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Abstract – Discrimination and visualization of different observed classes of edge-localized plasma 

instabilities (ELMs), using advanced data analysis techniques has been considered. An automated ELM 

type classifier which effectively incorporates measurement uncertainties is developed herein and 

applied to the discrimination of type I and type III ELMs in a set of carbon-wall JET plasmas. The 

approach involves constructing probability density functions (PDFs) for inter-ELM waiting times and 

global plasma parameters and then utilizing an effective similarity measure for comparing distributions: 

the Rao geodesic distance (GD). It is demonstrated that complete probability distributions of plasma 

parameters contain significantly more information than the measurement values alone, enabling 

effective discrimination of ELM types. 

1. Introduction 

Characterization of edge-localized modes (ELMs) and their control are crucial for ITER. Enhancement 

of the physical understanding of ELMs and optimization of control and mitigation schemes necessitates 

the discrimination of different observed classes of ELMs. We present a technique for systematic 

classification of ELM types based on a probabilistic description of their properties and propose this as an 

aid to exploratory and confirmatory analysis for theoretical models. The work can potentially provide a 

quantitative evaluation of various control mitigation schemes in subsequent works.  

2. Experimental setup 

The presented technique has been employed for the discrimination of type I and type III ELMs from a 

series of carbon-wall JET plasmas between the years 2000 and 2009. From the range of discharge 

numbers [50564, 76871], a database of 69 JET plasmas pertaining to type I ELMs, 27 JET plasmas of 

type III ELMs and 5 JET plasmas [66105-66109] of so-called type I high-frequency ELMs have been 

analysed. This is an extension of the data set used earlier by Webster et al. [1] for statistical 

characterization of ELM types. We call this dataset JET_CW ELMy database (DB1), henceforth 

referred as JET_CW_ELM (DB1). The analysis, in this work, has been restricted to time intervals in 
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which the plasma conditions were quasi-stationary. Further, all experiments dealing with ELM control 

and mitigation techniques have been excluded. 

A threshold based algorithm was developed for the extraction of inter-ELM time intervals from the 

measured Balmer-alpha radiation signal from deuterium (Dα) at JET’s inner divertor. Inter-ELM 

waiting time extraction is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

The Weibull distribution, based on experimentally motivated assumptions, has recently been shown to 

be a good model for the waiting time distribution, especially for type III ELMs [1]. Hence, we use the 

Gaussian and 2-parameter Weibull PDFs, as illustrated in Figure 2, for describing the series of waiting 

times emerging from each pulse. It must be emphasised, that Webster et al. [1] had earlier used 

3-parameter Weibull distributions in a similar context whereas this work deploys 2-parameter Weibull 

PDFs; hence any direct comparison between estimated parameters is ruled out between the two works. 

Figure 2. Each pulse is represented as a series of 

waiting times, followed by modelling by a suitable 

probability density function (PDF), where there are M 

pulses and each pulse has N waiting times. 

 

Finally, density-normalized input power (<Pn>) [keV/s] and normalized electron temperature <Te> 

[keV], were also included in the dataset and used in addition to inter-ELM waiting time statistics for 

discriminating between type I and type III ELMs. A Gaussian probability distribution was fit to time 

slices of the signals for these plasma parameters during ELM activity. <Pn> and <Te> are given as 

follows:         
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3. Classification in probability spaces 

The plasma parameters used for discriminating between ELM types are modelled by using suitable 

PDFs, hence, subsequent processing in the corresponding spaces of probability distributions is required. 

Classification of ELM types can be regarded as problem typical of the domain of pattern recognition, 

which essentially relies on geometric concepts, particularly distance. Thus, we employ the mathematical 

Figure 1: Illustration of the 

inter-ELM waiting time 

extraction algorithm where 

each discharge contains 

(N+1) ELM bursts and hence 

N waiting times. 
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framework of information geometry, which treats a family of PDFs as a space wherein each point 

represents a single PDF, allowing the calculation of the Rao geodesic distance (GD) between probability 

distributions [2].  A closed-form expression for the GD, existing in the case of a univariate Gaussian 

model,  (     ), and a univariate Weibull model  (     ), allows accurate and fast computation of 

the distance between PDFs. See [3].  

The k-nearest neighbour classifier (k-NN), a non-parametric distance-based technique, illustrated in 

Figure 3 and Figure 4, is used for the classification of ELM types [3]. With k-NN, samples are assigned 

the same class as that of the majority of their k nearest neighbours. The nearest neighbours are 

determined by the shortest distance from the test sample (the sample whose class type is yet unknown) to 

the samples in the training set (the samples whose class type is known).  

 

 

 

 

 

 

The k-NN classifier coupled with GD between PDFs describing the plasma parameters is presented as an 

automated and effective classification scheme for ELM types. The performance of this scheme is 

compared with the k-NN classifier coupled with Euclidean distance (ED) between measurement values 

of plasma parameters, and the results are presented in the following section. 

4. Classification results 

The maximum likelihood best fit parameters for the PDFs of inter-ELM waiting times are illustrated in 

Figures 5 and 6. From visual inspection of Figure 5 it can be observed that both the mean and standard 

deviation of the inter-ELM waiting times are determinant of ELM type. Further, Figure 5 indicates a 

positive correlation between the mean of the inter-ELM waiting time and the standard deviation.  

 

 

 

Figure 3: Illustration of 1-NN classifier.  The test 

sample is assigned to Class 1, as the nearest 

neighbour of the test sample belongs to this class. 

Figure 4: Illustration of 3-NN classifier.  The test 

sample is assigned to class 2, to which the majority 

of the nearest neighbours belong. 

Figure 5: Maximum likelihood best fit 

parameters for Gaussian PDFs for each ELM 

type. 

Figure 6: Maximum likelihood best fit 

parameters for Weibull (2P) PDFs for each 

ELM type. 
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Classification of ELM types was performed using a 1-NN classifier (10-fold cross-validated). The 

success rate (SR) is defined as the percentage of correct classifications, i.e. the percentage of type I and 

type III ELMs correctly classified. The results are shown in Table 1. Class-wise success rates (SRI and 

SRIII) are also indicated. It can be readily observed from Table 1, that the success rates using the GD are 

significantly higher than with the Euclidean distance measure (ED), hence validating that the 

probabilistic description of plasma parameters contains significantly more information than single 

measurement values (or averages) alone.  Thus, the distribution of inter-ELM waiting times is a crucial 

predictor for ELM types. Weibull (2P) PDFs give a marginally higher success rate than Gaussian PDFs. 

This can be attributed to their quality of being a better fit to the type III ELM waiting times [1]. Addition 

of the global plasma parameters (<Te> and <Pn>) to the predictor set also brings a modest improvement 

in success rates.  

Distance Predictor SR SRI SRIII 

GD 

Gaussian PDFs for waiting times 89.31 (0.06) 95.04 (0.06) 83.38 (0.12) 

Weibull PDFs for waiting times 90.50 (0.08) 96.21 (0.05) 84.78 (0.18) 

Gaussian PDFs for waiting times, 

<Te>, <Pn> 

91.38 (0.07) 98.77 (0.02) 84.00 (0.12) 

ED 

Average waiting times 83.50 (0.07) 92.94 (0.02) 74.06 (0.15) 

Weibull PDFs for waiting times 87.36 (0.06) 95.03 (0.02) 79.70 (0.10) 

Average waiting times, <Te>, <Pn> 85.12 (0.07) 92.87 (0.03) 77.37 (0.14) 

 
Table 1:  Success rates (SR) using a 1-NN classifier based on GD and ED. Success rates for each class (SRI and 

SRIII) individually are also listed. The standard deviation of each result is mentioned in parentheses.  

5. Conclusions and outlook 

An automated discriminator between ELM types has been presented and it has been shown that a 

probabilistic description of plasma parameters, in conjunction with the Rao geodesic distance as a 

proper PDF similarity measure, improves classification performance. 

A natural initial extension to the current work is the deployment of alternate PDFs (such as 3-parameter 

Weibull) which potentially better capture the underlying statistics of inter-ELM waiting times. In 

addition, space-resolved pedestal parameters, compared to global parameters, may enhance the 

discrimination performance. The developed technique will also be applied for classifying additional 

ELM types, such as type II ELMs, and mapping them in the machine operational space. Furthermore, 

the method will be used for quantifying ELM properties between various operational regimes (e.g. 

carbon wall vs. metallic wall) and for inter-machine comparison of ELM behavior, after normalization 

w.r.t the machine confinement time. Finally the developed method may also contribute to systematic 

quantification of the effectiveness of ELM mitigation schemes.   
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