, that all FG terms
occurring in ground instances Cσ are reduced w. r. t. EI . This motivates the
definition of target terms in Def. 5.1: Recall that two different domain ele-
ments must always be interpreted differently in I and that a domain element
is smaller in the term ordering than any ground term that is not a domain
element. Consequently, any domain element is the smallest term in its con-
gruence class, so it is reduced by EI . Furthermore, by the definition of NI ,
ζσ is reduced by EI for every variable ζ. So variables and domain elements
never need to be abstracted out. Other BG terms (such as parameters α or
non-constant terms ζ1 + ζ2) have to be abstracted out if they occur below
a FG operator, or if one of their sibling terms is a FG term or an impure
BG term (since σ can map the latter to a FG term). On the other hand, ab-
stracting out FG terms as in [5] is never necessary to ensure that FG terms
are reduced w. r. t. EI .

If N is saturated with respect to HSPBase and RH and does not contain
the empty clause, then Close cannot be applicable to N . If (ΣB,B) is com-
pact, this implies that there is some term-generated ΣB-interpretation I ∈ B

28

that satisfies all BG clauses in sgi(N). Hence, by Thm. 7.7, the set of re-
duced simple ground instances of N has a model that also satisfies EI ∪ DI .
Sufficient completeness allows us to show that this is in fact a model of all
ground instances of clauses in N and that I is its restriction to ΣB:

Theorem 7.8 If the BG specification (ΣB,B) is compact, then HSPBase and
RH are refutationally complete for all sets of clauses that are sufficiently
complete.

Proof. Let N be a set of weakly abstracted clauses that is sufficiently com-
plete, and saturated w. r. t. the hierarchic superposition calculus and RH and
does not contain �. Consequently, the Close rule is not applicable to N . By
compactness, this means that the set of all ΣB-clauses in sgi(N) is satisfied
by some term-generated ΣB-interpretation I ∈ B. By Thm. 7.7, NI is satu-
rated with respect to the standard superposition calculus. Since � /∈ NI , the
refutational completeness of standard superposition implies that there is a
Σ-model I ′ of NI . Since N is sufficiently complete, we know that for every
ground term t′ of a BG sort there exists a BG term t such that t′ ≈ t is true
in I ′. Consequently, for every ground instance of a clause in N there exists
an equivalent simple ground instance, thus I ′ is also a model of all ground
instances of clauses in N . To see that the restriction of I ′ to Σ is isomorphic
to I and thus in B, note that I ′ satisfies EI ∪ DI , preventing confusion,
and that N is sufficiently complete, preventing junk. Since I ′ satisfies N and
I ′|ΣB

∈ B, we have N 6|=B � �

We do not spell out in detail theorem proving processes here, because the
well-known framework of standard resolution [4] can be readily instantiated
with our calculus. In particular, it justifies the following version of a generic
simplification rule for clause sets.

Simp
N ∪ {C}
N ∪ {D}

if (i) D is weakly abstracted, (ii) GndTh(B) ∪ N ∪ {C} |= D, and (iii) C is
redundant w. r. t. N ∪ {D}.

Condition (ii) is needed for soundness, and condition (iii) is needed for
completeness. The Simp rule covers the usual simplification rules of the stan-
dard superposition calculus, such as demodulation by unit clauses and dele-
tion of tautologies and (properly) subsumed clauses. It also covers simplifi-
cation of arithmetic terms, e. g., replacing a subterm (2 + 3) + α by 5 + α
and deleting an unsatisfiable BG literal 5 + α < 4 + α from a clause. Any

29

clause of the form C ∨ ζ 6≈ d where d is domain element can be simplified to
C[ζ 7→ d].

We have to point out a limitation of the calculus described above. The
standard superposition calculus SSP exists in two variants: either using the
Equality factoring rule, or using the Factoring and Merging paramodulation
rules. Only the first of these variants works together with weak abstrac-
tion. Consider the following example. Let N = {α + β ≈ α, c 6≈ β ∨ c 6≈ 0,
c ≈ β ∨ c ≈ 0 }. All clauses in N are weakly abstracted. Since the first clause
entails β ≈ 0 relative to linear arithmetic, the second and the third clause
are obviously contradictory. The HSPBase calculus as defined above is able
to detect this by first applying Equality factoring to the third clause, yielding
c ≈ 0 ∨ β 6≈ 0, followed by two Negative superposition steps and Close. If
Equality factoring is replaced by Factoring and Merging paramodulation, how-
ever, the refutational completeness of HSPBase is lost. The only inference that
remains possible is a Negative superposition inference between the third and
the second clause. But since the conclusion of this inference is a tautology, the
inference is redundant, so the clause set is saturated. (Note that the clause
β ≈ 0 is entailed by N , but it is not explicitly present, so there is no way
to perform a Merging paramodulation inference with the smaller side of the
maximal literal of the third clause.)

30

8 Sufficient Completeness by Define

In this section we introduce an additional inference rule, Define. It augments
the HSPBase inference system with complementary functionality: while the
HSPBase inference system will derive a contradiction if the input clause set is
inconsistent and sufficiently complete, the Define rule may turn input clause
sets that are not sufficiently complete into sufficiently complete ones. Tech-
nically, the Define rule derives “definitions” of the form t ≈ α, where t is
a ground BG-sorted FG term and α is a parameter. This way, sufficient
completeness is achieved “locally” for t, by forcing t to be equal to some
element of the carrier set of the proper sort, denoted by the parameter α.
For economy of reasoning, definitions are introduced only on a by-need basis,
when t appears in a current clause, and t ≈ α is used to simplify that clause
immediately.

We need one more preliminary definition before introducing Define for-
mally.

Definition 8.1 (Unabstracted clause) A clause is unabstracted if it does
not contain any disequation ζ 6≈ t between a variable ζ and a term t unless
t 6= ζ and ζ ∈ vars(t).

Every clause can be unabstracted by repeatedly replacing C ∨ ζ 6≈ t by
C[ζ 7→ t] whenever t = ζ or ζ /∈ vars(t). By unabstr(C) we denote an
unabstracted version of C that can be obtained this way.1 If t = t[ζ1, . . . , ζn]
is a term in C and ζi is finally instantiated to ti, we denote its unabstracted
version t[t1, . . . , tn] by unabstr(t, C). For a clause set N let unabstr(N) =
{unabstr(C) | C ∈ N}.

Define
N ∪ {L[t[ζ1, . . . , ζn]] ∨D}

N ∪ {abstr(t[t1, . . . , tn] ≈ αt[t1,...,tn]), abstr(L[αt[t1,...,tn]] ∨D)}

if (i) t[ζ1, . . . , ζn] is a minimal BG-sorted non-variable term with a toplevel
FG operator, (ii) t[t1, . . . , tn] = unabstr(t[ζ1, . . . , ζn], L[t[ζ1, . . . , ζn]]∨D), (iii)
t[t1, . . . , tn] is ground, and (iv) αt[t1,...,tn] is a parameter, uniquely determined
by the term t[t1, . . . , tn].

1In general, unabstraction does not yield a unique result. All results are equivalent,
however, and we can afford to select any one and disregard the others.

31

In (i), by minimality we mean that no proper subterm of t[ζ1, . . . , ζn] is
a BG-sorted non-variable term with a toplevel FG operator. In effect, the
Define rule eliminates such terms inside-out. Conditions (iii) and (iv) are
needed for soundness. Notice the Define-rule preserves B-satisfiability, not
B-equivalence. In our main application, Thm. 8.8 below, every ζi will always
be an abstraction variable.

Example 8.2 Consider the weakly abstracted clauses P(0), f(x) > 0 ∨
¬P(x), Q(f(x)), ¬Q(x) ∨ 0 > x. Suppose ¬P(x) is maximal in the second
clause. By superposition between the first two clauses we derive f(0) > 0.
With Define we obtain f(0) ≈ αf(0) and αf(0) > 0, the latter replacing f(0) > 0.
From the third clause and f(0) ≈ αf(0) we obtain Q(αf(0)), and with the fourth
clause 0 > αf(0). Finally we apply Close to {αf(0) > 0, 0 > αf(0)}.

In practice, it is interesting to identify conditions under which sufficient com-
pleteness can be established by means of Define and compactness poses no
problems, so that a complete calculus results. The ground BG-sorted term
fragment (GBT fragment) discussed below is one such case.

Definition 8.3 A clause C is a GBT clause if all BG-sorted terms in C are
ground. A clause set N belongs to the GBT fragment if every clause C ∈ N
is a GBT clause.

To get the desired completeness result we need to establish that the Define
rule preserves the GBT property.

Lemma 8.4 If unabstr(N) belongs to the GBT fragment and N ′ is obtained
from N by a Define inference, then unabstr(N ′) also belongs to the GBT
fragment.

Below we will equip the HSP calculus with a specific strategy that first applies
Define exhaustively before the derivation proper starts. In both phases, it may
be beneficial to also apply Simp. But then, we have to to make certain (mild)
assumptions.

Definition 8.5 Let �fin be a strict partial term ordering such that for every
ground BG term s only finitely many ground BG terms t with s �fin t exist.2

We say that a Simp inference with premise N ∪ {C} and conclusion N ∪ {D}
is suitable (for the GBT fragment) iff (i) if unabstr(C) is a GBT clause then
unabstr(D) is a GBT clause, (ii) for every BG term t occurring in unabstr(D)
there is a BG term s ∈ unabstr(C) such that s �fin t, (iii) every occurrence

2A KBO with appropriate weights can be used for �fin.

32

of a BG-sorted FG operator f in unabstr(D) is of the form f(t1, . . . , tn) ≈ t
where t is a ground BG term, (iv) every BG term in D is pure, and (v) if
every BG term in unabstr(C) is ground then every BG term in unabstr(D)
is ground.

We say the Simp inference rule is suitable iff every Simp inference is.

Expected simplification techniques like demodulation, subsumption deletion
and evaluation of BG subterms are all covered by suitable Simp rules. The
latter is possible because simplifications are not only decreasing w. r. t. �
but additionally also decreasing w. r. t. �fin, as expressed in condition (ii).
Without it, e. g., the clause P(1+1, 0) would admit infinitely many simplified
versions P(2, 0), P(2, 0 + 0), P(2, 0 + (0 + 0)), etc. Condition (i) makes sure
that Simp inferences preserve GBT clauses. Condition (iii) is needed to make
sure that no new BG terms are generated in derivations.

As said, we need to equip the HSP calculus with a specific strategy. As-
sume a suitable Simp rule and let N be a set of GBT clauses. By Npre we de-
note any clause set obtained by a derivation of the form (N0 = abstr(N)), N1,
. . . , (Nk = Npre) with the inference rules Define and Simp only, and such
that every C ∈ Npre either does not contain any BG-sorted FG operator
or unabstr(C) is a ground positive unit clause of the form f(t1, . . . , tn) ≈ t
where f is a BG-sorted FG operator, t1, . . . , tn do not contain BG-sorted FG
operators, and t is a pure background term.

For all GBT clause sets N , thanks to the effect of the Define rule and
Lemma 8.4, all offending occurrences of BG-sorted FG terms in N can step-
wisely be eliminated until a clause set Npre results. Notice that in every
GBT clause set all BG terms are ground, hence pure. By definition, weak
abstraction can introduce only abstraction variables then.

The HSPBase inferences do in general not preserve the shape of the clauses
in Npre. However, they do preserve a somewhat weaker property which is
sufficient for our purposes. Let us say that a weakly abstracted clause C is
clean if (i) every BG term in C is pure, (ii) every BG term in unabstr(C) is
ground, and (iii) every occurrence of a BG-sorted FG operator f in unabstr(C)
is in a positive literal of the form f(t1, . . . , tn) ≈ t where t is a ground BG
term. For example, assuming c is FG-sorted, P(f(c) + 1) is not clean, while
f(x) ≈ 1 +α∨P (x) is. A clause set is clean iff every clause in N is. From its
definition it follows that Npre is clean.

Lemma 8.6 Let C1, . . . , Cn be clean clauses. Assume a HSPBase inference
with premises C1, . . . , Cn and conclusion C. Then the following holds:

(1) C is clean.

33

(2) Every BG term occurring in unabstr(C) also occurs in some clause
unabstr(C1), . . . , unabstr(Cn).

Proof. Let C ′ be the conclusion of the inference before weak abstraction,
i.e., C = abstr(C ′). Regarding (1), property (i) of cleanness for C is trivial:
all BG terms in the premises are pure, hence so are all BG terms in C ′. Weak
abstraction never introduces ordinary variables unless the given clause has
ordinary variables. Thus all BG terms in C are pure as well.

The remaining properties for cleanness of C and property (2) can be seen
from inspection of the HSPBase inference rules. We show only the case for
superposition inferences, the other cases are similar. We distinguish three
cases.

Case 1: a superposition inference into a subterm u of si of a literal s ≈ t
of the right premise, where s = f(s1, . . . , si[u], . . . , sn) and f is a BG-sorted
foreground operator. With items (i) and (iii) of cleanness it follows that u
must be FG-sorted. In the conclusion of the inference u is replaced by a FG-
sorted term rσ where σ is the mgu of the inference. For any BG variable
X occurring in C1 or C2, if Xσ 6= X then Xσ must be an (abstraction)
variable occurring in C1 or in C2, or a domain element. This follows from
weak abstraction of C1 and C2, as any composite BG term paired with X
would have been abstracted out.

It is rather easy to see that C ′ does not require further abstraction,
i.e., C = C ′. By item (ii) of cleanness, every BG term in unabstr(C1) and
unabstr(C2) is ground. In other words, every BG variable occurring in C1 or
C2 is replaced by a ground term by unabstraction. This holds in particular
for Xσ if Xσ is such a variable, as opposed to a domain element. It follows
that every BG term in unabstr(C ′) = unabstr(C) is ground and that every
BG term in unabstr(C) also occurs in unabstr(C1) or unabstr(C2), i.e., prop-
erty (2) of the lemma claim. Finally observe that property (iii) of cleanness
holds trivially for C, which completes the proof of property (1).

Case 2: a superposition inference into any other FG-sorted subterm. This
is proved in essentially the same way as in case 1.

Case 3: a superposition inference into the top position of the left side of
f(s1, . . . sn) ≈ t, where f is a BG-sorted foreground operator. From item (iii)
of cleanness it follows this term is replaced by a ground term t′, which does
not need abstraction. The remaining argumentation is analogous to case 1
and is omitted. �

Thanks to the additional assumptions, Simp also preserves cleanness:

Lemma 8.7 Let N ∪ {C} be a set of clean clauses. If N ∪ {D} is obtained
from N ∪ {C} by a suitable Simp inference then D is clean.

34

Proof. We need to show properties (i)–(iii) of cleanness. That every BG term
in D is pure follows from Def. 8.5-(iv). That every BG term in unabstr(D)
is ground follows from Def. 8.5-(v) and cleanness of C. Finally, property (iii)
follows from Def. 8.5-(iii). �

With the above lemmas we can prove our main result:

Theorem 8.8 The HSP calculus with a suitable Simp inference rule is refu-
tationally complete for the ground BG-sorted term fragment. More precisely,
if a set N of GBT clauses is B-unsatisfiable then there is a refutation of Npre

without the Define rule.

Proof. Let N be a GBT clause set. From Lemma 8.4 and Def. 8.5-(i) it
follows that unabstr(Npre) is also a GBT clause set. From the definitions of
Define and Simp it follows that Npre is weakly abstracted. Let N0 = Npre and
let D = (Ni)i≥0 be a fair derivation from N0 without Define. Supposing D is
not a refutation we need to show that N has a B-model.

Let N∞ =
⋃
i≥0Ni be the set of all derived clauses. We first show that

unabstr(N∞) contains only finitely many different BG terms and each of
them is ground. Because Npre is a GBT clause set this property holds trivially
for unabstr(Npre) ⊆ unabstr(N∞). Because Define is disabled in D, only
HSPBase and (suitable) Simp inferences need to be analysed. Notice that Npre

is clean and both the HSPBase and Simp inferences preserve cleanness, as per
Lemmas 8.6-(1) and 8.7, respectively. The result then follows by induction
using Lemma 8.6-(2) and Def. 8.5-(ii). More explicitly, HSPBase inferences
do not introduce new BG terms w. r. t. unabstr(Npre), and the BG terms
occurring in unabstr(Npre) provide an upper bound w. r. t. the term ordering
�fin for all BG terms generated in Simp inferences. There can be only finitely
many such terms, and each of them is ground, which follows from Def. 8.5-(ii).

Because every BG term occurring in unabstr(N∞) is ground, every BG
clause in unabstr(N∞) is a multiset of literals of the form s ≈ t or s 6≈ t,
where s and t are ground BG terms. With only finitely many BG terms
available, there are only finitely many BG clauses in unabstr(N∞), modulo
equivalence. Because unabstraction is an equivalence transformation, there
are only finitely many BG clauses in N∞ as well, modulo equivalence.

The rest of the proof is similar to the proof of Thm. 7.8. Essentially,
we need two changes, related to compactness and to sufficient completeness,
respectively.

Let N∞ =
⋃
i≥0

⋂
j≥iNj be the limit clause set of the derivation D, which

is saturated w. r. t. the hierarchic superposition calculus and RH. Because
D is not a refutation it does not contain �. Consequently the Close rule is

35

not applicable to N∞. The set N∞, and hence also N∞ ⊆ N∞, contains only
finitely many BG clauses, modulo equivalence. This entails that the set of all
ΣB-clauses in sgi(N∞) is satisfied by some term-generated ΣB-interpretation
I ∈ B. By Thm. 7.7, (N∞)I is saturated with respect to the standard superpo-
sition calculus. Since � /∈ (N∞)I , the refutational completeness of standard
superposition implies that there is a Σ-model I ′ of (N∞)I . It follows that I ′

is also a Σ-model of N0(= Npre).
Recall that Npre is partitioned into two subsets, one containing only

clauses without occurrences of BG-sorted FG symbols, and the other con-
taining definitions only. The interpretation I ′ might still map BG-sorted FG
terms other than those that have definitions in Npre to non-domain elements.
To fix that, we change I ′ to a Σ-interpretation I ′′ without junk by redefining
the interpretation of operator symbols in such a way that every BG-sorted
FG term not occurring in Npre is also mapped to an element of the carrier
set of the proper sort. Notice that trivially I ′′ is still a Σ-model of Npre. It
follows that I ′′ is also a Σ-model of the given clause set N . With the same
arguments as in the proof of Thm. 7.8 conclude that I ′′ is also a B-model of
N , which completes the proof. �

Because unabstraction can also be applied to fully abstracted clauses,
it is possible to equip the hierarchic superposition calculus of [5] with a
correspondingly modified Define rule and get Thm. 8.8 in that context as
well.

Kruglov and Weidenbach [14] have shown how to use hierarchic super-
position as a decision procedure for ground clause sets (and for Horn clause
sets with constants and variables as the only FG terms). Their method pre-
processes the given clause set by “basification”, a process that removes BG-
sorted FG terms similarly as our Define rule. The resulting clause set then
is fully abstracted and hierarchic superposition is applied. Certain modifi-
cations of the inference rules make sure derivations always terminate. Sim-
plification is restricted to subsumption deletion. The effect of basification is
achieved in our calculus by the Define rule. Moreover, for GBT clause sets,
by Thm. 8.8, Define needs to be applied as preprocessing only. Applying
Define beyond that for non-GBT clause sets can still be useful. Ex. 8.2, for
instance, cannot be solved with basification during preprocessing. The frag-
ment of [14] is a further restriction of the GBT fragment. We expect we can
get decidability results for that fragment with similar techniques.

36

9 Implementation and Experiments

We have implemented the HSP calculus and carried out experiments with the
TPTP Library [22]. Our implementation, “Beagle”, is intended as a testbed
for rapidly trying out theoretical ideas for their practical viability.1 Beagle
is in an early stage of development. Nevertheless it is a full implementation
of HSP and accepts TPTP formulas over linear integer arithmetic (“TFF
formulas”, see [23]).

Beagle’s main loop is the well-known “Discount loop”. It maintains two
clause sets, Old and New, where Old is initially empty and new is initialized
with the input clauses. On each round, a “selected” clause is removed from
new and simplified by the clauses from Old and New. The simplified selected
clause then is put into old and all inferences between it and the clauses in
Old are carried out. The resulting clauses go into New again, this way closing
the loop. By default, a split rule is enabled that breaks clauses into variable-
disjoint subclauses and branches out correspondingly. Dependency-directed
backtracking is used to avoid exploring irrelevant cases.

Fairness is achieved through a combination of clause weights and their
derivation-age.2 The BG reasoner is a quantifier elimination procedure for
linear integer arithmetic (LIA) based on Cooper’s algorithm; it is called with
all current BG clauses as inputs whenever a new BG clause has been derived.
More precisely, with every BG clause we cache a quantifier-free version, which
is the one used for that.

Implemented simplification techniques include standard ones, like de-
modulation by unit clauses, proper subsumption deletion, and removing a
positive literal L from a clause in presence of a unit clause that instan-
tiates to the complement of L. Specific simplification rules related to BG
reasoning come in two kinds: cautious simplification, which removes clause
literals of the form ζ 6≈ d by unabstraction if d is a domain element. It
also replaces ground terms of the form d1 op d2, where op ∈ {+,−, ·}, by
their evaluated result. Ground parameter-free literals are evaluated simi-

1http://users.cecs.anu.edu.au/~baumgart/systems/beagle/
2This is controlled by a parameter “weight-age-ratio”, a non-negative number saying

how many lightest clauses are selected before an oldest clause is selected. Clause weights
are computed in such a way that selection based on weights only would be a fair strategy.
In our experiments we used a weight-age-ratio of eight.

37

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

larly. Aggressive simplification goes beyond that by exploiting associativ-
ity and commutativity of operators. Unlike cautious simplification, it does
not always preserve sufficient completeness. For example, in the clause set
N = {P(1 + (2 + c)), ¬P(1 + (X + c))} the first clause is (aggressively)
simplified, giving N ′ = {P(3 + c), ¬P(1 + (X + c))}. Notice that both N
and N ′ are LIA-unsatisfiable, sgi(N) ∪ GndTh(LIA) is unsatisfiable, but
sgi(N ′) ∪ GndTh(LIA) is satisfiable. Thus, N is (trivially) sufficiently com-
plete while N ′ is not.

The user can explicitly provide lemma clauses. These are clauses that
are meant to be valid background theory formulas that can help to find a
refutation quicker (or to find it at all). All BG variables in lemma clauses are
always ordinary variables. An example is the clause ¬(x < x), as explained
in Sect. 1. In our experiments we used the following lemmas (all variables
integer-sorted).

−(−x) ≈ x x ∗ 1 ≈ x

(x+ (−y)) + y ≈ x 1 ∗ x ≈ x

x+ 0 ≈ x 0 ∗ x ≈ 0

0 + x ≈ x x ∗ 0 ≈ 0

x+ (−x) ≈ 0 x < x+ 1

(−x) + x ≈ 0 ¬(x < x)

x < y ∨ y < x ∨ x ≈ y

Lemma clauses can be treated in two ways. First, a lemma clause can be
added to the Old clause set straight away and without undergoing abstrac-
tion. The rationale is to avoid inferences among lemma clauses, for a more
goal-oriented strategy, and to emphasize the use of lemma clauses as demod-
ulators. A good example is the unit clause (x + (−y)) + y ≈ x, which can
be used for demodulation in this unabstracted form. However, notice that
adding a set of lemma clauses that is not saturated wrt. HSPBase and RH
will in general lead to refutational incompleteness. This is addressed by the
second way, by treating a lemma clause as an input clause all whose (BG)
variables are of the ordinary kind.

There are various other options to control the prover, for instance to turn
off the Define rule, and to specify whether the BG variables in the input
clauses are taken as abstraction variables (default) or as ordinary variables.
(Recall from above that BG variables in lemma clauses are always ordinary
variables.) By default, integer-sorted FG-constants are converted into param-
eters. This way integer-sorted FG constants never cause problems related to
sufficient completeness.

38

Beagle is implemented in Scala. The absence of any form of term indexing
limit Beagle’s applicability to small problems only. Indeed, Beagle’s perfor-
mance on problems that require significant combinatorial search is poor. For
example, the propositional pigeonhole problem with 8 pigeons takes more
than two hours, SPASS solves it in under 4 seconds using settings to get a
comparable calculus and proof procedure (including splitting). Nevertheless
we tried Beagle on all first-order problems from the TPTP library (version
5.4.0) over linear integer arithmetic. The experiments were run on a Mac-
Book Pro with a 2.4 GHz Intel Core 2 Duo processor. In all our experiments
we declared the input variables as abstraction variables and we enabled the
split rule, which gave better results. The CPU time limit was 300 seconds.
Our results are summarized in Table 9.1 below. None of the HWV-problems
in the TPTP library was solvable within the time limit, though, and hence
we omitted these.

Table 9.1 is explained as follows. The row FA (“Full Abstraction”) con-
tains the results when Beagle is set to the previous calculus [5]. That calculus
is obtained by using abstraction variables, by full abstraction, without the
Define rule, without lemma clauses and without the BG specific simplifica-
tion techniques mentioned above. As explained earlier, the Define rule can be
used in conjunction with that calculus as well, however in a modified form
that uses full abstraction for its conclusions. The second row contains the
results for that setting.

All subsequent rows, with WA (“Weak Abstraction”), refer to various
settings using the new calculus. The setting WA alone differs from FA only
by using weak abstraction, but no other improvements are in effect. The
WA setting solves strictly more problems than FA and often quicker. That
is, weak abstraction always pays always off. For instance, the ARI-problems
solvable with weak abstraction are ARI602=1.p and ARI608=1.p. The prob-
lem ARI602=1.p asks to prove that from f(X) > X follows there is a Y such
that 4 < Y < f(Y). Thanks to not having to abstract out the term f(Y)
it is easy with WA, but impossible with FA. The same effect shows up with
ARI608=1.p.

The next four rows show the results with cautions simplification in place
(“+BGSC”). We have added lemmas (“+Lemmas”) and the Define rule
(“+Define”) separately and in combination, as shown, to analyze their respec-
tive benefits. As the results show, the Define rule alone has more significant
impact than adding lemmas. Their combination, though, is always prefer-
able. An outlier is DAT048=1.p which is no longer solvable with cautious
simplification alone or in combination with lemmas due to a timeout.

The rows with “+Lemmas” use lemmas in the first way described above.
In our experiments with the “Theorem” TPTP problems the first way was

39

more successfull. Nevertheless, the second way is interesting as well, in par-
ticular in combination with cautious simplification and the Define rule, as
we get a calculus that is refutationally complete for the GBT fragment (cf.
Thm. 8.8). The row “WA +BGSC +Define +Lemmasc” contains the corre-
sponding results. For that, we removed the lemma clauses (x+(−y))+y ≈ x
and x < y ∨ y < x ∨ x ≈ y in order to not cause non-termination on the
lemma clauses alone. This enables Beagle to correctly report “CounterSatis-
fiable” for GBT input clause sets with a finite saturation that do not contain
the empty clause.3

The last two rows in Table 9.1 contain the result with aggressive simplifi-
cation in place (“+BGSA”). We have also tried adding lemmas in conjunction
with the Define rule, but that did not change much. Indeed, the aggressive
simplification techniques overlap largely with the lemmas, and so this is not
a surprise. As above, switching Define on is rather helpful in combination
with aggressive simplification as well. This is the setting that solved most
problems overall.

It is interesting to compare the results for “WA +BGSA +Define” with
those for “WA +BGSC +Define +Lemmas”, the best settings with aggres-
sive and cautious simplification, respectively. The latter did not fall too much
behind the former and has the advantage that it is more flexible, as the lem-
mas can be specified by the user as desired. The runtimes are incomparable,
but, by and large aggressive simplification seems to perform better.

We experimented separately with the GEG-problems. These contain an
“unusal” number of different integer constants. Four out of the five problems
are solvable with removing load from the background reasoner by disabling
Define, aggressive simplification and including a transitivity clause for the
less-or-equal relation as a lemma.

The TSTP web page contains individual solutions to TPTP problems for
various provers. About 12 provers can sensibly be applied to problems over
linear integer arithmetic. The more difficult solvable problems can typically
be solved by four or less systems, with CVC3 [6], Princess [21], SPASS+T [20]
and Z3 [16] the most reliable ones. There are a number of problems that only
Princess and Beagle solve.

3We also ran Beagle on the countersatisfiable LIA-problems from the TPTP library.
All but three problems are easily solved that way, and the remaining three are too hard,
for every suitable flag setting.

40

ARI DAT GEG PUZ NUM SEV SWV SWW SYO

223 54 5 1 27 6 2 3 3

FA 194 23 2 0 20 2 0 1 0

FA

+Define
211 45 2 1 26 2 1 2 2

WA 194 28 2 0 20 2 2 3 0

WA

+BGSC
194 27 2 0 20 2 2 3 0

WA

+BGSC

+Lemmas

194 27 2 0 20 2 2 3 0

WA

+BGSC

+Define

211 50 1 1 26 2 2 3 1

WA

+BGSC

+Define

+Lemmas

211 53 1 1 22 2 2 3 1

WA

+BGSC

+Define

+Lemmasc

211 50 1 0 23 2 2 3 1

WA

+BGSA
194 32 2 0 20 2 2 3 0

WA

+BGSA

+Define

211 54 2 1 26 2 2 3 2

Table 9.1: Experimental results on the “Theorem” problems over integer inte-
ger arithmetic in theTPTP library. Rows: Prover settings, where FA is “Full
Abstraction, WA is “Weak Abstraction”, BGSC is “Cautious BG simplifica-
tion”, BGSA is “Aggressive BG simplification”, +Define means the Define
rule is in effect, +Lemmas means the lemma clauses are used, in the first
way described in the text, and +Lemmasc (“c”omplete) means a subset of
the lemma clauses are used in the second way. Columns: TPTP problem
categories; each category is listed with the number of problems with status
“Theorem” in it. Entries: number of problems with status “Theorem” solved.

41

10 Conclusions

The main theoretical contribution of this paper is an improved variant of the
hierarchic superposition calculus. The improvements over its predecessor [5]
are grounded in a different form of “abstracted” clauses, the clauses the cal-
culus works with internally. Because of that, a modified completeness proof
is required. We have argued informally for the benefits over the old calculus
in [5]. They concern making the calculus “more complete” in practice. It is
hard to quantify that exactly in a general way, as completeness is impossi-
ble to achieve in presence of background-sorted foreground function symbols
(e. g., “car” of integer-sorted lists). To compensate for that to some degree,
we have reported on initial experiments with a prototypical implementation
on the TPTP problem library. These experiments clearly indicate the ben-
efits of our concepts, in particular the definition rule and the possibility of
adding background theory axioms. They also confirm advantages of the new
calculus over the old, the former solves strictly more more problems than the
latter (and is never slower on the common set). Certainly more experimen-
tation and an improved implementation is needed to also solve bigger-sized
problems with a larger combinatorial search space.

We have also obtained a specific completeness result for clause sets over
ground background-sorted terms and that does not require compactness. As
far as we know this result is new. It is loosely related to the decidability
results in [14], as discussed in Sect. 8. It is also loosely related to results in
SMT-based theorem proving. For instance, the method in [12] deals with the
case that variables appear only as arguments of, in our words, foreground op-
erators. It works by ground-instantiating all variables in order to being able
to use an SMT-solver for the quantifier-free fragment. Under certain con-
ditions, finite ground instantiation is possible and the method is complete,
otherwise it is complete only modulo compactness of the background theory
(as expected). Treating different fragments, the theoretical results are mutu-
ally non-subsuming with ours. Yet, on the fragment they consider we could
adopt their technique of finite ground instantiation before applying Thm. 8.8
(when it applies). However, according to Thm. 8.8 our calculus needs instan-
tiation of background-sorted variables only, this way keeping reasoning with
foreground-sorted terms on the first-order level, as usual with superposition.

42

Bibliography

[1] E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo
linear arithmetic SUP(LA). In FroCos, 2009, LNCS 5749, pp. 84–99.
Springer.

[2] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results
on rewrite-based satisfiability procedures. ACM Trans. Comput. Log.,
10(1), 2009.

[3] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[4] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In Hand-
book of Automated Reasoning. North Holland, 2001.

[5] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem
proving for hierarchic first-order theories. Appl. Algebra Eng. Commun.
Comput, 5:193–212, 1994.

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, eds.,
Proceedings of the 19th International Conference on Computer Aided
Verification (CAV ’07), 2007, LNCS 4590, pp. 298–302. Springer-Verlag.
Berlin, Germany.

[7] P. Baumgartner, A. Fuchs, and C. Tinelli. ME(LIA) – Model Evolution
With Linear Integer Arithmetic Constraints. In 15th International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’08), 2008, LNAI 5330, pp. 258–273. Springer.

[8] P. Baumgartner and C. Tinelli. Model evolution with equality modulo
built-in theories. In CADE-23 – The 23nd International Conference on
Automated Deduction, 2011, LNAI 6803, pp. 85–100. Springer.

[9] M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability
by theorem proving with speculative inferences. J. Autom. Reasoning,
47(2):161–189, 2011.

43

[10] H. Ganzinger and K. Korovin. Theory instantiation. In 13th Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’06), 2006, LNCS 4246, pp. 497–511. Springer.

[11] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification condi-
tions using satisfiability modulo theories. In F. Pfenning, ed., 21st In-
ternational Conference on Automated Deduction (CADE-21), Bremen,
Germany, 2007, LNCS 4603. Springer.

[12] Y. Ge and L. M. de Moura. Complete instantiation for quantified for-
mulas in satisfiabiliby modulo theories. In CAV, 2009, LNCS 5643, pp.
306–320. Springer.

[13] K. Korovin and A. Voronkov. Integrating linear arithmetic into super-
position calculus. In Computer Science Logic (CSL’07), 2007, LNCS
4646, pp. 223–237. Springer.

[14] E. Kruglov and C. Weidenbach. Superposition decides the first-order
logic fragment over ground theories. Mathematics in Computer Science,
pp. 1–30, 2012.

[15] L. M. de Moura and N. Bjørner. Engineering DPLL(T) + saturation.
In Automated Reasoning, 4th International Joint Conference, IJCAR,
2008, LNCS 5195, pp. 475–490. Springer.

[16] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, eds., Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, 2008, LNCS
4963, pp. 337–340. Springer.

[17] R. Nieuwenhuis. First-order completion techniques. Technical report,
Universidad Politécnica de Cataluña, Dept. Lenguajes y Sistemas In-
formáticos, 1991.

[18] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[19] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving.
In Handbook of Automated Reasoning, pp. 371–443. Elsevier and MIT
Press, 2001.

44

[20] V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt,
and S. Schulz, eds., ESCoR: FLoC’06 Workshop on Empirically Success-
ful Computerized Reasoning, Seattle, WA, USA, 2006, CEUR Workshop
Proceedings, vol. 192, pp. 18–33.

[21] P. Rümmer. A constraint sequent calculus for first-order logic with
linear integer arithmetic. In 15th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR’08), 2008,
LNAI 5330, pp. 274–289. Springer.

[22] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[23] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP
typed first-order form with arithmetic. In 18th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-
18), 2012, LNAI 7180. Springer.

[24] C. Walther. Many-sorted unification. Journal of the ACM, 35(1):1–17,
1988.

45

Below you find a list of the most recent research reports of the Max-Planck-Institut für Informatik. Most
of them are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies
(which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address
below.

Max-Planck-Institut für Informatik
– Library and Publications –
Campus E 1 4

D-66123 Saarbrücken

E-mail: library@mpi-inf.mpg.de

MPI-I-2012-RG1-002 A. Fietzke, E. Kruglov, C. Weidenbach Automatic generation of inductive invariants by
SUP(LA)

MPI-I-2012-RG1-001 M. Suda, C. Weidenbach Labelled superposition for PLTL

MPI-I-2012-5-004 F. Alvanaki, S. Michel, A. Stupar Building and maintaining halls of fame over a database

MPI-I-2012-5-003 K. Berberich, S. Bedathur Computing n-gram statistics in MapReduce

MPI-I-2012-5-002 M. Dylla, I. Miliaraki, M. Theobald Top-k query processing in probabilistic databases with
non-materialized views

MPI-I-2012-5-001 P. Miettinen, J. Vreeken MDL4BMF: Minimum Description Length for Boolean
Matrix Factorization

MPI-I-2012-4-001 J. Kerber, M. Bokeloh, M. Wand,
H. Seidel

Symmetry detection in large scale city scans

MPI-I-2011-RG1-002 T. Lu, S. Merz, C. Weidenbach Towards verification of the pastry protocol using TLA+

MPI-I-2011-5-002 B. Taneva, M. Kacimi, G. Weikum Finding images of rare and ambiguous entities

MPI-I-2011-5-001 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Temporal index sharding for space-time efficiency in
archive search

MPI-I-2011-4-005 A. Berner, O. Burghard, M. Wand,
N.J. Mitra, R. Klein, H. Seidel

A morphable part model for shape manipulation

MPI-I-2011-4-002 K.I. Kim, Y. Kwon, J.H. Kim,
C. Theobalt

Efficient learning-based image enhancement: application
to compression artifact removal and super-resolution

MPI-I-2011-4-001 M. Granados, J. Tompkin, K. In Kim,
O. Grau, J. Kautz, C. Theobalt

How not to be seen – inpainting dynamic objects in
crowded scenes

MPI-I-2010-RG1-001 M. Suda, C. Weidenbach,
P. Wischnewski

On the saturation of YAGO

MPI-I-2010-5-008 S. Elbassuoni, M. Ramanath,
G. Weikum

Query relaxation for entity-relationship search

MPI-I-2010-5-007 J. Hoffart, F.M. Suchanek,
K. Berberich, G. Weikum

YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia

MPI-I-2010-5-006 A. Broschart, R. Schenkel Real-time text queries with tunable term pair indexes

MPI-I-2010-5-005 S. Seufert, S. Bedathur, J. Mestre,
G. Weikum

Bonsai: Growing Interesting Small Trees

MPI-I-2010-5-004 N. Preda, F. Suchanek, W. Yuan,
G. Weikum

Query evaluation with asymmetric web services

MPI-I-2010-5-003 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Efficient temporal keyword queries over versioned text

MPI-I-2010-5-002 M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules

MPI-I-2010-5-001 K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

A language modeling approach for temporal
information needs

MPI-I-2010-1-001 C. Huang, T. Kavitha Maximum cfardinality popular matchings in strict
two-sided preference lists

MPI-I-2009-RG1-005 M. Horbach, C. Weidenbach Superposition for fixed domains

MPI-I-2009-RG1-004 M. Horbach, C. Weidenbach Decidability results for saturation-based model building

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-RG1-001 M. Horbach, C. Weidenbach Deciding the inductive validity of ∀∃∗ queries

MPI-I-2009-5-007 G. Kasneci, G. Weikum, S. Elbassuoni MING: Mining Informative Entity-Relationship
Subgraphs

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-005 G. de Melo, G. Weikum Towards a Universal Wordnet by learning from
combined evidenc

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-002 M. Ramanath, K.S. Kumar, G. Ifrim Generating concise and readable summaries of XML
documents

MPI-I-2009-4-006 C. Stoll Optical reconstruction of detailed animatable human
body models

MPI-I-2009-4-005 A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

Generalized intrinsic symmetry detection

MPI-I-2009-4-004 V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 D. Wang, A. Belyaev, W. Saleem,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago: a large ontology from Wikipedia and WordNet

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A time machine for text search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: searching and ranking knowledge

MPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

Global stochastic optimization for robust and accurate
human motion capture

MPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

Global illumination using photon ray splatting

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU marching cubes on shader model 3.0 and 4.0

	Introduction
	Signatures, Clauses, and Interpretations
	Hierarchic Theorem Proving
	Orderings
	Weak Abstraction
	Base Inference System
	Refutational Completeness
	Sufficient Completeness by Define
	Implementation and Experiments
	Conclusions

