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Abstract

This paper introduces a new decision procedure for PLTL based on labelled
superposition. Its main idea is to treat temporal formulas as infinite sets of
purely propositional clauses over an extended signature. These infinite sets
are then represented by finite sets of labelled propositional clauses. The new
representation enables the replacement of the complex temporal resolution
rule, suggested by existing resolution calculi for PLTL, by a fine grained
repetition check of finitely saturated labelled clause sets followed by a sim-
ple inference. The completeness argument is based on the standard model
building idea from superposition. It inherently justifies ordering restrictions,
redundancy elimination and effective partial model building. The latter can
be directly used to effectively generate counterexamples of non-valid PLTL
conjectures out of saturated labelled clause sets in a straightforward way.
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1 Introduction

Propositional linear temporal logic [25] is an extension of classical proposi-
tional logic for reasoning about time. It introduces temporal operators such
as ♦P meaning P holds eventually in the future, �P meaning P holds al-
ways in the future, and ©P meaning P holds at the next time point. Time
is considered to be a linear discrete sequence of time points represented by
propositional valuations, called worlds. Such a potentially infinite sequence
forms a PLTL interpretation. A decision procedure for PLTL takes a PLTL
formula P and checks whether it is valid, i.e., that all PLTL interpretations
are actually models for P . For example, the PLTL formula �P → ©P
is valid (a theorem) whereas the PLTL formula ©P → �P is not, but is
satisfiable, i.e., there is a PLTL model for it.

Attempts to use clausal resolution to attack the decision problem for
PLTL appeared first in [4, 31]. The most recent resolution-based approach
is the one of [13]. It relies on a satisfiability preserving clausal translation of
PLTL formulas, where, in particular, all nestings of temporal operators are
reduced to formulas (and, eventually, clauses) of the form P , �(P → ©Q),
and �(P → ♦Q), where P and Q do not contain temporal operators. Clas-
sical propositional resolution is extended to cope with “local” temporal rea-
soning within neighbouring worlds, while an additional inference rule called
temporal resolution is introduced to deal with eventuality (�♦) clauses. The
temporal resolution rule is quite complex. It requires a search for certain
combinations of clauses that together form a loop, i.e. imply that certain
sets of worlds must be discarded from consideration, because an eventuality
clause would be unsatisfied forever within them. This is verified via an addi-
tional proof task. Finally, the conclusion of the rule needs to be transformed
back into the clause form.

Our labelled superposition calculus builds on a refinement of the above
clause normal form [5]. It introduces a notion of labelled clauses in the
spirit of [22] and replaces the temporal resolution rule by saturation and a
new Leap rule. Although in PLTL equality is not present, the principles of
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superposition are fundamental for our calculus. Our completeness result is
based on a model generation approach with an inherent redundancy concept
based on a total well-founded ordering on the propositional atoms.

The main contributions of our work are: 1) we replace the temporal reso-
lution rule by a much more streamlined saturation of certain labelled clauses
followed by a simple Leap inference, 2) our inference rules are guided by an
ordering restriction that is known to reduce the search space considerably,
3) the completeness proof justifies an abstract redundancy notion that en-
ables strong reductions, 4) if a contradiction cannot be derived, a temporal
model can be extracted from a saturated clause set.

This report is organized as follows. We fix our notation and formalize
the problem to be solved in Chapter 2. Then in Chapter 3 we show how to
use labelled clauses as a tool to “lift” the standard propositional calculus to
reason about PLTL-satisfiability. Our calculus is introduced in Chapter 4
and used as a basis for an effective decision procedure in Chapter 5. We
deal with abstract redundancy, its relation to the completeness proof, and
model building in Chapter 6. Discussion of previous work and an experimen-
tal comparison to existing resolution approaches appear in Chapter 7 and
Chapter 8, respectively. Finally, Chapter 9 concludes.

3



2 Preliminaries

2.1 PLTL, SNF, and specifications

Propositional Linear Temporal Logic, PLTL, is an extension of classical
propositional logic by temporal operators. Its language is built over sig-
nature Σ = {p, q, . . .} of propositional variables, using the standard proposi-
tional connectives together with unary operators © (‘at the next moment’),
� (‘always in the future’), ♦ (‘eventually in the future’), and U (‘until’) (see
e.g. [11]). Thus the set of PLTL formulas is defined as follows: any propo-
sitional variable p ∈ Σ is an atomic PLTL formula or simply an atom, if P
and Q are PLTL formulas then so are ¬P , P ∨ Q, ©P , �P , ♦P , P UQ.
As usual, a (standard) literal is an atomic formula or its negation, and a
(standard) clause is a multiset of literals understood as their disjunction. In
the following, the symbol N stands for the naturals, and N+ denotes the set
N \ {0}.

By a propositional valuation, or simply a world, we mean a mapping
V : Σ → {0, 1}. We write V |= P if a propositional formula P is satisfied
by V . The semantics of PLTL is based on discrete linear model of time,
where the structure of possible time points is isomorphic to N. A PLTL-
interpretation is a sequence V = (Vi)i∈N of propositional valuations. The
truth relation Vi |= P is defined recursively as follows:

Vi |= p iff Vi |= p
Vi |= ¬P iff not Vi |= P
Vi |= P ∨Q iff Vi |= P or Vi |= Q
Vi |=©P iff Vi+1 |= P
Vi |= �P iff for every j ≥ i, Vj |= P
Vi |= ♦P iff for some j ≥ i, Vj |= P
Vi |= P UQ iff there is j ≥ i such that Vj |= Q and Vk |= P for every k, i ≤ k < j

A PLTL-interpretation V is a model of a formula P if V0 |= P . We say that
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a formula P is satisfiable if there exists a model of P . Formula P is said to
be valid if every PLTL-interpretation is a model of P .

Refutational theorem proving is based on the observation that a formula
is valid (i.e. a theorem) if and only if its negation is unsatisfiable. The negated
formula is typically first transformed into an equisatisfiable normal form to
allow efficient automation of the following process, which seeks to derive a
contradiction and thus to refute the negated formula.

The approach presented in this paper is based on a normal form called
Separated Normal Form (SNF) described in [13] and further simplified in [5].
The translation to SNF is based on a renaming and unwinding technique
which substitutes non-atomic subformulas by new propositional symbols and
their definitions, and replaces the temporal operators by their fixpoint defi-
nitions; see [13]. The starting point of our work is our own variant of SNF
introduced in Definition 1. It no longer explicitly mentions any temporal op-
erator, which brings it nearer to the classical setup, but requires additional
conventions.

In order to be able to talk about several neighbouring worlds at once we
introduce copies (i.e. pairwise disjoint, bijectively equivalent sets) of the basic
signature Σ. We use priming to denote the shift from one signature to the
next (thus Σ′ is the set of symbols {p′, q′, . . .}), and shorten repeated primes
by parenthesised integers (e.g. p′′′ is the same thing as p(3)). This notational
convention can be extended from symbols and signatures to formulas, and
also to valuations in a natural way. For example, if V is a valuation over
Σ(i) we write V ′ for the valuation over Σ(i+1) such that V ′(p(i+1)) = V (p(i))
for every p ∈ Σ. We also need to consider formulas over two consecutive
joined signatures, e.g. over Σ ∪ Σ′. Such formulas can be evaluated over the
respective joined valuations. When both V1 and V2 are valuations over Σ, we
write [V1, V2] as a shorthand for the mapping V1 ∪ (V2)′ : (Σ ∪ Σ′)→ {0, 1}.
Definition 1. A PLTL-specification S is a quadruple (Σ, I, T,G) such that

• Σ is a finite propositional signature,

• I is a set of initial clauses Ci (over the signature Σ),

• T is a set of step clauses Ct ∨D′t (over the joint signature Σ ∪ Σ′),

• G is a set of goal clauses Cg (over the signature Σ).

The initial and step clauses match their counterparts from [13] in the
obvious way.1 Our goal clauses are a generalization of a single unconditional

1Note that unlike the previous work where temporal clauses are introduced, we only
work with propositional clauses in specifications and leave their temporal meaning to be
determined by context.
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sometimes clause that can be obtained using the transformations described
in [5]. The whole specification represents the PLTL formula:(∧

Ci

)
∧�

(∧
(Ct ∨©Dt)

)
∧�♦

(∧
Cg

)
.

Example 1. We will be using the valid PLTL formula �((a→ b)→©b)→
♦�(a∨ b) as a running example that will guide us through the whole theorem
proving process presented in this paper. By negating the formula and perform-
ing standard transformations we obtain �(a∨©b)∧�(¬b∨©b)∧�♦(¬a∧¬b),
which gives us the following PLTL-specification S = ({a, b}, ∅, {a ∨ b′,¬b ∨
b′}, {¬a,¬b}).

It is a known fact that when considering satisfiability of PLTL formulas
attention can be restricted to ultimately periodic [28] interpretations. These
start with a finite sequence of worlds and then repeat another finite sequence
of worlds forever. This observation, which is also one of the key ingredients
of our approach, motivates the following definition.

Definition 2. Let K ∈ N, and L ∈ N+ be given. A PLTL-interpretation
(Vi)i∈N is a (K,L)-model of S = (Σ, I, T,G) if

1. for every C ∈ I, V0 |= C,

2. for every i ∈ N and every C ∈ T , [Vi, Vi+1] |= C,

3. for every i ∈ N and every C ∈ G, V(K+i·L) |= C.

A PLTL-specification is satisfiable if it has a (K,L)-model for some K and
L.

Note that the eventuality represented by the goal clauses of S is satisfied
infinitely often as the standard PLTL semantics dictates. Moreover, we keep
track of the worlds where this is bound to happen by requiring they form an
arithmetic progression with K as the initial term and L the common differ-
ence. This additional requirement doesn’t change the notion of satisfiability
thanks to the observation mentioned above. We will call the pair (K,L) the
rank of a model.

We close this section by providing a more detailed argument on why
restricting our attention to (K,L)-models doesn’t change the notion of sat-
isfiabilit/validity of PLTL-specifications.

Definition 3. A PLTL-interpretation (Vi)i∈N is an unconstrained model of
S = (Σ, I, T,G) if
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1. for every C ∈ I, V0 |= C,

2. for every i ∈ N and every C ∈ T , [Vi, Vi+1] |= C,

3. for every i ∈ N there is j ≥ i such that for every C ∈ G, Vj |= C.

A PLTL-specification S is standard satisfiable if it has an unconstrained
model.

Lemma 1. Any standard satisfiable PLTL-specification S = (Σ, I, T,G) has
a (K,L)-model for some K ∈ N and L ∈ N+.

Proof. Let (Vi)i∈N be an unconstrained model of S. There are only finitely
many different valuations over Σ, so only finitely many that satisfy all the
clauses C ∈ G. At least one of them thus has to appear infinitely often in
(Vi)i∈N. Let K ∈ N be an index such that VK is such a valuation, and let L
be the smallest number in N+ such that VK = VK+L. We now define a new
PLTL-interpretation (Wi)i∈N by setting

• Wi = Vi for every i ≤ K,

• Wi = VK+(i−K) mod L for any i > K.

It is easy to see that (Wi)i∈N is a (K,L)-model of S.

Note that the model (Wi)i∈N constructed in the proof of the previous
lemma is an ultimately periodic model of [28], i.e. from a certain time point
the respective valuations repeat periodically. The notion of (K,L)-models is
slightly more general as it only requires that all the goal clauses are satisfied
in periodically recurring worlds.

2.2 Ordered resolution and model construc-

tion

Now we briefly review the ordered resolution calculus for classical proposi-
tional logic [2], that plays an important role “in the background”, and we refer
to it in our completeness result. Although we do not reason about equality in
this paper, we denote the calculus PSup (as a shorthand for Propositional Su-
perposition) to stress the presence of an inherent redundancy concept based
on an ordering on the propositional atoms.
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The calculus is parameterized by a strict well-founded ordering2 on the
signature < which is further extended to literals by setting A < ¬A and
(¬)A < (¬B) if and only if A < B. It consists of the following two inference
rules:

Ordered Resolution Ordered Factoring

I C ∨ A D ∨ ¬A
C ∨D I C ∨ A ∨ A

C ∨ A

where the atom A is maximal in C, and ¬A is maximal in D, meaning that
there is no greater literal w.r.t < in the respective clauses. The clauses above
the line are referred to as premises, and the clause below as the inference’s
conclusion. As usual, the inferences are used to derive new clauses from a
given clause set with the ultimate goal of deriving the empty clause ⊥, which
means the given clauses set is contradictory.

Ordered resolution comes also with a strong notion of redundancy, i.e. a
way to recognize that a particular clause in the context of the other clauses
is not needed for deriving the empty clause and can be removed without
compromising completeness. The most important instances of redundancy
are the following reduction rules.

Subsumption Tautology Deletion

R C D

C
R E

where C is a sub-multiset of D, and E contains two complementary literals A
and ¬A. Note that the reduction’s conclusion is not simply added to the gen-
erated clause set but replaces the reduction’s premises. This, e.g., amounts
to simple deletion in the case of our second reduction. By saturation we
mean the process of updating a clause set by inferences and reductions, and
we call the resulting clause set, after a fixpoint has been reached, saturated.
Further details can be found in [2].

We conclude this section by having a closer look on the abstract redun-
dancy notion and model building operator which is used in the completeness
proof of PSup. They both rely on a multiset extension <c of the ordering
< on literals described earlier to compare clauses (i.e. multisets of literals),
which is also necessarily well-founded.

2Typically, there is also a selection function of negative literals, that may be used
to further influence the search space. In order to keep things simple, we don’t include
selection function to our presentation.
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Definition 4. A standard clause C is redundant with respect to a set of
standard clauses N , if there are clauses C1, . . . , Cn ∈ N such that for every
i = 1, . . . n, Ci <

c C, and C1, . . . , Cn |= C.

Definition 5. A set of clauses N is saturated up to redundancy, if for every
PSup inference from N such that its premises are not redundant w.r.t. N ,
the conclusion is either redundant w.r.t. N or contained in N .

Now the model is constructed by considering which literals have to be
satisfied in a given clause, starting from the smallest clause w.r.t. the clause
ordering. Note that we follow standard convention here and consider proposi-
tional interpretation to be a set of atoms. Our notion of valuation introduced
earlier is, in fact, a characteristic function of this interpretation.

Definition 6 (Model Construction). Let <c be a multiset extension of literal
ordering < and let N be a set of clauses. For a clause C ∈ N we define by
a well-founded recursion over <c a propositional interpretation I<c

(C) and
a set εC as follows. We set I<c

(C) =
⋃

D<cC εD, and if the clause C

• is of the form C0 ∨ A, where the atom A is the maximal literal in C,
and

• is false in I<c
(C),

then we set εC = {A}; otherwise εC = ∅. Finally, we define I<c
(N) =⋃

C∈N εC.

A clause C is said to be productive and said to produce the atom A if and
only if εC = {A}.

Theorem 1 ([2]). Let N be a set of clauses that is saturated up to redundancy
w.r.t. PSup, and does not contain the empty clause, then N is satisfiable. In
fact, I<c

(N) |= N .
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3 Labelled clauses

Recall that we defined a PLTL-interpretation as an infinite sequence of propo-
sitional valuations over the finite signature Σ. Alternatively though, it can
be viewed as a single propositional valuation over the infinite signature
Σ∗ =

⋃
i∈N Σ(i). We simply index the signature symbols by the time mo-

ments to obtain this isomorphic representation. If we now examine Defini-
tion 2 of (K,L)-models from this perspective, we can reveal a simple (though
at first sight not very useful) reduction of satisfiability in a (K,L)-model to
propositional satisfiability of a potentially infinite set of clauses over Σ∗. For
a specification S = (Σ, I, T,G) this clause set will consist of copies of the
clauses from I, T , and G that are “shifted in time” to proper positions, such
that the whole set is (propositionally) satisfiable if and only if S has a (K,L)-
model. Formally, the set is the union of {C(0) |C ∈ I}, {C(i) |C ∈ T, i ∈ N},
and {C(K+i·L) |C ∈ G, i ∈ N}. See Fig. 3.1 for the intuition behind this idea.

In order to make use of the above described reduction we need to show how
to solve for infinitely many values of K and L the propositional satisfiability

Σ Σ′ Σ(2) Σ(3) Σ(4) Σ(5)

Ci ∈ I

Ct ∨D′
t ∈ T

Cg ∈ G

K K + L

. . .

. . .

Figure 3.1: Schematic presentation of the potentially infinite set of clauses
that is satisfiable iff a PLTL-specification S = (Σ, I, T,G) has a model of
rank (2, 3). The axis represents the the infinite signature Σ∗, while the grey
bars stand for the individual copies of the initial, step, and goal clauses,
respectively.
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problem consisting of infinitely many clauses. We do this by assigning labels
to the clauses of S such that a labelled clause represents up to infinitely many
standard clauses over Σ∗. Then an inference performed between labelled
clauses corresponds to infinitely many inferences on the level of Σ∗. This is
not dissimilar to the idea of “lifting” from first-order theorem proving where
clauses with variables represent up to infinitely many ground instances. Here,
however, we deal with the additional dimension of performing infinitely many
proof tasks “on the ground level” in parallel, one for each rank (K,L).

Formally, a label is a pair (b, k) where b is either ∗ or 0, and k is either ∗ or
an element of N. A labelled clause is a pair (b, k) ||C consisting of a label and
a (standard) clause over Σ∪Σ′. Given a PLTL-specification S = (Σ, I, T,G),
the initial labelled clause set NS for S is defined to contain

• labelled clauses of the form (0, ∗) ||C for every C ∈ I,

• labelled clauses of the form (∗, ∗) ||C for every C ∈ T , and

• labelled clauses of the form (∗, 0) ||C for every C ∈ G.

We can think of the first label component b as relating the clause to the
beginning of time, while the second component relates the clause to the
indices of the form K + i · L, where the goal should be satisfied. In both
cases, ∗ stands for a “don’t care” value, thus, e.g., the label (∗, ∗) marks
clauses that occupy every possible index. It turns out that during inferences
we also need to talk about clauses that reside k steps before indices of the
goal. That is why the second label component may assume any value from N.
The semantics of labels is given via a map to world indices. Formal definition
of labels’ semantics is given next.

Let (K,L) be a rank. We define a set R(K,L)(b, k) of indices represented
by the label (b, k) as the set of all t ∈ N such that

[b 6= ∗ → t = 0] ∧ [k 6= ∗ → ∃s ∈ N.t+ k = K + s · L] .

Observe that while R(K,L)(0, k) ⊆ {0}, the sets R(K,L)(∗, k) are always in-
finite, and for k ∈ N constitute a range of an arithmetic progression with
difference L. Now a standard clause of the form C(t) is said to be represented
by the labelled clause (b, k) ||C in (K,L) if t ∈ R(K,L)(b, k). We denote the
set of all standard clauses represented in (K,L) by the labelled clauses N by
the symbol N(K,L). In mathematical notation we obtain defining equation

N(K,L) = {C(t) | clause (b, k) ||C ∈ N and t ∈ R(K,L)(b, k)} .
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Example 2. Our example specification S = ({a, b}, ∅, {a∨b′,¬b∨b′}, {¬a,¬b})
contains among others the single literal goal clause ¬a. In the initial labelled
clause set NS this goal clause becomes (∗, 0) || ¬a. If we now, for example,
fix the same rank (2, 3) as in Fig. 3.1, our labelled clause will in that rank
represent all the standard clauses (¬a)(t) with t ∈ R(2,3)(∗, 0) = {2, 5, 8, . . . }.

We summarize the main message of this chapter in the next lemma. Its
proof follows from the definitions and ideas already given.

Lemma 2. Let a rank (K,L) and a PLTL-specification S be given and let
NS be the initial labelled clause set for S. Then the set (NS)(K,L) is satisfiable
if and only if S has a (K,L)-model.

Proof. Let us fix a rank (K,L) and a PLTL-specification S = (Σ, I, T,G).
First, we follow the definitions to show that

(NS)(K,L) = {C(0) |C ∈ I}∪ {C(i) |C ∈ T, i ∈ N}∪ {C(K+i·L) |C ∈ G, i ∈ N}.

Clauses C ∈ I are turned into labelled clauses of the form (0, ∗) ||C ∈ NS.
Their label’s semantics dictates that they in (K,L) represent standard clauses
C(0) = C. Clauses C ∈ T are turned into labelled clauses of the form
(∗, ∗) ||C ∈ NS. Their label’s semantics dictates that they in (K,L) represent
standard clauses C(i) for any i ∈ N. Clauses C ∈ G are turned into labelled
clauses of the form (∗, 0) ||C ∈ NS. Their label’s semantics dictates that
they in (K,L) represent standard clauses C(K+i·L) for any i ∈ N.

Satisfiability of (NS)(K,L) can now be transferred to the existence of a
(K,L)-model and back, by applying the following bijection between valua-
tions V ∗ over the extended signature Σ∗ =

⋃
i∈N Σ(i) on the one hand, and

PLTL-interpretations (Vi)i∈N on the other. The bijection is defined by the
equation

Vi(p) = V ∗(p(i))

for every p ∈ Σ.
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4 Labelled superposition
calculus LPSup

In this chapter we present our calculus for labelled clauses LPSup. We con-
tinue building on the idea that labelled clauses represent standard clauses
from the “ground level” of deciding the existence of (K,L)-models, and show
how to “lift” the operation of a sound and complete calculus on these ground
proof tasks and abbreviate it into a single saturation process on the level of
labelled clauses. In particular, we lift the ordered resolution calculus of [2],
which we call PSup for Propositional Superposition, and transfer to LPSup
its valuable properties, including the ordering restrictions of inferences.1 For
that purpose, we parameterize LPSup by a total ordering < on the symbols
of the signature Σ, which we implicitly extend to indexed signatures by first
comparing the indices and only then the actual symbols. This means that
p(i) < q(j) if and only if i < j, or i = j and p < q.2 We then use the standard
extension of this ordering to compare literals in clauses.

Before we proceed to the actual presentation of the calculus, we need to
define how labels are updated by inferences. Two labelled clauses should
only interact with each other when they actually represent standard clauses
that interact on the ground level. Moreover, the resulting labelled clause
should represent exactly all the possible results of the interactions on the
ground level. We define the merge of two labels (b1, k1) and (b2, k2) as the
label (b, k) such that

• if b1 = b2 = ∗ then b = ∗, otherwise b = 0,

1Selection of negative literals can also be carried over in a straightforward way, but we
leave it out from the current presentation to keep things simple.

2In the case of labelled clauses this amounts to saying that the symbols of Σ′ are
considered larger than those of Σ. Our definition, however, also makes sense over the
infinite signature Σ∗ and it is this particular ordering that restricts the inferences on the
level of standard clauses.
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• if k1 = ∗ then k = k2; if k2 = ∗ then k = k1; if k1 = k2 6= ∗ then
k = k1 = k2.

In the case when k1, k2 ∈ N and k1 6= k2, the merge operation is undefined.
The idea that the merged label represents the intersection of the sets of
indices represented by the arguments is captured by the following lemma.

Lemma 3. Let (b, k) be the merge of the labels (b1, k1) and (b2, k2), and
(K,L) any rank. Then

R(K,L)(b, k) = R(K,L)(b1, k1) ∩R(K,L)(b2, k2) .

Proof. The proof is straightforward from the definitions. We check by case
analysis that [b1 6= ∗ → t = 0] in conjunction with [b2 6= ∗ → t = 0] is
equivalent to [b 6= ∗ → t = 0], and also that [k1 6= ∗ → ∃s ∈ N.t + k =
K + s · L] in conjunction with [k2 6= ∗ → ∃s ∈ N.t + k = K + s · L] is
equivalent to [k 6= ∗ → ∃s ∈ N.t + k = K + s · L], under the condition that
k1 = ∗ ∨ k2 = ∗ ∨ k1 = k2.

The calculus LPSup consists of the inference rules Ordered Resolution,
Ordered Factoring, Temporal Shift, and Leap. They operate on a clause
set N , an initial labelled clause set of a given PLTL-specification. While
Ordered Resolution and Ordered Factoring constitute the labelled analogue
of inferences of PSup, Temporal Shift and Leap are “structural” in nature,
as they only modify the syntactic format, but the underlying represented set
of standard clauses remains the same.

(i) Ordered Resolution

I (b1, k1) ||C ∨ L (b2, k2) ||D ∨ L̄
(b, k) ||C ∨D

where literal L is maximal in C, its complement L̄ is maximal in D, and
the merge of labels (b1, k1) and (b2, k2) is defined and equal to (b, k),

(ii) Ordered Factoring

I (b, k) ||C ∨ A ∨ A
(b, k) ||C ∨ A

where A is an atom maximal in C,

(iii) Temporal Shift

I (∗, k) ||C
(∗, k′) || (C)′

where C is a non-empty clause over Σ only, and k = k′ = ∗ or k ∈ N
and k′ = k + 1,
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(iv) Leap

I {(b, u+ i · v) ||C}i∈N derivable from N

(b, u− v) ||C
where u ≥ v > 0 are integers and C is an arbitrary standard clause.3

Further explanation is needed for the inference rule Leap. In its present
form it requires an infinite number of premises, one for each i ∈ N, and
thus cannot, strictly speaking, become applicable in any finite derivation (or
possibly only “in the limit”). Here it is only a mathematical abstraction. In
the next chapter, where we discuss termination of LPSup, we show how to
effectively generate and finitely represent infinite sets of labelled clauses from
which it will follow that Leap is, in fact, effective.

Going back to the other inferences note that the merge operation on
labels ensures that the conclusion of Ordered Resolution represents exactly
all the conclusions of the standard ordered resolution inferences between the
standard clauses represented by the premises. Ordered Factoring carries over
from PSup in a similar fashion.4 The Temporal Shift operates only on clauses
over the signature Σ. We will from now on call such clauses simple. Notice
that the restriction to simple clauses is essential as it keeps the symbols of
the conclusion to stay within Σ ∪ Σ′.

Example 3. The initial labelled clause set NS of our running example con-
tains among others also clauses (∗, ∗) || a ∨ b′ and (∗, 0) || ¬b. We can apply
Temporal Shift to the second to obtain (∗, 1) || ¬b′. Now b′ is the only literal
over Σ′ in the first clauses and therefore maximal. So the first clause and
the newly derived one can participate in Ordered Resolution inference with
conclusion (∗, 1) || a.

Although the rules Temporal Shift and Leap derive new labelled clauses,
the represented sets of standard clauses remain the same in any rank (K,L).
This is easy to see for Temporal Shift, but a little bit more involved for Leap,
where it relies on the periodicity of (K,L)-models. The overall soundness
of LPSup is established by relating it to the same property of the standard
calculus PSup. By formalizing the above given ideas we obtain the following.

Lemma 4. Let (K,L) be a rank. Any standard clause represented in (K,L)
by the conclusion of the Ordered Resolution inference or the Ordered Factor-
ing inference of LPSup can be derived by the corresponding PSup inference

3In fact, we can restrict the Leap inference to the case where C is a simple clause,
b = ∗, and even s = t. This, however, makes the completeness proof more involved.

4Here we present the rule in a form as close as possible to the one in [2]. In practical
implementation, however, it is reasonable to remove duplicate literals as soon as they occur
without regard to ordering restrictions.
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from some standard clauses represented in (K,L) by the premises of the in-
ference.

Proof. This is a routine verification. First we check that the necessary stan-
dard assumptions are available, i.e. represented in (K,L) by the premises of
the LPSup-inference. This follows from Lemma 3. In the second step, we
verify that the ordering restrictions for the PSup-inference are satisfied. This
follows from how we extended the ordering on Σ to the whole Σ∗, namely
from the fact that we have p < q if and only if p(k) < q(k) for any p, q ∈ Σ
and k ∈ N.

Lemma 5. Let (K,L) be a rank. Any standard clause represented in (K,L)
by the conclusion of the Temporal Shift inference is represented in (K,L) by
its premise.

Proof. Let (C ′)(t) be a standard clause represented in (K,L) by the conclu-
sion (∗, k′) || (C)′ of Temporal Shift inference. This means that t ∈ R(K,L)(∗, k′).
We either have k = k′ = ∗, or k ∈ N and k′ = k + 1. In any case
t + 1 ∈ R(K,L)(∗, k), and thus C(t+1) = (C ′)(t) is represented in (K,L) by
the premise (∗, k) ||C of the inference.

Lemma 6. Let (K,L) be a rank. Any standard clause represented in (K,L)
by the conclusion of the Leap inference is represented in (K,L) by one of its
premises.

Proof. Let C(t) be a standard clause represented in (K,L) by the conclusion
(b, u− v) ||C of Leap inference, i.e. we have t ∈ R(K,L)(b, u− v). We need to
show that t ∈ ⋃i∈NR(K,L)(b, u + i · v) and thus C(t) is represented in (K,L)
by one of the inference’s premise (b, u + i · v) ||C. This, in particular, boils
down to showing that when

t+ (u− v) = K + s1 · L
for some s1 ∈ N, we can find i, s2 ∈ N such that

t+ (u+ i · v) = K + s2 · L .

A routine inspection confirms that setting i = L − 1, and s2 = s1 + v does
the trick.

Theorem 2 (Soundness of LPSup). Let NS be the initial labelled clause set
for a PLTL-specification S, and (b, k) ||C a labelled clause derivable from NS

by LPSup. Then for any rank (K,L) and any t ∈ R(K,L)(b, k) the standard
clause C(t) is derivable from (NS)(K,L) by PSup.

If an empty labelled clause (b, k) || ⊥ is derivable from NS by LPSup, such
that R(K,L)(b, k) 6= ∅, then S doesn’t have a (K,L)-model.
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Proof. By induction on the length of the derivation, using Lemma 4, 5, and
6. The corollary then follows from Lemma 2 and the soundness of PSup.

Notice that in LPSup the fact that an empty labelled clause (b, k) || ⊥ is
derived does not necessarily mean that the whole clause set is unsatisfiable.
It only rules out those (K,L)-models for which R(K,L)(b, k) is non-empty.
This motivates the following definition.

Definition 7. An empty labelled clause (b, k) || ⊥ is called conditional if
b = 0 and k ∈ N, and unconditional otherwise. We say that a set of labelled
clauses N is contradictory if it contains an unconditional empty clause, or
(0, k) || ⊥ is in N for every k ∈ N.

In Chapter 6 we demonstrate that a (K,L)-model can be found for any
non-contradictory set of labelled clauses that is saturated by LPSup.

To complete the picture of LPSup we move on to mention reduction
rules. As we discuss in detail in Chapter 6, these are justified by the abstract
redundancy notion [2] which our calculus inherits from PSup. Thus the
following are only examples and other reductions can be developed and used
as long as they satisfy the criteria of abstract redundancy.

Tautology Deletion allows us to remove from the search any labelled clause
the standard part of which contains both a literal and its complement. An-
other useful reduction is Subsumption5

R(b1, k1) ||C (b2, k2) ||D
(b1, k1) ||C

where C is a sub-multiset of D and the merge of labels (b1, k1) and (b2, k2)
is defined and equal to (b2, k2).

5We use the letter I and R to distinguish between inference rules, whose premises are
kept after the conclusion has been added to the given set of clauses, and reduction rules,
whose premises are replaced by the conclusion.
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5 Decision procedure

In this chapter we explain how to turn the calculus LPSup into an effective
decision procedure for PLTL. First, we have a look at termination.

Example 4. We have already derived the labelled clause (∗, 1) || ¬b′ from our
set NS of initial clauses for S by Temporal Shift. Ordered Resolution between
this clause and the clause (∗, ∗) || ¬b ∨ b′ yields (∗, 1) || ¬b to which Temporal
Shift is again applicable, giving us (∗, 2) || ¬b′. We see that the clause we
started with differs from the last one only in the label where the k-component
got increased by one. The whole sequence of inferences can now be repeated,
allowing us to eventually derive labelled clauses (∗, k) || ¬b and (∗, k) || ¬b′ for
any k ∈ N+.

The example demonstrates how the Temporal Shift inference may cause
non-termination when the k-component of the generated labelled clauses in-
creases one by one. It also suggests, however, that from a certain point the
derived clauses don’t add any new information and the inferences essentially
repeat in cycles. Detecting these repetitions and finitely representing the
resulting infinite clause sets is the key idea for obtaining a termination result
for our calculus.

Given a set of labelled clauses N , it is convenient to think of N as being
separated into layers, sets of clauses with the same value of their labels’
second component k. This way we obtain the ∗-layer of clauses with the label
of the form (b, ∗) for b ∈ {∗, 0}, and similarly layers indexed by k ∈ N. The
following list of observations forms the basis of our strategy for saturating
clause sets by LPSup.

(1) In an initial labelled clause set only the ∗-layer and 0-layer are non-empty.

(2) If all premises of Ordered Resolution, Factoring or Temporal Shift in-
ference belong to the ∗-layer, so does the conclusion of the respective
inference.
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(3) If a premise of Ordered Resolution or Factoring inference belongs to the
k-layer for k ∈ N, so does the inference’s conclusion.

(4) If a premise of Temporal Shift belongs to the k-layer for k ∈ N, the
inference’s conclusion belongs to the layer with index (k + 1).

(5) The number of clauses in each layer is bounded by a constant depending
only on the size of the signature.

We are ready to describe what we call layer-by-layer saturation of an
initial labelled clause set. During this process we don’t yet consider the Leap
inference, which will be incorporated later. It follows from our observations
that the ∗-layer can always be finitely saturated. We then perform all the
remaining Ordered Resolution and Factoring inferences (together with pos-
sible reductions) to saturate the 0-layer, again in a finite number of steps.
After that we exhaustively apply the Temporal Shift rule to populate the
1-layer and again saturate this layer by Ordered Resolution and Factoring.
This process can be repeated in the described fashion to saturate layers of
increasing indices. It is important that the new clauses of the higher layers
can never influence (by participating on inferences or reductions) clauses in
the lower, already saturated, layers. Eventually, thanks to point (5) above,
we will encounter a layer we have seen before and then we stop. More pre-
cisely, in a finite number of steps we are bound to obtain a set of labelled
clauses N such that there are integers o ∈ N and p ∈ N+ and

• the o-layer of N is equal to the (o+ p)-layer of N (up to reindexing1),

• the clause set is saturated by LPSup (without Leap), except, possibly,
for Temporal Shift inferences with premise in layer (o+ p),

• the layers with index larger than (o+ p) are empty.

Now we need a final observation to finish the argument. The applicability
of Ordered Resolution, Factoring and Temporal Shift (as well as that of
the reductions of LPSup) is “invariant under the move from one layer to
another”. In other words, exactly the same (up to reindexing) inferences
(and reductions) that have been performed to obtain, e.g., the saturated
layer of index (o + 1), can now be repeated to obtain the saturated layer of
index (o + p + 1). We can therefore stop the saturation process here and
define:

1Meaning the first mentioned set would be identical to the second if we changed the
second label component of all its clauses from o to (o + p).
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Definition 8. Let N be a clause set obtained by layer-by-layer saturation
as described above. We call the numbers o and p the offset and period of
N , respectively. The infinite extension of such N is the only set of labelled
clauses N∗ for which N ⊆ N∗ and such that for every i ∈ N the (o+ i)-layer
of N∗ is equal to the (o+ i mod p)-layer of N (up to reindexing).

The infinite extension of N is completely saturated by LPSup (without
Leap).

Example 5. In our running example, the ∗-layer and 0-layer are already
saturated. The next layers we obtain are

{(∗, 1) || ¬a′, (∗, 1) || ¬b′, (∗, 1) || a, (∗, 1) || ¬b} , (5.1)

{(∗, 2) || a′, (∗, 2) || ¬b′, (∗, 2) || a, (∗, 2) || ¬b} (5.2)

As the 3-layer is then equal to the previous (up to reindexing), layer-by-layer
saturation terminates with offset 2 and period 1.

In layer-by-layer saturation we always give priority to Ordered Resolution
and Factoring inferences, and only when these are no longer applicable in
the current clause set, we perform all the pending Temporal Shift inferences,
and possibly repeat. Similarly, the overall saturation procedure which we
present next combines layer-by-layer saturation phases with an exhaustive
application of the Leap inference:

1. Set N1 to the initial labelled clause set NS of a given PLTL-specification
S.

2. Set N2 to the layer-by-layer saturation on N1.

3. If the clause set N∗2 is contradictory, stop and report UNSAT.

4. Set N3 to be the set N2 enriched by all the possible conclusions of Leap
inference with premises in N∗2 , possibly reduced.

5. If N3 = N2 stop and report SAT, else go back to step 2 resetting
N1 := N3.

Note that if we go to line 2 for the second time, N1 is no longer an initial
labelled clause set. Although we didn’t discuss it previously, it is straightfor-
ward to perform layer-by-layer saturation of any finitely represented clause
set.

On lines 3 and 4 we refer to the infinite extension N∗2 . It actually means
that we operate with the layer-by-layer saturation N2 together with offset o
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and period p. Now N∗2 is bound to be contradictory if and only if N2 contains
an unconditional empty clause or (0, k) || ⊥ is in N2 for every 0 ≤ k < o+ p.
Similarly, a labelled clause (b, j) ||C with j < o2 can be derived by Leap
inference with premises in N∗2 if and only if there is a clause (b, i) ||C in N2

such that o ≤ i < o+ p and p divides i− j.
Finally note that while the values of offset and period associated with N2

may change from one repetition to another, their sum is each time bounded
by the same constant depending only on the size of the signature, namely
the number of different possible layers (up to reindexing). Moreover, thanks
to the fact that we only work with a fixed finite signature, there is also a
bound on the number of non-trivial additions to the individual layers on line
4. These together ensure that the procedure always terminates.

Example 6. In our example, the infinite extension of the layer-by-layer sat-
uration contains the premises {(∗, 1 + i) || a}i∈N of a Leap inference with con-
clusion (∗, 0) || a. This clause together with the already present (∗, 0) || ¬a
gives us the empty clause (∗, 0) || ⊥ by Ordered Resolution, which eventually
terminates the overall procedure, because the empty clause is unconditional
and therefore the overall set becomes contradictory.

2Leap conclusion with j ≥ o is always redundant.
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6 Redundancy, completeness
and model building

The calculus LPSup comes with an abstract notion of redundancy in the spirit
of [2]. Also here one can recognize the idea of “lifting”, which relates the
standard level of PSup to the level of labelled clauses. Recall that a standard
clause C is called redundant with respect to a set of standard clauses N if
there are clauses C1, . . . , Cn ∈ N such that for every i = 1, . . . n, Ci < C,
and C1, . . . , Cn |= C. On the level of labelled clause we define:

Definition 9. A labelled clause (b, k) ||C is redundant with respect to a set
of labelled clauses N , if for any rank (K,L) every standard clause represented
by (b, k) ||C in (K,L) is redundant w.r.t. N(K,L).

A set of labelled clauses N is saturated up to redundancy with respect to
LPSup, if for every inference from N such that its premises are not redundant
w.r.t. N , the conclusion is either redundant w.r.t. N or contained in N .

Note that the reductions of LPSup described in Chapter 4 are instances
of redundancy elimination. This is easy to see for Tautology deletion, and
follows from the semantics of the merge operation on labels for the Subsump-
tion reduction:

Lemma 7. Let (b1, k1) ||C and (b2, k2) ||D be the premises the Subsumption
reduction as described in Sect. 4, i.e., C is a sub-multiset of D and the merge
of labels (b1, k1) and (b2, k2) is defined and equal to (b2, k2). Then (b2, k2) ||D
is redundant w.r.t. {(b1, k1) ||C}.

Proof. Let us fix a rank (K,L). Let D(t) be a standard clause represented
in (K,L) by (b2, k2) ||D, i.e., with t ∈ R(K,L)(b2, k2). Because the merge
of labels (b1, k1) and (b2, k2) is defined and equal to (b2, k2) we obtain from
Lemma 3 that R(K,L)(b2, k2) = R(K,L)(b1, k1) ∩ R(K,L)(b2, k2), in other words
R(K,L)(b2, k2) ⊆ R(K,L)(b1, k1) and therefore t ∈ R(K,L)(b1, k1). Because C is
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a (strict1) sub-multiset of D, we obtain that C(t) <c D(t) and that C(t) |=
D(t).

It is important to note that these are just examples and further reduc-
tions can be developed and used. As long as they fit into the framework
prescribed by Definition 9, they are guaranteed to preserve completeness
and the underlying proof need not be changed.

Our main theorem relates completeness of LPSup to the same property
of the underlying calculus PSup via the notion of redundancy.

Theorem 3 (Completeness of LPSup). Let N be a labelled clause set satu-
rated in a layer-by-layer fashion with offset o and period p and let N∗, the
infinite extension of N , be a non-contradictory set of labelled clause saturated
up to redundancy w.r.t. LPSup. We set K to be the smallest number from N
such that (0, K) || ⊥ is not in N∗ (note that N∗ is non-contradictory), and
further set L to the smallest positive multiple of p that is not smaller than
o. Then the set N∗(K,L) does not contain the (standard) empty clause and is
saturated up to redundancy w.r.t. PSup.

Proof. We first show that the set N∗(K,L) doesn’t contain the empty clause.
Because N∗ is a non-contradictory set, the only empty labelled clauses it
potentially contains are of the form (0, k) || ⊥. Moreover, we know that N∗

does not contain the empty clause (0, K) || ⊥. Assume there is a different
empty clause of the form (0, k) || ⊥ such that R(K,L)(0, k) is non-empty. This,
according to the semantics of labels, implies the equation 0 + k = K + s · L
has a solution for some s ∈ N. As k cannot be equal to K, it is necessarily
greater than o, and therefore (0, k) || ⊥ belongs to the “periodic part” of N∗.
Moreover, L has to divide k−K. This implies (by the choice of L) there had
to be a Leap inference with the conclusion (0, K) || ⊥. But that is impossible
as N∗ is saturated.

We now move to showing that N∗(K,L) is saturated up to redundancy.

Let us take an Ordered Resolution inference of PSup (Ordered Factoring is
similar, only simpler) with premises C∨A and D∨¬A in N∗(K,L) that are non-

redundant w.r.t. N∗(K,L). There has to be labelled clauses (b1, k1) ||C1 ∨ A1

and (b2, k2) ||D2∨¬A2 in N∗ and an integer t ∈ R(K,L)(b1, k1)∩R(K,L)(b2, k2)
such that

• C ∨ A equals (C1 ∨ A1)(t), and

1Our notion of redundancy of labelled clauses in the presented form does not justify
redundancy of “non-strict” subsumption reductions (subsumptions where the standard
parts of the two labelled clauses are the same). A technically more involved definition
could be used for that purpose. We don’t present it here for the sake of simplicity.
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• D ∨ ¬A equals (D2 ∨ ¬A2)(t).2

We look for an Ordered Resolution inference of LPSup to “represent” the
above inference on the level of labelled clauses. It is easy to check that we
don’t need to worry about ordering restrictions, because we assume both
calculi are constrained by the same ordering on the extended signature (as
defined in Sect. 4). If either k1 or k2 equals ∗, or k1 = k2 ∈ N, then the
merge operation on the labels is defined, and so the inference on the labelled
clauses can be performed.

In the case when k1, k2 ∈ N and k1 6= k2, we necessarily have that L
divides k1 − k2, because otherwise R(K,L)(b1, k1) ∩ R(K,L)(b2, k2) would be
empty. We call a labelled clause (b, k) ||C in N∗ periodic if k ∈ N is greater
or equal to the offset of N . If both the potential premises (b1, k1) ||C1∨A1 and
(b2, k2) ||D2 ∨ ¬A2 are periodic, then we can find a different representative
for, say, C ∨ A in the form of (b1, k2) ||C1 ∨ A1 (note that L is a multiple of
p), such that the merge of the two labels (b1, k2) and (b2, k2) is now defined
and the inference can be performed. If one of the premises, without loss of
generality (b1, k1) ||C1 ∨ A1, is periodic, and the other, (b2, k2) ||D2 ∨ ¬A2,
is not, then, again using the fact that L divides k1 − k2, there must have
been a Leap inference with a conclusion (b1, k2) ||C1 ∨A1. Thus, also in this
case, the resolution inference can be performed with the Leap’s conclusion
replacing the periodic premise. Finally, note that it cannot be the case that
both (b1, k1) ||C1 ∨ A1 and (b2, k2) ||D2 ∨ ¬A2 are non-periodic, because in
that case we would have max(k1, k2) < o ≤ L (by definition of L) and it
would not be possible for L to divide k1 − k2.

Now from Lemma 3 we know that the conclusion C ∨ D is represented
in (K,L) by the conclusion (b, k) ||C1 ∨ D2 of the resolution inference of
the above labelled clauses. If the conclusion is present in N∗ we are done.
Otherwise it has to be redundant in N∗ in which case C ∨D is redundant in
N∗(K,L). This concludes the proof.

Recall the overall saturation procedure of the previous chapter. Its input
is a PLTL-specification which is immediately transformed into the initial
labelled clause set. If the procedure reports UNSAT, we know the input is
unsatisfiable, because we derived (using a sound calculus) a contradictory
set of labelled clauses, which rules out any (K,L)-model. If, on the other
hand, the procedure reports SAT, we may apply Theorem 3 together with

2In the case when one of the premises in N∗(K,L) is over two consecutive signatures

Σ(t) ∪ Σ(t+1) and the other premise over “the upper” of these two, i.e., over Σ(t+1), we
rely here on N∗ being saturated (up to redundancy), in particular, by the Temporal Shift
inference.
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completeness of PSup to conclude that the set N∗(K,L) is satisfiable, and,

therefore, the specification we started with has a (K,L)-model. Thus the
overall saturation procedure decides satisfiability of PLTL-specifications.

We close this chapter by commenting on the possibility of using our
method to provide counterexamples to non-valid PLTL formulas. Due to
space restrictions, we cannot describe the method in full detail, but to those
familiar with the model construction for classical logic based on PSup [2], it
should be clear that with Theorem 3 proven, we are practically done.

Given a non-contradictory set of labelled clauses N∗ that is saturated
up to redundancy w.r.t. LPSup, we pick (K,L) as described in Theorem 3
and generate the standard clauses of N∗(K,L) one by one with increasing <.
We apply classical model construction to these clauses to gradually build a
(partial) valuation over Σ∗ =

⋃
i∈N Σ(i), which, as we know, corresponds in

the obvious way to a (K,L)-model (Vi)i∈N. We can stop the generation as
soon as a particular (already completed) valuation repeats (i.e. Vi = Vi−j
for some j ∈ N+) and the goal has already been reached (i.e. i > K). An
ultimately periodic model is then output as a result.
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7 Related work

7.1 Overview

We now compare our calculus to Clausal Temporal Resolution [13]. Older
resolution based approaches to PLTL are [4, 31], but they don’t seem to
be used or developed any further nowadays. Besides resolution there are
approaches to PLTL satisfiability based on tableaux deduction [34, 27], and
on automata theory [26]. These seem to be less related and we don’t discuss
them here further.

It can be shown that operationally there is a close connection between
LPSup and the Clausal Temporal Resolution (CTR) of [13] (see the next
section for the details). From this perspective, our formalism of labelled
clauses can be seen as a new way to derive completeness of CTR that justifies
the use of ordering restrictions and redundancy elimination in a transparent
way. This has not been achieved yet in full by previous work: [18] contains
a proof theoretic argument, but only for the use of ordering restrictions, [21]
sketches the idea how to justify tautology removal and subsumption, but not
the general redundancy notion in the style of [2] that we provide.

Moreover, there is also a correspondence between our layer-by-layer sat-
uration followed by the application of the Leap inference and the BFS-Loop
search of CTR as described in [14, 23]. Apart from being interesting in its
own right, this view sheds new light on explaining BFS-Loop search, as it
gives meaning to the intermediate clauses generated in the process, and we
thus don’t need to take the detour through the DNF representation of [6, 7].
Even here, the idea of labels clearly separates logical content of the clauses
from the meta-logical one (c.f. the ad hoc marker literal of [14]).

Despite these similarities between LPSup and CTR, the calculi are by no
means identical. As discussed before, a temporal model can be extracted in
a straightforward way from a satisfiable set of labelled clauses saturated by
LPSup. This doesn’t hold for CTR, where a more complex approach that
simulates the model construction of [2] only locally needs to be applied [24].
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In particular, because saturation by CTR doesn’t give the model building
procedure any guidance as to where to look for the goal, in each considered
world all the possible orderings on the signature (in the worse case) need to
be tried out in a fair way to make sure a goal world is eventually reached. As
each change of the ordering calls for a subsequent resaturation of the clause
set in question (so that the local model construction still works), it obviously
diminishes the positive effect orderings in general have on reducing the search
space.

Finally note that since we eventually rely on propositional superposition,
we can also take into account the explicit use of partial models to further
guide the search for a proof or saturation. The idea is to build a partial
model based on the ordering on propositional literals. Then it can be shown
that resolution can be restricted to premises where one is false and the other
true in the partial model [1]. This superposition approach on propositional
clauses is closely related to the state of the art CDCL calculus (see, e.g. [35])
for propositional logic. The missing bit is to “lift” this setting to our labelled
clauses. This will be one direction for future research.

7.2 Details

The CTR calculus is defined over LTL-clauses of the Separated Normal Form
(SNF), a modification of which we also adopt (see Sect. 2). CTR [13] distin-
guishes three kinds of LTL-clauses, initial, step, and sometime clauses. While
the correspondence of the first two to our labelled counterparts is obvious
(see Table 7.1), the relation of sometime clauses to our goal clauses needs
further explanation. In CTR the input SNF formula may contain several
sometime clauses of the form

�

(∧
b∈B

kb ⇒ ♦l

)
. (7.1)

LPSup uses the ideas of [5] to obtain a problem with only one eventuality
with no side condition (as if B = ∅ in (7.1)), but, on the other hand, relaxes
the requirement that the eventuality be represented by a single literal. In-
stead, the eventuality is described by the whole set of the goal clauses of the
problem, understood conjunctively:

�♦

 ∧
(∗,0) ||C

C

 . (7.2)
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Table 7.1: Clause alignment between LPSup and CTR (ka, lc, and ld denote
literals; ka stands for the complement of literal ka)

Name CTR LPSup

Initial start⇒ ∨
c∈C lc (0, ∗) || ∨c∈C lc

Step
∧

a∈A ka ⇒©
∨

d∈D ld (∗, ∗) || ∨a∈A ka ∨
∨

d∈D l
′
d

Note that the techniques of [5] allow us to obtain a formulation of a problem
that contains only single unconditional eventuality in a form of a single literal.
That is the “intersection” format directly accessible to both LPSup and CTR.

Having established the correspondence between the clauses we move on
to the inference rules. It is not difficult to see that the two step resolution
rules of CTR as described in [13], are simulated by our resolution inference on
initial and step (labelled) clauses. Similarly, the “upper” half of the following
clause conversion rule

R φ⇒©false

true⇒©¬φ
start⇒ ¬φ

(7.3)

can be matched by our Temporal Shift inference. The other half of the rule,
which turns the step clause with unsatisfiable succedent into an initial clause
is not needed in LPSup, where the assumption is kept instead and allowed
to interact with initial clauses directly.

What remains to be compared is the role played by the goal clauses and
the Leap rule of LPSup on the one hand, and the temporal resolution in-
ference of CTR on the other. As presented in the original paper [13], the
temporal resolution inference combines several step clauses into groups (so
called merged-SNF clauses) and resolves those against one sometime clause.
A nontrivial side condition, which needs to be verified, amounts to prov-
ing that the step clauses involved form a so called loop, meaning that they
together conditionally imply that the eventuality will become false forever.
As a last step, the inference’s conclusion which is not a temporal clause in
general must be translated into SNF after it is computed.

Several methods have been proposed on how to actually implement tem-
poral resolution [6]. Here we focus on breadth first search for the loop as
described in [14]. The idea is to perform the loop search by iteratively apply-
ing step resolution inferences to certain clauses and to organize the individual
iterations by enriching the participating clauses with a special marking lit-
eral (see also [23]). The marking literal, which is numbered by the iteration
index, separates the clauses from each iteration, and allows for their reuse in
subsequent loop searches (for the same eventuality literal). Now, it can be
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seen, that in our case a similar role is played by the label of the form (∗, k) of
clauses associated to the goal, where k should be identified with the iteration
index of the marker. The difference lies, however, in the way clauses with
new index k get created. In LPSup they arise as conclusions of Temporal
Shift inference

I (∗, k) ||C
(∗, k + 1) ||C ′ (7.4)

where the premise is a simple clause, i.e. only over the basic signature Σ.
In CTR the corresponding inference (with the same side condition) in our
notation becomes

I (∗, k) ||C
(∗, k + 1) ||C ′ ∨ L′ (7.5)

where L is the respective eventuality literal. The addition of the extra lit-
eral has interesting semantic consequence which we discuss shortly. Now we
focus on one final difference of the two approaches. When we in LPSup de-
tect repetition in the layers of generated goal clauses, we invoke the Leap
inference, and potentially derive additional goal clauses, or more precisely
labelled clauses with the second label component k 6= ∗. In CTR, a success-
ful repetition check1 concludes the current loop search and the new clauses
collected by an equivalent of Leap get the status of simple step clauses (uni-
versal clauses in the terminology of [23]). This last distinction is also related
to the fact that in CTR the initial clauses do not participate on inferences
with (the equivalent of our) goal clauses, so there is no equivalent of clauses
with label (0, k).

For a semantic comparison, we need to recall the notion of behaviour graph
as described in [5], adapted to our setting. Given a set of labelled clauses N ,
the nodes of the graph are all the propositional valuations over Σ, i.e. worlds,
and there is an edge between two worlds V1 and V2, if [V1, V2] |= C for every
labelled clause (∗, ∗) ||C ∈ N . Moreover, the worlds satisfying all the initial
clauses are marked as initial, and the worlds satisfying all the goal clauses
are marked as goal worlds. An (unconstrained) model for a set of labelled
clauses can be obtained as an infinite path through the behaviour graph that
starts form an initial world and passes through a goal world infinitely often.

If we now look at layer-by-layer saturation on one side and on the loop
search on the other from the semantic perspective we notice the following:2

In LPSup the set of labelled clauses of the form (∗, k) ||C for one particular

1It can be shown that under some reasonable conditions imposed on the saturation
procedure, which in particular regulate how reductions may be used, the period detected
in CTR is always equal to 1.

2Proofs of the following here informally stated observations can be derived from the
completeness of ordered resolution [2].
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k can be thought as representing the subset of nodes of the behaviour graph
that can reach a goal node in exactly k steps. In CTR, on the other hand, the
equivalent of such layer represents the nodes that can reach a goal node in at
most k steps. This difference is the promised consequence of the eventuality
literal being added in (7.5), which, intuitively, in effect “reinserts” the goal
worlds into each newly generated layer. As the sequence of worlds represented
by these layers in CTR grows monotonically with each iteration, there is
a better theoretical bound on the number of iterations before a repetition
occurs than the one that can be established for LPSup3. On the other hand,
as we demonstrate by our experiment, inserting the eventuality literal into the
clauses has negative effect on the performance of CTR in practice, because
it means that typically much more inferences need to be performed before
the computation proceeds from one layer to the next.

3It is size of the set of all possible worlds, i.e. 2|Σ|, that bounds the number of different
layers in CTR, whereas for LPSup our current best bound derives from the number of
possible subsets of all the worlds, which is exponentially more.
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8 Experiments

We implemented a simple prototype of both LPSup and CTR (with BFS
loop-search in the style of [14]), in order to compare the two calculi on non-
trivial examples. In this chapter we report on our experiment. The pro-
totype, written in SWI-Prolog, is available along with the test examples at
[29].

The core of the implementation of our prototype, shared by both calculi, is
a saturation loop driven by Ordered Resolution inferences of labelled clauses,
employing forward and backward subsumption and tautology deletion. The
list of passive clauses is ordered in such a way that saturation of initial and
step clauses is performed before the start of the layer-by-layer saturation
of the goal clauses. The individual layers are being checked for repetition
which, once occurring, may trigger a Leap inference (which corresponds to
Temporal Resolution inference in the case of CTR), or allow us to conclude
satisfiability, if the Leap addition is trivial.

The input format for the procedure accommodates the restrictions im-
posed by both calculi. This, in particular, means that an input specification
may only contain one unconditional eventuality (because of LPSup) given in
the form of a single goal literal (because of CTR). Such normal form can be
achieved by known techniques [5].

There are three places in the implementation where the calculi differ from
each other.

1. CTR doesn’t have (0, k)-clauses. Modified version of the merge oper-
ation on labels blocks for CTR inferences between initial clauses and
the clauses derived from the goal.

2. For CTR we modify the Temporal Shift (Clause Conversion) inference
of (∗, k)-clauses, such that the conclusion is additionally extended by
the (unique) goal literal.
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3. Finally, the conclusion of the Leap inference takes the form of goal1

clauses in the case of LPSup and the form of simple step clauses for
CTR. This is just a matter of assigning different labels.

For the experiment we took two formula families C1
n and C2

n from [19].
Both of them consist of a certain pattern of temporal clauses together with
a set of essentially standard clauses that encode a random k-SAT problem.
Because the tested calculi treat initial and step clauses identically, we decided
to drop the random part and only compare how effectively they deal with
the temporal aspects of the formulas. Thus we obtained the following two
families of temporal formulas:

C1
n ≡ �(¬p1 ∨ ♦p2) ∧�(¬p2 ∨ ♦p3) ∧ · · · ∧�(¬pn ∨ ♦p1),

C2
n ≡ r1 ∧ (¬r1 ∨ q1) ∧ (¬r1 ∨ ¬qn)∧

�(¬rn ∨©r1) ∧�(¬rn−1 ∨©rn) ∧ · · · ∧�(¬r1 ∨©r2)∧
�(¬rn ∨©¬qn) ∧�(¬rn−1 ∨©¬qn) ∧ · · · ∧�(¬r1 ∨©¬qn)∧
�(¬q1 ∨ ♦s2) ∧�(¬s2 ∨ q2 ∨©qn ∨ · · · ∨©q3)∧
...

�(¬qn−1 ∨ ♦sn) ∧�(¬sn ∨ qn)

Note that while C1
n are trivially satisfiable, C2

n is unsatisfiable.
In addition to C1

n and C2
n, we also tested the calculi on formulas from

two families specifically constructed to highlight the respective weaknesses
of LPSup and CTR. They are both based on the idea of putting together
several independent “cycles”, and are both parameterized by lists of integers,
these cycles’ lengths. The cycles, however, play different conceptual roles in
each family, and the resulting problems are in fact very different.

We define the implicit cycles problem I(l1+···+lk) when the sum of the
cycles’ lengths is equal to a power of two, i.e. l1 + · · · + lk = 2n. We then
build it over a signature Σ of size n. The clauses of I(l1+···+lk) are selected
in such way, that the behaviour graph of the problem, which is necessarily a
graph over 2n vertices, consists exactly of k independent (oriented) cycles of
lengths l1, . . . , lk, respectively. Moreover, on each cycle there is exactly one
world which is a goal world. Finally, the set of initial clauses is left empty
and thus every world of the graph is an initial one. The number of clauses

1It can be shown that we can restrict the Leap inferences to the case where the con-
clusion clause C is simple with label (∗, 0). That is what we do in our implementation.
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needed to achieve2 this is polynomially bounded in 2n, the number of vertices
of the graph.

While the implicit cycles are semantic in nature, the explicit cycles prob-
lem E(l1+···+lk) is purely syntactic. For the i-th of the k cycles, there are
variables pi1, . . . , p

i
li

and (∗, ∗)-clauses with standard parts ¬pi1 ∨ (pi2)′,¬pi2 ∨
(pi3)′, . . . ,¬pili∨(pi1)′. Moreover, for each such cycle there is also a (∗, ∗)-clause
¬(pi1)′∨¬(g)′, and finally, there is one goal clause of the form (∗, 0) || g. Thus
the size of the signature for E(l1+···+lk), is 1 + l1 + · · ·+ lk, and the problems
consists of 1 + k + l1 + · · ·+ lk labelled clauses. Note that both the implicit
and explicit cycles problems are satisfiable.

In the presented experiments with the prototype, we chose a variable or-
dering for restricting resolution inferences which gave good results for both
calculi on the tested examples. In particular, we optimized the order of
groups of variables, where one group was formed by all variables coming di-
rectly from the input formula, and several others contained different kinds of
auxiliary variables introduced during the translation of multiple eventualities
into single unconditional one [5].

2Our encoding works as follows. Recall that the vertices of the behaviour graph are in
fact valuations over Σ. For any pair of valuations (V1, V2) which is not intended to be an
edge of the graph, the problem contains the unique clause C (labelled (∗, ∗)) over Σ ∪ Σ′

such that [V1, V2] is the only valuation over the clause’s signature that makes it false. The
encoding of the goal worlds works similarly.
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Table 8 summarizes the results of our experiments. For each problem and
for both calculi we report the number of clauses in the input, the number
of derived3 clauses and literals, and the number of subsumed clauses. For
comparison, we also include in the last two columns clause data obtained
by running the temporal prover TRP++ [17]4, which also implements the
CTR calculus, to provide evidence that our experimental results are not
biased. We used the default mode (no extra options) for running TRP++
and collected the information on the number of generated and subsumed
clauses from the output the prover by default provides. We decided not to
report on running times as our aim here is to compare the calculi rather
than the implementations. The number of generated clauses (literals) should
provide a good measure on the amount of data to be processed by any prover,
which is, moreover, independent on the choice programming language or the
use of particular data structures.

As we can see, LPSup needs to generate consistently less clauses to draw
its conclusion for both C1

n and C2
n. The implicit cycles examples I, which

are the only ones where LPSup needs to generate more clauses than CTR,
are constructed in such a way that the number of non-repeating layers for
LPSup is equal to the least common multiple of the cycle sizes (i.e. 15, and
120 for our two instances, respectively), while the number of non-repeating
layers for CTR depends on the size of the largest cycle only (the detected
offsets for CTR are 6 and 9, respectively).

Although in explicit cycles examples E , the period detected by LPSup
again grows as the least common multiple of the cycle sizes, the clauses
“belonging” to the individual cycles don’t interfere with each other, as the
reader can easily see from manual inspection (or see Sect. 8.1). On the
other hand, CTR suffers here from the same bound on the number of layers
to be processed (here manifested as a high value of offset). Moreover, the
intermediate layers are formed by clauses mixing literals from different cycles,
and the whole layer-by-layer saturation eventually converges only due to
factoring and subsumption.

LPSup seems to come considerably better off out of our experiments.
Although the inferior performance of CTR on C1

n and C2
n could possibly be

stemming from the translation to single eventuality formulation of the prob-
lems (while efficient heuristics may perhaps be devised to treat the individual
eventualities separately), the other two families I and E contain single even-
tuality from the outset. Only further tests on examples from practice may

3This covers all the resolvents, plus the clauses derived by non-trivial Leap inference.
(Leap conclusions subsumed by other clauses are not generated at all.)

4We used version 2.1 available at http://www.csc.liv.ac.uk/~konev/software/

trp++/.
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reveal which of the two phenomena exemplified by families I and E , respec-
tively, have higher impact on practical utility.

8.1 Example run of LPSup and CTR on E(2+3)

Here we compare the behaviour of our calculus LPSup to that of CTR on the
example E(2+3) as described in the previous section. To make the example
easier to read we use the symbols a, b, and c, d, e, respectively, for the vari-
ables of the two cycles; the variable g plays the role of the goal (the unique
eventuality literal). The whole problem thus consists of the following labelled
clauses:

(∗, ∗) || ¬a ∨ b′, (∗, ∗) || ¬c ∨ d′, (∗, 0) || g,
(∗, ∗) || ¬b ∨ a′, (∗, ∗) || ¬d ∨ e′,

(∗, ∗) || ¬e ∨ c′,
(∗, ∗) || ¬a′ ∨ ¬g′, (∗, ∗) || ¬c′ ∨ ¬g′.

If we assume that g is the largest symbol in the ordering used, no reso-
lution inference among the step clauses is possible. Table 8.2 shows clauses
derived by the respective calculi during layer-by-layer saturation process.
Not all the clauses are displayed. We only show the simple (∗, k)-clauses,
i.e. exactly those that will become premises of the Temporal Shift inference,
the conclusion of which will “enter” the next layer. In the case of CTR this
inference will not only shift the literals’ symbols in time, but also enrich the
clause by the eventuality literal. What is not shown here are the intermediate
(∗, k)-clauses over the mixed signature Σ ∪ Σ′.

For each layer, there are two columns displayed in the case of CTR.
The first column shows the simple (∗, k)-clauses in their “raw” form, before
factoring is applied, the literals are reordered (to make the process easier to
follow here), and before some of them are removed due to subsumption. The
resulting reduced clause set is displayed in the other column.

In layer 7 repetition occurs for both calculi. We see that in the case of
LPSup, layer 7 is equal to layer 1, for CTR it is equal to layer 6. It should be
obvious that in the case of CTR, there is much more work to be done, before
the problem can be announced satisfiable. We believe that the phenomenon
exemplified here by E(2+3) is the reason why LPSup seems to more efficient
that CTR in practice.
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Table 8.2: Simple (∗, k)-clauses generated by LPSup and CTR on E(2+3).
Layer index k LPSup CTR generated CTR reduced

0 g g g

1
¬b
¬e

¬b
¬e

¬b
¬e

2
¬a
¬d

¬a ∨ ¬b
¬a ∨ ¬e
¬d ∨ ¬b
¬d ∨ ¬e

¬a ∨ ¬b
¬a ∨ ¬e
¬b ∨ ¬d
¬d ∨ ¬e

3
¬b
¬c

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬b ∨ ¬d ∨ ¬b
¬b ∨ ¬d ∨ ¬e
¬a ∨ ¬c ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬c ∨ ¬d ∨ ¬b
¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬b ∨ ¬d
¬a ∨ ¬c ∨ ¬e
¬c ∨ ¬d ∨ ¬e

4
¬a
¬e

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬a ∨ ¬c ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬b ∨ ¬e ∨ ¬d ∨ b
¬b ∨ ¬e ∨ ¬d ∨ e
¬e ∨ ¬c ∨ ¬d ∨ b
¬e ∨ ¬c ∨ ¬d ∨ e

¬a ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬b ∨ ¬d ∨ ¬e
¬c ∨ ¬d ∨ ¬e

5
¬b
¬d

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬b ∨ ¬e ∨ ¬d ∨ ¬b
¬b ∨ ¬e ∨ ¬d ∨ ¬e
¬a ∨ ¬c ∨ ¬d ∨ ¬b
¬a ∨ ¬c ∨ ¬d ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬b ∨ ¬d ∨ ¬e
¬c ∨ ¬d ∨ ¬e

6
¬a
¬c

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬a ∨ ¬c ∨ ¬d ∨ ¬b
¬a ∨ ¬c ∨ ¬d ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬c ∨ ¬d ∨ ¬e

7
¬b
¬e

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬c ∨ ¬d ∨ ¬e
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9 Conclusion

We applied the ideas of labelled superposition to develop a new decision pro-
cedure for propositional linear temporal logic. On the presentation level, it
replaces the complex temporal resolution rule from the previously proposed
calculus by a simple check for repetition in the derived clause set and a subse-
quent inference. Its unique treatment of goal clauses enables straightforward
partial model building of satisfiable clause sets which could potentially be
used to further restrict inferences. Moreover, the experimental comparison
to previous work suggests that the new calculus typically explores smaller
search spaces to derive its conclusion. Development of an optimized imple-
mentation, to be tested on a set of representative benchmarks, will be part
of our future work.
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