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Abstract

Statistics about n-grams (i.e., sequences of contiguous words or other to-
kens in text documents or other string data) are an important building block
in information retrieval and natural language processing. In this work, we
study how n-gram statistics, optionally restricted by a maximum n-gram
length and minimum collection frequency, can be computed efficiently har-
nessing MapReduce for distributed data processing. We describe different
algorithms, ranging from an extension of word counting, via methods based
on the APRIORI principle, to a novel method SUFFIX-o that relies on sorting
and aggregating suffixes. We examine possible extensions of our method to
support the notions of maximality/closedness and to perform aggregations
beyond occurrence counting. Assuming Hadoop as a concrete MapReduce
implementation, we provide insights on an efficient implementation of the
methods. Extensive experiments on The New York Times Annotated Corpus
and ClueWeb09 expose the relative benefits and trade-offs of the methods.
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1 Introduction

Applications in various fields including information retrieval [12, 46] and
natural language processing [13, 18, 39| rely on statistics about n-grams (i.e.,
sequences of contiguous words in text documents or other string data) as an
important building block. Google and Microsoft have made available n-gram
statistics computed on parts of the Web. While certainly a valuable resource,
one limitation of these datasets is that they only consider n-grams consisting
of up to five words. With this limitation, there is no way to capture idioms,
quotations, poetry, lyrics, and other types of named entities (e.g., products,
books, songs, or movies) that typically consist of more than five words and
are crucial to applications including plagiarism detection, opinion mining,
and social media analytics.

MapReduce has gained popularity in recent years both as a programming
model and in its open-source implementation Hadoop. It provides a platform
for distributed data processing, for instance, on web-scale document collec-
tions. MapReduce imposes a rigid programming model, but treats its users
with features such as handling of node failures and an automatic distribution
of the computation. To make most effective use of it, problems need to be
cast into its programming model, taking into account its particularities.

In this work, we address the problem of efficiently computing n-gram
statistics on MapReduce platforms. We allow for a restriction of the n-gram
statistics to be computed by a maximum length ¢ and a minimum collection
frequency 7. Only n-grams consisting of up to o words and occurring at least
7 times in the document collection are thus considered.

While this can be seen as a special case of frequent sequence mining, our
experiments on two real-world datasets show that MapReduce adaptations
of APRIORI-based methods [38, 45] do not perform well — in particular when
long and/or less frequent n-grams are of interest. In this light, we develop
our novel method SUFFIX-o that is based on ideas from string processing.
Our method makes thoughtful use of MapReduce’s grouping and sorting
functionality. It keeps the number of records that have to be sorted by



MapReduce low and exploits their order to achieve a compact main-memory
footprint, when determining collection frequencies of all n-grams considered.

We also describe possible extensions of our method. This includes the no-
tions of maximality /closedness, known from frequent sequence mining, that
can drastically reduce the amount of n-gram statistics computed. In addi-
tion, we investigate to what extent our method can support aggregations
beyond occurrence counting, using n-gram time series, recently made popu-
lar by Michel et al. [32], as an example.

Contributions made in this work include:

e a novel method SUFFIX-0 to compute n-gram statistics that has been
specifically designed for MapReduce;

e a detailed account on efficient implementation and possible extensions
of SUFFIX-0 (e.g., to consider maximal/closed n-grams or support other
aggregations);

e a comprehensive experimental evaluation on The New York Times An-
notated Corpus (1.8 million news articles from 1987-2007) and Clue-
Web09-B (50 million web pages crawled in 2009), as two large-scale real-
world datasets, comparing our method against state-of-the-art competi-
tors and investigating their trade-offs.

SUFFIX-o outperforms its best competitor in our experiments by up to a
factor 12z when long and /or less frequent n-grams are of interest. Otherwise,
it performs at least on par with the best competitor.

Organization. Section 2 introduces our model. Section 3 details on
methods to compute n-gram statistics based on prior ideas. Section 4 in-
troduces our method SUFFIX-o. Aspects of efficient implementation are
addressed in Section 6. Possible extensions of SUFFIX-o are sketched in
Section 5. Our experiments are the subject of Section 7. In Section 8, we
put our work into context, before concluding in Section 9.



2 Preliminaries

We now introduce our model, establish our notation, and provide some tech-
nical background on MapReduce.

2.1 Data Model

Our methods operate on sequences of terms (i.e., words or other textual
tokens) drawn from a vocabulary V. We let S denote the universe of all
sequences over V. Given a sequence s = (Sg, ..., S,_1) with s; € V, we refer
to its length as [s|, write s[i..j] for the subsequence (s;,...,s;), and let s[i]
refer to the element s;. For two sequences r and s, we let r||s denote their
concatenation. We say that

e ris a prefir of s (r>s) iff
VO <i<]|r| : r[i] = s]i
e ris a suffix of s (r<s) iff
VO <i<]|r|: r[i] =s||s| — |r| + 1]

e ris a subsequence of s (ros) iff
J0<j<|s] : VO<i<]|r| : r[i] =s[i+j]
and capture how often r occurs in s as
flrys)=[{0<j<Is| | VO<i<[r]: rfi] =s[i+j]} .

To avoid confusion, we use the following convention: When referring to
sequences of terms having a specific length k, we will use the notion k-gram
or indicate the considered length by alluding to, for instance, 5-grams. The
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notion n-gram, as found in the title, will be used when referring to variable-
length sequences of terms.

As an input, all methods considered in this work receive a document col-
lection D consisting of sequences of terms as documents. Our focus is on
determining how often n-grams occur in the document collection. Formally,
the collection frequency of an n-gram s is defined as cf(s) = Y _4op f(s,d) .
Alternatively, one could consider the document frequency of n-grams as the
total number of documents that contain a specific n-gram. While this corre-
sponds to the notion of support typically used in frequent sequence mining,
it is less common for natural language applications. However, all methods
presented below can easily be modified to produce document frequencies.

2.2 MapReduce

MapReduce, as described by Dean and Ghemawat [17], is a programming
model and an associated runtime system at Google. While originally propri-
etary, the MapReduce programming model has been widely adopted in prac-
tice and several implementations exist. In this work, we rely on Hadoop [1] as
a popular open-source MapReduce platform. The objective of MapReduce is
to facilitate distributed data processing on large-scale clusters of commodity
computers. MapReduce enforces a functional style of programming and lets
users express their tasks as two functions

map () : (k1,v1) -> list<(k2,v2)>
reduce() : (k2, list<v2>) -> list<(k3,v3)>

that consume and emit key-value pairs. Between the map- and reduce-phase,
the system sorts and groups the key-value pairs emitted by the map-function.
The partitioning of key-value pairs (i.e., how they are assigned to cluster
nodes) and their sort order (i.e., in which order they are seen by the reduce-
function on each cluster node) can be customized, if needed for the task at
hand. For detailed introductions to working with MapReduce and Hadoop,
we refer to Lin and Dyer [29] as well as White [41].



3 Methods
based on Prior Ideas

With our notation established, we next describe three methods based on
prior ideas to compute n-gram statistics in MapReduce. Before delving into
their details, let us state the problem that we address in more formal terms:

Given a document collection D, a minimum collection frequency T, a maz-
imum length o, our objective is to identify all n-grams s with their collection
frequency cf(s), for which cf(s) > 7 and |s| < o hold.

We thus assume that n-grams are only of interest to the task at hand,
if they occur at least 7 times in the document collection, coined frequent in
the following, and consist of at most o terms. Consider, as an example task,
the construction of n-gram language models [46], for which one would only
look at n-grams up to a specific length and/or resort to back-off models [24]
to obtain more robust estimates for n-grams that occur less than a specific
number of times.

The problem statement above can be seen as a special case of frequent
sequence mining that considers only contiguous sequences of single-element
itemsets. We believe this to be an important special case that warrants
individual attention and allows for an efficient solution in MapReduce, as
we show in this work. A more elaborate comparison to existing research on
frequent sequence mining is part of Section 8.

To ease our explanations below, we use the following running example,
considering a collection of three documents:

d, = (axbxx)
d, = (baxbx)
d; = (xbaxb)

With parameters 7 = 3 and o = 3, we expect as output



Algorithm 1: NAIVE
// Mapper
1 map(long did, seq d) begin
2 for b=0to |[d| -1 do
3 Lfore:btomin(b+a—1,|d|—1)do

4 L emit (seq db..e], long did)

// Reducer
reduce(seq s, list<long> () begin
L if || > 7 then

W N =

| emit(seqs, int ||

(a) : 3 (b) : 5 (x) : 7
(ax) : 3 (xb) : 4
(axb) : 3

from any method, when applied to this document collection.

3.1 Naive Counting

One of the example applications of MapReduce, given by Dean and Ghe-
mawat [17] and also used in many tutorials, is word counting, i.e., determin-
ing the collection frequency of every word in the document collection. It is
straightforward to adapt word counting to consider variable-length n-grams
instead of unigrams only and discard those that occur less than 7 times.
Pseudo code of this method, which we coin NAIVE, is given in Algorithm 1.

In the map-function, the method emits all n-grams of length up to o for a
document together with the document identifier. If an n-gram occurs more
than once, it is emitted multiple times. In the reduce-phase, the collection
frequency of every n-gram is determined and, if it exceeds 7, emitted together
with the n-gram itself.

Interestingly, apart from minor optimizations, this is the method that
Brants et al. [13] used for training large-scale language models at Google,
considering n-grams up to length five. In practice, several tweaks can be
applied to improve this simple method including local pre-aggregation in the
map-phase (e.g., using a combiner in Hadoop). Implementation details of this
kind are covered in more detail in Section 6. The potentially vast number
of emitted key-value pairs that need to be transferred and sorted, though,
remains a shortcoming.



In the worst case, when o > |d|, NAIVE emits O(|d|?) key-value pairs for
a document d, each consuming O(|d|) bytes, so that the method transfers
O(]d|?) bytes between the map- and reduce-phase. Complementary to that,
we can determine the number of key-value pairs emitted based on the n-gram
statistics. NAIVE emits a total of ) . sisi<o Cf (s) key-value pairs, each of
which consumes O(|s|) bytes.

3.2 Apriori-Based Methods

How can one do better than the naive method just outlined? One idea
is to exploit the APRIORI principle, as described by Agrawal et al. [9] in
their seminal paper on identifying frequent itemsets and follow-up work on
frequent pattern mining [10, 37, 38, 45]. Cast into our setting, the APRIORI
principle states that

ros = cf(r)>cf(s)

holds for any two sequences r and s, i.e., the collection frequency of a sequence
r is an upper bound for the collection frequency of any supersequence s.
In what follows, we describe two methods that make use of the APRIORI
principle to compute n-gram statistics in MapReduce.

Apriori-Scan

The first APRIORI-based method APRIORI-SCAN, like the original APRIORI
algorithm [9] and GSP [38], performs multiple scans over the input data.
During the k-th scan the method determines k-grams that occur at least 7
times in the document collection. To this end, it exploits the output from the
previous scan via the APRIORI principle to prune the considered k-grams.
In the k-th scan, only those k-grams are considered whose two constituent
(k — 1)-grams are known to be frequent. Unlike GSP, that first generates
all potentially frequent sequences as candidates, APRIORI-SCAN considers
only sequences that actually occur in the document collection. The method
terminates after o scans or when a scan does not produce any output.
Algorithm 2 shows how the method can be implemented in MapReduce.
The outer repeat-loop controls the execution of multiple MapReduce jobs,
each of which performs one distributed parallel scan over the input data. In
the k-th iteration, and thus the k-th scan of the input data, the method con-
siders all k-grams from an input document in the map-function, but discards
those that have a constituent (k — 1)-gram that is known to be infrequent.
This pruning is done, leveraging the output from the previous iteration that



Algorithm 2: APRIORI-SCAN
int k=1
repeat
hashset<int [1> dict = load (output-(k — 1))

// Mapper
map(long did, seq d) begin
for b =0 to |d| — k do
ifk=1vVv
(contains(dict, d[b..(b+ k — 2)]) A
contains (dict, d[(b+1)..(b+ k — 1)])) then
L emit(seq d[b..(b+ k — 1)], long did)

S A W N -

// Reducer
1 reduce(seq s, list<long>l) begin
2 if || > 7 then

L L emit(seqs, int |I|)

k=1
until isEmpty (output-(k — 1)) V k=0 + 1,

is kept in a dictionary. In the reduce-function, analogous to NAIVE, collec-
tion frequencies of k-grams are determined and output if above the minimum
collection frequency 7. After o iterations or once an iteration does not pro-
duce any output, the method terminates, which is safe since the APRIORI
principle guarantees that no longer n-gram can occur 7 or more times in the
document collection.

When applied to our running example, in its third scan of the input data,
APRIORI-SCAN emits in the map-phase for every document d; only the key-
value pair ((a x b),d;), but discards other trigrams (e.g., (b x x)) that
contain an infrequent bigram (e.g., (x x)).

When implemented in MapReduce, every iteration corresponds to a sepa-
rate job that needs to be run and comes with its administrative fix cost (e.g.,
for launching and finalizing the job). Another challenge in APRIORI-SCAN
is the implementation of the dictionary that makes the output from the pre-
vious iteration available and accessible to cluster nodes. This dictionary can
either be implemented locally, so that every cluster node receives a replica
of the previous iteration’s output (e.g., implemented using the distributed
cache in Hadoop), or, by loading the output from the previous iteration into
a shared dictionary (e.g., implemented using a distributed key-value store)



that can then be accessed remotely by cluster nodes. Either way, to make
lookups in the dictionary efficient, significant main memory at cluster nodes
is required.

An apparent shortcoming of APRIORI-SCAN is that it has to scan the en-
tire input data in every iteration. Thus, although typically only few frequent
n-grams are found in later iterations, the cost of an iteration depends on the
size of the input data. The total number of iterations needed, on the other
hand, is determined by the parameter o or the length of the longest frequent
n-gram in the document collection.

In the worst case, when o > |d| and ¢f(d) > 7, APRIORI-SCAN emits
O(]d|?) key-value pairs per document d, each consuming O(|d|) bytes, so
that the method transfers O(|d|?) bytes between the map- and reduce-phase.
Again, we provide a complementary analysis based on the actual n-gram
statistics. To this end, let

Syp={s€S|VreS : (r#s ANros)=cf(r)>71}

denote the set of sequences that cannot be pruned based on the APRIORI
principle, i.e., whose true subsequences all occur at least 7 times in the docu-
ment collection. APRIORI-SCAN emits a total of > s .o, cf(s) key-value
pairs, each of which amounts to O(]s|) bytes. Obviously, Sxp C S holds, so
that APRIORI-SCAN emits at most as many key-value pairs as NAIVE. Its
concrete gains, though, depend on the value of 7 and characteristics of the
document collection.

Apriori-Index

The second APRIORI-based method APRIORI-INDEX does not repeatedly
scan the input data but incrementally builds an inverted index of frequent n-
grams from the input data as a more compact representation. Operating on
an index structure as opposed to the original data and considering n-grams
of increasing length, it resembles SPADE [45] when breadth-first traversing
the sequence lattice.

Pseudo code of APRIORI-INDEX is given in Algorithm 3. In its first phase,
the method constructs an inverted index with positional information for all
frequent m-grams up to length K (cf. Mapper #1 and Reducer #1 in the
pseudo code). In its second phase, to identify frequent n-grams beyond that
length, APRIORI-INDEX harnesses the output from the previous iteration.
Thus, to determine a frequent k-gram (e.g., (b a x)), the method joins
the posting lists of its constituent (k — 1)-grams (i.e.,, (b a) and (a x)).
In MapReduce, this can be accomplished as follows (cf. Mapper #2 and
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Reducer #2 in the pseudo code): The map-function emits for every frequent
(k — 1)-gram two key-value pairs. The frequent (k — 1)-gram itself along
with its posting list serves in both as a value. As keys the prefix and suffix
of length (k — 2) are used. In the pseudo code, the method keeps track of
whether the key is a prefix or suffix of the sequence in the value by using the
r-seq and 1-seq subtypes. The reduce-function identifies for a specific key
all compatible sequences from the values, joins their posting lists, and emits
the resulting k-gram along with its posting list if its collection frequency is
at least 7. Two sequences are compatible and must be joined, if one has
the current key as a prefix, and the other has it as a suffix. In its nested
for-loops, the method considers all compatible combinations of sequences.
This second phase of APRIORI-INDEX can be seen as a distributed candidate
generation and pruning step.

Applied to our running example and assuming K = 2, the method only
sees one pair of compatible sequences with their posting lists for the key (x)
in its third iteration, namely:

(ax) : (dy:][0], do:[1], d3:[2])
(xb) : (dy:[1], da:[2], d3:[0,3]) .

By joining those, APRIORI-INDEX obtains the only frequent 3-gram with its
posting list

(axb) : (dy:[0], d2:[1], d3:[2]).

For all k < K, it would be enough to determine only collection frequencies,
as opposed to, positional information of n-grams. While a straightforward
optimization in practice, we opted for simpler pseudo code. When imple-
mented as described in Algorithm 3, the method produces an inverted index
with positional information that can be used to quickly determine the loca-
tions of a specific frequent n-gram.

One challenge when implementing APRIORI-INDEX is that the number
and size of posting-list values seen for a specific key can become large in
practice. Moreover, to join compatible sequences, these posting lists have to
be buffered, and a scalable implementation must deal with the case when
this is not possible in the available main memory. This can be accomplished
by storing posting lists temporarily in a disk-resident key-value store.

The number of iterations needed by APRIORI-INDEX is determined by
the parameter o or the length of the longest frequent n-gram. Since every
iteration, as for APRIORI-SCAN, corresponds to a separate MapReduce job,
a non-negligible administrative fix cost is incurred.

In the worst case, when ¢ > |d| and c¢f(d) > 7, APRIORI-INDEX emits
O(|d|?) key-value pairs per document d, each consuming O(|d|) bytes, so
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that O(]d|®) bytes are transferred the map- and reduce-phase. We assume
K < o for the complementary analysis. In its first K iterations, APRIORI-
INDEX emits } . s q<x df (s) key-value pairs, where df(s) < cf(s) refers to
the document frequency of the n-gram s, as mentioned in Section 2. Each
key-value pair consumes O(cf(s)) bytes. To analyze the following iterations,
we let

Spr={seS|cf(s) >}

denote the set of frequent n-grams that occur at least 7 times. APRIORI-
INDEX emits a total of

2. {s € Sp| K < |s| < o}

key-value pairs, each of which consumes O(cf(s)) bytes. Like for APRIORI-
SCAN, the concrete gains depend on the value of 7 and characteristics of the
document collection.

12



Algorithm 3: APRIORI-Index

int k=1
repeat
if kK <K then

// Mapper #1
map(long did, seq d) begin
hashmap<seq, int[]> pos =)
forb=0to |d|—1do

L add (get (pos, d[b..(b+k—1)]), b)

for seq s : keys(pos) do
6 L emit(seq s, posting (did, get(pos,s)))

W N =

[

// Reducer #1
1 reduce(seq s, list<posting> ) begin
2 if c£(l) > 7 then

L L emit(seqs, list<posting>l)

else

// Mapper #2
map(seq s, list<posting> ) begin
emit (seq s[0..|s| — 2],
(r-seq, list<posting>) (s,l))
emit (seq s[l..|s| — 1],
(1-seq, list<posting>) (s,l))

TU o W =

// Reducer #2
reduce(seq s, list<(seq, list<posting>)>() begin
for (1-seq, list<posting>) (m,l,,) : [ do
for (r-seq, list<posting>) (n,l,) : [ do
list<posting> [; = join(l,, I,)
if c£(l;) > 7 then
L seqj —m | (n[jn] — 1])

emit(seq j, list<posting>[;)

N O ok N =

E+=1
until isEmpty (output-(k — 1)) V k = min(o,K);

13



4 Suflix Sorting & Aggregation

As already argued, the methods presented so far suffer from either excessive
amounts of data that need to be transferred and sorted, requiring possibly
many MapReduce jobs, or a high demand for main memory at cluster nodes.
Our novel method SUFFIX-o avoids these deficiencies: It requires a single
MapReduce job, transfers only a modest amount of data, and requires little
main memory at cluster nodes.

Consider again what the map-function in the NAIVE approach emits for
document dz from our running example. Emitting key-value pairs for all
of the n-grams (b a x), (b a), and (b) is clearly wasteful. The key ob-
servation here is that the latter two are subsumed by the first one and can
be obtained as its prefixes. Suffix arrays [31] and other string processing
techniques exploit this very idea.

Based on this observation, it is safe to emit key-value pairs only for a sub-
set of the n-grams contained in a document. More precisely, it is enough to
emit at every position in the document a single key-value pair with the suffix
starting at that position as a key. These suffixes can further be truncated to
length o — hence the name of our method.

To determine the collection frequency of a specific n-gram r, we have to
determine how many of the suffixes emitted in the map-phase are prefixed by
r. To do so correctly using only a single MapReduce job, we must ensure that
all relevant suffixes are seen by the same reducer. This can be accomplished
by partitioning suffixes based on their first term only, as opposed to, all terms
therein. It is thus guaranteed that a single reducer receives all suffixes that
begin with the same term. This reducer is then responsible for determining
the collection frequencies of all n-grams starting with that term. One way to
accomplish this would be to enumerate all prefixes of a received suffix and
aggregate their collection frequencies in main memory (e.g., using a hashmap
or a prefix tree). Since it is unknown whether an n-gram is represented by
other yet unseen suffixes from the input, it cannot be emitted early along
with its collection frequency. Bookkeeping is thus needed for many n-grams

14



and requires significant main memory.

How can we reduce the main-memory footprint and emit n-grams with
their collection frequency early on? The key idea is to exploit that the order in
which key-value pairs are sorted and received by reducers can be influenced.
SUFFIX-o sorts key-value pairs in reverse lexicographic order of their suffix
key, formally defined as follows for sequences r and s:

r<s< (Jr| >1s| Aspr) Vv
30<i < min(|r|,|s|):r[i] > s[i{] AVO<j < i:r[j] =s[j].

To see why this is useful, recall that each suffix from the input represents
all n-grams that can be obtained as its prefixes. Let s denote the current
suffix from the input. The reverse lexicographic order guarantees that we
can safely emit any m-gram r such that r < s, since no yet unseen suffix
from the input can represent r. Conversely, at this point, the only n-grams
for which we have to do bookkeeping, since they are represented both by
the current suffix s and potentially by yet unseen suffixes, are the prefixes
of s. We illustrate this observation with our running example. The reducer
responsible for suffixes starting with b receives:

(bxx) : (di)

(bx) : (dy)
<bax> . <d2, d3>
(b) :(ds) -

When seeing the third suffix (b a x ), we can immediately finalize the collec-
tion frequency of the n-gram (b x ) and emit it, since no yet unseen suffix can
have it as a prefix. On the contrary, the n-grams (b) and (b a) cannot be
emitted, since yet unseen suffixes from the input may have them as a prefix.

Building on this observation, we can do efficient bookkeeping for prefixes
of the current suffix s only and lazily aggregate their collection frequencies
using two stacks. On the first stack terms, we keep the terms constituting
s. The second stack counts keeps one counter per prefix of s. Between
invocations of the reduce-function, we maintain two invariants. First, the
two stacks have the same size m. Second, Z;”:_Zl counts[j] reflects how often
the n-gram (terms|0], ..., terms[i]) has been seen so far in the input. To
maintain these invariants, when processing a suffix s from the input, we first
synchronously pop elements from both stacks until the contents of terms
form a prefix of s. Before each pop operation, we emit the contents of terms
and the top element of counts, if the latter is above our minimum collection
frequency 7. When popping an element from counts, its value is added to the
new top element. Following that, we update terms, so that its contents equal

15



the suffix s. For all but the last term added, a zero is put on counts. For the
last term, we put the frequency of s, reflected by the length of its associated
document-identifier list value, on counts. Figure 4.1 illustrates how the states
of the two stacks evolve, as the above example input is processed.

x 1 x 2

x 0 x 2 ao0

b0 b 0 b 2 b 4 _
H H H H

Figure 4.1: SUFFIX-0’s bookkeeping illustrated

Pseudo code of SUFFIX-o is given in Algorithm 4. The map-function emits
for every document all its suffixes truncated to length o if possible. The
reduce-function reads suffixes in reverse lexicographic order and performs
the bookkeeping using two separate stacks for n-grams (terms) and their col-
lection frequencies (counts), as described above. The function seq() returns
the n-gram corresponding to the entire terms stack. The function 1cp()
returns the length of the longest common prefix that two n-grams share. In
addition, Algorithm 4 contains a partition-function ensuring that suffixes
are assigned to one of R reducers solely based on their first term, as well
as, a compare-function that ensures the reverse lexicographic order of input
suffixes in the map-phase. When implemented in Hadoop, these two functions
would materialize as a custom partitioner and a custom comparator class.
Finally, cleanup() is a method invoked once, when all input has been seen.

SUFFIX-0 emits O(|d|) key-value pairs per document d. Each of these
key-value pairs consumes O(|d|) bytes in the worst case when ¢ > |d|. The
method thus transfer O(]d|?) bytes between the map- and reduce-phase. For
every term occurrence in the document collection, SUFFIX-o emits exactly
one key-value pair, so that in total > __ ssl=1¢f (s) key-value pairs are emit-
ted, each consuming O(co) bytes.
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Algorithm 4: SUFFIX-0
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// Mapper
map(long did, seq d) begin
for b=0to |d| — 1 do
L L emit(seq d[b.min(b+ o —1,|d| —1)], long did)

// Reducer
stack<int> terms = ()
stack<int> counts = ()
reduce(seq s, list<long> () begin
while 1cp(s,seq(terms)) < len(terms) do
if peek(counts) > 7 then
L emit (seq seq(terms), int peek(counts))

pop (terms)
push (counts, pop(counts) + pop(counts))

if len(terms) = |s| then
| push(counts, pop(counts) + |I|)
else
for i = 1cp(s, seq(terms)) to |s| —1 do
push(terms, sli])
L push(counts, (i ==|s|—1 7 || : 0))

cleanup() begin
| reduce(seq (), list<long> ()

// Partitioner
partition(seq s) begin
| return hashcode(s[0]) mod R

// Comparator
compare(seq r, seq s) begin
for b =0 to min(|r|,|s|) — 1 do
if r[b] < s[b] then
‘ return +1
else if r[b] > s[b] then
L return —1

| return |s| — [r|
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5 Extensions

In this section, we describe how SUFFIX-0 can be extended to consider only
maximal/closed n-grams and thus produce a more compact result. Moreover,
we explain how it can support aggregations beyond occurrence counting,
using n-gram time series, recently made popular by [32], as an example.

5.1 Maximality & Closedness

The number of n-grams that occur at least 7 times in the document collection
can be huge in practice. To reduce it, we can adopt the notions of maximality
and closedness common in frequent pattern mining. Formally, an n-gram r is
maximal, if there is no n-gram s such that r os and c¢f(s) > 7. Similarly, an
n-gram r is closed, if no n-gram s exists such that res and cf(r) = cf(s) > 7.
The sets of maximal or closed n-grams are subsets of all n-grams that occur
at least 7 times. Omitted n-grams can be reconstructed — for closedness even
with their accurate collection frequency.

SUFFIX-0 can be extended to produce maximal or closed n-grams. Recall
that, in its reduce-function, our method processes suffixes in reverse lexico-
graphic order. Let r denote the last n-gram emitted. For maximality, we
only emit the next n-gram s, if it is not a prefix of r (i.e., =(s>r)). For
closedness, we only emit s, if it is not a prefix of r or if it has a different
collection frequency (i.e., =(s>r A cf(s) = c¢f(r))). In our example, the
reducer responsible for term a receives

(axb) : (dj, dy, d3)

and, both for maximality and closedness, emits only the n-gram (a x b) but
none of its prefixes. With this extension, we thus emit only prefix-maximal
or prefix-closed n-grams, whose formal definitions are analogous to those
of maximality and closedness above, but replace ¢ by >. In our example,
we still emit (x b) and (b) on the reducers responsible for terms x and b,
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respectively. For maximality, as subsequences of (a x b), these n-grams
must be omitted. We achieve this by means of an additional post-filtering
MapReduce job. Asinput, the job consumes the output produced by SUFFIX-
o with the above extensions. In its map-function, n-grams are reversed (e.g.,
(ax b) becomes (b x a)). These reversed n-grams are partitioned based on
their first term and sorted in reverse lexicographic order, reusing ideas from
SUFFIX-o. In the reduce-function, we apply the same filtering as described
above to keep only prefix-maximal or prefix-closed reversed n-grams. Before
emitting a reversed n-gram, we restore its original order by reversing it. In
our example, the reducer responsible for b receives

(bxa) : 3
(bx) : 4
(b) : 5

and, for maximality, only emits (a x b). In summary, we obtain maximal or
closed n-grams by first determining prefix-maximal or prefix-closed n-grams
and, after that, identifying the suffix-maximal or suffix-closed among them.

5.2 Beyond Occurrence Counting

Our focus so far has been on determining collection frequencies of n-grams.
One can move beyond occurrence counting and aggregate other information
about n-grams, e.g.:

e build an inverted index that records for every n-gram how often or
where it occurs in individual documents;

e compute statistics based on meta-data of documents (e.g., timestamp
or location) that contain a n-gram.

In the following, we concentrate on the second type of aggregation and, as a
concrete instance, consider the computation of n-gram time series. Here, the
objective is to determine for every n-gram a time series whose observations
reveal how often the n-gram occurs in documents published, e.g., in a specific
year. SUFFIX-o can be extended to produce such n-gram time series as
follows: In the map-function we emit every suffix along with the document
identifier and its associated timestamp. In the reduce-function, the counts
stack is replaced by a stack of time series, which we aggregate lazily. When
popping an element from the stack, instead of adding counts, we add time
series observations. In the same manner, we can compute other statistics
based on the occurrences of an n-gram in documents and their associated
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meta-data. While these could also be computed by an extension of NAIVE,
the benefit of using SUFFIX-o is that the required document meta-data is
transferred only once per suffix of a document, as opposed to, once per
contained n-gram.
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6 Efficient Implementation

Having described the different methods at a conceptual level, we now pro-
vide details on aspects of their implementation, which we found to have a
significant impact on performance in practice:

Document Splits. Collection frequencies of individual terms (i.e., uni-
grams) can be exploited to drastically reduce required work by splitting up
every document at infrequent terms that it contains. Thus, assuming that z
is an infrequent term given the current value of 7, we can split up a docu-
ment like (¢ b a z b a c) into the two shorter sequences (c b a) and (b ac).
Again, this is safe due to the APRIORI principle, since no frequent n-gram
can contain z. All methods profit from this splitting of documents — for large
values of ¢ in particular.

Sequence Encoding. It is inefficient to operate on documents in a tex-
tual representation. As a one-time preprocessing, we therefore convert our
document collections, so that they are represented as a dictionary, mapping
terms to term identifiers, and one integer term-identifier sequence for ev-
ery document. We assign identifiers to terms in descending order of their
collection frequency to optimize compression. From there on, our imple-
mentation internally only deals with arrays of integers. Whenever serialized
for transmission or storage, these are compactly represented using variable-
byte encoding [42]. This also speeds up sorting, since n-grams can now be
compared using integer operations as opposed to operations on strings, thus
requiring generally fewer machine instructions. Compact sequence encoding
benefits all methods — in particular APRIORI-SCAN with its repeated scans
of the document collection.

Key-Value Store. For APRIORI-SCAN and APRIORI-INDEX, reducers

potentially buffer a lot of data, namely, the dictionary of frequent (k — 1)-
grams or the set of posting lists to be joined. Our implementation keeps this
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data in main memory as long as possible. Otherwise, it migrates the data
into a disk-resident key-value store (Berkeley DB Java Edition [3]). Most
main memory is then used for caching, which helps APRIORI-SCAN in par-
ticular, since lookups of frequent (k — 1)-grams typically hit the cache.

Hadoop-Specific Optimizations that we use in our implementation
include local aggregation (cf. Mapper #1 in Algorithm 3), Hadoop’s dis-
tributed cache facility, raw comparators to avoid deserialization and object
instantiation, as well as other best practices (e.g., described in [41]).

How easy to implement are the methods presented in previous sections?
While hard to evaluate systematically, we still want to address this question
based on our own experience. NAIVE is the clear winner here. Implementa-
tions of the APRIORI-based methods, as explained in Section 3, require vari-
ous tweaks (e.g., the use of a key-value store) to make them work. SUFFIX-o
does not require any of those and, when Hadoop is used as a MapReduce
implementation, can be implemented using only on-board functionality.
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7 Experimental Evaluation

We conducted comprehensive experiments to compare the different methods
and understand their relative benefits and trade-offs. Our findings from these
experiments are the subject of this section.

7.1 Setup & Implementation

Cluster Setup. All experiments were run on a local cluster consisting of
ten Dell R410 server-class computers, each equipped with 64 GB of main
memory, two Intel Xeon X5650 6-core CPUs, and four internal 2 TB SAS
7,200 rpm hard disks configured as a bunch-of-disks. Debian GNU /Linux
5.0.9 (Lenny) was used as an operating system. Machines in the cluster are
connected via 1 GBit Ethernet. We use Cloudera CDH3u0 as a distribution
of Hadoop 0.20.2 running on Oracle Java 1.6.0_26. One of the machines acts
as a master and runs Hadoop’s namenode and jobtracker; the other nine
machines are configured to run up to ten map tasks and ten reduce tasks in
parallel. To restrict the number of map/reduce slots, we employ a capacity-
constrained scheduler pool in Hadoop. When we state that n map/reduce
slots are used, our cluster executes up to n map tasks and n reduce tasks
in parallel. Java virtual machines to process tasks are always launched with
4 GB heap space.

Implementation. All methods are implemented in Java (JDK 1.6) ap-
plying the optimizations described in Section 6 to the extent possible and
sensible for each of them.

Methods. We compare the methods NAIVE, APRIORI-SCAN, APRIORI-
INDEX, and SUFFIX-o in our experiments. For APRIORI-INDEX, we set
K = 4, so that the method directly computes collection frequencies of n-
grams having length four or less. We found this to be the best-performing
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NYT C09

# documents 1,830, 592 50,221,915
# term occurrence 1,049, 440,645 21,404, 321,682
# distinct terms 345, 827 979,935
# sentences 55,362,552  1,257,357,167
sentence length (mean) 18.96 17.02
sentence length (stddev) 14.05 17.56

Table 7.1: Dataset characteristics

parameter setting in a series of calibration experiments.

Measures. For our experiments in the following, we report as perfor-
mance measures:

(a) wallclock time as the total time elapsed between launching a method
and receiving the final result (possibly involving multiple Hadoop jobs),

(b) bytes transferred as the total amount of data transferred between map-
and reduce-phase(s) (obtained from Hadoop’s counter MAP_OUTPUT _BYTES),

(¢c) # records as the total number of key-value pairs transferred and sorted
between map- and reduce-phase(s) (obtained from Hadoop’s counter
MAP_OUTPUT_RECORDS).

For APRIORI-SCAN and APRIORI-INDEX, measures (b) and (c) are aggre-
gates over all Hadoop jobs launched. All measurements reported are based
on single runs and were performed with exclusive access to the Hadoop clus-
ter, i.e., without concurrent activity by other jobs, services, or users.

7.2 Datasets

We use two publicly-available real-world datasets for our experiments, namely:

e The New York Times Annotated Corpus [7] consisting of more
than 1.8 million newspaper articles from the period 1987-2007 (NYT);

e ClueWeb09-B [6], as a well-defined subset of the ClueWeb09 corpus
of web documents, consisting of more than 50 million web documents
in English language that were crawled in 2009 (CW).
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These two are extremes: NYT is a well-curated, relatively clean, lon-
gitudinal corpus, i.e., documents therein have a clear structure, use proper
language with few typos, and cover a long time period. CW is a “World Wild
Web” corpus, i.e., documents therein are highly heterogeneous in structure,
content, and language.

For NYT a document consists of the newspaper article’s title and body.
To make CW more handleable, we use boilerplate detection as described
by Kohlschiitter et al. [25] and implemented in boilerpipe’s [4] default ex-
tractor, to identify the core content of documents. On both datasets, we
use OpenNLP [2] to detect sentence boundaries in documents. Sentence
boundaries act as barriers, i.e., we do not consider n-grams that span across
sentences in our experiments. As described in Section 6, in a pre-processing
step, we convert both datasets into sequences of integer term-identifiers. The
term dictionary is kept as a single text file; documents are spread as key-value
pairs of 64-bit document identifier and content integer array over a total of
256 binary files. Table 7.1 summarizes characteristics of the two datasets.

7.3 Output Characteristics

Let us first look at the n-gram statistics that (or, parts of which) we expect
as output from all methods. To this end, for both document collections,
we determine all n-grams that occur at least five times (i.e., 7 = 5 and
o = 00). We bin n-grams into 2-dimensional buckets of exponential width,
i.e., the n-gram s with collection frequency cf(s) goes into bucket (i, j) where
i = |logio|s|| and j = |logiocf(s)]. Figure 7.1 reports the number of n-
grams per bucket.

The figure reveals that the distribution is biased toward short and less
frequent n-grams. Consequently, as we lower the value of 7, all methods
have to deal with a drastically increasing number of n-grams. What can
also be seen from Figure 7.1 is that, in both datasets, n-grams exist that
are very long, containing hundred or more terms, and occur more than
ten times in the document collection. Examples of long n-grams that we
see in the output include ingredient lists of recipes (e.g.,...1 tablespoon
cooking o0il...) and chess openings (e.g., e4 e5 2 nf3...) in NYT; in CW
they include web spam (e.g., travel tips san miguel tourism san miguel
transport san miguel...) as well as error messages and stack traces from
web servers and other software (e.g., ...php on line 91 warning...) that
also occur within user discussions in forums. For the APRIORI-based meth-
ods, such long n-grams are unfavorable, since they require many iterations
to identify them.
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Figure 7.1: Output characteristics as # of n-grams s with c¢f(s) > 5 per
n-gram length and collection frequency

7.4 Use Cases

As a first experiment, we investigate how the methods perform for parameter
settings chosen to reflect two typical use cases, namely, training a language
model and text analytics. For the first use case, we set 7 = 10 on NYT
and 7 = 100 on CW, as relatively low minimum collection frequencies, in
combination with ¢ = 5. The n-gram statistics made public by Google [5],
as a comparison, were computed with parameter settings 7 = 40 and 0 = 5
on parts of the Web. For the second use case, we choose o = 100, as a
relatively high maximum sequence length, combined with 7 = 100 on NYT
and 7 = 1,000 on CW. The idea in the analytics use case is to identify
recurring fragments of text (e.g., quotations or idioms) to be analyzed further
(e.g., their spread over time).

Figure 7.2 reports wallclock-time measurements obtained for these two
use cases with 64 map/reduce slots. For our language-model use case, SUF-
FIX-o outperforms APRIORI-SCAN as the best competitor by a factor 3z on
both datasets. For our analytics use case, we see a factor 12z improvement
over APRIORI-INDEX as the best competitor on NYT; on CW SUFFIX-0 still
outperforms the next best APRIORI-SCAN by a factor 1.5z. Measurements
for NAIVE on CW in are missing, since the method did not complete in
reasonable time.

7.5 Varying Minimum Collection Frequency

Our second experiment studies how the methods behave as we vary the min-
imum collection frequency 7. We use a maximum length ¢ = 5 and ap-
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Figure 7.2: Wallclock times in minutes for (a) training a language model
(0 =5,NYT:7=10/ CW: 7 =100) and (b) tezt analytics (c = 100, NYT:
7 =100 / CW: 7 =1,000) as two typical use cases

ply all methods to the entire datasets. Measurements are performed using
64 map/reduce slots and reported in Figure 7.3.

We observe that for high minimum collection frequencies, SUFFIX-o per-
forms as well as the best competitor APRIORI-SCAN. For low minimum
collection frequencies, it significantly outperforms the other methods. Both
APRIORI-based method show steep increases in wallclock time as we lower
the minimum collection frequency — especially when we reach the lowest value
of 7 on each document collection. This is natural, because for both methods
the work that has to be done in the k-th iteration depends on the number
of (k — 1)-grams output in the previous iteration, which have to be joined
or kept in a dictionary, as described in Section 3. As observed in Figure 7.1
above, the number of k-grams grows drastically as we decrease the value of
7. When looking at the number of bytes and the number of records trans-
ferred, we see analogous behavior. For low values of 7, SUFFIX-o transfers
significantly less data than its competitors.

7.6 Varying Maximum Length

In this third experiment, we study the methods’ behavior as we vary the
maximum length . The minimum collection frequency is set as 7 = 100 for
NYT and 7 = 1,000 for CW to reflect their different scale. Measurements are
performed on the entire datasets with 64 map/reduce slots and reported in
Figure 7.4. Measurements for ¢ > 5 are missing for NATVE on CW, since the
method did not finish within reasonable time for those parameter settings.
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SUFFIX-o is on par with the best-performing competitor on CW, when
considering n-grams of length up to 50. For o = 100, it outperforms the next
best APRIORI-SCAN by a factor 1.5z. On NYT, Suffix-o consistently outper-
forms all competitors by a wide margin. When we increase the value of o, the
APRIORI-based methods need to run more Hadoop jobs, so that their wall-
clock times keep increasing. For NAIVE and SUFFIX-o, on the other hand,
we observe a saturation of wallclock times. This is expected, since these
methods have to do additional work only for input sequences longer than o
consisting of terms that occur at least 7 times in the document collection.
When looking at the number of bytes and the number of records transferred,
we observe a saturation for NAIVE for the reason mentioned above. For SUF-
FIX-o only the number of bytes saturates, the number of records transferred
is constant, since it depends only on the minimum collection frequency 7.
Further, we see that SUFFIX-o consistently transfers fewest records.

7.7 Scaling the Datasets

Next, we investigate how the methods react to changes in the scale of the
datasets. To this end, both from NYT and CW, we extract smaller datasets
that contain a random 25%, 50%, or 75% subset of the documents. Again,
the minimum collection frequency is set as 7 = 100 for NYT and 7 = 1,000
for CW. The maximum length is set as ¢ = 5. Wallclock times are measured
using 64 map/reduce slots.

From Figure 7.5, we observe that NATVE handles additional data equally
well on both datasets. The other methods’ scalability is comparable to that of
NAIVE on CW, as can be seen from their almost-identical slopes. On NYT,
in contrast, APRIORI-SCAN, APRIORI-INDEX, and SUFFIX-o cope slightly
better with additional data than NATIVE. This is due to the different charac-
teristics of the two datasets.

7.8 Scaling Computational Resources

Our final experiment explores how the methods behave as we scale computa-
tional resources. Again, we set 7 = 100 for NYT and 7 = 1,000 for CW. All
methods are applied to the 50% samples of documents from the collections.
We vary the number of map/reduce slots as 16, 32, 48, and 64. The num-
ber of cluster nodes remains constant in this experiment, since we cannot
add/remove machines to/from the cluster due to organizational restrictions.
We thus only vary the amount of parallel work every machine can do; their
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total number remains constant throughout this experiment.

We observe from Figure 7.6 that all methods show comparable behavior
as we make additional computational resources available. Or, put differently,
all methods make equally effective use of them. What can also be observed
across all methods is that the gains of adding more computational resources
are diminishing — because of mappers and reducers competing for shared
devices such as hard disks and network interfaces. This phenomenon is more
pronounced on NYT than CW, since methods take generally less time on the
smaller dataset, so that competition for shared devices is fiercer and has no
chance to level out over time.

Summary

What we see in our experiments is that SUFFIX-o outperforms its competitors
when long and/or less frequent n-grams are considered. Even otherwise,
when the focus is on short and/or very frequent n-grams, SUFFIX-o performs
never significantly worse than the other methods. It is hence robust and can
handle a wide variety of parameter choices. To substantiate this, consider
that SUFFIX-0 could compute statistics about arbitrary-length n-grams that
occur at least five times (i.e., 7 =5 and 0 = c0), as reported in Figure 7.1,
in less than six minutes on NYT and six hours on CW.
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8 Related Work

We now discuss the connection between this work and existing literature,
which can broadly be categorized into:

Frequent Pattern Mining goes back to the seminal work by Agrawal
et al. [8] on identifying frequent itemsets in customer transactions. While the
APRIORI algorithm described therein follows a candidate generation & prun-
ing approach, Han et al. [21] have advocated pattern growth as an alternative
approach. To identify frequent sequences, which is a problem closer to our
work, the same kinds of approaches can be used. Agrawal and Srikant [10, 38|
describe candidate generation & pruning approaches; Pei et al. [37] propose a
pattern-growth approach. SPADE by Zaki [45] also generates and prunes can-
didates but operates on an index structure as opposed to the original data.
Parallel methods for frequent pattern mining have been devised both for
distributed-memory [19] and shared-memory machines [36, 44]. Little work
exists that assumes MapReduce as a model of computation. Li et al. [26] de-
scribe a pattern-growth approach to mine frequent itemsets in MapReduce.
Huang et al. [22] sketch an approach to maintain frequent sequences while
sequences in the database evolve. Their approach is not applicable in our
setting, since it expects input sequences to be aligned (e.g, based on time)
and only supports document frequency. For more detailed discussions, we
refer to Ceglar and Roddick [14] for frequent itemset mining, Mabroukeh
and Ezeife [30] for frequent sequence mining, and Han et al. [20] for frequent
pattern mining in general.

Natural Language Processing & Information Retrieval. Given
their role in NLP, multiple efforts [11, 15, 18, 23, 39] have looked into n-gram
statistics computation. While these approaches typically consider document
collections of modest size, recently Lin et al. [27] and Nguyen et al. [34] tar-
geted web-scale data. Among the aforementioned work, Huston et al. [23] is
closest to ours, also focusing on less frequent n-grams and using a cluster of
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machines. However, they only consider n-grams consisting of up to eleven
words and do not provide details on how their methods can be adapted to
MapReduce. Yamamoto and Church [43] augment suffix arrays, so that the
collection frequency of substrings in a document collection can be determined
efficiently. Bernstein and Zobel [12] identify long n-grams as a means to spot
co-derivative documents. Brants et al. [13] and Wang et al. [40] describe
the n-gram statistics made available by Google and Microsoft, respectively.
Zhai [46] gives details on the use of n-gram statistics in language models.
Michel et al. [32] demonstrated recently that n-gram time series are powerful
tools to understand the evolution of culture and language.

MapReduce Algorithms. Several efforts have looked into how specific
problems can be solved using MapReduce, including all-pairs document sim-
ilarity [28], processing relational joins [35], coverage problems [16], content
matching [33]. However, no existing work has specifically addressed comput-
ing n-gram statistics in MapReduce.
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9 Conclusions

In this work, we have presented SUFFIX-o, a novel method to compute n-
gram statistics using MapReduce as a platform for distributed data process-
ing. Our evaluation on two real-world datasets demonstrated that SUFFIX-
o outperforms MapReduce adaptations of APRIORI-based methods signifi-
cantly, in particular when long and/or less frequent n-grams are considered.
Otherwise, SUFFIX-o is robust, performing at least on par with the best
competitor. We also argued that our method is easier to implement than
its competitors, having been designed with MapReduce in mind. Finally, we
established our method’s versatility by showing that it can be extended to
produce maximal/closed n-grams and perform aggregations beyond occur-
rence counting.
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