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1. Introduction  

As a typical phenomenon in tokamak discharges, sawtooth crash has attracted much 

research interest [e.g. 1-6]. In this paper sawtooth crashes are studied numerically based on 

both single and two fluid equations. Using the large aspect-ratio tokamak approximation, the 

magnetic field is defined as B=B0t(et-ekt/k)+et, where  is the helical flux function, 

k=m/r and kt=n/R, m and n are the poloidal and toroidal mode numbers, r and R the minor 

and major radius, and the subscript 0 denotes an equilibrium quantity. The ion velocity 

v=v||e||+v, where v=et,  is the stream function, and the subscripts || and  denote the 

parallel and perpendicular components. The electron continuity equation, generalized Ohm's 

law, the equation of motion in the parallel and the perpendicular direction (after taking the 

operator et), and the electron energy transport equation are solved. Normalizing the length 

to the plasma minor radius a, the time t to the resistive timeR=a2/,  to aB0t, and the 

electron density ne and temperature Te to their values at the magnetic axis, one has [7]  
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where d/dt=/t+v,  j=-

2-2nB0t/mR is the plasma current density along the et 

direction, U=-
2 is the plasma vorticity,  the ion viscosity,  the heat conductivity, and D 

the particle diffusivity. Sn and Sp are the particle and heat source, E0 is the equilibrium 

electric field, S=R/A, p=pe=neTe, d1=ce/ei, ed1, Cs=[Te/mi]
1/2/(a/R), e=4neTe/B0t

2, 

ce is the electron cyclotron frequency, e the perpendicular electron viscosity, ei the 

electron-ion collisional frequency, A=a/VA, and VA is defined using B0t. Above equations are 

utilized in Ref. [7] except for the electron inertia and perpendicular viscosity in Ohm’s law.  
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2. Numerical results 

The single fluid results are obtained by neglecting the electron inertia and pressure 

gradient in the generalized Ohm’s law. For low Lundquist number S, S<107, only a growing 

m/n=1/1 island is found, which finally occupies the whole region inside the q<1 surface 

accompanying the shrinking of the original core, similar to earlier results [3].  

 

     

Figure 1 Constant-contours on the R-Z plane for S=2.65108, where R=0 corresponds to the major radius of 

the original magnetic axis, and Z is along the vertical direction. (a/left) Small secondary islands grow on the left 

hand side of the core region. (b/middle) Original core region is squeezed into a thin layer by the 1/1 and the 

secondary island. (c/ right) In late phase when both the m/n=1/1 and secondary island change slowly in time. 

 

For higher S values, however, the secondary islands (plasmoids) are found to grow. As an 

example, constant-contours are shown in figure 1 for S=2.65108 at different times. A 

monotonic original q-profile is assumed with the q=1 surface located at rs=0.3a, and q(r=0)=0.9 

at the original magnetic axis. The viscosities are taken to be =18.8(a2/R) and e/ei =10-4a2. 

During the early nonlinear phase, there is only a growing m/n=1/1 island similar to the low S 

cases. At later times, however, the thin current sheet created by the 1/1 island breaks up, 

leading to the formation of small secondary islands as shown in Figure 1a. Afterwards, one 

secondary island grows into a large size in a short time scale in parallel to the 1/1 island, and 

the original plasma core is squeezed into a thin layer in between the two islands (figure 1b). 

This leads to additional small secondary islands during the mode growth [4]. The ultimate 

result of the reconnection process is a quasi-steady helical state with two coexisting islands 

(figure 1c) which persists on a long time scale, characteristic for the current re-arrangement 

within the q=1 surface. It is seen from figures 1b and 1c that, the 1/1 island has the maximum 

width during its fast growing phase before it enters into the quasi-steady state. For S≥109, the 

island saturates at a width being significantly smaller than rs. 

The reconnection time is shown in figure 2 as a function of S. The black curve is the 

growth time of the m/n=1/1 island from the width W=0.1a up to the maximum (S<109) or 

saturated (S≥109) island width. The blue line is the reconnection time calculated from 
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Kadomtsev's model [2]. The red dashed curve is the scaled reconnection time, obtained from 

the black curve by multiplying a factor rs/Wmax/sat, where Wmax/sat is the maximum (S<109) or 

saturated (S≥109) island width. The reconnection time agrees with Kadomtsev's model for 

S<107 but is much shorter for larger S values. The formation of secondary islands allows 

faster reconnection for high S values.  

 

                  
   

Figure 2 Reconnection time versus S. The black 

curve is the m/n=1/1 island growth time from the 

width w=0.1a up to the maximum or saturated 

island width. The red curve is scaled time. The blue 

line is calculated from Kadomtsev's model.  

Figure 3 Results obtained from two-fluid equations: 

The time evolution of the electron temperature 

inside (r=0.15a) and outside (r=0.35a) the q=1 

surface. The electron temperature decreases in a 

time period about 50s. 

The simulations based on two-fluid equations use typical ASDEX Upgrade plasma 

parameters as input: B0t=2T, a=0.5m, R=1.7m, Te=2keV and ne=3×1019m-3 at q=1 surface, 

which lead to S=2.6×108, =9.4×104, Cs=2.0×107(a/R), d1=3.1×107, and ei=2.2×104/s. It is 

assumed that e/ei=10-4a2, =8.0×108, ==0.2/m2/s=19(a2/R) and D=/5. The 

original equilibrium electron temperature profile is Te=Te0 [1-(r/a)2]2.   

The time evolution of the m/n=0/0 component of the electron temperature at different 

normalized minor radius, r/a, is shown in figure 3. The electron temperature decreases in a 

time period about 50s, in agreement with ASDEX Upgrade experimental results [6]. 

The secondary island also exists in two-fluid calculations for a sufficiently high value of S 

(or low ). As an example, the constant-contour during the mode growth is shown in 

figure 4 for =3×104. The secondary island usually survives only for a short period of time 

during the mode growth, possibly caused by the diamagnetic drift. The ratio between the 

amplitude of 2/2 and 1/1 is usually in the range 0.3-0.5, no matter whether there are 

secondary islands or not.  

Shear plasma flow is found to be generated by the internal kink mode. The radial profiles 
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of the m/n=0/0 component of poloidal rotation velocity are shown in figure 5 at different time. 

In the original equilibrium there is no plasma rotation, and the plasma current is in the 

negative direction. The driven plasma rotation is in the counter (co-) current direction inside 

(outside) the q=1 surface in the linear phase and then propagates towards the magnetic axis 

during the mode growth. After sawtooth crash, the driven plasma rotation is in the co- 

(counter-) current direction inside (outside) the q=1 surface, in agreement with TCV 

experimental observations [8]. The shear flow results from the m/n=0/0 component of 

electromagnetic torque, caused by the difference between the mode frequency and the local 

electron fluid frequency.  

 

             

Figure 4 Constant-contour for =3×104, 

obtained from two fluid equations. The secondary 

island is formed during the mode growth but only 

survives for a short period of time. 

Figure 5 Radial profiles of m/n=0/0 component 

poloidal rotation velocity Vp in the early (t=8595A) 

and later (9030A) nonlinear phase and after 

sawtooth crash (91188A), 

 

3.  Summary 

(a) From single fluid equations secondary islands are found to grow for a sufficiently high 

Lundquist number, leading to fast reconnection and ultimately a quasi-steady state with two 

coexisting islands. Kadmotsev’s model is only applicable for low S values.  

(b) Based on two-fluid equations, fast sawtooth crash, ~50s, is obtained for typical ASDEX 

Upgrade parameters. Shear plasma flows is found to be driven by the internal kink mode.  
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