
New Results for
Non-Preemptive Speed

Scaling

Chien-Chung Huang
Sebastian Ott

MPI–I–2013–1–001 August 2013

Authors’ Addresses

Chien-Chung Huang
Chalmers University
Göteborg, Sweden

Sebastian Ott
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Abstract

We consider the speed scaling problem introduced in the seminal paper of Yao
et al. [25]. In this problem, a number of jobs, each with its own processing
volume, release time, and deadline needs to be executed on a speed-scalable
processor. The power consumption of this processor is P (s) = sα, where s is
the processing speed, and α > 1 is a constant. The total energy consump-
tion is power integrated over time, and the goal is to process all jobs while
minimizing the energy consumption.

The preemptive version of the problem, along with its many variants, has
been extensively studied over the years. However, little is known about the
non-preemptive version of the problem, except that it is strongly NP-hard
and allows a constant factor approximation [6]. Up until now, the (general)
complexity of this problem is unknown. In the present paper, we study
an important special case of the problem, where the job intervals form a
laminar family, and present a quasipolynomial-time approximation scheme
for it, thereby showing that (at least) this special case is not APX-hard,
unless NP ⊆ DTIME(2poly(logn)).

The second contribution of this work is a polynomial-time algorithm for
the special case of equal-volume jobs, where previously only a 2α approxima-
tion was known [8]. In addition, we show that two other special cases of this
problem allow fully polynomial-time approximation schemes (FPTASs).

Contents

1 Introduction 2
1.1 Our Results and Techniques 3
1.2 Related Work . 4
1.3 Organization of the Paper . 5

2 Preliminaries and Notations 6

3 Laminar Instances 8

4 Equal-Volume Jobs 14

5 Conclusion 16

A Proof of Proposition 1 20

B Proof of Lemma 4 21

C Proof of Lemma 6 23

D Proof of Lemma 13 24

E Proof of Lemma 15 25

F Purely-Laminar Instances 27

G Bounded Number of Time Windows 30

1

1 Introduction

Speed scaling is a widely applied technique for energy saving in modern
microprocessors. Its general idea is to strategically adjust the processing
speed, with the dual goal of finishing the tasks at hand in a timely manner
while minimizing the energy consumption. The following theoretical model
was introduced by Yao et al. in their seminal paper of 1995 [25]. We are given
a set of jobs, each with its own volume vj (number of CPU cycles needed for
completion of this job), release time rj (when the job becomes available), and
deadline dj (when the job needs to be finished), and a processor with power
function P (s) = sα, where s is the processing speed, and α > 1 is a constant
(typically between two and three for modern microprocessors [15, 24]). The
energy consumption is power integrated over time, and the goal is to process
all given jobs in their allowed time intervals while minimizing the total energy
consumption.

Most work in the literature focuses on the preemptive version, where the
execution of a job may be interrupted and resumed at a later point of time.
For this setting, Yao et al. [25] gave a polynomial-time exact algorithm to
compute the optimal schedule. The non-preemptive version, where a job must
be processed uninterruptedly until its completion, has so far received surpris-
ingly little attention. From a theoretical point of view, the non-preemptive
model is of interest, since it is a natural variation of Yao et al.’s original
model. In practice, non-preemptive scheduling is often preferred or even
unavoidable for the following reasons [20]:

• In many real-time applications, properties of device hardware or soft-
ware make preemption impossible or prohibitively expensive.

• Non-preemptive algorithms cause lower overheads with respect to run-
ning time and energy costs.

• The overhead of preemptive algorithms is more difficult to characterize
and predict.

2

• Non-preemptive algorithms are easier to implement.

• Non-preemptive scheduling guarantees exclusive access to shared re-
sources.

So far, little is known about the complexity of the non-preemptive speed
scaling problem [6, 8]. On the negative side, no lower bound is known, except
that the problem is strongly NP-hard [6]. On the positive side, Antoniadis
and Huang [6] showed that the problem has a constant factor approximation
algorithm, although the obtained factor 25α−4 is very large.

1.1 Our Results and Techniques

In this paper, we work towards better understanding the complexity of the
non-preemptive speed scaling problem, by considering several special cases
and presenting (near)-optimal algorithms. In the following, we give a detailed
overview on the different cases and our respective results.

Laminar Instances: An instance is said to be laminar if for any two differ-
ent jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆ [rj1 , dj1), or
[rj1 , dj1)∩ [rj2 , dj2) = ∅. The problem remains strongly NP-hard for this
case, and the best known approximation ratio is 24α−3 [6]. We present
the first (1+ε)-approximation for this problem, with a quasipolynomial
running time (i.e. a running time bounded by 2poly(logn) for any fixed
ε > 0); a so-called quasipolynomial-time approximation scheme (QP-
TAS). Our result implies that laminar instances are not APX-hard,
unless NP ⊆ DTIME(2poly(logn)). We remark that laminar instances
form a very important subclass of instances that not only arise com-
monly in practice (e.g. when jobs are created by recursive function
calls [21]), but are also of great theoretical interest, as they highlight
the difficulty of the non-preemptive speed scaling problem. Taking in-
stances with an “opposite” structure, namely agreeable instances (here
for any two jobs j1 and j2 with rj1 < rj2 , it holds that dj1 < dj2), the
problem becomes polynomial-time solvable [6]. On the other hand, fur-
ther restricting the instances from laminar to purely-laminar (see next
case) results in a problem that is only weakly NP-hard and admits an
FPTAS.

Purely-Laminar Instances: An instance is said to be purely-laminar if
for any two different jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or
[rj2 , dj2) ⊆ [rj1 , dj1). We present a fully polynomial-time approximation

3

scheme (FPTAS) for this class of instances. This is the best possible
result (unless P = NP), as the problem is still (weakly) NP-hard [6].

Equal-Volume Jobs: If all jobs have the same volume v1 = v2 = . . . =
vn = v, we present a polynomial-time algorithm for computing an
(exactly) optimal schedule. We thereby improve upon a recent result
of Bampis et al. [8], who proposed a 2α-approximation algorithm for
this case, and answer their question for the complexity status of this
problem.

Bounded Number of Time Windows: If the total number of different
time windows is bounded by a constant, we present an FPTAS for the
problem. This result is again optimal (unless P = NP), as the problem
remains (weakly) NP-hard even if there are only two different time
windows [6].

The basis for all our results is a discretization of the problem, in which we
allow the processing of any job to start and end only at a carefully chosen
set of grid points on the time axis. We then use various dynamic programs
to optimize over a highly restricted set of schedules, exploiting the structural
properties of specific optimal solutions. Technically, our QPTAS for laminar
instances is of the most interest. It involves a lax representation of job sets in
the bookkeeping, which is crucial to obtain a quasipolynomial running time.
Roughly speaking, we “lose” a number of jobs during the recursion, but we
ensure that these jobs can later be scheduled with only a small increment of
energy cost.

1.2 Related Work

The study of dynamic speed scaling problems for reduced energy consump-
tion was initiated by Yao, Demers, and Shenker in 1995. In their seminal
paper [25], they present a polynomial-time algorithm for finding an optimal
schedule when preemption of jobs is allowed. Furthermore, they also studied
the online version of the problem (again with preemption of jobs allowed),
where jobs become known only at their release times, and proposed two
constant-competitive algorithms called Average Rate and Optimal Available.
It was later shown by Bansal et al. [12], that Optimal Available is the better
of the two, and achieves a competitive ratio of exactly αα. In the same paper,
they also provide a new online algorithm with a further improved competitive
ratio of 2(α/(α−1))αeα. The exponential dependence on α is unavoidable, as
a lower bound on the competitive ratio of any online algorithm is eα−1/α [11].

4

Over the years, a rich spectrum of variations and generalizations of the
original model have been investigated. Irani et al. [19], for instance, consid-
ered a setting where the processor additionally has a sleep state available. In
their model, the power consumption is strictly positive even at zero speed,
unless the processor is transitioned into the sleep state. To wake up a “sleep-
ing” processor, a fixed amount of energy must be invested. Further work
in that direction are [18] and a recent result of Albers and Antoniadis [1].
Another approach is to restrict the set of possible speeds that we may choose
from, for example by allowing only a number of discrete speed levels [17, 22],
or bounding the maximum possible speed [9, 16, 18]. The existence of a fea-
sible schedule for all jobs is then no longer guaranteed, and maximizing the
throughput naturally enters the objective function as an additional criterium.
Variations with respect to the objective function have also been studied in
the unbounded speed model, for instance by Albers and Fujiwara [3] and
Bansal et al. [13], who try to minimize a combination of energy consumption
and total flow time of the jobs. Finally, the problem has also been studied for
arbitrary power functions [10], as well as for multiprocessor settings. In the
latter, one has to distinguish whether migration of jobs between processors
is allowed [2, 5, 14] or disallowed [4].

In contrast to this diversity of results, the non-preemptive version of
the speed scaling problem has been addressed very rarely in the literature.
Only recently, in 2012, Antoniadis and Huang [6] proved that the problem
is strongly NP-hard, and gave a 25α−4-approximation algorithm for the gen-
eral case. They also considered so-called laminar instances, where the time
windows of any two different jobs are either disjoint, or one is contained in
the other. In this special case they could improve their approximation ra-
tio to 24α−3. Finally, in a very recent paper, Bampis et al. [8] proposed a
2α-approximation algorithm for the case that all jobs have the same volume.
They also extend their studies to the multiprocessor setting and present a
non-constant factor approximation algorithm for general instances.

1.3 Organization of the Paper

Our paper is organized as follows. In section 2 we give a formal definition of
the problem and establish a couple of preliminaries. In section 3 we present a
QPTAS for laminar instances, and in section 4 we present a polynomial-time
algorithm for instances with equal-volume jobs. Our FPTASs for purely-
laminar instances and instances with a bounded number of different time
windows are deferred to the appendix.

5

2 Preliminaries and Notations

The input is given by a set J of n jobs, each having its own release time rj,
deadline dj, and volume vj > 0. The power function of the speed-scalable
processor is P (s) = sα, with α > 1, and the energy consumption is power
integrated over time. A schedule is called feasible if every job is executed
entirely within its time window [rj, dj). Preemption is not allowed, meaning
that once a job is started, it must be executed entirely until its completion.
Our goal is to find a feasible schedule of minimum total energy consumption.

We use E(S) to denote the total energy consumed by a given schedule
S, and E(S, j) to denote the energy used for the processing of job j in
schedule S. Furthermore, we use OPT to denote the energy consumption
of an optimal schedule. A crucial observation is that, due to the convexity
of the power function P (s) = sα, it is never beneficial to vary the speed
during the execution of a job. This follows from Jensen’s Inequality in the
continuous version. We can therefore assume that in an optimal schedule,
every job is processed using a uniform speed.

In the following, we restate a proposition from [6], which allows us to
speed up certain jobs without paying too much additional energy cost. A
proof for this proposition appears in the appendix.

Proposition 1. Let S and S ′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S ′, j) = (s′/s)α−1 ·E(S, j).

As mentioned earlier, all our results rely on a discretization of the time
axis, using a carefully chosen set of grid points. Given such a set of grid
points, we define grid point schedules as follows.

Definition 2 (Grid Point Schedule). A schedule is called grid point schedule
if the processing of every job starts and ends at a grid point.

We use two different sets of grid points, Papprox and Pexact, each of which
guarantees the existence of a “good” grid point schedule. The first set,
Papprox, is more universal as it can applied to any kind of instances, losing

6

only a small factor in comparison with OPT. On the contrary, the set Pexact

is specialized for the case of equal-volume jobs, and on such instances guaran-
tees the existence of a grid point schedule with energy consumption exactly
OPT. We now give a detailed description of both sets. For convenience, let
γ := 1 + d1/εe, where ε > 0 is the error parameter of our approximation
schemes.

Definition 3 (Grid Point Set Papprox). Let us call a time point t an event
if t = rj or t = dj for some job j, and let t1 < t2 < . . . < tp be the set of
ordered events. Furthermore, let us call the interval between two consecutive
events ti and ti+1 a zone. The set Papprox is obtained in the following way.
First, create a grid point at every event. Secondly, for every zone (ti, ti+1),
create n2γ − 1 equally spaced grid points that partition the zone into n2γ
many subintervals of equal length Li = ti+1−ti

n2γ
. Now Papprox is simply the

union of all created grid points.

Note that the total number of grid points in Papprox is at most O
(
n3(1 +

1
ε
)
)
, as there are O

(
n) zones, for each of which we create O

(
n2γ
)

grid points.

Lemma 4. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

The proof of this lemma can be found in the appendix.

Definition 5 (Grid Point Set Pexact). For every pair of events ti ≤ tj, and for
every k ∈ {1, . . . , n}, create k − 1 equally spaced grid points that partition
the interval [ti, tj] into k subintervals of equal length. Furthermore, create a
grid point at every event. The union of all these grid points defines the set
Pexact.

Clearly, the total number of grid points in Pexact is O
(
n4
)
. The following

lemma is proven in the appendix.

Lemma 6. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

7

3 Laminar Instances

In this section, we assume that the given problem instance I is laminar,
and present a QPTAS for this setting. Whenever we use grid points in this
section, we refer to the set Papprox. The main idea of our QPTAS is to
stepwise compute schedules for subsets of jobs within specific time intervals
via dynamic programming. The internal layout of the dynamic program (DP)
is based on the tree-like structure of the time windows in laminar instances.
Here we draw on some ideas of Muratore et al. [23] from a different scheduling
problem. The essence of our technique is the definition of a binary tree T ,
whose vertices represent time intervals and subsets of jobs that must be
processed within these intervals. The inclusion of intervals is reflected in
the father-son-relation of the tree. Our DP stepwise constructs near-optimal
schedules for entire subtrees of T in a bottom-up manner, that is starting at
the leaves and moving towards the root of the tree. To compute these entries,
we use the fact that a job from a father node can be scheduled anywhere inside
the intervals of its children. We can therefore split up the jobs in the root
of a subtree recursively among its children, and thus intuitively delegate the
work to a deeper level of the tree. There are two main technical difficulties of
this approach. One is that a job from a father node could also be scheduled
“between” its children, starting in the interval of child one, stretching over
its boundary, and entering the interval of child two. We overcome this issue
by taking care of such jobs separately, and additionally listing the truncated
child-intervals in the dynamic programming tableau. The second difficulty
is the huge number of possible job sets that a child node could receive from
its parent. Reducing this number was one of the most challenging tasks in
the development of our QPTAS, and requires a controlled and purposeful
“omitting” of small jobs during the recursion. We complement this approach
with a rounding of job volumes and a condensed representation of job sets
in the DP tableau. At any point of time, we ensure that “omitted” jobs
only cause a small increment of energy cost when being added to the final
schedule. We now start to elaborate the details, beginning with the rounding

8

of the job volumes.

Definition 7 (Rounded Instance). The rounded instance I ′ is obtained by
rounding down every job volume vj to the next smaller number of the form
vmin(1 + ε)i, where i ∈ N≥0 and vmin is the smallest volume of any job in the
original instance. The numbers vmin(1 + ε)i are called size classes, and a job
belongs to size class Ci if its rounded volume is vmin(1 + ε)i.

Lemma 8. Every feasible schedule S ′ for I ′ can be transformed into a feasible
schedule S for I with E(S) ≤ (1 + ε)αE(S ′).

Proof. The lemma easily follows by using the same execution intervals as S ′

and speeding up accordingly. As rounded and original volume of a job differ
by at most a factor of 1 + ε, we need to increase the speed at any time t by
at most this factor. Therefore the energy consumption grows by at most a
factor of (1 + ε)α.

From now on, we restrict our attention to the rounded instance I ′. We
proceed with a formal definition of the tree T .

Definition 9 (Tree T). For every interval [ti, ti+1) between two consecutive
events ti and ti+1, we introduce a vertex v. Additionally, we introduce a
vertex for every time window [rj, dj), j ∈ J that is not represented by a
vertex yet. If several jobs share the same allowed interval, we add only one
single vertex for this interval. The interval corresponding to a vertex v is
denoted by Iv. We also associate a (possibly empty) set of jobs Jv with each
vertex v, namely the set of jobs j whose allowed interval [rj, dj) is equal to
Iv. Finally, we specify a distinguished root node r as follows. If there exists
a vertex v with Iv = [r∗, d∗), where r∗ is the earliest release time and d∗ the
latest deadline of any job in J , we set r := v. Otherwise, we introduce a new
vertex r with Ir := [r∗, d∗) and Jr := ∅. The edges of the tree are defined in
the following way. A node u is the son of a node v if and only if Iu ⊂ Iv and
there is no other node w with Iu ⊂ Iw ⊂ Iv. As a last step, we convert T into
a binary tree by repeating the following procedure as long as there exists a
vertex v with more than two children. Let v1 and v2 be two “neighboring”
sons of v, such that Iv1 ∪ Iv2 forms a contiguous interval. Now create a new
vertex u with Iu := Iv1 ∪ Iv2 and Ju := ∅, and make u a new child of v, and
the new parent of v1 and v2. This procedure eventually results in a binary
tree T with O(n) vertices.

The main idea of our dynamic program is to stepwise compute schedules
for subtrees of T , i.e. for the jobs associated with the vertices in the subtree
(including its root), in a bottom-up manner. In order to allow a recursive

9

computation of these schedules, we do the following. When we consider a
particular subtree T ′ with root r′, we not only schedule the jobs in T ′, but
also a given set of “inherited” jobs from the ancestors of r′. This enables us to
recursively hand down jobs to children and deeper levels of the tree. However,
we cannot enumerate all possible sets of heritable jobs, as this would burst
the limits of our DP tableau. Instead, we use a lax representation of those
sets via so-called job vectors, focussing only on a logarithmic number of size
classes and ignoring jobs that are too small to be covered by any of these.
To this end, let δ be the smallest integer such that n/ε ≤ (1 + ε)δ, and note
that δ is O(log n) for any fixed ε > 0.

Definition 10 (Job Vector). A job vector
−→
λ is a vector of δ + 1 integers

λ0, . . . , λδ. The first component λ0 specifies a size class, and we require
λ0 ≥ δ− 1. The remaining δ components specify a number of jobs between 0
and n for each of the size classes Cλ0 , Cλ0−1, . . . , Cλ0−δ+1 in this order. We

refer to the set of jobs described by a job vector
−→
λ as J(

−→
λ).

Definition 11 (Heritable Job Vector). A job vector
−→
λ is heritable to a

vertex v of T if:

1. J(
−→
λ) describes a subset of

⋃
u ancestor of v Ju , and

2. λ1 > 0 or λ0 = δ − 1.

The conditions on a heritable job vector ensure that for a fixed vertex v,
λ0 can take only O(n) different values, as it must specify a size class that
really occurs in the rounded instance, or be equal to δ − 1. Therefore, in
total, we can have at most O(nδ+1) different job vectors that are heritable to
a fixed vertex of the tree. In order to control the error caused by the laxity of
our job set representation, we introduce the concept of δ-omitted schedules.

Definition 12 (δ-omitted Schedule). Let J be a given set of jobs. A δ-
omitted schedule for J is a feasible schedule for a subset R ⊆ J , s.t. for every
job j ∈ J \ R, there exists a job big(j) ∈ R with volume at least vj(1 + ε)δ

that is scheduled entirely inside the allowed interval of j. The jobs in J \ R
are called omitted jobs, the ones in R non-omitted jobs.

Lemma 13. Every δ-omitted schedule S ′ for a set of jobs J can be trans-
formed into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 +
ε)αE(S ′).

The proof of Lemma 13 can be found in the appendix. Essentially, this
lemma ensures that representing the δ largest size classes of an inherited job

10

set is sufficient if we allow a small increment of energy cost. The smaller jobs
can then be added safely to the final schedule in the end. We now turn to
the central definition of the dynamic program.

Definition 14. All schedules in this definition are with respect to the rounded

instance I ′. For any vertex v in the tree T , any job vector
−→
λ that is heritable

to v, and any pair of grid points g1 ≤ g2 with [g1, g2) ⊆ Iv, let G(v,
−→
λ , g1, g2)

denote a minimum cost grid point schedule for the jobs in the subtree of v

(including v itself) plus the jobs J(
−→
λ) (these are allowed to be scheduled

anywhere inside [g1, g2)) that uses only the interval [g1, g2). Furthermore, let

S(v,
−→
λ , g1, g2) be a δ-omitted schedule for the same set of jobs in the same

interval [g1, g2), satisfying E
(
S(v,
−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Dynamic Program. Our dynamic program computes the schedules S(v,
−→
λ , g1, g2).

For ease of exposition, we focus only on computing the energy consumption

values E(v,
−→
λ , g1, g2) := E

(
S(v,
−→
λ , g1, g2)

)
, and omit the straightforward

bookkeeping of the corresponding schedules. The base cases are the leaves
of T . For a particular leaf node `, we set

E(`,
−→
λ , g1, g2) :=

{
0 if J` ∪ J(

−→
λ) = ∅

V α

(g2−g1)α−1 otherwise,

where V is the total volume of all jobs in J` ∪ J(
−→
λ). This corresponds to

executing J` ∪ J(
−→
λ) at uniform speed using the whole interval [g1, g2). The

resulting schedule is feasible, as no release times or deadlines occur in the
interior of I`. Furthermore, it is also optimal by the convexity of the power

function. Thus E(`,
−→
λ , g1, g2) ≤ E

(
G(`,

−→
λ , g1, g2)

)
.

When all leaves have been handled, we move on to the next level, i.e. the
parents of the leaves. For this and also the following levels up to the root

r, we compute the values E(v,
−→
λ , g1, g2) recursively, using the procedure

Compute in Figure 3.1. An intuitive description of the procedure is given
below.
Our first step is to iterate through all possible options for a potential “cross-
ing” job j, whose execution interval [g̃1, g̃2) stretches from child v1 into the
interval of child v2. For every possible choice, we combine the optimal en-
ergy cost E for this job (obtained by using a uniform execution speed) with
the best possible way to split up the remaining jobs between the truncated
intervals of v1 and v2. Here we consider only the δ largest size classes of the
remaining jobs J̃ , and omit the smaller jobs. This omitting happens during
the construction of a vector representation for J̃ using the procedure Vec-
tor. Finally, we also try the option that no “crossing” job exists and all

11

Compute (v,
−→
λ , g1, g2):

Let v1 and v2 be the children of v, such that Iv1 is the earlier of the
intervals Iv1 , Iv2 . Furthermore, let g be the grid point at which Iv1 ends
and Iv2 starts.

Initialize MIN :=∞.

For all gridpoints g̃1, g̃2, s.t. g1 ≤ g̃1 < g < g̃2 ≤ g2, and all jobs

j ∈ Jv ∪ J(
−→
λ), do:

E :=
vj
α

(g̃2−g̃1)α−1 .

J̃ :=
(
Jv ∪ J(

−→
λ)
)
\ {j}.

−→γ := Vector (J̃).

MIN := min
{

MIN,

min{E + E(v1,
−→γ1 , g1, g̃1) + E(v2,

−→γ2 , g̃2, g2) : J(−→γ1) ∪ J(−→γ2) =
J(−→γ)}

}
.

J̃ := Jv ∪ J(
−→
λ).

−→γ := Vector (J̃).

a1 := min{g1, g}; a2 := min{g2, g}; b1 := max{g1, g}; b2 := max{g2, g}.

E(v,
−→
λ , g1, g2) := min

{
MIN,

min{E(v1,
−→γ1 , a1, a2) + E(v2,

−→γ2 , b1, b2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ)}
}

.

Vector (J̃):

Let C` be the largest size class of any job in J̃ .

i := max{`, δ − 1}.
For k := i− δ + 1, . . . , i do: xk := |{p ∈ J̃ : p belongs to size class Ck}|.
Return (i, xi, xi−1, . . . , xi−δ+1).

Figure 3.1: Procedure for computing the remaining entries of the DP.

jobs are split up between v1 and v2. In this case we need to take special care
of the subproblem boundaries, as g1 > g or g2 < g are also valid arguments
for Compute.

Lemma 15. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic

program are δ-omitted schedules for the jobs in the subtree of v plus the jobs

12

J(
−→
λ). Furthermore, they satisfy E

(
S(v,
−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

A proof for this lemma is given in the appendix. We can now combine
Lemmas 4, 8, 13, and 15 to obtain the following theorem.

Theorem 16. The non-preemptive speed scaling problem admits a QPTAS
if the instance is laminar.

Proof. Let r∗ be the earliest release time, and d∗ be the latest deadline of any
job in J . Furthermore, let r be the root of the tree T , and let

−→
0 denote the

(heritable) job vector representing the empty set, i.e.
−→
0 := (δ − 1, 0, . . . , 0).

We consider the schedule S(r,
−→
0 , r∗, d∗), which is a δ-omitted schedule for

the rounded instance by Lemma 15, and turn it into a feasible schedule Sr for
the whole set of (rounded) jobs, using Lemma 13. Finally, we apply Lemma
8 to turn Sr into a feasible schedule S for the original instance I, and obtain

E(S) ≤ (1 + ε)αE(Sr) ≤ (1 + ε)2αE
(
S(r,
−→
0 , r∗, d∗)

)
≤ (1 + ε)2αE

(
G(r,

−→
0 , r∗, d∗)

)
≤ (1 + ε)3α−1OPT =

(
1 +O(ε)

)
OPT.

Here the third inequality holds by Lemma 15, and the fourth inequality
follows from Lemma 4 and the fact that G(r,

−→
0 , r∗, d∗) is an optimal grid

point schedule for the rounded instance (with smaller job volumes). The
quasipolynomial running time of the algorithm is easily verified, as we have
only a polynomial number of grid points, and at most a quasipolynomial
number of job vectors that are heritable to any vertex of the tree.

13

4 Equal-Volume Jobs

In this section, we consider the case that all jobs have the same volume
v1 = v2 = . . . = vn = v. We present a dynamic program that computes
an (exactly) optimal schedule for this setting in polynomial time. All grid
points used for this purpose relate to the set Pexact.

As a first step, let us order the jobs such that r1 ≤ r2 ≤ . . . ≤ rn.
Furthermore, let us define an ordering on schedules as follows.

Definition 17 (Completion Time Vector). Let C1, . . . , Cn be the comple-

tion times of the jobs j1, . . . , jn in a given schedule S. The vector
−→
S :=

(C1, . . . , Cn) is called the completion time vector of S.

Definition 18 (Lexicographic Ordering). A schedule S is said to be lexico-
graphically smaller than a schedule S ′ if the first component in which their

completion time vectors differ is smaller in
−→
S than in

−→
S ′ .

We now elaborate the details of the DP, focusing on energy consumption
values only.

Definition 19. Let i ∈ {1, . . . , n} be a job index, and let g1, g2, and g3

be grid points satisfying g1 ≤ g2 ≤ g3. We define E(i, g1, g2, g3) to be the
minimum energy consumption of a grid point schedule for the jobs {jk ∈ J :
k ≥ i ∧ g1 < dk ≤ g3} that uses only the interval [g1, g2).

Dynamic Program. Our goal is to compute the values E(i, g1, g2, g3).
To this end, we let

E(i, g1, g2, g3) :=

{
0 if {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3} = ∅
∞ if ∃k ≥ i : g1 < dk ≤ g3 ∧ [rk, dk) ∩ [g1, g2) = ∅.

Note that if g1 = g2, one of the above cases must apply. We now recursively
compute the remaining values, starting with the case that g1 and g2 are
consecutive grid points, and stepwise moving towards cases with more and

14

more grid points in between g1 and g2. The recursion works as follows. Let
E(i, g1, g2, g3) be the value we want to compute, and let jq be the smallest
index job in {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}. Furthermore, let G
denote a lexicographically smallest optimal grid point schedule for the jobs
{jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}, using only the interval [g1, g2). Our first
step is to “guess” the grid points bq and eq that mark the beginning and end
of jq’s execution interval in G, by minimizing over all possible options. We
then use the crucial observation that in G, all jobs J− := {jk ∈ J : k ≥
q + 1 ∧ g1 < dk ≤ eq} are processed completely before jq, and all jobs
J+ := {jk ∈ J : k ≥ q + 1 ∧ eq < dk ≤ g3} are processed completely after
jq. For J− this is obviously the case because of the deadline constraint. For
J+ this holds as all these jobs have release time at least rq by the ordering
of the jobs, and deadline greater than eq by definition of J+. Therefore any
job in J+ that is processed before jq could be swapped with jq, resulting
in a lexicographic smaller schedule; a contradiction. Hence, we can use the
following recursion to compute E(i, g1, g2, g3).

E(i, g1, g2, g3) := min
{ vq

α

(eq − bq)α−1
+ E(q + 1, g1, bq, eq) + E(q + 1, eq, g2, g3) :

(g1 ≤ bq < eq ≤ g2) ∧ (bq ≥ rq) ∧ (eq ≤ dq)
}
.

Once we have computed all values, we output the schedule S corresponding to
E(1, r∗, d∗, d∗), where r∗ is the earliest release time and d∗ the latest deadline
of any job in J . Lemma 6 implies that E(S) = OPT, and the running time
of the algorithm is clearly polynomial as there are at most O

(
n4
)

grid points
in Pexact. Hence, we obtain the following theorem.

Theorem 20. The non-preemptive speed scaling problem admits a polyno-
mial time algorithm if all jobs have the same volume.

15

5 Conclusion

In this paper, we made a first step to narrow down the complexity of the non-
preemptive speed scaling problem. For most of the studied cases our results
are optimal, unless P = NP. The only exception are laminar instances, where
our QPTAS strongly indicates that in fact a polynomial-time approximation
scheme should be possible. This is an obvious direction of future research
and should be the next step in order to settle the precise approximability
of the non-preemptive speed scaling problem. We hope that our paper will
initiate an enhanced interest in this problem, which is very fundamental for
a deeper understanding of speed scaling in general.

16

Bibliography

[1] Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms
for speed scaling with a sleep state. In SODA, pages 1266–1285. SIAM,
2012.

[2] Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-
processor speed scaling with migration: extended abstract. In SPAA,
pages 279–288. ACM, 2011.

[3] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for
flow time minimization. In STACS, volume 3884 of Lecture Notes in
Computer Science, pages 621–633. Springer, 2006.

[4] Susanne Albers, Fabian Müller, and Swen Schmelzer. Speed scaling on
parallel processors. In SPAA, pages 289–298. ACM, 2007.

[5] Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed
scaling on parallel processors with migration. In Euro-Par, volume 7484
of Lecture Notes in Computer Science, pages 128–140. Springer, 2012.

[6] Antonios Antoniadis and Chien-Chung Huang. Non-preemptive speed
scaling. In SWAT, volume 7357 of Lecture Notes in Computer Science,
pages 249–260. Springer, 2012.

[7] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-
norm approximation algorithms. J. Algorithms, 52(2):120–133, 2004.

[8] Evripidis Bampis, Alexander Kononov, Dimitrios Letsios, Giorgio Lu-
carelli, and Ioannis Nemparis. From preemptive to non-preemptive
speed-scaling scheduling. In COCOON, volume 7936 of Lecture Notes
in Computer Science, pages 134–146. Springer, 2013.

17

[9] Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee.
Scheduling for speed bounded processors. In ICALP (1), volume 5125
of Lecture Notes in Computer Science, pages 409–420. Springer, 2008.

[10] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an
arbitrary power function. In SODA, pages 693–701. SIAM, 2009.

[11] Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy Katz. Im-
proved bounds for speed scaling in devices obeying the cube-root rule.
In ICALP (1), volume 5555 of Lecture Notes in Computer Science, pages
144–155. Springer, 2009.

[12] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling
to manage energy and temperature. In FOCS, pages 520–529. IEEE
Computer Society, 2004.

[13] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted
flow time. In SODA, pages 805–813. SIAM, 2007.

[14] Brad D. Bingham and Mark R. Greenstreet. Energy optimal scheduling
on multiprocessors with migration. In ISPA, pages 153–161. IEEE, 2008.

[15] David Brooks, Pradip Bose, Stanley Schuster, Hans M. Jacobson, Prab-
hakar Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor V.
Zyuban, Manish Gupta, and Peter W. Cook. Power-aware microarchi-
tecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26–44, 2000.

[16] Ho-Leung Chan, Joseph Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee,
Kin-Sum Mak, and Prudence W. H. Wong. Optimizing throughput and
energy in online deadline scheduling. ACM Transactions on Algorithms,
6(1), 2009.

[17] Jian-Jia Chen, Tei-Wei Kuo, and Hsueh-I Lu. Power-saving scheduling
for weakly dynamic voltage scaling devices. In WADS, volume 3608 of
Lecture Notes in Computer Science, pages 338–349. Springer, 2005.

[18] Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Pru-
dence W. H. Wong. Deadline scheduling and power management for
speed bounded processors. Theor. Comput. Sci., 411(40-42):3587–3600,
2010.

[19] Sandy Irani, Sandeep K. Shukla, and Rajesh K. Gupta. Algorithms for
power savings. In SODA, pages 37–46. ACM/SIAM, 2003.

18

[20] K. Jeffay, D.F. Stanat, and C.U. Martel. On non-preemptive scheduling
of periodic and sporadic tasks. In Proceedings of the Twelfth IEEE Real-
Time Systems Symposium, pages 129–139, 1991.

[21] Minming Li, Becky Jie Liu, and Frances F. Yao. Min-energy voltage al-
location for tree-structured tasks. In COCOON, volume 3595 of Lecture
Notes in Computer Science, pages 283–296. Springer, 2005.

[22] Minming Li and Frances F. Yao. An efficient algorithm for computing
optimal discrete voltage schedules. In MFCS, volume 3618 of Lecture
Notes in Computer Science, pages 652–663. Springer, 2005.

[23] Gabriella Muratore, Ulrich M. Schwarz, and Gerhard J. Woeginger. Par-
allel machine scheduling with nested job assignment restrictions. Oper.
Res. Lett., 38(1):47–50, 2010.

[24] Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. Power-aware
speed scaling in processor sharing systems: Optimality and robustness.
Perform. Eval., 69(12):601–622, 2012.

[25] F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model
for reduced cpu energy. In FOCS, pages 374–382. IEEE Computer So-
ciety, 1995.

19

Appendix A Proof of
Proposition 1

Proposition 1. Let S and S ′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S ′, j) = (s′/s)α−1 ·E(S, j).

Proof.

E(S ′, j) = P (s′)
vj
s′

= (s′)α−1vj = (
s′

s
)α−1sα−1vj

= (
s′

s
)α−1P (s)

vj
s

= (
s′

s
)α−1E(S, j).

20

Appendix B Proof of Lemma
4

Lemma 4. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

Proof. Let S∗ be an optimal schedule, that is E(S∗) = OPT. We show how
to modify S∗ by shifting and compressing certain jobs, s.t. every execution
interval starts and ends at a grid point. For the proof we focus on one par-
ticular zone (ti, ti+1), and the lemma follows by applying the transformation
to each other zone individually.

Let us consider the jobs that S∗ processes within the zone (ti, ti+1). If
a job’s execution interval overlaps partially with this zone, we consider only
its fraction inside (ti, ti+1) and treat this fraction as if it were a job by itself.
We denote the set of (complete and partial) jobs in zone (ti, ti+1) by J . If
J = ∅, nothing needs to be done. Otherwise, we can assume that S∗ uses the
entire zone (ti, ti+1) without any idle periods to process the jobs in J . If this
were not the case, we could slow down the processing of any job in J without
violating a release time or deadline constraint, and thus obtain a feasible
schedule with lower energy cost than S∗, a contradiction. Consequently, the
total time for processing J in S∗ is γn2Li (recall that Li = ti+1−ti

n2γ
), and as

|J | ≤ n, there must exist a job j ∈ J with execution time Tj ≥ γnLi.
We now partition the jobs in J \ j into J+, the jobs processed after j,

and J−, the jobs processed before j. First, we restrict our attention to J+.
Let q1, . . . , q|J+| denote the jobs in J+ in the order they are processed by
S∗. Starting with the last job q|J+|, and going down to q1, we modify the
schedule as follows. We keep the end of q|J+|’s execution interval fixed, and
shift its start to the next earlier grid point, reducing its uniform execution
speed accordingly. At the same time, to not produce any overlappings, we
shift the execution intervals of all qk, k < |J+| by the same amount, in the
direction of earlier times (leaving their lengths unchanged). Eventually, we

21

also move the execution end point of j by the same amount towards earlier
times (leaving its start point fixed). This shortens the execution interval
of j and “absorbs” the shifting of the jobs in J+. The shortening of j’s
execution interval is compensated by an appropriate increase of speed. We
then proceed with q|J+|−1, keeping its end (which now already resides at a
grid point) fixed, and moving its start to the next earlier grid point. Again,
the shift propagates to earlier jobs in J+, which are moved by the same
amount, and shortens j’s execution interval once more. When all jobs in J+

have been modified in this way, we turn to J− and apply the same procedure
there. This time, we keep the start times fixed and instead shift the right end
points of the execution intervals towards later times. As before, j “absorbs”
the propagated shifts, as we increase its start time accordingly. After this
modification, the execution intervals of all jobs in J start and end at grid
points only.

To complete the proof, we need to analyze the changes made in terms
of energy consumption. Let G denote the schedule obtained by the above
modification of S∗. Obviously, for all j′ ∈ J \ j, we have that E(G, j′) ≤
E(S∗, j′), as the execution intervals of those jobs are only prolonged during
the transformation process, resulting in a less or equal execution speed. The
only job whose processing time is possibly shortened, is j. Since |J | ≤ n,
it can be shortened at most n times, each time by a length of at most Li.
Remember that the execution time of j in S∗ was Tj ≥ γnLi. Therefore, in
G, its execution time is at least Tj − nLi ≥ Tj − Tj/γ. Thus the speedup
factor of j in G compared to S∗ is at most

Tj

Tj − Tj
γ

=
1

1− 1
γ

≤ 1 + ε,

where the last inequality follows from the definition of γ. Hence, Proposi-
tion 1 implies that E(G, j) ≤ (1 + ε)α−1E(S∗, j), and the lemma follows by
summing up the energy consumptions of the individual jobs.

22

Appendix C Proof of Lemma
6

Lemma 6. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

Proof. Let S∗ be an optimal schedule. W.l.o.g., we can assume that S∗
changes the processing speed only at events (recall that an event is either
a release time or a deadline of some job), as a constant average speed be-
tween any two consecutive events minimizes the energy consumption (this
follows from Jensen’s Inequality) without violating release time or deadline
constraints. Given this property, we will show that S∗ is in fact a grid point
schedule with respect to Pexact. To this end, we partition the time hori-
zon of S∗ into phases of constant speed, that is time intervals of maximal
length during which the processing speed is unchanged. As every job itself
is processed using a uniform speed, no job is processed only partially within
a phase. Each phase is therefore characterized by a pair of events ti ≤ tj
indicating its beginning and end, and a number x of jobs that are processed
completely between ti and tj at constant speed. It is clear that the grid points
created for the pair (ti, tj) and k := x in the definition of Pexact correspond
exactly to the start and end times of the jobs in this phase. Since this is true
for every phase, S∗ is indeed a grid point schedule.

23

Appendix D Proof of Lemma
13

Lemma 13. Every δ-omitted schedule S ′ for a set of jobs J can be trans-
formed into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 +
ε)αE(S ′).

Proof. Let R be the set of non-omitted jobs in S ′. W.l.o.g., we can assume
that S ′ executes each job in R at a uniform speed, as this minimizes the
energy consumption. For every j ∈ R, define SMALL(j) := {x ∈ J \ R :
big(x) = j}. Note that every omitted job occurs in exactly one of the sets
SMALL(j), j ∈ R. The schedule S is constructed as follows. For all j ∈ R,
we process the jobs {j} ∪ SMALL(j) using the execution interval of j in
S ′ and a uniform speed. The processing order may be chosen arbitrarily.
Clearly, the resulting schedule is feasible by the definition of big(x). In order
to finish the total volume Vj of the jobs {j} ∪ SMALL(j) within the interval
of j in S ′, we need to raise the speed in this interval by the factor Vj/vj. As
|SMALL(j)| ≤ n, and vx ≤ vj(1 + ε)−δ for all x ∈ SMALL(j), we have that

Vj ≤ vj + nvj(1 + ε)−δ ≤ vj + nvj
ε

n
≤ (1 + ε)vj,

where the second inequality follows from the definition of δ. For the speedup
factor, we therefore obtain Vj/vj ≤ 1 + ε. Hence, the energy consumption
grows by at most the factor (1 + ε)α.

24

Appendix E Proof of Lemma
15

Lemma 15. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic

program are δ-omitted schedules for the jobs in the subtree of v plus the jobs

J(
−→
λ). Furthermore, they satisfy E

(
S(v,
−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Proof. We prove the lemma by induction. In the base cases, i.e. at the leaves
of T , we already argued that the schedules are feasible and optimal. Since
no jobs are omitted at all, the lemma is obviously true at this level. We
now perform the induction step. To this end, let us consider a fixed schedule

S(v,
−→
λ , g1, g2), and let us assume the lemma is true for the children v1 and

v2 of v. We first show that S(v,
−→
λ , g1, g2) is indeed a δ-omitted schedule.

The only point where jobs are omitted in the recursive procedure is the call
of Vector (J̃), where a vector-representation −→γ of J̃ is constructed. This
vector −→γ only represents a subset of the jobs J̃ , namely the jobs in the δ
largest size classes of J̃ . Let jmax denote a job in J̃ with maximum volume,
i.e. a job belonging to the largest size class. Then every omitted job jom has
volume at most vjmax(1 + ε)−δ, and we can choose big(jom) := jmax to satisfy
the requirements of Definition 12, as long as jmax is indeed contained in one
of the subschedules that we combine in the recursion step. If, however, jmax

is omitted in the corresponding subschedule, then there exists a job big(jmax)
as required in Definition 12, by induction hypothesis. In this case we can

choose big(jom) := big(jmax). This proves that S(v,
−→
λ , g1, g2) is indeed a

δ-omitted schedule.
We now argue about the energy consumption. Let J1 and J2 denote the

subsets of jobs that G(v,
−→
λ , g1, g2) processes entirely within Iv1 and Iv2 , re-

spectively. If there exists a “crossing” job spanning from Iv1 into Iv2 , we
denote this job by jc. Now we look at the iteration that handles exactly
this situation, i.e. when j = jc and g̃1, g̃2 mark the beginning and end of

jc’s execution interval in G(v,
−→
λ , g1, g2), or the passage after the for-loop for

25

the case without “crossing” job. As mentioned earlier, the procedure pos-

sibly omits certain jobs and only splits up a subset of Jv ∪ J(
−→
λ) between

the children v1 and v2. Here, all possible splits are tried. One option for
the min-operation is therefore to combine the subschedules that process the
non-omitted subset of J1 within Iv1 , and the non-omitted subset of J2 within
Iv2 . By induction hypothesis, and since we only schedule subsets of J1 and
J2, the energy consumption of these subschedules is at most the energy spent

by G(v,
−→
λ , g1, g2) for executing J1 and J2, respectively. Furthermore, if there

exists a “crossing” job jc, then executing this job from g̃1 to g̃2 at uniform

speed costs at most the energy that G(v,
−→
λ , g1, g2) pays for this job. Sum-

ming up the different parts, we get that the considered option has an energy

consumption of at most E
(
G(v,

−→
λ , g1, g2)

)
. The lemma follows as we choose

the minimum over all possible options.

26

Appendix F Purely-Laminar
Instances

In this section, we present an FPTAS for purely-laminar instances I. W.l.o.g.,
we assume that the jobs are ordered by inclusion of their time windows, that
is [r1, d1) ⊆ [r2, d2) ⊆ · · · ⊆ [rn, dn). Furthermore, whenever we refer to grid
points in this section, we refer to the set Papprox. Our FPTAS uses dynamic
programming to construct an optimal grid point schedule for I, satisfying
the following structural property:

Property 21. For any k > 1, jobs j1, . . . , jk−1 are either all processed before
jk, or all processed after jk.

This structure can easily be established in any schedule for I by perform-
ing a sequence of energy-preserving swaps. According to this, the following
lemma is a straightforward extension of Lemma 4 to the purely-laminar case.

Lemma 22. If the problem instance is purely-laminar, there exists a grid
point schedule G with respect to Papprox that satisfies Property 21 and has
energy cost E(G) ≤ (1 + ε)α−1OPT.

Proof. Consider an optimal schedule S∗ for I, and let J− and J+ be the
jobs executed before and after j1, respectively. Now rearrange the execution
intervals (without changing their lengths) of the jobs in J+ into smallest
index first order (SIF), by repeatedly swapping two consecutively processed
jobs ja preceding jb, with a > b. For the swap, we let the execution interval of
jb now start at ja’s original starting time, and directly append ja’s execution
interval once jb is finished. Note that each such swap maintains feasibility,
as no release times occurs during the execution of the jobs in J+, and a > b
implies da ≥ db. Similarly, we rearrange the execution intervals of the jobs
in J− into largest index first order (LIF), and denote the resulting schedule
by S ′. Clearly, E(S ′) = OPT, as the rearrangements preserve the energy
cost of every individual job. Furthermore, S ′ satisfies Property 21. To see

27

this, let us fix k > 1 and distinguish whether jk is in J− or in J+. In the
first case, when jk ∈ J−, all j ∈ J+ are scheduled after jk by definition of
J−/J+, and all ji ∈ J−, i < k are scheduled after jk by the LIF-order. In the
second case, when jk ∈ J+, all j ∈ J− are scheduled before jk by definition
of J−/J+, and all ji ∈ J+, i < k are scheduled before jk by the SIF-order.
As a final step, we now apply the transformation from the proof of Lemma
4 to S ′. Since this transformation does not change the order of any jobs, the
resulting grid point schedule G still satisfies Property 21, and has energy cost
E(G) ≤ (1 + ε)α−1OPT.

Dynamic Program. For any k ≤ n and grid points g1 ≤ g2, let
S(k, g1, g2) denote a minimum cost grid point schedule for j1, . . . , jk that
satisfies Property 21 and uses only the time interval between g1 and g2. The
corresponding energy cost of S(k, g1, g2) is denoted by E(k, g1, g2), where
E(k, g1, g2) := ∞ if no such schedule exists. For ease of exposition, we only
show how to compute the energy consumption values E(k, g1, g2), and omit
the straightforward bookkeeping of the corresponding schedules. The base
cases are given by E(0, g1, g2) = 0, for all g1 ≤ g2. All remaining entries can
be computed with the following recursion.

E(k+1, g1, g2) =



∞ if (g1 = g2) ∨ (g1 ≥ dk+1) ∨ (g2 ≤ rk+1).

min
{

vk+1
α

(g′2−g′1)α−1 + min{E(k, g1, g
′
1), E(k, g′2, g2)} :

(g1 ≤ g′1 < g′2 ≤ g2) ∧ (g′1 ≥ rk+1) ∧ (g′2 ≤ dk+1)
}

otherwise.

Intuitively, we minimize over all possible combinations of grid points g′1 and
g′2 that could mark the beginning and end of jk+1’s execution. For fixed g′1
and g′2, it is best to process jk+1 at uniform speed, resulting in the energy
cost vk+1

α/(g′2 − g′1)α−1 for this job. The remaining jobs j1, . . . , jk must then
be scheduled either before or after jk+1, to satisfy Property 21. This fact is
captured in the second min-operation of the formula. The constraints on g′1
and g′2 ensure that jk+1 can be feasibly scheduled in the chosen interval.

Once we have computed all values E(k, g1, g2) (and their corresponding
schedules), we output the schedule S̃ := S(n, r∗, d∗), where r∗ is the earliest
release time and d∗ the latest deadline of any job in I. Note that S̃ is an
optimal grid point schedule with Property 21 for I. Hence, Lemma 22 implies
that E(S̃) ≤ (1 + ε)α−1OPT =

(
1 + O(ε)

)
OPT. Finally, it is easy to verify

that the running time of the algorithm is polynomial in n and 1/ε, since the
total number of grid points in Papprox is O

(
n3(1 + 1

ε
)
)
. We therefore obtain

the following theorem.

28

Theorem 23. The non-preemptive speed scaling problem admits an FPTAS
if the instance is purely-laminar.

29

Appendix G Bounded
Number of Time Windows

Let us consider a problem instance I, and group together jobs that share the
same time window. We refer to the group of jobs with time window [r, d) as
the type Trd.

Theorem 24. The non-preemptive speed scaling problem admits an FPTAS
if the total number of types is at most a constant c.

Our FPTAS draws on ideas of Antoniadis and Huang [6], as we transform
the problem into an instance I ′ of unrelated machine scheduling with `α-norm
objective. In this problem, one is given a set of machines M, a set of jobs
J , and numbers pij that specify the processing time of job j on machine
i. The goal is to find an assignment A of the jobs to the machines that
minimizes Cost(A) = (

∑
i∈M(

∑
j:A(j)=i pij)

α)1/α. In general, this problem is

APX-hard [7]. Our instance, however, will have only a constant number of
machines, and for this special case an FPTAS exists [7].

The transformation works as follows. Let G be an optimal grid point
schedule with respect to Papprox, and for each type Trd let b(Trd) and e(Trd)
denote the grid points at which G starts to process the first job of Trd and
finishes the last job of Trd, respectively. Our first step is to “guess” the entire
set of grid points b(·) and e(·), by minimizing over all possible options with
r ≤ b(Trd) < e(Trd) ≤ d for every type Trd. Note that the total number of
choices that we have to make is at most O

(
n6c(1+ 1

ε
)2c
)
, and thus polynomial

in both n and 1/ε. For one particular guess, let g1 < g2 < . . . < gk be the
ordered set of distinct grid points b(·) and e(·). The instance I ′ has a machine
i for every interval [gi, gi+1), and a job j for every job of the original instance.
The processing times pij are given as pij :=

vj
(gi+1−gi)1−1/α if [gi, gi+1) ⊆ [rj, dj),

and pij :=∞ otherwise.
Note that the total number of machines in I ′ is k − 1 < 2c. Hence, the

FPTAS of [7] can be applied to obtain an assignment A with Cost(A) ≤

30

(1 + ε)OPT′, where OPT′ denotes the cost of an optimal assignment for I ′.
The following two lemmas imply Theorem 24.

Lemma 25. Every finite-cost assignment A for I ′ can be transformed into
a schedule S for I, such that E(S) =

(
Cost(A)

)α
.

Proof. For any i ∈M, let Ai denote the set of jobs that A assigns to machine
i. In order to create the schedule S, we iterate through all i ∈ M and
process the jobs in Ai within the interval [gi, gi+1), using the uniform speed
(
∑

j∈Ai vj)/(gi+1 − gi). The resulting schedule is clearly feasible, as A has
finite cost and every j ∈ Ai thus satisfies [gi, gi+1) ⊆ [rj, dj). For the energy
consumption of S we get

E(S) =
∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi) =

∑
i∈M

(∑
j∈Ai vj

(gi+1 − gi)1−1/α

)α
=
∑
i∈M

(∑
j∈Ai

pij

)α

=
(

Cost(A)
)α
.

Lemma 26. If the grid points b(·) and e(·) are guessed correctly, there exists

an assignment A for I ′ with Cost(A) ≤
(
(1 + ε)α−1OPT

)1/α
.

Proof. Remember that G is an optimal grid point schedule for I, and that
the grid points b(Trd) and e(Trd) mark the time points at which G starts to
process the first job of type Trd and finishes the last job of Trd, respectively.
Now observe that in G, every job j is processed entirely within some interval
[gi, gi+1), satisfying [gi, gi+1) ⊆ [rj, dj). This is true because rj ≤ b(Trjdj) <
e(Trjdj) ≤ dj, and no job can stretch from an interval [gx−1, gx) into [gx, gx+1)
since gx indeed marks the beginning or end of some job. Let Ai denote the
set of jobs which are entirely processed within [gi, gi+1), and let A be the
assignment that maps all jobs from Ai to machine i. The cost of A is given
as

Cost(A) =

(∑
i∈M

(∑
j∈Ai

pij

)α)1/α

=

(∑
i∈M

(∑
j∈Ai vj

(gi+1 − gi)1−1/α

)α)1/α

=

(∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi)

)1/α

≤
(
E(G)

)1/α

≤
(

(1 + ε)α−1OPT
)1/α

.

31

Here the last two inequalities follow from the convexity of the power function
and Lemma 4, respectively.

32

Below you find a list of the most recent research reports of the Max-Planck-Institut für Informatik. Most
of them are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies
(which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address
below.

Max-Planck-Institut für Informatik
– Library and Publications –
Campus E 1 4

D-66123 Saarbrücken

E-mail: library@mpi-inf.mpg.de

MPI-I-2013-RG1-002 P. Baumgartner, U. Waldmann Hierarchic superposition with weak abstraction

MPI-I-2013-5-002 F. Makari, B. Awerbuch, R. Gemulla,
R. Khandekar, J. Mestre, M. Sozio

A distributed algorithm for large-scale generalized
matching

MPI-I-2012-RG1-002 A. Fietzke, E. Kruglov, C. Weidenbach Automatic generation of inductive invariants by
SUP(LA)

MPI-I-2012-RG1-001 M. Suda, C. Weidenbach Labelled superposition for PLTL

MPI-I-2012-5-004 F. Alvanaki, S. Michel, A. Stupar Building and maintaining halls of fame over a database

MPI-I-2012-5-003 K. Berberich, S. Bedathur Computing n-gram statistics in MapReduce

MPI-I-2012-5-002 M. Dylla, I. Miliaraki, M. Theobald Top-k query processing in probabilistic databases with
non-materialized views

MPI-I-2012-5-001 P. Miettinen, J. Vreeken MDL4BMF: Minimum Description Length for Boolean
Matrix Factorization

MPI-I-2012-4-001 J. Kerber, M. Bokeloh, M. Wand,
H. Seidel

Symmetry detection in large scale city scans

MPI-I-2011-RG1-002 T. Lu, S. Merz, C. Weidenbach Towards verification of the pastry protocol using TLA+

MPI-I-2011-5-002 B. Taneva, M. Kacimi, G. Weikum Finding images of rare and ambiguous entities

MPI-I-2011-5-001 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Temporal index sharding for space-time efficiency in
archive search

MPI-I-2011-4-005 A. Berner, O. Burghard, M. Wand,
N.J. Mitra, R. Klein, H. Seidel

A morphable part model for shape manipulation

MPI-I-2011-4-002 K.I. Kim, Y. Kwon, J.H. Kim,
C. Theobalt

Efficient learning-based image enhancement :
application to compression artifact removal and
super-resolution

MPI-I-2011-4-001 M. Granados, J. Tompkin, K. In Kim,
O. Grau, J. Kautz, C. Theobalt

How not to be seen inpainting dynamic objects in
crowded scenes

MPI-I-2010-RG1-001 M. Suda, C. Weidenbach,
P. Wischnewski

On the saturation of YAGO

MPI-I-2010-5-008 S. Elbassuoni, M. Ramanath,
G. Weikum

Query relaxation for entity-relationship search

MPI-I-2010-5-007 J. Hoffart, F.M. Suchanek,
K. Berberich, G. Weikum

YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia

MPI-I-2010-5-006 A. Broschart, R. Schenkel Real-time text queries with tunable term pair indexes

MPI-I-2010-5-005 S. Seufert, S. Bedathur, J. Mestre,
G. Weikum

Bonsai: Growing Interesting Small Trees

MPI-I-2010-5-004 N. Preda, F. Suchanek, W. Yuan,
G. Weikum

Query evaluation with asymmetric web services

MPI-I-2010-5-003 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Efficient temporal keyword queries over versioned text

MPI-I-2010-5-002 M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules

MPI-I-2010-5-001 K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

A language modeling approach for temporal
information needs

MPI-I-2010-1-001 C. Huang, T. Kavitha Maximum cardinality popular matchings in strict
two-sided preference lists

MPI-I-2009-RG1-005 M. Horbach, C. Weidenbach Superposition for fixed domains

MPI-I-2009-RG1-004 M. Horbach, C. Weidenbach Decidability results for saturation-based model building

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-RG1-001 M. Horbach, C. Weidenbach Deciding the inductive validity of ∀∃∗ queries

MPI-I-2009-5-007 G. Kasneci, G. Weikum, S. Elbassuoni MING: Mining Informative Entity-Relationship
Subgraphs

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-005 G. de Melo, G. Weikum Towards a Universal Wordnet by learning from
combined evidenc

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-002 M. Ramanath, K.S. Kumar, G. Ifrim Generating concise and readable summaries of XML
documents

MPI-I-2009-4-006 C. Stoll Optical reconstruction of detailed animatable human
body models

MPI-I-2009-4-005 A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

Generalized intrinsic symmetry detection

MPI-I-2009-4-004 V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 D. Wang, A. Belyaev, W. Saleem,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago : a large ontology from Wikipedia and WordNet

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A time machine for text search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: searching and ranking knowledge

MPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

Global stochastic optimization for robust and accurate
human motion capture

