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Abstract

Halls of Fame are fascinating constructs. They represent the elite of an often
very large amount of entities—persons, companies, products, countries etc.
Beyond their practical use as static rankings, changes to them are particularly
interesting—for decision making processes, as input to common media or
novel narrative science applications, or simply consumed by users. In this
work, we aim at detecting events that can be characterized by changes to a
Hall of Fame ranking in an automated way. We describe how the schema and
data of a database can be used to generate Halls of Fame. In this database
scenario, by Hall of Fame we refer to distinguished tuples; entities, whose
characteristics set them apart from the majority. We define every Hall of
Fame as one specific instance of an SQL query, such that a change in its
result is considered a noteworthy event. Identified changes (i.e., events) are
ranked using lexicographic tradeoffs over event and query properties and
presented to users or fed in higher-level applications. We have implemented
a full-fledged prototype system that uses either database triggers or a Java
based middleware for event identification. We report on an experimental
evaluation using a real-world dataset of basketball statistics.
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1 Introduction

The concept of rankings is ubiquitous; it exists in nearly all domains. Es-
sentially, rankings allow focusing on a small subset of an exhaustively full
list—usually a few top or bottom entries are of interest. Such small subsets
represent the essence of the available data, worthwhile to look into. We refer
to the top-k portion of such rankings as Halls of Fame—or lists or charts—and
specifically address rankings of real-world entities, such as persons, compa-
nies, cities, or products. The common ground of such Halls of Fame is that
they rank a certain subset of all entities (e.g., companies in Europe) with
respect to a numeric attribute, for instance, by revenue in case of companies.

Changes to a Hall of Fame are often picked up immediately by the
media—ideally broadcast right after the change occurred during a live trans-
mission, e.g., on February 20th, 2012: “Today, Dallas Mavericks’s Dirk Now-
itzki entered the top 20 of the NBA all-time scoring list.” The 23,335 points
he achieved back then was one more than Robert Parish scored in his ca-
reer, who held rank 20 before Nowitzki topped him. A single additional point
scored made him enter the top-20 all-time list. Granted, this very event is
easily predictable upfront, at least for an NBA fan and supporter of Nowitzki
and his team. But the point is that there is a multitude of such situations,
in all kind of domains.

A salient showcase for the importance of computing and monitoring rank-
ings is products: consumers are interested in rankings on the most effec-
tive flue vaccine, ranked by time to take effect, price, or number of ad-
verse effects—likewise the entire pharmaceutical industry is interested, too.
Changes to such rankings are particularly of interest: companies are inter-
ested in getting live feedback on the impact of their commercial campaigns
by knowing how the latest products compete with the ones presented by com-
petitors. This goes far beyond recent approaches on trend detection in Twit-
ter that mainly look at changes to plain #hashtag popularities [1, 2]. A key
challenge is to update such entity rankings automatically—like Bloomberg is
doing with its Billionaires Index. This ranking—Figure 1.1 shows a subset—
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Figure 1.1: Bloomberg’s Billionaire Index, updated automatically, on a daily
basis.

reports on a daily basis on the top-40 billionaires in the world. The update
is done in an automated fashion; this is possible as Bloomberg knows how
the wealth of the top billionaires is composed and affected by the stock mar-
ket, current economic trends, etc. Having access to these individual numbers
allows Bloomberg to update the Billionaires index.

Such a scenario is given as an illustrative example in Figure 1.2. The ta-
ble person contains information like name, age, country of individuals, while
shareholder describes the number of company stocks the person currently
holds. The stockmarket relation consists of attributes that describe the cur-
rent stock value of a company. Then, a Hall of Fame query that computes
the top 10 richest people according to their stock market shares is given as

SELECT p.p name, SUM(s.s shares * m.m value)
FROM person p JOIN shareholder s ON
p.p personid=s.s personid JOIN market m
ON m.m companyid=s.s companyid
GROUP BY p.p name
ORDER BY SUM(s.s shares * m.m value) DESC
LIMIT 10

This Hall of Fame ranking can be made more specific, for instance, through
tailoring it to the country USA by adding the constraint country=’USA’ to
the query. Additionally, or alternatively the ranking might use only technol-
ogy companies for the wealth computation, maybe to investigate how exposed
people are to fluctuations of the technology sector.
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Company
c id c name c countryid
0 SAP 0
1 BMW 0
2 Mercedes 0
3 Microsoft 1
4 Google 1
5 Facebook 1
6 Fiat 2
7 Aegean Airlines 3
8 Superfast Ferries 3
. . . . . . . . .

Person
p id p name p countryid
0 Bill Gates 1
1 Amancio O. Gaona 5
2 Ingvar Kamprad 4
3 Warren E. Buffet 1
. . . . . . . . .

Shareholder
s personid s companyid s amount
0 3 400
0 5 50
1 8 40
. . . . . . . . .

StockMarket
s companyid s value
0 15
1 11
2 16
3 115
4 255
5 95
. . . . . .

Country
co countryid co name
0 Germany
1 USA
2 Italy
3 Greece
4 Sweden
5 Serbia
. . . . . .

E-attributes: c name, p name, co name

C-attributes: c name, co name

N -attributes: s value

Figure 1.2: Illustrative Schema and Data Instances for the “Bloomberg Bil-
lionaire Index” example.
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This illustrative example should highlight the core concepts of an auto-
matically updatable entity ranking: data can be spread across tables, entities
are ranked based on (aggregates of) numeric attributes, and the focus of the
Hall of Fame is confined by constraints on attributes that reflect categories
(such as country).

In this work, we show how to generate such queries based on the schema
and data of a database, how to monitor changes to their results in the pres-
ence of database updates, and how to rank observed events in a way that
appeals to users. To the best of our knowledge, this problem has not been
addressed before.

1.1 Contributions and Outline

In this work, we make the following contributions:

• we define the concept of Halls of Fame of a database.

• we propose an intuitive framework for the generation of Halls of Fame,
using combinations of categorical attributes, numerical attributes, and
attributes that describe entities.

• we develop a scoring model to rank identified changes (i.e., events) in
a meaningful way, using the static properties of a Hall of Fame, as well
as dynamic aspects describing the change.

• we describe implementation details of two event detection approaches—
based on database triggers and a Java middleware.

• we report on the results of a performance study showing the effective-
ness and applicability of our approach.

This paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 introduces the data model and gives the problem statement. Section 4
presents our framework to generate queries, each describing a Hall of Fame.
Section 5 presents how the different facets covered by a Hall of Fame query
can be described qualitatively and how these scores can be used for a final
event ranking. Section 6 discusses techniques to detect changes inside the Hall
of Fame rankings. Section 7 presents our experimental evaluation, followed
by the conclusion in Section 8.
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2 Related Work

The work we present in this paper touches various research directions. The
part of the paper introducing the concept of Hall of Fame rankings and how
to generate them is mainly related to database mining. Once Hall of Fame
rankings are determined, we deal with the problem of detecting changes to
them, which is related to the problem of (top-K) view maintenance. The
concept of detecting Hall of Fame events is related to general framework for
event detection.

Research in the area of database mining is usually concerned with finding
high support patterns (rules) in a given database [3, 4, 5, 6]. These patterns
are often represented as frequent itemsets, association rules, causal rules,
or mutual dependencies. Finding patterns (rules) in a database that do not
have high support but are rather peculiar is addressed in [7], where the
authors focus on finding peculiar data records based on the distance of their
attributes from the majority of data items. Pattern mining in this case is
done on previously retrieved peculiar data. Similar work has been done for
graph data [8], where abnormal nodes are identified with their explanation
being proposed automatically. Approaches [9, 10] extend this idea of pattern
mining to data spread over multiple databases.

In event detection tasks, the goal is to detect noteworthy changes observed
in dynamic data—for instance for early epidemic identification [11, 12] or top-
ics detection in social network streams [2, 1]. Mining social network streams
(or RSS feeds over blogs) could potentially be used to feed our underlying
database with updates, in case of topics that are discussed there, such as
soccer games, etc.

Exploring aggregated data based on different categorical constraints is the
basic idea behind the data cube [13] technique for online analytical processing
(OLAP) [14]. In the process of generating Hall of Fame queries, such (aggres-
sive) pre-aggregations could be beneficial, but are deemed a large overhead
in the maintenance task against database updates [14]. We materialize only
the top-K results of suitable queries and use mechanisms to select a small
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subset of them as candidates to be updated.
Maintaining a set of Hall of Fame rankings over updates received to the

underlying database is in its essence a task of matching updates against a set
of registered queries. That is, identifying those materialized views (derived
relations) in a database that are affected by an update [15]. Incrementally
maintaining views that are affected by updates is considered, for instance, in
[16]. Maintaining special case of views, namely top-K views, is addressed in
[17, 18] with the goal to render top-K views self-maintainable, where updates
are assumed to contain all necessary information with respect to the specific
view.

The general concept behind continuously identifying events is also related
to publish/subscribe approaches [19] where published documents are matched
against user defined subscriptions, and has lately also been considered in top-
K query processing over data streams [20, 21, 22].

Apart from the general concept of matching queries and documents, the
work on processing top-K queries over data streams [20, 21, 22] is funda-
mentally different from our problem of detecting events in Halls of Fame.
In these works, the goal is to match arriving full-fledged documents against
a set of user defined queries, dealing with adaptations of top-K aggregation
algorithms [23] and partially consider skylines [24] for result maintenance,
as objects (mainly unstructured text documents) are considered of limited
lifetime.

In this work, we use database triggers (cf., e.g., [25]) as one way to imple-
ment the required event detection functionality, directly inside a Postgresql
database.

When the schema of the database contains multiple tables without foreign
key relations specified, approaches for attribute detection, such as the recent
approach by Zhang et al. in [26], can be used to identify columns containing
the same or similar attribute data—to find columns that can be used in the
process of assembling Hall of Fame criteria.
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3 Model and Problem
Statement

We consider a set R of relations Ri with schema sch(Ri) = {Ai1 , Ai2 , ...}
where the attributes Aij contain entities, categories, and numerical values.
We assume that an expert user is annotating the schema (Figure 1.2) to
classify the attributes according to categories we define in the following. This
is a reasonable assumption as it is a one-time process and also assumed to
be a rather trivial task (for a person familiar with the database).

Definition 1 Entity Attributes (E-attributes): An attribute Aij ∈ sch(Ri)
is said to be an entity attribute if the attribute instances represent real-world
entities or concepts, such as persons, cities, or companies.

Definition 2 Categorical Attribute (C-attribute): It is an attribute
Aij ∈ sch(Ri) the values of which are used to restrict the selected entities
to a subset that has some specific property. For instance, in the example
shown in Figure 1.1, country and company are marked to be a C-attribute.

Definition 3 Numerical Attribute (N -attribute): An attribute is called
an N -attribute if it can be used to compare entities based on their perfor-
mance, that is, to rank entities and determine the outstanding (top) portion
of them.

While N -attributes are used as criteria to judge whether an entity can
be a member of the Hall of Fame or not, C-attributes restrict the focus of
the decision to a specific group of entities.

Note that the sets of E-attributes and C-attributes do not have to be
disjoint. On the contrary N -attributes usually comprise a separate set of
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attributes as by nature they are inappropriate either as E-attributes or as
C-attributes.

Definition 4 Hall of Fame: A ranked list of the best performing entities
in a certain group is called Hall of Fame. It is defined by one E-attribute,
restricted to a certain group by a set of C-attributes, and ranked according
to one N -attribute. A set of relations R can have many different Halls of
Fame, depending on the attributes of the relations.

Definition 5 Event: An event is a change in a Hall of Fame caused by up-
dates to the underlying database. An event has a number of characteristics.
Some of them are static and depend on the query structure and others are
dynamic and, thus, different in each update.

In this work we use the notion of Hall of Fame and Hall of Fame ranking
interchangeably. We will see below that a Hall of Fame is generated by a
query, hence, we sometimes also say Hall of Fame query to explicitly refer to
its SQL/query character.

3.1 Problem Statement

Given a set of relations R = {R1, R2, ...Rn} with user-defined annotations
describing E-attributes, C-attributes, and N -attributes the task is to:

1. generate queries that reflect Hall of Fame rankings

2. maintain the results of these queries against changes to the underlying
database

3. rank identified changes (i.e., events) according to a model that reflects
user-perceived interest

Note that generating Hall of Fame rankings involves building joins to con-
nect E-attributes, N -attributes, and C-attributes across different relations.
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4 Framework

The notion of a Hall of Fame naturally implies that only few entities are
members of it—the top ones. This notion is directly reflected in the concept
of top-K queries that restrict the query result to the best/top K results
according to a given ranking criterion. In this work, we represent each Hall
of Fame with a SQL style top-K query.

As updates are performed, Hall of Fame rankings change—entities enter
or leave the Hall of Fame or just change ranking positions inside the top-
K. Each identified change is considered for a certain amount of time—not
only once. This time interval is application-dependent and would adhere to
native time ranges of the scenario, like a day for stock markets or entire
seasons/tournaments in sports. The idea here is to allow small (consecu-
tive) rank improvements to be considered together, in this time interval; not
to lose tiny improvements that essentially constitute a grand improvement.
Identified changes are ranked and reported, as described in Section 5.

4.1 Hall of Fame Query Structure

Figure 4.1 shows the generic SQL query template we are using in this work.
In the FROM clause of the query, the dataTable refers to one or multiple
tables—connected through joins—that determine the schema and data avail-
able to this Hall of Fame. The predicate is a selection of a subset of data
items corresponding to a certain aspect, and ranking determines the order-
ing (i.e., ascending or descending). By using the LIMIT clause (also called
“fetch first”), the number of query results is restricted to at most K tuples,
which constitutes the size of the Hall of Fame ranking.

Predicate
A predicate used in the WHERE clause of a Hall of Fame query is a com-
bination of C-attribute bindings, constant comparisons, and inter-
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SELECT E-attribute, aggregate(N -attribute)
FROM dataTable
WHERE predicate
GROUP BY E-attribute
ORDER BY aggregate(N -attribute) ranking
LIMIT K

Figure 4.1: The Hall of Fame Query Template

attribute constraints: For instance, age > 21 is a comparison with a
constant, assists ≤ steals is an inter-attribute constraint, and the constraint
country = ’France’ or city=’New York’ is a C-attribute binding. In the rest
of the paper, when no distinction is needed, we simply call them constraints.

The C-attribute bindings are generated using the actual data inside the
relation. If there are two or more C-attributes in the predicate, we use all
possible combinations of bindings —not blindly all combinations (i.e., the
Cartesian product). For instance, consider the case of country and city that
are both categorical attributes; we use the valid pairs of countries and cities
that are materialized in the data, avoiding upfront bindings of the form coun-
try=’Germany’ and city=’Chicago’ that would lead to an empty query. While
these C-attribute bindings are generated automatically, constant comparisons
and inter-attribute constraints are specified by the users, while annotating
the schema.

We limit the maximum number of constraints that can be used in a Hall
of Fame predicate to a predefined threshold cNum—say four or five. This
causes hardly any limitations in practice as a change to a Hall of Fame
that uses many constraint conditions is very specific and in general hard to
comprehend/appreciate for users.

Figure 4.2 contains a BNF (Backus-Naur Form) -style description of the
possibilities to compose predicates to be used in Hall of Fame queries.

This means, we consider only predicates consisting of conjunctions of
atomic predicates. While for the C-attribute bindings we use only equal to
(=), for constant and inter-attribute comparisons we allow more comparison
operators.

The above limitations on the complexity of Hall of Fame queries are
currently inevitable to avoid an intractable number of generated queries that
also need to be maintained.

Ranking Entities
While the predicate confines a Hall of Fame to a specific subset of all entities,
the order among entities is determined by numeric attributes. When expert
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<comp> ::= > | < | = | 6= | ≤ | ≥
<C-attribute-bindings>::= c ∈ C-attributes = <const>
<const>::= “data that occurs in the corresponding column”
<inter-att-comparison>::= c1 ∈ sch(Ri) <comp> c2 ∈ sch(Rj)
<anyconst>::= “any constant with suitable type”
<const-comparison>::= c ∈ C-attributes <comp> <anyconst>
<predicate> ::= <C-attribute-binding> | <const-comparison>

| <inter-att-comparison>
| <predicate> ∧ <predicate> | true

Figure 4.2: BNF-style description of the aspect group constraints allowed in
this work. Most importantly, we allow only conjunctions of predicates and
only the equal (=) operator for attribute bindings.

users annotate the database schema, they do not only point to numeric at-
tributes but also define ranking criteria; in a per-column manner irrespective
of any later use in a specific Hall of Fame query. We show an example of
such annotations in Table 7.1 (Section 7), where we introduce the evaluation
dataset. The given annotations specify the columns that represent numeric
attributes (of interest), the aggregation function, and the ranking order (i.e.,
ascending/descending or both).

4.2 Query Generation

We create one SQL query per Hall of Fame following the structure in Fig-
ure 4.1. Considering all different possibilities for the E-attributes, C-attributes,
and ranking criteria quickly results in a large number of combinations. In case
the attributes in the query are from different tables, we enumerate join com-
binations that are required to connect tables that hold attributes needed
to build Halls of Fame. A query is created for each join, E-attributes, C-
attributes, and ranking criteria combination if none of the following two
limitation for Hall of Fame queries are violated: (i) As mentioned previously,
the number of C-attributes that can be combined in a Hall of Fame predicate
can be at most cNum. (ii) Additionally, a Hall of Fame query cannot have
more that jNum joins.

In this paper, all syntactically valid (i.e., joinable) and required join com-
binations are used. However, in case of a large number of tables, this set of
join combinations could be controlled by an expert user. This would be a
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function get combinations()
combinations.add(empty set)
for each constraint
| for each c in combinations
| | c new = c.copy.add(c attr)
| | if (c new.size < cNum and joinable(c new)
| | | and join size(c new) < jNum)
| | | combinations.add(c new)
| | end
| end
end
return combinations

end

Alg. 1: Create C-attributes Combinations to be used in Hall of Fame query
predicates.

one-time process executed at startup and is not the scope of this paper.
We start the query generation by creating all possible constraint combi-

nations, see Algorithm 1 for details. A constraints combination is possible if
it is a conjunction of at most three constraints which are joined with each
other with at most jNum joins. For each such combination we query all dis-
tinct values. These values are used to create the attribute bindings of a Hall
of Fame predicate. These predicates are then divided in groups according to
the number of constraints they use. We start using the group with the least
constraints and continue to those with more constraints.

For each constraints combination we check each E-attribute. If the C-
attribute combination and the E-attribute can be combined using no more
than jNum joins then we check all predicates that use this C-attributes
combination. For each predicate, we check whether the Hall of Fame that is
produced has at least K results. Only in this case we create the Hall of Fame
query by adding now a ranking criterion. Again, the Hall of Fame query is
created only if the addition of the ranking criterion does not result in the
need of more than jNum joins. A pseudocode of this procedure is shown in
Algorithm 2.

As the number of possible Hall of Fame queries is big, the above procedure
ensures an early pruning of the possible combinations. For example, by query-
ing the database for all distinct values that satisfy each constraints combina-
tion we avoid creating unnecessary queries, which would anyway be discarded
later as empty queries. Further, we create predicates starting from those that
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contain zero or one constraint and consecutively enlarge such predicates by
adding more constraints. This incremental process allows avoiding combina-
tions of E-attributes and constraints that produce Hall of Fame queries with
too few results. This is easily doable since we allow only predicates that con-
sist of conjunctions of atomic predicates: if a predicate A is not satisfiable,
so is the predicate that contains A.
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pruned = empty set
combinations = get combinations()

function prune away(e attr, comb, rank = ’any’)
for each c in combinations
| if comb.is subset of(c)
| pruned.add(e attr, comb, rank)
| end
end

end

function create queries()
queries = empty set
for each e attr
| for each comb in combinations
| | if pruned.contains(e attr, comb) break
| | if join size(e attr, comb) > jNum
| | | prune away(e attr, comb)
| | | break
| | end
| | values = select distinct(e attr, comb)
| | for each inst in values
| | | results = exec query(e attr, comb, inst)
| | | if results.size < K break
| | | for each rank in ranking criterion
| | | | if pruned.contains(e attr, comb, rank) break
| | | | if join size(e attr, comb, rank) > jNum
| | | | | prune away(e attr, comb, rank)
| | | | | break
| | | | end
| | | | query = new query(e attr, comb, rank, inst)
| | | | queries.add(query)
| | | end
| | end
| end
end
return queries

end

Alg. 2: Create Hall of Fame Queries
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5 Event Ranking

Detected changes to Hall of Fame rankings can be processed through higher-
level applications, e.g., by narrative science approaches that create full-fledged
newspaper articles or can be directly consumed by users without such pre-
processing. When multiple events co-occur, a ranking schema is needed to
order events in a way that reflects a user perceived notion of interestingness.
This situation can occur due to large number of Hall of Fame queries or fre-
quent updates, or when reflecting changes after a longer time period—such
as after a completed season in soccer.

The ranking criterion to be used has to consider the specific characteristics
of the query (e.g., its selectivity) and the properties of the change itself (e.g.,
its magnitude).

To combine several ingredients, we opt for using lexicographic trade-
offs [27]; they provide an elegant way to reconcile scores which per se can
not be easily aggregated. Lexicographic orders with tradeoffs put emphasis
on some aspects (scores) of the entities while using less important aspects to
break the ties of the more important ones. This feature is important as we
want to emphasize the competition implied by the selectivity of the query fol-
lowed by the dynamic properties of the event, and finally the characteristics
of the constraints used.

Plain lexicographical ordering is a very common technique known from
(printed) dictionaries or encyclopedia: Two strings are compared character-
by-character, usually from left to right. The first position at which the char-
acters differ decides the order of the two strings. This procedure can be
generalized to arrays (strings) of numerical values instead of characters.

However, when applied to numerical values, especially non-integer do-
mains, ties are highly unlikely to occur. In this case, the first position im-
poses the order of items. To circumvent this, lexicographic tradeoffs introduce
variations of the comparison at the individual positions. Given two values v
and u, one could define v <lt u to be true iff v is not only smaller than u
but “considerably smaller”, and the same for v >lt u iff v is “considerably
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(Ranking before Update)

pos. p name sum(m value)

1. William Henry Gates III 210
2. Warren E. Buffet 210
3. Amancio Ortega Gaona 204

(Update) UPDATE StockMarket
SET s value=s value+10
WHERE s companyid=8

(Altered Ranking)

pos. p name sum(m value)
1. Amancio Ortega Gaona 214 ↗ +2
2. William Henry Gates III 210 ↘ −1
3. Warren E. Buffet 210 ↘ −1

Figure 5.1: Illustration of an Update causing a Hall of Fame event.

larger” . Consider for example the following comparison function v <lt u only
if 2 ∗ v ≤ u and v >lt u if v > 2 ∗ u. Then (7, 3, 6) is larger than (3, 8, 4),
since by comparing the values in the first position we have 7 > 2 ∗ 3. On
the other hand, (7, 2, 6) is smaller than (5, 6, 2), since for the values in the
second position we have 2 ∗ 2 < 6 (the values in the first position report the
two sequences to be equal). Hence, from left to right, the first “not-equal”
value decides the ordering of the sequence.

We first introduce in details the individual ingredients of our ranking
schema and then show how to combine them.

5.1 Dynamic Characteristics

Hall of Fame events are characterized by a distortion of its entity ranking.
Figure 5.1 shows such an event for Amancio Ortega Gaona who moved up
from position 3 to position 1 in our toy example of a billionaires index. Every
time an entity improves from rank r to rank r′ (i.e., r > r′) the maintenance
component forwards this information to the ranking framework. Figure 5.2
illustrates the available information for two entities, e1, and e2, with respect
to one specific Hall of Fame. We see pairs of ranks that indicate the changes
(only decreasing ranks).

As mentioned in Section 4, this bookkeeping is done only for a limited
amount of time and takes care that individual rank improvements should be
considered together. For instance, at the end of a season, rank improvements
over the entire season should be considered, not only the last improvement
(which might be negligible itself).
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entity e1:

(10, 9) (9, 8) (8, 7) (6, 5)

entity e2:

(100, 80) (80, 75) (84, 80) (80, 70) (70, 66) (66, 65)

Figure 5.2: Information at hand for computing the dynamic score component

To compute a score describing the quality of the jump (from rank r to
rank r′), for each entity, the most recent time point (i.e., now) of each such
chain of pairs is considered. The individual scores for each pair are summed
up to the point the sequence would continue with a rank that is lower than
the currently highest rank. In our example, illustrated in Figure 5.2, for the
entity e2 we consider the improvement from rank 84 to 65, and not from 100
to 65. The earlier jump from 100 to 75 had the chance of being reported at
an earlier time point.

For each individual improvement from rank r to rank r′, the size of the
improvement (i.e., r − r′) is considered to resemble the importance of the
improvement. Pairs of the form (r − r′), for the same entity and Hall of
Fame query, are then aggregated: instead of purely summing up these pairs,
the impact of improvements at lower ranks is decreased. This resembles the
concept of Discounted Cumulative Gain (DCG) [28] used in information re-
trieval to model the user perceived information quality of a ranking of quality
assessments.

rs({(ri, r′i)|i ∈ IN}) :=
∑
r′i≤b

(ri − r′i) +
∑
r′i>b

(ri − r′i)
logb(r′i)

This score gives weight 1 to all rank improvements above rank b, and
punishes lower ranks with a weight of 1/logb(.)

This dynamic score results in values between 1/logb(K) (for the smallest
noticeable rank improvement from rank K + 1 to rank K) and K (for the
biggest noticeable improvement from rank K + 1 to rank 1). We use these
two values with min-max normalization to normalize the final dynamic score
values to [0, 1] range.

5.2 Static Characteristics

Consider the following query that describes the top-20 male players in the
North American Basketball Association (NBA) at the age of 24, ranked ac-
cording to the total number of points scored.
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SELECT name, SUM(points)
FROM players
WHERE gender=‘male’ AND league=‘NBA’ AND age=24
GROUP BY name
ORDER BY sum(points) DESC
LIMIT 20

The aspect group constraint selects a subset of the entire table players
using constraints on the attributes team, gender and age. There might be
also other queries that use constraints on nationality or height as selection
criteria. In order to rank different queries, the ability of the aspect group
constraint to create useful groups is taken into consideration. This is done
by computing the information entropy [29].

Complementary to the entropy of the aspect group, the selectivity of the
aspect group constraint is the second ingredient of the static score of a Hall
of Fame query and is simply defined as the selectivity of the where clause of
the Hall of Fame generating query.

5.2.1 Entropy

Each Hall of Fame predicate consists of a set of attributes used in C-attributes
bindings (e.g., team=‘Phoenix’). All these attributes restrict the focus of
the query to a certain subset of the database tuples. We now assess how
informative the groupings, created from the combination of attributes in the
where clause, are.

To achieve this, the table is projected to the columns that are used in
the Hall of Fame predicate. For instance, in the case of a query with where
clause “team=’Phoenix’ AND year=1995 AND league=’NBA’ ”, the data is
projected to the columns team, year, and league. We calculate the informa-
tiveness of the grouping by calculating the entropy [30] of the projected data.
We use entropy in a similar way used in the data mining component of MS
SQL Server 2008 R2 [31] to find meaningful categorical attributes.

This is done as follows: Suppose there is a table T which has the attributes
attr1, attr2, . . . , attrn. We inspect all possible instantiations, Ii, of the set
(attr1, attr2, . . . , attrn) using the data values found in the table. For each
instantiation Ii we count the number of tuples that satisfy it and then divide
with the total number of tuples in the table T . This is the probability of an
instantiation Ii. We then compute the entropy of the table using Shannon
Entropy ([29]).

For example, assume we have the following projection
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team year league

Phoenix 2010 NBA
Boston 2011 NBA
Phoenix 2010 NBA
San Antonio Spurs 1972 ABA
Phoenix 2010 NBA

The different instantiations created from the above projection are:

I1 = (Phoenix, 2010, NBA)
I2 = (Boston, 2011, NBA)
I3 = (San Antonio Spurs, 1972, ABA)

We can now compute the probabilities for these instantiations as

P (I1) = 3/5
P (I2) = 1/5
P (I3) = 1/5

allowing us to calculate the final entropy.

5.2.2 Selectivity

The entropy of the Hall of Fame predicate is a general measure that applies
to all queries having the same combination of attributes in the where clause.

However, we would like to assess not only the general quality of the pred-
icate but also the quality of the specific instantiation that is used in a query.

The idea is, the smaller the fraction of the table that qualifies for a query
result is, the less competitive the ranking is and, thus, the lower the score of
such a query is. Or in other words, the higher the selectivity of the query the
more interesting it is. This selectivity of the query can be easily computed
as the selectivity of the “where clause”, i.e., the selectivity of the predicate.

5.3 Putting it All Together

The above reasoning created three different components to consider for an
overall ranking: selectivity, dynamic score, and entropy.

As mentioned, we use lexicographic tradeoffs [27], which sort sequences
of values based on primary, secondary, and so on, criteria, that correspond
to entries in the sequence (say from left to right). In our case, the selectivity
of the underlying query, representing the competition between the entities, is
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1/n

largersmaller equal

Figure 5.3: Ranges in Lexicographic Tradeoffs

the decisive factor and is used as primary criteria, followed by the dynamic
score and the entropy in the end.

Taking the plain values for these three individual measures will not lead
to ties at the specific sequence positions and, hence, only the first criterion
will be used to sort.

To avoid this, for each one of the primary and secondary criteria, the
following comparison function is used: u <lt v iff (u+ 1

2n
) <lt v where n is

the number of coarse groups that can be identified in the data, with respect
to the ranking criterion. It is important to note that scores u, v are considered
as normalized in the range [0, 1] with 0 denoting the lowest possible and 1
the largest possible score. This creates a range of size 1/n of “equal” values
around each original value (Figure 5.3), which allows values to be considered
equal even if their original numeric values differ (slightly).

Orientation for a reasonable choice of the size of these ranges could po-
tentially be found in the number of semantically meaningful categorical con-
straints, although there is no universally true rule for this. For instance, there
are these very important Halls of Fame, like the list of the top-20 richest peo-
ple of the world. The medium ones, like the top-20 richest people in a country
or continent. And the small ones, like the top-20 richest people in a city.

Similar to the selectivity of a Hall of Fame query, dynamic scores can also
be thought of as being decisive only if they notably differ. For instance, a
change at rank 5 is clearly more important than a change at rank 50, but it
is questionable if a change at rank 6 is really less important to the one at
rank 5. For the last ingredient, i.e., the entropy based measures, we do not
need to define a new comparison function as it has the lowest priority in the
lexicographic sorting.
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6 Event Detection

Detecting Hall of Fame events requires monitoring Hall of Fame rankings for
changes. As we are interested in the positions of entities inside the rankings, a
change is considered only if the ranking changes, not if entities obtain updates
to their numeric score (aggregate)—but the ranking remains unchanged. A
näıve approach to this monitoring problem would execute all queries that
underlie the Hall of Fame rankings and check if their results have changed.
Instead, we make use of techniques from the area of materialized view mainte-
nance. In this, there are two types of optimization techniques. First, we can
use information from the update statement itself to determine the queries
that might be affected by the update and only refresh those. See [15] for a
formal analysis of the task. Second, after an affected Hall of Fame ranking is
identified one can optimize the actual re-evaluation. This task is also known
as view maintenance and has been addressed for top-K queries [17, 18]. Hav-
ing tens of thousands of queries, the main focus of the event detection is to
identify possibly affected ones, rather than to optimize their re-evaluation.

We employ two filtering techniques that tell if a Hall of Fame cannot be
affected by a given update—and, hence, does not have to be re-evaluated.
Both techniques are precise in the sense that they do not produce false-
positives (i.e., the filter says the ranking is not affected but actually it is)
but they do produce false-negatives (i.e., the filter says the ranking might be
affected but it is not) i.e., passing the filter is a necessary condition to lead to
a Hall of Fame event, but it is not sufficient to tell if the ranking is affected.

1. Column-Based Filtering resembles a satisfiability check that uses
the overlap between the attributes used in the Hall of Fame queries
and the update statement. Clearly, a query can not be affected by an
update if the intersection between the columns being updated and the
columns accessed by the query is empty.

The column-based filtering is executed solely on the Hall of Fame speci-
fication and the update statement. There are, however, many Halls of Fame
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that cannot be pruned based on this filter. To further limit unnecessary query
re-evaluations, we use another level of filtering.

2. Row-Based Filtering tells if a query can not be affected by an update
by inspecting the intersection between the updated rows and the rows
accessed by the query.

The queries that pass these two filters are re-evaluated and checked for
potential changes to their rankings—which would result in events.

6.1 Implementations

6.1.1 Database Triggers

When designing the implementation of such a maintenance task, a first choice
is to use database triggers and materialized views, since the database is al-
ready used to store the data itself—such an implementation is elegant and
intuitive: all processing is done in the database, hence, there is no additional
layer. However, pushing the maintenance task in the database also limits the
capabilities of the database to serve other applications. One additional fea-
ture of this approach is that identified events are stored directly inside the
database—written to disk, hence, being persistent. This, of course, comes at
the price of increased latency.

Identified events are appended to a special events table, that contains the
score ingredients as introduced in Section 5.

6.1.2 Event Processing Middleware

As an alternative implementation, we have implemented an event processing
middleware using Java. Only the data tables themselves are still stored in a
database—the Hall of Fame rankings are kept in main memory. The middle-
ware intercepts all updates sent to the database and checks if Hall of Fame
rankings are affected. By doing this, we alleviate any additional (event pro-
cessing) work of the database but introduce additional communication cost
between the database and the Java application—which, however, appears
negligible as we run the middleware and the database on the same server.
Further, all results are easily kept in main memory, which should makes
the processing faster, but comes of course with the risk that after a system
failure the monitoring state is lost—not the database content. Still, this is
acceptable in most scenarios and, if not acceptable, can be circumvented, for
example, by replication.
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Figure 6.1: The two implemented Event Detection Approaches: Two-Tier
architecture of a Postgresql database and a Java middleware (top) and im-
plemented inside Postgresql using Triggers

We implemented both approaches (cf., Figure 6.1) using Java 6 and Post-
gresql 9.1 as the database, with column- and row-based filtering in both im-
plementations. In Postgresql, we use additional tables and triggers to store
the Hall of Fame rankings and to check for modifications.

6.1.3 Column-Based Filtering Implementation

The implementations of the column-based filtering in Java and Postgres trig-
gers is conceptually the same: an index is created such that for a given column
name it contains all of the queries that depend on that column. This index
is created once all the Hall of Fame queries are generated. While in Java
a HashMap is used, the trigger implementation uses one stored procedure
per column name, with a predefined list of queries which might be affected.
This is done for efficiency reasons, such that querying an additional table
containing the column index is avoided.
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6.1.4 Row-Based Filtering Implementation

The row-based filtering requires a selection of all rows that are going to
be updated by the update statement. This is achieved in the trigger-based
implementation using row triggers—a stored procedure is invoked for each
row that is being updated. When the queries depend on multiple tables, rows
that are updated are progressively joined with other tables. For each update
and all queries that pass the column filtering a check is performed, based on
the query selection criterion—whether this row is selected by the query. If
the query selects any of the updated rows it is potentially affected.

In the Java middleware, we avoid progressively joining updated rows by
creating a set of select queries covering all join paths. Creating these queries
starts from the updated table and follows foreign keys to join with this table.
In case there are two or more joins paths between two tables, two or more
copies of the query are created. Depending on the structure of the Hall of
Fame query the selected rows by one of corresponding selection queries are
used. The pseudo code for creating selection queries is shown in Figure 3,
where join method joins a path with an existing query if they are compatible.
It is important to note that this query creation is done only once at the
startup of the system, when the database schema is registered.
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function selection queries(updated table)
tables = all tables
visited = empty set
queries = new set(empty query)

for each t in tables
| if not visited.contains(t)
| | paths = all join paths(updated table, t)
| | for each q in queries
| | | q.join(paths.first)
| | end
| | for each path in paths.rest
| | | for each q in queries
| | | | new q = q.copy()
| | | | new q.join(path)
| | | | queries.add(new q)
| | | end
| | | visited.add(path.tables)
| | end
| | visited.add(paths.first.tables)
| end
end

end

Alg. 3: Create row selection queries
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7 Experiments

All experiments are conducted on a Linux machine (Debian 5.0.9 64bit, kernel
2.6.32.41.1) with two Intel Xeon W3530 CPUs (2.8GHz, 8MB cache, 4 cores
(8 threads)). The machine has 48GB of main memory and a RAID-5 disk
(4x1TB Western Digital WD1002FBYS-1 7.2K RPM, SATA).

7.1 Dataset

For the dataset, we use publicly available basketball statistics obtained from
databasebasketball.com [32]. We focus on the regular season statistics, which
capture the performance of roughly 4000 players in the last 65 years. In this
table, each player is uniquely identified by the player id containing statistics
for one year, per team. The latter is expressed by a team id which refers
to a second table that contains 121 basketball teams with attributes team
id, team name, and league. It is possible for players to switch teams in an
active season (year). Attributes of the season statistics table describe the
information about minutes played, points, points per game, total rebounds,
free throws, etc.

We use the player and team columns as E-attributes and believe that this
is a reasonable choice for this scenario. To specify the ranking attributes,
not only the column names but also the aggregation function and the “order
by” direction (descending, ascending, or both) are specified (cf., Table 7.1).
The attributes league, team, and age are used as C-attributes, with two
additional categorical constraints specified: steals>turnovers and offensive
rebounds>defensive rebounds. We created B+ indices for each single categor-
ical attributes.

As the dataset reports only per-season statistics it lacks “live” data, that
is, statistics that are updated after every game (or after every notable event,
e.g., a scored point), we create updates based on the original data summaries.

For each data tuple represented by a triple (player, team, year) and for
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column name aggr. function order

turnovers sum ascending
rebounds sum descending
assists sum descending
field goals percentage avg both
points per game avg descending
points sum descending
three-points per game sum descending
three throws made sum descending

Table 7.1: Sample user generated description of how to use numeric at-
tributes. Used in the experimental evaluation.

each ranking attribute of interest (cf., Table 7.1), we create 10 update state-
ments where the intermediate values are calculated differently depending on
whether summation or averaging is used as the aggregation function. The
last update value always corresponds to the actual value in the database.
The generated updates are spread equidistantly over time. To keep the eval-
uation tractable, we used the years 2005 to 2011, and generated this way a
total of 275, 580 updates.

For the summation, we model the values as steadily growing. We generate
values using a Normal distribution (with µ = 0.5, σ = 0.2) until we have 9
values in range (0, 1). These values are sorted in ascending order. Finally,
the value of the ith update equals to the ith generated value times the final
(actual) value.

For the averaging, we model the values as slightly fluctuating around the
final (actual) value. To generate this, we use a Normal distribution (µ = 0,
σ = 0.1) and generate 9 values in range (−1, 1). The values are are not sorted
as in the previous case. Again, the value of the ith update equals to the ith

generated value times the final (actual) value.

7.2 Query Generation

The number of generated queries for 3 different values for the Hall of Fame
ranking size K is shown in Figure 7.1 (left). The y-axis represents the num-
ber of generated queries while the x-axis shows the maximum number of
constraints used in a query. The curve for unpruned represent the total num-
ber of queries that would be generated in case no pruning of empty queries or
queries with less than K results is applied. As expected, this number grows
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Figure 7.1: Query Generation Process: Total number of generated queries
(left) and total wall-clock time in seconds (right)

rapidly, up to roughly 1 million queries. In the opposite case, when pruning
is applied, very many queries can be removed. Again, the number of queries
grows with the number of constraints used in the queries, but saturates at
some point as newly generated queries with too many constraints have small
(or empty) result sets and are discarded. For the same reason, increasing K,
decreases the number of generated queries.

During the query generation, most time is spent in executing queries to
obtain the initial results and to compute the static characteristics—used in
the event ranking later-on—of the generated queries. The wall-clock time for
the query generation is shown in Figure 7.1 (right). We compare the time
needed to execute all generated queries without integrated pruning (the curve
for unpruned) to the approach that eliminates queries from consideration that
can be identified without executing them (cf., Section 4.2). The results are as
expected: early pruning can greatly reduce the overall wall-clock time for the
entire query generating process. The total wall-clock time for all early pruning
cases (K = 5, 10, or 20) is below 100 seconds, which is well acceptable, given
that that the query generation is a one-time process only.

7.3 Ranking Quality

We conducted a user study to evaluate the quality of the proposed event
ranking. We present to users 9 rankings of events. Each ranking reflects the
Hall of Fame events within the last 1000 updates, which corresponds roughly
to the time period in which all teams have played one game. Considering that
generated updates are equidistant in time, we maintain a windows of events
corresponding to the last 1000 updates as well. We used queries generated
with K = 20 and maximum of up to three constraints. Using K = 20 also
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Assigned Ratings by Users
Rating 1 Rating 2 Rating 3

Event at Rank 1 49 34 16
Event at Rank 5 24 52 23
Event at Rank 10 29 25 45

Table 7.2: Raw results of our user study

influences the parameter b for dynamic characteristics score, which we set
to 5. To keep the assessment task manageable, for each user in a couple of
minutes, each ranking consists of 3 events: the one put by our algorithm at
rank one, rank five, and rank ten. For each such event, we created (manually)
a natural language statement, such as “Team Philadelphia advanced from
position 19 to position 17 in the NBA top field game points scored list.“

We randomly order these sentences and ask users to order them using a
scale from 1 to 3, also allowing ties. We asked 11 colleagues at our university
to take part in the study. The summarized results are shown in Table 7.2.
We can clearly see a good trend of diagonal elements being the largest, as
the perfect ranking would produce completely diagonal matrix.

For each ranking, we compute how well the assigned ratings of a user
adhere to our proposed ranking. We inspect the following pairs of reported
ranks: (1, 5), (1, 10), (5, 10). The ideal user rating should give assessments
that are coherent with those pairs. For instance, an ordering of ranked events
(5,1,10) would ideally be judged by the users with scores (2,1,3). This fit is
computed for each above pair (a,b) using a value of 1 if r(a) > r(b), a value
of −1 if r(b) < r(a) and 0 otherwise, where r(.) denotes the user’s rating. We
sum up this scores over all pairs, over all event rankings and over all users.
and achieve 66 as our final result. Knowing the user study results we can
calculate this result for the best possible ranking algorithm and the worst
one, resulting in score 148 for the best and −148 for the worst. Results for
the best (worst) possible ranking must be calculated based on the user study
results as the disagreement between users must be taken into account. We
see that proposed ranking performs very well satisfying 72.39 % ( 66+148+1

148+148+1
)

of users judgments.
To show that these numbers are statistically significant, we apply Fisher’s

randomization test (also called permutation test) (cf., [33]), where the null
hypothesis claims that our ranking algorithm (scheme) would place events
simply in a random order. The significance test showed that we can reject
the null hypothesis with significance level of 3% (p = 0.0203).

30



Queries Queries Changes Runtime (ms)
#Constraints Total Executed Detected Triggers Java

1 1710 10.44 0.03 239.52 127.84
2 10260 20.11 0.51 774.29 185.93
3 17540 24.23 1.00 1427.82 213.25

Table 7.3: Executed queries per update and execution time, K = 10

Queries Queries Changes Runtime (ms)
#Constraints Total Executed Detected Triggers Java

1 1290 10.43 0.12 234.98 130.05
2 6900 19.67 1.03 700.37 178.99
3 11120 23.26 1.82 780.26 207.67

Table 7.4: Executed queries per update and execution time, K = 20

7.4 Event Detection

To evaluate the event detection performance, we use 5, 000 updates and mea-
sured the number of executed queries per update, the number of detected
changes, and the time needed to process each update for both Java and
trigger-based implementation. The maximum number of constraints is var-
ied from 1 to 3.

Table 7.3 and Table 7.4 report on the total number of generated Hall of
Fame queries, the average number of executed queries per update (i.e., queries
that pass both column- and row-based filtering steps), the average number
of queries per update for which the ranking changed, and the execution time
per update in milliseconds for both implementations. Table 7.3 contains the
measurements when queries are generated with K = 10, while Table 7.4
reports on the measures with queries generated with K = 20.

Although there is a large number of queries generated and indexed, we
can see that by using the filtering techniques we can already decrease the
number of executed updates to less than one percent. This percentage drops
significantly with the increase of the maximum number of constraints allowed
in the queries. This shows that we can safely increase the maximum number
of constraints while still being able to detect changes efficiently.

We see that the wall-clock time (in milliseconds) for both implementa-
tions is quiet similar for the simple case of at most one constraint per query.
However, the runtime increases a lot faster for the implementation with trig-
gers, resulting in a runtime up to 1.4 seconds per update. We believe that this
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stems from the fact that results of the operations on the triggers are always
made persistent, while the results of the Java implementation are always held
in memory without writing them to disk. We observe that the wall-clock time
behaves similarly to the measured number of executed queries, which sug-
gests that most of the execution time is indeed spent executing queries. The
wall-clock time when employing a Java main memory implementation is in
all cases under 250ms.

As expected, the number of detected changes per update increases as the
number of queries grow, especially the queries with more constraints are more
selective making an impact of the updates larger enough to change resulting
ranking. It is interesting to see that increasing the value of K (from 10 to 20)
results in the smaller number of generated queries, as there are less queries
with result size 20 and more, but the number of detected changes increases
due to the more volatile nature of the rankings between position 10 and 20.
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8 Conclusion

Halls of Fame are by design intriguing constructs that represent the elite of a
certain subset of entities. In this work, we studied the automatic identification
of changes to Halls of Fame in a principled and general way. To the best of
our knowledge, this problem has not been addressed before.

Our approach generates SQL queries that describe (each) a specific Hall
of Fame. Such queries select the top-K entities that fulfill constraints put on
categorical attributes, ranked according to specific numeric attributes. We
discussed means to inspect only a small subset of cached query results for
potential changes. The presented approach is very generic and can be applied
to a wide range of scenarios. We presented the details of two fundamentally
different implementations: (i) an approach based on database triggers and
(ii) an event processing middleware implemented in Java.

We conducted a carefully designed experimental evaluation using real-
world data obtained from a basketball statistics website. We showed that
the number of generated queries saturates with growing number of possi-
ble categorical constraints. This is an important finding underpinning the
applicability of our approach. Further, we saw that by using our filtering ap-
proach only a small fraction of queries need to be re-evaluated for incoming
updates. Most importantly, the conducted user study showed that the pro-
posed lexicographic-tradeoff–based ranking complies with a user-perceived
notion of interestingness.
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