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Abstract

Matrix factorizations—where a given data matrix is approximated by a prod-
uct of two or more factor matrices—are powerful data mining tools. Among
other tasks, matrix factorizations are often used to separate global structure
from noise. This, however, requires solving the ‘model order selection prob-
lem’ of determining where fine-grained structure stops, and noise starts, i.e.,
what is the proper size of the factor matrices.

Boolean matrix factorization (BMF)—where data, factors, and matrix
product are Boolean—has received increased attention from the data mining
community in recent years. The technique has desirable properties, such as
high interpretability and natural sparsity. However, so far no method for
selecting the correct model order for BMF has been available. In this paper
we propose to use the Minimum Description Length (MDL) principle for this
task. Besides solving the problem, this well-founded approach has numerous
benefits, e.g., it is automatic, does not require a likelihood function, is fast,
and, as experiments show, is highly accurate.

We formulate the description length function for BMF in general—making
it applicable for any BMF algorithm. We discuss how to construct an ap-
propriate encoding, starting from a simple and intuitive approach, we arrive
at a highly efficient data-to-model based encoding for BMF. We extend an
existing algorithm for BMF to use MDL to identify the best Boolean ma-
trix factorization, analyze the complexity of the problem, and perform an
extensive experimental evaluation to study its behavior.

Keywords

Boolean Matrix Factorization, Model Order Selection, Model Selection, Pat-
tern Sets, Summarization, Minimum Description Length Principle, MDL,
Parameter Free
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1 Introduction

A typical task in data mining is to find observations and variables that behave
similarly. Consider, for instance, the standard example of supermarket basket
data. We are given transactions over items, and we want to find groups of
transactions and groups of items such that we can (approximately) represent
our data in terms of these groups, instead of the original transactions. Such
representation is called a low-dimensional representation of the data, and is
usually obtained using some form of matrix factorization.

In matrix factorizations the input data (represented as a matrix) is de-
composed into two (or more) factor matrices. Usually the aim is to have low-
dimensional factor matrices whose product approximates the original matrix
well. By imposing different constraints, one obtains different factorizations.
Perhaps the two best-known factorizations are Singular Value Decomposi-
tion (SVD), closely related to Principal Component Analysis (PCA), and
Non-negative Matrix Factorization (NMF). SVD and PCA restrict the fac-
tor matrices to be orthogonal, while NMF requires the data and the factor
matrices to be non-negative.

When the input data is Boolean, (that is, contains only 0s and 1s, as
is typical with supermarket basket data), one can apply Boolean Matrix
Factorization (BMF). Similarly to NMF, it restricts the factor matrices for
added interpretability and sparsity. In BMF, the factor matrices are re-
quired to be Boolean, i.e., contain only 0s and 1s. Also the matrix product is
changed, from normal to Boolean. As a consequence, it is possible that BMF
obtains smaller reconstruction error than SVD for the same decomposition
size—something that NMF, by definition, cannot do (Miettinen, 2009). Fur-
thermore, it can be shown that for sparse Boolean matrices, there is always
a sparse exact factorization (Miettinen, 2010).

But no matter what factorization method one applies, one always has
to solve the model order selection problem: what is the correct number of
latent dimensions? In some situations the answer is obvious, for example, if
a user wants to have a three-dimensional representation of the data (say, for
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visualization). But when the user wants a good description of the structure
in the data, selecting the number of latent dimensions comes down to the
question: what is structure and what is noise.

Whereas various methods have been proposed to answer this question
for non-Boolean matrix factorization, varying from statistical methods based
on likelihood scores (such as the Bayesian Information Criterion, BIC) to
subjective analysis of error (so-called elbow methods), there is no known
applicable method for selecting the model order for BMF (other than visual
analysis of errors).

In this paper, we study the model order selection problem in the frame-
work of BMF. To that end, we merge two orthogonal lines of research, namely
those of Boolean matrix factorizations and Minimum Description Length
(MDL) principle. We formulate description length functions that can be
used for model order selection with any BMF algorithm. We then extend
an existing algorithm for BMF to use MDL in an effective way, and via ex-
tensive experimental evaluation we show that using our description length
formulation, the algorithm is able to identify the correct number of latent
dimensions in synthetic and real-world BMF tasks.

Besides studying how we can apply MDL to the end of model order se-
lection for BMF, a specific goal of this paper is to construct a good MDL
encoding for BMF. This is not a trivial task, as there are no known Universal
Codes for BMF models; these are encodings for which the expected lengths
of the code words are within a constant factor of the true probability dis-
tribution underlying the data, regardless of what this distribution actually
is (Grünwald, 2007). As such, we will have to device a two-part MDL en-
coding that rewards structure and punishes noise. This involves a number
of choice, which by MDL, we can make in a principled manner: fewer bits
are better. We will start by considering simple, intuitive, encodings, which
we will incrementally improve through established information theoretic in-
sights. We will empirically explore the quality of these encodings, and show
the necessity of using more refined insights in order to obtain good model
order estimates.

A preliminary version of this paper was published as Miettinen and Vreeken
(2011). In this extended version, we improve in a number of ways. First of
all, we have refined our encodings, and introduce an additional encoding for
BMF that employs highly efficient data-to-model codes. Second, we provide
much more extensive experimental evaluation of the proposed encodings, as
well as comparison to two recent proposals, i.e., PaNDa (Lucchese et al.,
2010) and minimum transfer cost principle (Frank et al., 2011). Third, we
present a proof that optimizing a non-trivial encoding for BMF is NP-hard.
To the best of our knowledge, this is the first proof showing this kind of
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hardness results for the use of MDL in pattern mining, or Boolean matrix
factorizations.

The remainder of this paper is organized as follows. First, in Section 2
we discuss related work. Then, in Section 3 we give the preliminaries and
notation used throughout the paper. Section 5 gives a short primer on both
Boolean matrix factorization, and the Minimum description length principle,
before developing description length functions for BMF, and discussing com-
putational complexity of the minimisation problem. We empirically evaluate
our encodings on real and synthetic data in Section 6, including a comparison
to competing methods. In Section 7 we discuss our methods, and conclude
the paper with Section 8.
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2 Related Work

Matrix factorization methods such as Singular Value Decomposition (SVD) (Golub
and Van Loan, 1996) or Non-negative Matrix Factorization (NMF) (Paatero
and Tapper, 1994) are ubiquitous in data mining and machine learning. Two
of the most popular uses for matrix factorizations are separating structure
and noise, and learning missing values of matrices.

Boolean matrix factorizations (BMF) have been studied extensively in
combinatorics (see, e.g., Monson et al. (1995) and references therein). The
use of Boolean factorizations in data mining was proposed by Miettinen
et al. (2008). There exist many data mining problems and techniques re-
lated to BMF. We give an overview below, but refer to Miettinen (2009)
for a more extensive discussion on methods related to BMF. Outside data
mining, Boolean factorizations have found application in, e.g., finding roles
for access control (Vaidya et al., 2007; Streich et al., 2009).

The Asso algorithm to solve BMF was proposed by Miettinen et al.
(2008). Later, Lu et al. (2008) proposed a heuristic based on a mixed-integer-
programming formulation. Independently, Belohlavek and Vychodil (2010)
gave an algorithm for computing the Boolean rank of a matrix based on solv-
ing the Set Cover problem. At worst case this algorithm can take exponential
time but recently it was shown that with certain sparsity constraints, the al-
gorithm runs in polynomial time and provides a logarithmic approximation
guarantee (Miettinen, 2010).

Matrix factorizations have a long history in various fields of science. SVD
and its close relative PCA have been of particular importance. Hence, it
is no surprise that many methods for model order selection for these two
decompositions have been proposed. One of the earliest suggestions was
the Guttman–Kaiser criterion, dating back to the Fifties (see Yeomans and
Golder (1982)). In that criterion, one selects those principal vectors that
have corresponding principal value greater than 1. It is perhaps not surpris-
ing that this simple criterion has shown to perform poorly (Yeomans and
Golder, 1982). Another often-used method is Cattell’s scree test (Cattell,

5



1966), where one selects the point where the ratio between two consecutive
singular values (in descending order) is high. Usually, this is done by visual
analysis, but automated methods have also been proposed (e.g., Zhu and
Ghodsi (2006)).

Since these two classical methods, researchers have proposed many al-
ternative methods. For example, in a probabilistic framework one can use
Bayesian model selection (e.g. Minka (2001); Schmidt et al. (2009)). For
BMF, however, it would be very hard, if not impossible, to construct a good
likelihood function as it is unclear which probability distribution to use. Yet
another approach is to use cross validation. While this is perhaps mostly used
when learning missing values of the matrix, it can also applied to the noise
removal. Assumption is that when the model order is too high, the factors
start to specialize to noise, and hence, the cross-validation error increases.
Normally, hold-out set would contain either rows or columns, but not both,
and the test error is computed against using optimal (or as good as possible)
combination of row factors for each row in the test set. This, however, yields
to severe over-fitting problems as there is no penalty associated on having
more factors.

To overcome this, Owen and Perry (2009) proposed a method to leave out
a sub-matrix. The method is based on the assumption that the remaining
matrix has the same rank as the original matrix, as this is needed to fit the
factors to the test data. The method of Owen and Perry (2009) unfortunately
does not work with BMF, as it requires operations not available in Boolean
matrix algebra.

Recently Frank et al. (2011) proposed a method to apply cross-validation
to BMF (among others) they call Minimum Transfer Cost Principle. In their
approach the hold-out set consist of rows (or columns) of the data matrix
withhold from the algorithm. But to compute the test error, they map each
row in the hold-out set into the training data row that is closest to it and
the test error for the row is computed using exactly the same row factors as
were used with the mapped data row.

The concept of intrinsic dimension of the data is related to the model
order. While often the intrinsic dimension refers to the number of variables
needed to explain the data completely (e.g., the rank of a matrix), also noise-
invariant approaches have been studied (Pestov, 2008). Tatti et al. (2006)
defined intrinsic dimensionality to Boolean data based on fractal dimensions.

As discussed by Faloutsos and Megalooikonomou (2007), Kolomogorov
Complexity, or its practical implementation, the Minimum Description Length
principle (Grünwald, 2007), are powerful, well-founded, and natural approaches
to data mining, as they allows us to clearly identify the most succinct and
least redundant model for a dataset. As such, MDL has been successfully
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employed for a wide range of data mining tasks, including, for example, dis-
cretization (Fayyad and Irani, 1993), imputation (Vreeken and Siebes, 2008),
and clustering (Cilibrasi and Vitányi, 2005; Keogh et al., 2004; van Leeuwen
et al., 2009).

Basically, a Boolean matrix factorization returns a group of patterns (the
left-hand matrix B), and the occurrences per pattern (the right-hand matrix
C). As such, BMF essentially describes the data with a set of patterns.
Therefore, pattern set mining techniques are related.

Krimp (Vreeken et al., 2011; Siebes et al., 2006) pioneered the use of
MDL for identifying good pattern sets, and selects that group of frequent
itemsets that describes the data best. LESS (Heikinheimo et al., 2009) and
Pack (Tatti and Vreeken, 2008) follow a similar approach, but respectively
describe data using low-entropy sets and decision trees. A major difference
between these methods and BMF is that rows are only covered using subsets
of that row, and approximate matches are not allowed. Further, Krimp and
LESS do not allow overlap between patterns covering the same row. All three
typically return many more, and much more specific, patterns than BMF.

Summarization, proposed by Chandola and Kumar (2007), is a compression-
based approach that identifies a group of itemsets such that each transaction
is summarized by one itemset with as little loss of information as possible.
Wang and Karypis (2004) find summary sets, i.e., sets of itemsets such that
each transaction is (partially) covered by the largest itemset that is frequent.
In BMF, however, we do not require every row to be modeled by at least one
factor.

More closely related to BMF is Tiling (Geerts et al., 2004), which es-
sentially employs the well known greedy set-cover algorithm to iteratively
cover the data with that itemset that covers the most uncovered 1s in the
data. Kontonasios and De Bie (2010) iteratively discover the most interest-
ing ‘noisy tile’, where they define interestingness through a local MDL score.
Unlike our situation, it does not return a model for the data, but rather
orders a given collection of itemsets.

Perhaps closest to our work, however, is the PaNDa algorithm proposed
by Lucchese et al. (2010). PaNDa is doing Boolean matrix factorization,
but instead of minimizing just the error, it tries to minimize the error and
the complexity of the factors. There are few important differences to present
work. First, PaNDa uses different approach on doing the factorization.
Their approach is to start by finding a good core tile, i.e. a submatrix full of
1s. This core is then extended to also include rows and columns that contain
0s. After the extension, next core is found, excluding all those 1s already
covered by the previously-found factors. Another difference between PaNDa
and the present work is that PaNDa uses only very coarse measure of the
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complexity of the model, namely, the number of 1s in the factors and in the
error. Our approach differs from this in two major ways: we count the actual
number of bits needed to encode the factors and the error allowing us to use
sophisticated encodings to actually minimize the encoding length.
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3 Notation

Before we introduce the theory behind our approach, we introduce the nota-
tion we will use throughout the paper.

We identify datasets as Boolean matrices. Matrices are denoted by upper-
case bold letters (A). Vectors are lower-case bold letters (a). If A is an
n-by-m Boolean matrix, |A| denotes the number of 1s in it, i.e., |A| =∑

i,j aij. We extend the same notation to Boolean vectors. The scalar prod-
uct of two vectors x and y is denoted as 〈x,y〉.

If X and Y are two n-by-m Boolean matrices, we have the following
element-wise matrix operations. The Boolean sum X ∨ Y is the normal
matrix sum with addition defined as 1 + 1 = 1. The Boolean subtraction
X 	Y is the normal element-wise subtraction with 0 − 1 = 0. Notice that
this does not define an inverse of Boolean sum, as 1+1−1 = 0. The Boolean
element-wise product X∧Y is defined as normal element-wise matrix product.
The exclusive or X⊕Y is the normal matrix sum with addition defined as
1 + 1 = 0 (i.e., addition is done over the field Z2).

Let X be n-by-k and Y be k-by-m Boolean matrices (i.e., X and Y take
values from {0, 1}). Their Boolean matrix product, X ◦ Y, is the Boolean
matrix Z with zij =

∨k
l=1 xilylj, that is, Boolean matrix product is the normal

matrix product using the Boolean addition.
The Boolean rank of an n-by-m Boolean matrix A, rankB(A), is the least

integer k such that there exists an n-by-k Boolean matrix B and a k-by-m
Boolean matrix C for which A = B ◦ C. Matrices B and C are the factor
matrices of A, and the pair (B,C) is the (exact) Boolean factorization of A.
If A 6= B ◦C (but the dimensions match), the factorization is approximate.

Further, all logarithms are of base 2, and we employ the usual convention
that 0 log 0 = 0.
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4 Boolean Matrix Factorization

In this section we introduce Boolean matrix factorization (BMF) and give a
short description of Asso, one of the existing algorithms for Boolean matrix
factorization.

4.1 BMF, a brief primer

In Boolean matrix factorization, the goal is to (approximately) represent a
Boolean matrix as the Boolean product of two Boolean matrices. The crux is
the Boolean product: as the product is not over a field, but over a semiring
(0, 1,∨,∧), Boolean matrix factorizations have some unique properties. For
example, the Boolean rank of a matrix A can be only a logarithm of the
normal matrix rank of A (Monson et al., 1995). As a consequence, Boolean
factorizations can yield smaller reconstruction error than factorizations of
same size done under the normal arithmetic. Unfortunately, unlike normal
rank, computing the Boolean rank is NP-hard (Nau et al., 1978), and even
approximation is hard (Miettinen et al., 2008) (although recent work shows
that logarithmic approximations can be obtained by assuming sparsity (Mi-
ettinen, 2010)).

But even assuming we could compute the Boolean rank efficiently, this is
rarely what we actually want. Similarly to normal rank, one would assume
that most of the real-world data matrices have full or almost full Boolean
rank, due to noise; instead, we often want to have a low-rank approximation
of a matrix. Such approximation is usually interpreted to contain the latent
structure of the data, while the error it causes is regarded as the noise. When
the target rank is given, we have the Boolean matrix factorization problem:

Problem 1 (BMF). Given n-by-m Boolean matrix A and integer k, find
n-by-k Boolean matrix B and k-by-m Boolean matrix C such that B and C
minimize

|A⊕ (B ◦C)| . (4.1)
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Figure 4.1: An approximate Boolean matrix factorization of an 11-by-11
matrix A (left) into Boolean rank-3 factor matrices B and C (middle), and
the Boolean matrix product B ◦ C (right). The colors denote the different
factors; white matrix elements are 0 and non-white elements are 1.

Example 1. Figure 4.1 shows an approximate Boolean matrix factorization
of an 11-by-11 matrix A (left) into 11-by-3 and 3-by-11 matrices B and C
(middle), and the Boolean matrix product B◦C (right). Using normal matrix
product, BC would become non-binary. For example, row 7, column 6 of
BC would be 3, not 1. With this decomposition the error |A⊕ (B ◦C)| = 7.

♦

Unsurprisingly, also this optimization problem is NP-hard, and has strong
inapproximability results in terms of multiplicative and additive errors (see Mi-
ettinen (2009)). But there is also another, more fundamental problem: the
formulation of the BMF problem requires us to have a priori knowledge on
k, the Boolean rank of the decomposition. With the structure/noise inter-
pretation above, this means that we have to have a priori knowledge of the
dimensionality of the latent structure—something we in practice are most
likely not to have.

This problem is, by no means, unique to BMF. Indeed, the same issue un-
derlies any matrix factorization method. And also in clustering, for example,
we have to deal with the same problem, known as the model order selection
problem. The main contribution of this paper is to provide a method to
(approximately) solve the model order selection problem in the BMF frame-
work.

4.2 The Asso Algorithm

Knowing the latent dimensionality of the data is usually not enough—we also
want to know the latent factors, i.e., we want to solve the BMF problem. As
the problem is NP-hard, even to approximate well, we will solve it using a
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heuristic approach. We have opted to use an existing algorithm for BMF,
called Asso (Miettinen et al., 2008). We chose to use Asso as previous
studies have shown it performs reasonably well (Miettinen et al., 2008; Streich
et al., 2009; Miettinen, 2010), and because the algorithm is hierarchical, i.e.,
the rank-(k − 1) decomposition gives the first k − 1 columns of B (and
the first k − 1 rows of C) of rank-k decomposition. The latter property is
particularly useful when doing the model order selection, as we will see later.
We emphasize, though, that the proposed model order selection method is
not bound to any specific algorithm for BMF.

For the sake of completeness, we provide a quick explanation of how Asso
works. For more detailed explanation, see Miettinen et al. (2008). The name
of Asso stems from the algorithm using pairwise association accuracies to
generate so-called candidate columns. More precisely, Asso generates an
n-by-n matrix X = (xij) with xij = 〈ai, aj〉 / 〈aj, aj〉, where ai is the jth
row of A. That is, xij is the association accuracy for rule aj ⇒ ai. Matrix
X is then rounded to have Boolean values. The rounding is done from a
user-specified threshold τ ∈ (0, 1].

The columns of B are selected from the columns of X. The selection of
columns of B happens in a greedy fashion: each not-used column of rounded
X is tried, and the selected column is the one that maximizes the gain,
defined being the number of newly-covered 1s of A minus the number of
newly-covered 0s of A. Element aij is newly-covered if (B ◦C)ij = 0 before
adding the new column to B. The row of C corresponding to the column
of B is build using the same technique: if the gain of using the new column
of B to cover a column of A is positive, then the corresponding element of
the new row of C is set to 1; otherwise it is 0. The gain is computed by the
function cover:

cover(A,B,C) = |{(i, j) : aij = 1 ∧ (B ◦C)ij = 1}|
− |{(i, j) : aij = 0 ∧ (B ◦C)ij = 1}| .

(4.2)

The pseudo code for Asso is given in Algorithm 1.
As Asso never tracks back its decisions, it clearly has the desired hierar-

chical property. But Asso also requires the user to set an extra parameter:
the rounding threshold τ . Selecting this parameter can be daunting, as it is
hard to anticipate the difference it makes to the factorization. To solve this
problem, we will use our model order selection mechanism to slightly larger
question of model selection and in addition to selecting the best k, we also
select the best τ .
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Algorithm 1 An algorithm for the BMF using association rules (Asso)

Input: A matrix A ∈ {0, 1}n×m for data, a positive integer k, and a threshold
value τ ∈ (0, 1].

Output: Matrices B ∈ {0, 1}n×k and C ∈ {0, 1}k×m such that B◦C approximates
A.

1: function Asso(A, k, τ, w)
2: X = (xij), xij = 1(〈ai,aj〉 / 〈aj ,aj〉 ≥ τ)
3: B← [ ],C← [ ] . B and C are empty matrices.
4: for l = 1, . . . , k do . Select the k basis vectors from X.
5: (i, c)← arg max{cover(A, [B xi],

[
C
c

]
) : i ∈ {1, . . . , n}, c ∈ {0, 1}1×m}

6: B←
[
B xi

]
7: C←

[
C
c

]
8: end for
9: return B and C

10: end function
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5 MDL for BMF

In this section we give our approach for selecting model orders for BMF by
the Minimum Description Length principle.

5.1 MDL, a brief primer

The MDL (Minimum Description Length) (Rissanen, 1978; Grünwald, 2007)
principle, like its close cousin MML (Minimum Message Length) (Wallace,
2005), is a practical version of Kolmogorov complexity (Li and Vitányi, 1993).
All three embrace the slogan Induction by Compression. For MDL, this
principle can be roughly described as follows.

Given a set of models1 H, the best model H ∈ H is the one that minimizes

L(H) + L(D | H)

in which L(H) is the length, in bits, of the description of H, and L(D | H)
is the length, in bits, of the description of the data when encoded with H.

This is called two-part MDL, or crude MDL. As opposed to refined MDL,
where model and data are encoded together (Grünwald, 2007). We use two-
part MDL because we are specifically interested in the compressor: the fac-
torization that yields the best compression. Further, although refined MDL
has stronger theoretical foundations, it cannot be computed except for some
special cases. Note that MDL requires the compression to be lossless in order
to allow for fair comparison between different H ∈ H.

To use MDL, we have to define what our models H are, how a H ∈ H
describes a database, and how all of this is encoded in bits. Note, however,
that with MDL we are only interested in the length of the description, and
not in the encoded data itself. That is, we are only concerned with the length
of the used codes, and do not have to materialize the codes themselves.

1MDL-theorists talk about hypothesis in this context, hence the H.
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5.2 Encoding BMF

We now proceed to define how we can use MDL to identify the best Boolean
factorization (B,C) for a given dataset A.

Recall that an essential requirement of MDL is that the encoding is loss-
less. That is, whether or not a factorization (B,C) ∈ H for A is exact,
we need to be able to reconstruct A without loss. We do this by explicitly
encoding the difference, or error, between the original data A and its ap-
proximation as given by the Boolean product of its factor matrices B and
C, i.e., B ◦C. That is, we define error matrix E for A, B, and C, to be the
unique Boolean matrix of dimensions n-by-m such that

E = A⊕ (B ◦C) . (5.1)

Vice versa, when we are given matrices B, C, and E we can reconstruct
A without loss.

Example 2. Figure 5.1 shows matrix E for the example Boolean matrix
factorization we discussed in Example 1. From left to right, we have our
Boolean matrix A, the Boolean product of two factor matrices B ◦ C, and
the resulting error matrix E. If we transmit B, C, and E, the recipient can
reconstruct A without loss by taking the exclusive-OR between B ◦ C and
E.

The approximation of A by our example factorization leads to 7 errors.
Four of these errors are subtractive, ones covered by the approximation but
not present in A; the black squares in E within the grey outline of B ◦ C.
The remaining three errors are additive, ones in A that are not covered by
the approximation. ♦

Now, we can define the total compressed size L(A, H), in bits, for a
Boolean dataset A and a Boolean matrix factorization H = (B,C), with
H ∈ H, as

L(A, H) = L(H) + L(E) , (5.2)

where E follows from A and H, using Eq. 5.1. Following the MDL principle,
the best factorization for A is found by minimizing Eq. 5.2. As we will
discuss later, this is not as simple as it sounds. But let us first discuss how
we encode H and E, or most importantly, how many bits this requires.

We start by defining how to compute the number of bits required for a
factorization H = (B,C), of dimensions n-by-k and k-by-m, for B and C
respectively, as

L(H) = LN(n) + LN(m) + L(k) + L(B) + L(C) . (5.3)
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Figure 5.1: Example of a Boolean matrix A, and a lossless representation
thereof by the exclusive-OR between an approximation of A by the Boolean
product of two factor matrices, B ◦ C, and the error matrix or residual E.
Note that E consists of both additive and subtractive errors, resp. 1s that
exist in A, but not in B ◦C, and vice-versa.

That is, we encode the dimensions n, m, k, and then the content of the two
factor matrices. By explicitly encoding the dimensions of the matrices, we can
subsequently encode matrices B and C using an optimal prefix code (Cover
and Thomas, 2006).

To encode m and k, we use LN, the MDL optimal Universal code for
integers (Rissanen, 1983). A Universal code is a code that can be decoded
unambiguously without requiring the decoder to have any background infor-
mation, but for which the expected length of the code words are within a
constant factor of the true optimal code (Grünwald, 2007). With this encod-
ing, LN, the number of bits required to encode an integer n ≥ 1 is defined
as

LN(n) = log∗(n) + log(c0) , (5.4)

where log∗ is defined as log∗(n) = log(n) + log log(n) + · · · , where only the
positive terms are included in the sum. To make LN a valid encoding, c0 is
chosen as c0 =

∑
J≥1 2−LN(j) ≈ 2.865064 such that the Kraft inequality is

satisfied.
Note that, as desired, LN(n)+LN(m) is constant between any (B,C) ∈ H

with B◦C of dimensions n-by-m. (Which is the case when we regard Boolean
matrix factorizations of an n-by-m matrix A.)

As we want the selection for the best factorization to depend strictly on
the structure of the factorization and the error it introduces —and do not
want to introduce any bias to small k by the encoding of the value of k—we
do not encode k using LN (Eq. 5.4). Instead, we use a fixed number of bits,
i.e., block-encoding, which gives us

L(k) = log(min(m,n)) . (5.5)
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This gives us a number of bits in which we can encode values for k up to the
minimum of m and n. Note that larger values do not make sense in BMF,
as for k = min(m,n) there already is a trivial factorization (B,C) of A with
B = A and C the identity-matrix, or vice-versa.

With the dimensions encoded, we continue by encoding the factor ma-
trices B and C. To not introduce bias between different factors, these are
encoded per factor. That is, we encode B per row and C per column. For
transmitting the Boolean values of each factor we use an optimal prefix code,
for which Shannon entropy, − logP (x), gives us the optimal code lengths.
In order to use this optimal code, we need to first encode the probability
pbi

1 = P (1 | bi) = |bi|/n of encountering 1 in column i of B. As the max-
imum number of 1s in a column of B is n, we need k times log(n) bits to
encode these probabilities. This gives us, for B of n-by-k,

L(B) = k log(n) +
k∑

i=1

(
|bi|lbi

1 + (n− |bi|)lbi
0

)
(5.6)

in which k log(n) is the number of bits to transmit the number of 1s in each
column vector bi, and

lbi
1 = − log(pbi

1 ) = − log(
|bi|
n

) and lbi
0 = − log(pbi

0 ) = − log(
n− |bi|

n
)

are the optimal prefix code lengths for 1 and 0, respectively, for vector bi

corresponding to the ith column of B.
Analogously, we encode C, of k-by-m, per row and have

L(C) = k log(m) +
k∑

j=1

(
|cj|l

cj
1 + (m− |cj|)l

cj
0

)
(5.7)

with

l
cj
1 = − log(p

cj
1 ) = − log(

|cj|
m

) and l
cj
0 = − log(p

cj
0 ) = − log(

m− |cj|
m

)

where cj corresponds the jth row of C.
With the above definitions we now have all elements to calculate L(H).

By H, the receiver knows B and C, and only needs E to be able to lossless
reconstruct A. We will now discuss four increasingly involved alternatives
for encoding E; we will explore their quality experimentally in Section 6.

Example 3. As an example, let us compute L(H) for the factor matrices B
and C of Examples 1 and 2. Encoding the values of n and m, here 11 for
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both, takes LN(n) = LN(m) = 6.09 + 1.519 = 7.609 bits each. To encode k,
we use L(k) = log(min(m,n)) = log(11) = 3.459 bits.

Next, we consider L(B). To encode the number of 1s in each of the factors
we require k log(n) = 3 log 11 = 10.38 bits. The first column of B consists of
seven 1s and four 0s. Hence, as probabilities we resp. have pb1

1 = 7/11, and
pb1

0 = 4/11. The corresponding code lengths to encode a value then resp. are
lb1
1 = − log(pb1

1 ) = 0.65 bits, and lb1
0 = 1.46 bits. Encoding the values of the

first column of B hence takes 7× 0.65 + 4× 1.46 = 10.40 bits. Skipping the
details for the second and third column, we have for B a description length
of L(B) = 42.65 bits. For L(C) we arrive at 43.18 bits.

In total, for our example, the encoded cost of the model is L(H) =
2× 7.61 + 3.46 + 42.65 + 43.18 = 104.51 bits.

♦

5.2.1 Encoding E: Näıve Factors

As we are scoring Boolean matrix factorizations, it would be natural to also
encode the entries of E as a factorization, e.g., such that E = F ◦ G. Of
course, we have to keep in mind that B and C encode the structure in A,
whereas E encodes the noise, and noise by definition is unstructured. Hence,
we should not encode full rows or columns of E into one factor—as then we
are assuming structure. Instead, we have to encode each 1 in E in a separate
factor, i.e., separate columns/rows in F and G. The amount of bits this
requires is given by

Lf (E) = log(mn) + |E|
(
− (n− 1) log

(
n− 1

n

)
− log

(
1

n

)
− (m− 1) log

(
m− 1

m

)
− log

(
1

m

)) (5.8)

in which we essentially use the same encoding for the factors as in Eq. 5.6
and 5.7 (but with the extra knowledge that every row (resp., column) in the
factor matrices contains only one 1). We refer to this encoding as the Näıve
Factors encoding for E.

Example 4. Continuing from Example 3, we here encode E using Näıve
Factors. Encoding one factor of length 11, with only one 1, we require 4.83
bits. For Lf (E) we then have log(11×11)+7(4.83×2) = 74.59 bits. Putting
this together with the L(H) as we obtained in Example 3, for Näıve Factors
we have a total encoded size, L(A, H) of 172.19 bits. ♦

Quick analysis of this encoding tells us it is monotonically increasing for
larger error, which is good, but also that we are spending too many bits,
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as we essentially encode full rows and columns, whereas we only want to
transmit the locations of the 1s in E.

5.2.2 Encoding E: Näıve Indices

This observation suggests that we should simply transmit the coordinates of
the 1s in E. Clearly, this takes logm+ log n bits per entry. Then,

Li(E) = log(mn) + |E| (logm+ log n) , (5.9)

gives us the total cost for transmitting E. We refer to this encoding as Näıve
Indices.

Example 5. Continuing from Example 4, we here encode E using Näıve
Indices. Encoding one error, one 1 in E, takes log 11 + log 11 = 6.92 bits.
For Li(E) we then have log(11×11)+7(6.92) = 55.35. Putting this together
with the L(H) as we obtained in Example 3, for Näıve Indices we have a
total encoded size, L(A, H) of 152.94 bits—which is much cheaper than we
saw for Näıve Factors in Example 4. ♦

Näıve Indices saves bits compared to Näıve Factors and hence by MDL it
is a better encoding. Further, it is monotonically increasing with the amount
of 1s in E.

5.2.3 Encoding E: Näıve Exclusive-Or

Although perhaps counter-intuitive, we can encode E more efficiently, more
succinctly, if we transmit the whole matrix instead of just the 1s. That is, we
can save bits by transmitting, in a fixed order, and using an optimal prefix
code, not only the 1s but also the 0s.

We do this by first transmitting the number of 1s in E, i.e., |E|, in logmn

bits, which allows the receiver to calculate the probability pE1 = |E|
mn

, and
hence, the optimal prefix codes for 1 and 0. Then, using these codes, and in
a fixed order, we transmit the value of every cell of E. The total number of
bits required by this approach, which we refer to as Näıve XOR, is given by

Ln(E) = log(mn) + |E| l1 + (mn− |E|)l0 , (5.10)

where the lengths of the codes for 1 and 0 respectively are

l1 = − log pE1 and l0 = − log(1− pE1 ) .

By this approach, we consider every cell in E independently, yet, importantly,
with regard to pE1 . This means that Ln is not strictly monotonic with regard
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to the number of 1s in E, as once pE1 > (1 − pE0 ), adding 1s to E decreases
its cost. In practice, however, this is not a problem, as it only occurs if A is
both extremely large and extremely dense, yet contains so little structure that
encoding it in factors costs more bits than one gains. Besides a pathological
case, this situation could be avoided by spending 1 extra bit to indicate
whether we are encoding E or its Boolean inverse—a cost that is dwarfed
by the total number of bits to describe E. We will refer to this encoding as
Näıve XOR.

Example 6. Continuing from Example 5, we here instead encode E using
Näıve XOR. The code length for a 1 in E is − log 7/121 = 4.11 bits, while
encoding a 0 only takes 0.09 bits. For Ln(E) we then have log(11 × 11) +
7 × 4.11 + 114 × 0.09 = 45.50. Putting this together with the L(H) as we
obtained in Example 3, for Näıve XOR we have a total encoded size, L(A, H)
of 150.01 bits—which in turn is cheaper than with Näıve Indices. ♦

In general, the gain of Näıve XOR over Näıve Factors and Näıve Indices
is substantial.

5.2.4 Encoding E: Typed Exclusive-Or

Our final refinement in what to encode, is to differentiate between noise in
the part of E that falls within the modeled part of A, i.e., the 1s we have
modeled but do not occur in A, E− = E ∧ (B ◦ C), and those 1s that are
part of A but not included in the model, i.e., E+ = E 	 (B ◦C). Trivially,
this gives us E = E+ ∨ E−. We refer to this approach as Typed XOR.

We encode each of these two parts analogously to Näıve XOR, but can
transmit the number of 1s in the additive and subtractive parts in respectively
log(mn− |B ◦C|) and log |B ◦C| bits.

We define the probability of a 1 in E+ as p+
1 = |E+| /(mn−|B ◦C|), and

similarly for E−, p−1 = |E−| / |B ◦C|. When we combine this, we can calcu-
late the number of bits required to encode E by the Typed XOR encoding
as

Lx (E) = L(E+) + L(E−) (5.11)

where

L(E+) = log(mn− |B ◦C|) +
∣∣E+

∣∣ l+1
+ (mn− |B ◦C| −

∣∣E+
∣∣)l+0

and

L(E−) = log(|B ◦C|) +
∣∣E−∣∣ l−1 + (|B ◦C| −

∣∣E−∣∣)l−0
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respectively give the number of bits to encode the additive and subtractive
parts of E. We calculate l+1 , l+0 , l−1 , l−1 analogous to how we calculate l for
Näıve XOR.

Example 7. Continuing from Example 6, we here encode E using Typed
XOR. In Figure 5.1 the area of E corresponding to E+ is depicted in grey,
while the area of E− has a white background.

As the calculation of the encoded lengths for respectively E+ and E−

follow that of Näıve XOR, we skip the details. In total, for encoding E by
Typed XOR we require Lx (E) = 49.89 bits. Note that this is more than
Näıve XOR; this is because the distribution of errors within E+ and E−

here are very similar. As such, Typed XOR cannot gain much by encoding
these separately, while having the additional cost of encoding the number
of errors within each part. As we will see in the experiments, in practice
these distributions typically do strongly vary, and Typed XOR obtains large
gains over Näıve XOR. For Typed XOR, we here have a total encoded size,
L(A, H) of 154.4 bits. ♦

Like Näıve XOR, in general this encoding is monotonically increasing for
larger error |E|. However, it is more efficient than its näıve cousin when the
noise is not uniformly distributed over the modeled and not modeled parts
of A. That is, when the probability of a 1 being part of a true pattern being
recorded as a 0 is not equal to the probability of a true 0 being recorded as
a 1. Clearly, in many situations this will be the case.

5.2.5 Encoding by Data to Model Codes

Although increasingly involved, so far, the techniques we proposed to encode
B, C, and E are fairly straightforward: we use explicit codes for the individ-
ual values. By using optimal prefix codes, we know the encoded lengths of
the entries follow the observed empirical probability distributions. However,
it is important to note this style of encoding is only optimal for encoding
a random entry drawn from that distribution. When encoding a stream of
unknown length, and of fixed distribution, that is naturally satisfied, and
hence these codes are optimal.

However, in our setting, we know more: the total number of entries we
will have to decode. Armed with this knowledge, we do not have to use fixed
code lengths per entry, as we did above. Instead, we know the number of 1s
and 0s we will receive, we can derive the codes optimal for the next entry.
After receiving that code, we can unambiguously decode it. Moreover, we
know we can decrease the number of codes we will receive for that value;
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by which we obtain a new coding distribution, which is optimal for the new
situation. This is called adaptive coding (Grünwald, 2007).

Instead of calculating new codes at every step, but using the same ratio-
nale and obtaining the same total encoded length, we can encode all entries
in one code. This is called a data-to-model encoding (Vereshchagin and Vi-
tanyi, 2004). The basic idea is that, in an abstract way, we can enumerate all
possible strings that satisfy the given information. Assuming each of these
strings in the enumeration are equally likely, we can identify an individual
string by its index in the enumeration. The encoded length of this index is
then simply log |D|, where D is the number of possible data strings.

In our case, the enumeration consists of all possible binary strings of a
particular length, and a given number of 1s that occur in it. The number of
possible strings can be calculated by the binomial

(
v
w

)
, where v is the length

of the string, and w the number of 1s (or 0s, as it is symmetric). Following,
the encoded length of an index over this enumeration is log

(
v
w

)
bits.

Next, we formalize a data-to-model encoding for the factor matrices, and
the error matrix. We start with the factor matrices. As above, we assume in-
dependence between factors, and hence will encode the factors independently
of each other. This gives us

Ldtm(B) = k log(n) +
k∑

i=1

log

((
n

|bi|

))
and

Ldtm(C) = k log(m) +
k∑

j=1

log

((
m

|cj|

))
for the B and C factor matrices respectively. We will use this encoding for
both of the two strategies for encoding E.

Example 8. Continuing from Example 7, we now calculate the description
length of our running example model H by the data-to-model approach, i.e.
Ldtm(H).

For B, we identify how many 1s each factor contains, taking log 11 bits
each. For the first factor, there are

(
11
7

)
= 330 ways to distribute seven 1s over

eleven (n) locations. Identifying one takes log 330 = 8.37 bits. Analog for the
other factors, we need Ldtm(B) = 36.45 bits to describe B. Analog for C, we
require Ldtm(C) = 36.93 bits. Wrapping things up, we have L(H) = 92.06
when using the data-to-model encoding for the factors. This is more than
12 bits cheaper than we needed using the straightforward individual-codes
encoding L(H) as used in Example 3. ♦
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For the error matrix E we construct encodings alike to the Exclusive-Or
encodings above, by which we have

Ldtm
n (E) = log(mn) + log

((
mn

|E|

))
for the Data-to-Model equivalent of Näıve XOR. We will refer to this encoding
as Näıve XOR DtM.

Next, for the Typed Exclusive-Or encoding, when we follow a data-to-
model approach, we have

Ldtm
x (E) = Ldtm(E+) + Ldtm(E−)

where

Ldtm(E+) = log(mn− |B ◦C|) + log

((
mn− |B ◦C|
|E+|

))
and

Ldtm(E−) = log(|B ◦C|) + log

((
|B ◦C|
|E−|

))
.

We refer to this encoding as Typed XOR DtM.

Example 9. Continuing from Example 8, we can now calculate for our
running example the encoded size of E using resp. Näıve XOR DtM and
Typed XOR DtM. For Ldtm

n (E) we arrive at a cost of 42.80 bits, and for
Typed XOR DtM we require Ldtm

n (E) = 45.47 bits.
For the total encoded sizes, L(A, H), using the data-to-model encoding

for H, we then require 134.86 and 137.54 bits for resp. Näıve XOR DtM and
Typed XOR DtM.

We see that even in this toy example the DtM encodings are much more
efficient than their standard XOR counterparts. Here, the difference is al-
ready ∼15 bits, over 10%, for encoding exactly the same model. This means
the DtM encodings make much better use of the provided information, and
hence that by these encodings we are much better able to measure small
differences between different models.

Like in Example 7 we see that for our running example the typed encoding
does not provide a gain, although the difference between Näıve XOR DtM
and Typed XOR DtM is already smaller. As we will see in the experiments,
for real data Typed XOR DtM does obtain a strong lead over Näıve XOR
DtM. ♦
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By making a choice for one of the six above encoding strategies, we can
now calculate the total compressed size L(A, H) for a dataset A and its
factorization. As out of the six strategies, Typed XOR DtM is the most
efficient approach for encoding both the model H and error matrix E given
the available information, we expect it to be the best choice for identifying the
correct model order. In Section 6 we will empirically evaluate performance,
but first we discuss the complexity of finding the factorization that minimizes
L(A, H).

5.3 Computational Complexity

Finding the minimum description length Boolean matrix factorization is a
computationally hard task. To start with, the shortest encoding corresponds
to the Kolmogorov complexity, which is non-computable. But even when we
try to minimize some given encoding, like one of the above, the problem does
not necessarily become easy. In particular, we cannot have a polynomial-time
algorithm that minimizes the description length in any given encoding.

Proposition 1. Unless P = NP, there exists no polynomial-time algorithm
that, given an encoding length function L and an n-by-m Boolean matrix A,
finds Boolean matrices B and C such that L(A, (B,C)) is minimized.

Proving proposition 1 is straight forward: we only need to note that if L
is such that encoding even a single bit of error takes more space than any
possible factorization and any factorization with k factors is always cheaper
than any other factorization with k+1 factors, provided they cause the same
amount of error, then any decomposition minimizing L must find exact de-
composition with least number of factors. As such encoding length functions
obviously exist, and minimizing them is equivalent to finding the Boolean
rank of the input matrix—an NP-complete problem—Proposition 1 must
hold.

This, however, does not answer to the question whether the practical
encodings are hard, or are all of the hard cases just some specially-crafted
tautological examples one would not use in any case. We answer this problem,
at least partially, by showing that the Näıve Indices encoding (Section 5.2.2)
is indeed NP-hard to minimize when one factor matrix is given. For that, we
need the following result:

Theorem 1 ((Miettinen, 2008, 2009)). Given an n-by-m Boolean matrix A
and an n-by-k Boolean matrix B, it is NP-hard to find a k-by-m Boolean
matrix C such that |A⊕ (B ◦C)| is minimized.

We can now prove the following theorem.
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Theorem 2. Given an n-by-m Boolean matrix A and an n-by-k Boolean
matrix B, it is NP-hard to find a k-by-m Boolean matrix C such that the
Näıve Indices encoding length (Section 5.2.2) is minimized.

Proof. We reduce the problem of finding C that minimizes the error to that
of finding C that minimizes the encoding length (under the Näıve Indices
encoding scheme). Assume we are given n-by-m and n-by-k Boolean matrices
A and B as in Theorem 1. For the reduction, we construct new Boolean
matrices, Ar and Br, as follows. Matrix Ar is αn-by-m and matrix Br is
αn-by-k, where α is a non-negative integer to be decided later. Matrix Ar

simply contains α copies of A stacked on top of each other, and Br is build
similarly with copies of B.

We now claim that any k-by-m Boolean matrix C∗ that minimizes the
Näıve Indices encoding of decomposition Ar ≈ Br ◦ C∗ also minimizes the
error |A⊕ (B ◦C∗)|. To that end, notice first that any C that minimizes
the error |Ar ⊕ (Br ◦C)| minimizes also the error |A⊕ (B ◦C)| (specifi-
cally, |Ar ⊕ (Br ◦C)| = α |A⊕ (B ◦C)|). Hence, it suffices to show that C∗

minimizes the error with Ar and Br.
Consider the difference between the maximum and minimum encoding

lengths of C, arg maxC∈{0,1}k×m L(C) − arg minC∈{0,1}k×m L(C). The mini-
mum is obtained when C is monochromatic (full of 1s or 0s), while the max-
imum happens when each row of C contains exactly m

2
1s. The difference

between these two is

arg max
C∈{0,1}k×m

L(C)− arg min
C∈{0,1}k×m

L(C)

= k log(m) +
k∑

j=1

(−m/2 log(1/2)−m/2 log(1/2))

−

(
k log(m) +

k∑
j=1

(−0 log 0− 0 log 1)

)
= km .

(5.12)

Now, let α = km. As Näıve Indices spends log(αn) + log(m) bits for
each error in Ar, and as every error C∗ does in one copy of A is multiplied α
times in Ar, each error C∗ does increases the encoding length by α(log(αn)+
log(m)) = km(log(kmn)+log(m)). But this is more than the largest possible
increase in the encoding length and so reducing the error always reduces the
encoding length. Therefore, for C∗ to minimize the encoding length, it must
minimize the error, concluding the proof.

The above proof is based on construction where minimizing the error is
equivalent on minimizing the MDL cost. While this is not true in general, we
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consider the minimization of error a good heuristic to minimizing the MDL
cost, essentially ignoring the cost of the model when building the factoriza-
tion. When evaluating the factorization, we naturally compute the full MDL
cost.

5.4 Merging MDL and Asso

The most straightforward way to decide the model order, given an encoding
method, is to compute the BMF for each value of k, and to report the k at
which L(A, H) was found to be minimal. This näıve strategy, however, may
be very slow in practice, as, if we do not set a maximum k ourselves, we would
have to re-start min(n,m) times—with n and m in the order of thousands,
this would mean a significant computational task. But here the hierarchical
nature of Asso comes to good use: instead of having to re-start every time,
we can start by computing the first factor, compute its description length,
add the second factor, compute the new encoded length, and so on. To
compute L(A, H), we can use the fact that at any point we know the cost of
encoding the previous k− 1 factors, and thus only have to compute the cost
for the new factor. Further, as Asso calculates per step how much it reduces
the error, we can use this information when encoding the error matrix.

As we minimize the error, we cannot guarantee that the description length
is a convex function with respect to k. Nevertheless, if we assume the cost
to be approximately convex we can implement an early-stopping criterion:
stop the algorithm if compression has not improved during the last c steps.

The benefits of using Asso with MDL are not restricted to only selecting
the model order. Recall that Asso requires a user-provided parameter τ to
generate the candidate factors. Selecting the value for this parameter can be
a daunting task. Here MDL also helps: by computing the decompositions
for different values of τ , we can select the pair (k, τ) that minimizes the total
description length. Hence, we can use MDL not only for BMF model order
selection in general, but also for BMF model selection.
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6 Experiments

In this section we experimentally evaluate how well our description length
functions identify the correct model orders. We first investigate how well
our encodings identify correct model orders with Asso on synthetic data.
Second, on the same data, we compare to alternative scoring and factorization
methods. Third, we evaluate performance on real datasets.

While, naturally, we will investigate the factors discovered at the iden-
tified model orders, note that a qualitative evaluation of factor extraction
is not specifically the topic of this paper; as opposed to evaluating the per-
formance of Asso in extracting correct factors, our main concern here is
identifying the correct model order.

We implemented the Asso algorithm and our scoring models in Mat-
lab/C, and provide the source code for research purposes together with the
generator for the synthetic data.1 For PaNDa, we used the publicly available
implementation by Lucchese et al. (2010) and the implementation of Transfer
Cost was provided to us by the authors of Frank et al. (2011).

6.1 Comparing Encodings

Before comparing between different methods, we first investigate whether
our encodings work at all for identifying correct model orders—and whether
we can identify which encoding works best to this end. Therefore, we here
restrict ourselves to Asso, and use synthetic data.

We perform three different experiments. First, we evaluate the detection
of the correct model order under noise. Second, we consider different model
orders, while keeping the data density equal. Third, we consider data of
varying model orders, where we vary the data density. For each experiment,
we report the averaged results over five independent runs.

1http://www.mpi-inf.mpg.de/~pmiettin/mdl4bmf/
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Figure 6.1: Comparing between encodings. Model order estimates
for varying true model orders, averaged over five independently generated
datasets. For all datasets, width and frequencies of the planted itemsets are
equal on expectation. The bars represent the estimates obtained when using
Asso with, from left to right, Typed XOR DtM, Näıve XOR DtM, Typed
XOR, Näıve XOR, Näıve Indices, and Näıve Factors.

For each of these settings, we generate binary 8000-by-100 matrices, in
which we randomly plant k itemsets, and apply both additive noise (flipping
0s into 1s) as well as subtractive noise (flipping 1s into 0s), with respective
probabilities n+ and n−.

Varying Model Orders. We first investigate the detection of different
model orders. To this end, we generate data in which we respectively plant
k = 2, 5, 10, 15, or 20 random itemsets of random uniform cardinality [2, 10],
and of random uniform frequencies between 10% and 40%. We keep the
amounts of additive and subtractive noise fixed to n+ = 10%, and n− = 5%.
We refer to this set-up as Setting 1.

We run Asso on each dataset, sweeping for k over 1 to 100, and for τ from
0.1 to 0.9 in increments of 0.025. For each of the 100× 33 = 3 300 returned
factorizations per dataset, we calculate L(A, H) for each encoding, and we
record those values for k associated with the discovered minimal description
lengths.

We plot the averaged model order estimates in Figure 6.1. We see that the
Factor and Indices encodings strongly overestimate. The more efficient XOR
encodings, on the other hand, consistently give good estimates. Only for 20
planted itemsets we see a slight under-estimation, of which inspection shows
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is due to overlap: due to chance, and the small number of columns, i.e., 100,
many of the planted itemsets overlap and co-occur. By it’s greedy strategy,
Asso groups some of these together. For k = 10, we note that Näıve Indices
and Näıve Factors are either correct or strongly overestimate—for all other
settings the standard deviations are very small.

Next, we evaluate a highly similar setting, which we will refer to as Set-
ting 2. Instead of generating more and more dense data at higher values of
k, we now aim at keeping the density the same, on expectation, to that of the
k = 10 setting. That is, for k < 10 we generate itemsets of higher cardinality,
and at k > 10 of lower cardinality. Specifically, we generate itemsets with
cardinalities randomly drawn, for k = 2, 5, 15, 20 from resp. [10, 40], [5, 15],
[2, 5], and [2, 3]. For the rest, we proceed as above.

Figure 6.2 shows the results. For values of k below 10, performance is
virtually equal to that of Fig 6.1. Clearly, Asso has no problem in identifying
the correct factors at k ≤ 10. For high values of k, corresponding to many
small itemsets, Asso does not consider the correct model. The efficient XOR
encodings all work as intended; as desired, overfitting is punished. The DtM
variants slightly outperform the standard XOR encodings, and overall Typed
XOR DtM works best by a small margin.

While under-estimation is clearly preferred to over-estimation—we do not
want to model noise—it does raise the question whether this is due to the
search or the scoring function; by iteratively minimizing error, Asso may
simply not consider any H of correct k that remotely resemble the true
model, and hence, making it impossible to detect the correct model order.

To see what is the case, we manually compare the encoded sizes of the
true model to that of the best model found by Asso. The results are clear:
for low noise, Asso finds models that compress as well as the true model,
sometimes even better, e.g., by not to modeling damaged parts of a structure.
Unsurprisingly, the discovered itemsets match the underlying model very
well. For high noise levels, on the other hand, we see that Asso returns
models that compress much worse, typically requiring 10% more bits than the
generating model. The itemsets Asso discovers in these settings, however, do
consist of combinations of the true itemsets; specifically those with relatively
large overlap in items and rows. So, while the true itemsets are in fact
detected, by the iterative minimization of error, Asso does not report them
separately. As such, the scoring functions perform rather well; even for the
highest levels of noise, the true model compresses much better, and hence,
if it (or any model remotely resembling it) would be considered, the model
order would be identified correctly.

Varying Noise Levels. Last, we investigate sensitivity to noise. We
generate data varying n+ from 5% to 25% in steps of 5%, and in each dataset
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Figure 6.2: Comparing between encodings. Model order estimates
for varying true model orders, averaged over five independently generated
datasets. Average density of the datasets kept equal on expectation, by
changing the width of the planted itemsets, i.e. higher number of planted
itemsets corresponds to smaller itemsets. The bars represent the estimates
obtained when using Asso with, from left to right, Typed XOR DtM, Näıve
XOR DtM, Typed XOR, Näıve XOR, Näıve Indices, and Näıve Factors.

we plant k = 10 randomly generated itemsets, each of cardinality uniformly
randomly drawn from [4, 6], with random frequency drawn from [10%, 40%].
We fix n− to 5%. As such, for values of n+ above 12.5%, there are more 1s in
the data due to noise than to structure—at 20 and 25% even twice as many.
We will refer to this data setting as Setting 3.

We proceed as above, and run Asso on each dataset, scoring every factor-
ization by each of our encodings. We plot average estimated model orders in
Figure 6.3. The bar plot shows us that both Näıve Factors and Näıve Indices
over-estimate k strongly. The XOR encodings all perform highly similar, and
provide very good estimates: exact at 5% and 10%, start to underestimate
when the majority of 1s are due to noise, yet still perform very well at 15%.
Overall, the Typed XOR variants slightly outperform the Näıve variants,
with Typed XOR DtM as the overal best performer.

These three experiments show that the XOR encodings provide highly
accurate BMF model order estimates, as well as graceful degradation at
very large amounts of noise and for densely populated matrices. The sub-par
performance of the Näıve Factors and Näıve Indices encodings show the need
of balancing the encoding of the model and error. Overall, Typed XOR DtM
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Figure 6.3: Comparing between encodings. Model order estimates for
varying amounts of additive noise (true k = 10), averaged over five indepen-
dently generated datasets. The bars represent the estimates obtained when
using Asso with, from left to right, Typed XOR DtM, Näıve XOR DtM,
Typed XOR, Näıve XOR, Näıve Indices, and Näıve Factors. All values av-
eraged over 5 datasets. Note that beyond 12.5% noise there are more 1s in
the data due to noise than to structure.

and Näıve XOR DtM perform best, and we will use these for the remainder
of this section.

6.2 Comparing between Methods

Next, we compare to the model order selection performance on our synthetic
data of three alternative methods: Cross Validation, Transfer Cost (T-Cost),
and PaNDa.

Cross validation is perhaps the most well-known and commonly used
approach for automatically tuning parameters. As our goal is to validate
the discovered factors, instead of trying to predict missing values, we use
columns of the original data as hold-out data.

As we briefly discussed in Section 1, while CV is an appealing and simple
approach, it has one major drawback in the context of BMF: generalizing
the column factors to the hold-out data is NP-hard. That is, finding the
best possible way to express a given column by the provided factors is called
Basis Usage Problem. This problem is known to be NP-hard, even for to be
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approximated within a super-polylogarithmic factor (Miettinen, 2009). As a
practical solution, we here use the same greedy process as employed by Asso
(see Section 4.2). We average the overall error for each k and t over the 10
folds, and select that combination of parameters for which we observe the
smallest average error. Note that we cannot use Owen and Perry’s bi-cross-
validation approach (Owen and Perry, 2009), as their method to generalize
learned factors to the test data does not apply to BMF.

T-Cost in essence is a more practical variant of cross-validation, as it
provides a way to score how well factors generalize the data. As such, it is a
direct alternative to our MDL approach. We apply T-Cost to score the fac-
torizations of Asso. With PaNDa, we also compare to a different algorithm
for extracting factors, as well as automatically identifying the model order.
As discussed in Section 2, while PaNDa takes cues from MDL it employs a
lossy and rather crude encoding.

We compare the performance of these methods in detecting model orders
to Asso in detail using the same synthetic data as above. We run each
of the methods, and record the reported model order estimates, for each of
the datasets of both settings. As above, all results are averaged over five
independently generated sets of databases. We observe that cross-validation
always estimates k to full-rank, and therefore conclude that ‘vanilla’ CV is
not a good choice for model order selection in BMF, and do not further report
on it. We do provide a discussion of why CV fails in Section 7.

We start by considering Settings 1 and 2, in which we consider different
true model orders. Fig. 6.4 and Fig. 6.5 show the corresponding bar plots
of the relative error of the model order estimates. Both show the same
trend. Overall PaNDa suffers from severe over-estimation, finding hundreds
of factors instead of tens. Asso with Typed XOR DtM, Näıve XOR DtM
or T-Cost, on the other hand, provides good estimates. For T-Cost the
estimates do deteriorate towards over estimation for higher k, whereas our
MDL score tend to slightly underestimate. For brevity, we forgo detailed
discussion of Setting 3, besides remarking that Asso with Näıve XOR DtM,
Typed XOR DtM, or T-Cost all provide correct estimates at the noise levels
up to 15%, and then deteriorate. As above, PaNDa strongly over-estimates.

6.3 Real Data

Next, we consider 8 real datasets, most of which are publicly available. Below
we give a short description per dataset, and an overview in Table 6.1.

Abstracts represents the words for all abstracts of the accepted papers at
the ICDM conference up to 2007, where the words have been stemmed and
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Figure 6.4: Comparing between methods. Error in model order esti-
mates, averaged over five independently generated datasets, for varying true
model orders. For all datasets, width and frequencies of the planted itemsets
are equal on expectation. The bars represent the estimates obtained with,
from left to right, using Asso with Typed XOR DtM, Näıve XOR DtM,
T-Cost, and PaNDa.

Table 6.1: Dataset overview. Shown are, per dataset, the number of rows,
n, and the number of columns, m, as well as the density of the matrix, the
relative number of 1s. Further, for Asso with T-Cost, PaNDa, and Asso
with Typed XOR DtM, the model order estimates.

Base Statistics T-Cost PaNDa Asso

Dataset n m %1s k k k

Abstracts 859 3 933 1.2 – 168 19
DBLP 6 980 19 13.0 19 15 4
Dialect 1 334 506 16.1 389 56 37
DNA Amp. 4 590 392 1.5 365 39 54
Mammals 2 183 124 20.5 122 50 13
Mushroom 8 192 112 19.3 112 175 59
Newsgroups 400 800 3.5 398 17 17
NSF Abstracts 12 841 4 894 0.9 – 1835 1950
Paleo 501 139 5.1 46 96 19
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Figure 6.5: Comparing between methods. Error in model order esti-
mates, averaged over five independently generated datasets, for varying true
model orders. Average density of the datasets kept equal on expectation, by
changing the width of the planted itemsets, i.e. higher number of planted
itemsets corresponds to smaller itemsets. The bars represent the estimates
obtained with, from left to right, using Asso with Typed XOR DtM, Näıve
XOR DtM, T-Cost, and PaNDa.

stop words removed2 (De Bie, 2011).
DBLP contains records of in which of the 19 conferences the 6980 authors

had published. The dataset is collected from the DBLP database3 and it is
pre-processed as in (Miettinen, 2009).

Dialect contains presence data of dialectical linguistic properties in 506
Finnish municipalities (Embleton and Wheeler, 1997, 2000).

DNA Amplification contains information on DNA copy number amplifi-
cations. Such copies activate oncogenes and are hallmarks of nearly all ad-
vanced tumors (Myllykangas et al., 2006). Amplified genes represent attrac-
tive targets for therapy, diagnostics and prognostics. This dataset exhibits a
banded structure (Garriga et al., 2011).

Mammals consists of presence data4 consists of presence records of Eu-
ropean mammals within geographical areas of 50× 50 kilometers (Mitchell-

2Available upon request from the authors of De Bie (2011)
3http://www.informatik.uni-trier.de/~ley/db/
4Available for research purposes from the Societas Europaea Mammalogica at http:

//www.european-mammals.org
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Jones et al., 1999).
Mushroom is a standard benchmark dataset from the UCI repository (Frank

and Asuncion, 2010), and consists of properties of edible and poisonous mush-
rooms.

Newsgroups is a subset of the well-known 20Newsgroups dataset,5 con-
taining, for 400 posts from 4 newsgroups6, the usage of 800 words.

NSF Abstracts contains the occurrence of terms in abstracts of success-
ful NSF grant applications.7 The pre-processing is explained in (Miettinen,
2009). The resulting data is extremely sparse (0.9% 1s).

Last, Paleo consists of fossil records per location.8

We ran each method on these datasets, and give the returned model
orders in Table 6.1. Transfer cost is computationally rather expensive, in
particular for the larger and more sparse datasets, and did not finish within
reasonable time for Abstracts and NSF.

When we investigate the model orders, we see an interesting reversal com-
pared to the synthetic data. Here, PaNDa does not strongly overestimate,
but T-Cost does: many of the estimates obtained by T-Cost are full-rank,
or close to it. While for these datasets there is no ground truth, these scores
are beyond what would be inspectable by hand.

The estimates provided by PaNDa, on the other hand, seem more real-
istic. For Abstracts, Mammals, and Mushroom, however, PaNDa estimates
the model order much higher than Asso.

For Asso, with the exception of NSF, the factorisations of the identified
model orders are all such that a data analyst can inspect by hand. We discuss
the results of Asso in closer detail below.

First, however, we investigate the sensitivity to Asso’s parameter τ for
the model order estimates on real data. In Figure 6.6, we plot two typical
examples of total encoded lengths, L(A, H), for Asso with Typed XOR DtM
and using different values of k and τ . In the left figure, for the DNA data,
we see the landscape to be a valley, with extreme high values for overly com-
plex and overly simplistic models. The value of k at which Asso minimizes
L(A, H) is found in the distinct valley, at k = 54. The shape of the valley
tells us that for this relatively structured and dense dataset, the value chosen
for parameter τ does not (strongly) influence the detected model order k.

In the right plot of Figure 6.6, we show the total encoded lengths obtained

5http://people.csail.mit.edu/jrennie/20Newsgroups/
6The authors are grateful to Ata Kabán for pre-processing the data. The exact pre-

processing is detailed in (Miettinen, 2009).
7http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
8NOW public release 030717, available from http://www.helsinki.fi/science/

now/ (Fortelius et al., 2003).
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Figure 6.6: 3D plots of the number of bits (y-axis), for varying values of k
(x-axis) and τ (z-axis) for Asso with Typed XOR DtM encoding. (left) The
DNA dataset. Minimal description length attained at k = 54 and τ = 0.35.
(right) The Mammals dataset. Minimal description length attained at k = 13
and τ = 0.65.

by Asso on the Mammals dataset. Although slightly less well expressed, we
observe the same general behavior as for DNA; high values for k lead to overly
complex models, and hence overly long total encoded lengths. We again ob-
serve the distinct peak at high k and low τ , settings at which Asso is allowed
to find highly noisy factors. The landscape shows a distinct local valley, or
‘pit’, around k ∈ [10, 15] and τ ∈ [0.6, 0.85], at which the encoded lengths are
noticeably lower than elsewhere. The minimal observed description length
attained at k = 13 and τ = 0.65, is found in this local valley.

Over all other considered datasets the landscapes are of similar shape,
with the exception of the highly noisy synthetic data. This shows that in
practice we can sweep over τ in coarse steps, possibly with local optimization.
Next, we discuss the near-convexity over values of k.

In Figure 6.7 we show, for each of the datasets, the total encoded size per
k, fixing τ to the value at which the minimum description length was found.
The identified model orders (i.e., values for k at which the minimum was
reached) are given in each figure. As the plots show, our description length
function is close-to-convex for Asso’s greedy heuristic search. This means
that the early-stop criterion c can validly be employed. It also suggests that
binary search might be a valid search strategy for non-hierarchical algorithms.

As mentioned above, the purpose of these experiments is to assess the
quality of our model-order selection approach, not that of BMF or Asso
per se. Nevertheless, we need to analyze whether the selected model orders
indeed make sense, and can best do this by investigating the factors Asso
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discovers at the identified model orders.
For the DBLP dataset, our method proposes k = 4. This yields four

disjoint sets of conferences as row factors: (1) sigmod, vldb, icde, (2)
soda, focs, stoc, (3) kdd, pkdd, icdm, and (4) icml, ecml. These four
factors clearly correspond to four different field of computer science, namely
(1) databases, (2) theoretical computer science, (3) data mining, and (4)
machine learning.

The suggested number of factors for Newsgroups, 17, might seem high
given that the data is on only four newsgroups. However, it would be overly
simplistic to assume that each newsgroup could be represented well by just
one (or even two) topic(s). Instead, there are some general topics (i.e., factors
containing words appearing across the data, such as ‘question’), and three to
four subtopics per newsgroup.

The estimate for DNA, k = 54, returns factors that model the known chro-
mosomal regions (or, bands (Garriga et al., 2011)) of interest very well (Myl-
lykangas et al., 2006), only missing some of the smallest itemsets.

For the paleontological data, Paleo, we identify k = 19 as the best model
order. Interestingly, Tatti et al. (2006) computed the normalized correlation
dimension for this data to be 15. While this normalized correlation dimension
has no direct connection to BMF, we consider it interesting that these two
methods designed for Boolean data give rather similar results. Even more so,
as Tatti et al. (2006) report that explaining 90% of the variance with PCA
requires 79 factors.

We also checked the error curves for these data sets. In most of the cases,
error decreases smoothly as k increases, and hence we cannot find any ‘elbow’
that would suggest the model order.

Further, note that for some datasets, such as Abstracts and Dialect, there
is a small range of k that could be considered as the ‘correct’ model order.
This is not surprising, as these datasets are very sparse, and hence factoriza-
tions of slightly varying complexity and error may exist that model the data
equally well. Also, due to the heuristic search of Asso, it cannot be guaran-
teed that the best factorization out of all valid Boolean matrix factorizations
is actually considered.

For NSF, our model selection procedure resulted in values of τ = 0.8
and k = 1950. This is one of the few datasets where Panda returned a lower
estimate, of 1835 factors. In both cases, the returned values for k are of course
too large for humans to manually interpret the factors. Yet, it seems that the
data indeed requires quite large k, as the model cost decreases steeply when
k is increased—as is clear from the plot in Figure 6.7. Furthermore, using
PCA, 1848 factors explain only about 69% of the variance, and in order to
explain at least 90% of the variance, PCA needs to have 3399 factors. While
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these numbers are not directly comparable, they do indicate that the data
has very complex structure (e.g., very little overlap between the rows). This
can, at least partly, explain also the need for high k with BMF.
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7 Discussion

The experiments show our approach to solve the BMF model order selection
problem by MDL works very well. By the MDL principle, and hence by
employing the most efficient encoding for the error matrix, Typed XOR DtM,
we find highly accurate estimates.

Our approach compares favorably to PaNDa and T-Cost. While the for-
mer is fast, for more dense data it severely over-estimates the model order;
which was particularly apparent in the synthetic data, but similarly for the
Mammals and Mushroom datasets. T-Cost is a powerful mechanism, and pro-
vides very good model order estimates on the synthetic data. On real data,
however, it returns very high model order estimates. Moreover, computing
the generalization of a factorization is computationally highly taxing.

We also applied cross-validation. While intuitively appealing, it failed
to produce any reasonable results. Why was that? There are (at least)
two possible reasons. First, generalizing the learned factors to new columns
is a hard problem, as we already mentioned. But it might be that cross-
validation fails even if we could generalize in an optimal way. The problem
is that when we generalize to new columns (or rows), we do not have to use
all factors. The consequence is most obvious in hierarchical decompositions,
such as those returned by Asso: adding a new factor reduces the error on
training data, but it will never increase the error on test data (if it would,
we would not use it to explain the test data). This is not special to Boolean
matrix factorizations, as similar behavior has been reported with PCA (dos
S. Dias and Krzanowski, 2003).

Of our error matrix encoding strategies, the inefficient Näıve Factors and
Näıve Indices do not work well in practice—except when noise is low and
a model closely resembling the true model is offered. The XOR encoding
variants, on the other hand, consistently provide highly accurate model or-
der estimates. Neither overestimate model complexity, and naturally pro-
vide underestimation in high-noise situations; highly desirable properties for
model (order) selection. As it is the most efficient encoding, our overall
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recommendation is to use Typed XOR DtM to encode E.
Experiments on real data show that meaningful factors are discovered at

the selected model orders, as well as that the score is near-convex. This means
that, even for the heuristic BMF algorithm we employed in our experiments,
we can confidently employ a greedy early-stopping criterion. Further, it
suggests binary-search strategy might make a viable strategy for selecting
the correct model order if non-hierarchical algorithms are used.

The development of an efficient BMF algorithm that optimizes the MDL
score would make for important future research—given the complexity of
BMF, and that of MDL, very smart heuristics will be required for any algo-
rithm that combines these in order to find the BMF that directly minimizes
the description length.

Finally, we note that our encoding length functions are easily adaptable
for different variations of BMF, such as Boolean column subset-selection (Mi-
ettinen, 2009) and dominated BMF (Miettinen, 2010). Indeed, after the
publication of the preliminary version of this paper, the proposed encoding
length functions have already been adapted to find model orders in joint
subspace Boolean matrix factorization (Miettinen, 2012).
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8 Conclusion

We proposed a general solution to the model order selection problem for
Boolean matrix factorization. By the Minimum Description Length princi-
ple, we formulate the number of bits required to lossless encode the model
and the error it introduces, and report the order of the model for which this
sum is minimized. We discussed how to construct an appropriate encod-
ing for BMF, starting by introducing simple and intuitive approaches, and
progressing to a highly efficient typed data-to-model based encoding. We
showed that minimizing the MDL score is already NP-hard for the relatively
simple Näıve Indices encoding.

We empirically evaluated its performance in combination with the Asso
BMF algorithm. The experiments show that the correct model orders are re-
liably selected for varying amounts of noise and model orders, and moreover,
that the models at which the MDL score is minimized consist of meaningful
factors.

Future work includes the development of good heuristics that optimize
the MDL score directly, instead of the error, when finding Boolean matrix
factorizations of a given rank, as well as further analysis of the complexity
of problem.
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