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Abstract. The radial structure of the continuum spectrum of shear Alfvén and

Alfvén-acoustic waves in the beta-induced Alfvén eigenmode (BAE)frequency range is

modeled for tokamak plasmas in the presence of 3D effects obtained from the bifurcated

MHD equilibrium reconstruction. Plasma compressibility and geodesic curvature

effects responsible for the low-frequency continuum spectrum calculations are invoked.

In the equilibrium calculations we find that the helically distorted MHD equilibria

may exist even for the axisymmetric devices if q = 1 rational surfaces are present.

The continuum calculations with the bifurcated equilibria lead to a frequency splitting

between the highest frequency branch and the lowest frequency branch continua at

the frequency accumulation point. Radially localised shifting of modes happens via

coupling of the adjacent n-1 continuum around an accumulation point. Our modelling

(including 3D effects) correctly reproduces the phenomenon of continuum frequency

splitting and provides a possible solution for the differences of few kHz in frequency

splitting, which remained unexplained with the 2D kinetic calculations (Curran D. et

al 2012 Plasma Phys. Control. Fusion 54 055001). The pressure scaling confirms the

increase of helical excursion of the magnetic axis in equilibrium reconstruction and

hence the range of continuum frequency splitting. In our calculations, the existence of

low-frequency continua is in agreement with the experimentally observed low-frequency

modes.
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1. Introduction

In fusion plasmas, fast ions in the MeV energy range may have velocities comparable

with Alfvén velocity directed along the magnetic field lines, which can satisfy conditions

of effective resonance and energy exchange between Alfvén waves [1]. Shear Alfvén

Waves (SAW) form a continuous spectrum which in the presence of symmetry breaking

non-uniformities such as toroidicity or ellipticity is modified to exhibit Alfvénic gaps.

In this context two types of Alfvénic instabilities exist: (1) energetic particle continuum

modes (EPMs) [2], dwelling in the Alfvén continuum and having frequencies in the range

of the continuum and (2) discrete Alfvén eigenmodes (AEs) [3] with frequencies inside

the SAW gaps. Given the strong continuum damping due to the collisionless dissipation

of SAWs in non-uniform equilibria and their low absorption threshold for entering into

an unstable state [4, 5], the question arises about the significance of continuum radial

structures for the tokamak stability problem. Understanding the impact of the helical

core on the modification of SAW continua may have potential implications for Alfvénic

instabilities in burning plasmas and identify new issues in approaching the ignition

margin.

In tokamak plasmas, the SAW continuum gets modified due to the interaction with

low frequency MHD fluctuations, such as magnetic island and helical core. Previously,

theoretical investigations for the Alfvén continuum have been made in the presence

of magnetic islands [6]. In this paper, we have tried to investigate the effect of

the helical core on the continuous spectrum. The helical core is an internal three-

dimensional (3D) structure in non-uniform axisymmetric MHD equilibria regarded as

a saturated ideal internal kink mode and/ or a deformation of the magnetic axis. The

helical excursion of the magnetic axis in a tokamak equilibrium appears because of the

peaked pressure profile in the presence of a safety factor q passing through unity. The

bifurcated equilibria are the combination of an axisymmetric part and a spontaneously

triggered internal helical distortion of the magnetic axis, which are also called snakes in

tokamaks [7] and in reversed field pinches (RFPs) single helical axis states (SHAx) [8].

The 3D helical deformation of the equilibrium destroys the symmetry properties of

the tokamak. In highly elongated plasmas, the disappearance of sawtooth oscillations

and the persistence of a saturated ideal internal kink m = 1, n = 1 mode with q is

in the vicinity of unity also can cause the existence of such helical deformations [9].

Plasmas with such special conditions are called hybrid plasma scenarios [10], which

often trigger Alfvénic magnetohydrodynamic (MHD) instabilities such as EPMs [11],

long-lived modes (LLMs) [12], and internal kinks or fishbones. Studies have shown

that the 3D helical distortion during hybrid scenario operation is very large, which

is confirmed by a complete flattening of strong NBI induced toroidal flow in the core

region [13]. When the helical equilibrium is formed by an internal kink m = 1, n = 1

mode, the fast ions orbits become more complex with stonger radial drifts [12,13].

In fusion plasmas, the sawtooth crashes are associated with the appearance of

MHD instabilities such as saturated internal kinks [14] and continuous modes [15].
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Studies have shown that the sawteeth disappear or transform into internal kink-like

modes [14]. Observation of the low-frequency MHD modes during a sawtooth crash in

ASDEX Upgrade (AUG) discharges has motivated employing saturated internal kink-

like modes as helical distortions for further investigations of Alfvénic instabilities. AUG

is a medium size divertor tokamak with a major and minor radius of 1.65 and 0.5

meters, respectively. At AUG, various ICRH-driven instabilities in the BAE and sub-

BAE frequency range have been observed during monster sawtooth crashes [16, 17].

Understanding these instabilities, their impact on EP transport and their importance

on sawtooth stabilisation is an outstanding issue in the view of predicting the sawtooth

cycle properties in various ITER scenarios. In reference [17] a careful kinetic analysis

has been carried out in order to understand the complex frequency evolution of these

modes during a sawtooth cycle. Most of the aspects have been clarified such as the

origin of the low (∼ 10kHz) and high (∼ 70kHz) frequency branches, the mode number

inversion (higher toroidal mode numbers appear at lower frequencies) and the frequency

evolution during the sawtooth cycle. The gyro-kinetic dispersion relation [16,18,19] has

been solved with the LIGKA code [19,20] and compared to experimental measurements

highlighting the importance of a kinetic analysis, in particular the role of diamagnetic

effects [17]. However, 3D effects had not been included, and the question arises as to

whether the presence of a helical core can modify the shear Alfvén continuum in a way

to explain the remaining differences (see Fig. 7 and discussion at the end of section 2.4

of reference [17]).

So far, the effects of a helical core on calculations of Alfvén continuum have received

very little attention. In our work, the helical core is modeled as a static helical distortion

of the equilibrium because of its typical low oscillation frequency as compared with the

SAWs in AUG. Bifurcated tokamak equilibrium states are modeled using a 3D ideal

MHD equilibrium solver VMEC [21] and it is generally found that the m = n = 1

helical magnetic axis is displaced most at the position of qmin [12]. It is therefore

clear that the Alfvén continuum needs to be modeled using a realistic 3D equilibrium

magnetic field geometry. The shear Alfvén continuum is modeled by using an extended

continuum solver (STELLGAP) [22, 23]. STELLGAP has been previously used for the

modelling of continuum structures in stellarators [24,25], RFPs [26] and tokamaks [27].

It is based on the reduced MHD model for 3D devices including effects of finite plasma

compressibility and geodesic curvature. An equivalent set of reduced MHD equations

for the low beta plasmas have been earlier used in similar tools COBRAS [28] and

CONTI [29,30] for the modelling of sound-Alfvén continua of 3D systems. Low frequency

gaps in SAW continuum opened by the plasma compressibility and geodesic curvature

are responsible for BAEs and beta-induced acoustic-Alfvén modes (BAAE). Coupling

of the SAW with helical core distortion forms a linear model of SAW dynamics in a

non-uniform equilibrium.

This paper is organized as follows. In section 2, the experimental details of the

AUG discharges are provided. Section 3 provides the details of 3D MHD solver and in

section 4 the extended Alfvén continuum solver STELLGAP is discussed. In section 5
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the details of the reconstruction of 3D helical core MHD equilibria are provided. Alfvén

continuum calculations for the 2D and 3D equilibria are provided in section 6 and,

finally, the summary and conclusions are provided in section 7.

2. Experimental Observations

At the AUG tokamak experiments were conducted to investigate the low-frequency

Alfvén instabilities. It has been observed that these modes appear during the sawtooth

cycle and in the region surrounding with q = 1 surface [16]. The appearance of low-

frequency modes around the region of q = 1 during sawtooth cycle suggests possible

helical core formation. In order to estimate the upper limit of the effect of the helical

core, an AUG discharge #20488 with monster sawtooth crashes is chosen. This discharge

dates back to 2005 when the vessel wall was only ∼ 50% covered with tungsten W tiles.

Similar discharges were repeated in 2009, however the sawtooth period was shorter and

the pressure gradient at q = 1 before the sawtooth was slightly smaller, which has led

us now to perform a pressure sensitivity scan in these calculations. In Figure 1, the

BAE mode evolution in discharge #20488 as measured with magnetic diagnostics is

displayed. At this time high resolution Soft X-Rays (SXR) system was not available. In

the case of discharge #25546 the BAE and low-frequency modes measured with the core

SXR channels are shown in Figure 2. The classification of the observed modes as BAEs

and low-frequency modes and the splitting of several modes using the kinetic model has

already been provided in [17]. The detailed experimental findings for the discharges

#20488 and #25546 are published in [16] and [17] respectively.

Figure 1: Frequency spectrogram for

discharge #20488 from t = 1.72 to 1.78

seconds. Strong BAE mode activity

during monster sawtooth crashes is

measured with Mirnov coils.

Figure 2: BAE and low-frequency

mode activity for discharge #25546

from t = 2.0 to 2.265 seconds measured

with the core-localized soft X-ray chan-

nels.

In Fig. 1 of reference [17] the low-frequency mode activity during two sawtooth

cycles from t = 1.91 to 1.98 s for discharge #25546 as measured with a core (ρ ≈ 0.24)

soft x-ray channel is shown. In these results ρ is a normalized radial parameter defined

as ρ =
√
ψpol and ψpol is the normalized poloidal flux. Here, we focus on the high-

frequency BAE branch at ∼ 70kHz with the toroidal mode numbers n = 3 to 6.
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One can observe that the mode frequencies directly after a sawtooth crash are almost

degenerated, whereas during the sawtooth cycle they start to split. This observation has

been explained with the raise of the pressure gradient and the corresponding downshift

of the kinetic continuum (see Fig. 12 of reference [17]). This implies that higher mode

numbers are shifted downwards more strongly than lower mode numbers. Towards the

end of the cycle, the mode-frequency splitting starts to disappear, probably due to the

sawtooth precursors, as discussed in section 2.4 of reference [17]. Despite the success of

this model, it is interesting to try to understand the remaining differences of 2 to 5 kHz

in frequency splitting, especially towards the end of the sawtooth cycle. It should be

noted, that it is assumed that the evolution of the BAE continuum accumulation point

is a proxy for the evolution of the global BAE mode [31]. Based on an ASDEX Upgrade

equilibrium reconstruction for discharge #20488 (and the practically identical discharge

#25546 discussed in [17]) a pressure scan is performed that is intended to model the

increase in the core pressure after a sawtooth crash.

3. 3D MHD equilibrium solver VMEC

In axisymmetric tokamak-like devices, the reconstruction of MHD equilibrium is usually

performed in 2D formulation of the Grad-Shafranov equation. The 2D MHD equilibrium

reconstruction sufficiently provides a basis for MHD stability studies unless the 3D

structures are introduced in the calculations. External 3D perturbations in the magnetic

field are introduced in tokamak plasmas to achieve optimized plasma performance [32].

In contrast to external perturbations, the internal 3D perturbations referred to as helical

or snake equilibria, have also been studied for different tokamak devices i.e TCV [33],

MAST [34], ASDEX-Upgrade [35], JET [7] and ITER [36]. These perturbations arise

as the plasma self-organise to the lowest MHD energy state.

The mathematical description of the 3D MHD equilibrium reconstruction with a

helical core using the 3D MHD equilibrium code VMEC [21] is based on the minimization

of the plasma energy W . In this model, the nested magnetic flux surfaces are constrained

to have a single magnetic axis, which preclude existence of magnetic islands and

stochastic structures of the magnetic field. In VMEC the plasma energy is given by,

W =

∫∫∫
d3x

(
B2

2µ0

+
p‖

Γ− 1

)
(1)

where B is the magnetic field strength, µ0 = 4π × 10−7H/m is the permeability of free

space, p‖ is the parallel pressure, and Γ is the adiabatic index. VMEC constructs

an equilibrium by employing a variational method to find the minimum energy of

the system. It solves an inverse equilibrium problem in cylindrical coordinates to

determine the distance from the major axis R = R (s, u, v) and height above the mid-

plane Z = Z (s, u, v), where 0 ≤ s ≤ 1 is the radial variable corresponding to the

normalized enclosed toroidal magnetic flux, 0 ≤ u ≤ 2π denotes the poloidal angle and

0 ≤ v ≤ 2π/Nfp is the toroidal angle where Nfp is number of field periods around the

torus.
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The variation of energy with respect to time is given as,

dW

dt
= −

∫∫∫
ds du dv

[
FR

∂R

∂t
+ FZ

∂Z

∂t
+ Fλ

∂λ

∂t

]
−
∫∫

s=1

du dv

[
R

(
p⊥ +

B2

2µ0

)(
∂R

∂u

∂Z

∂t
− ∂Z

∂u

∂R

∂t

)]
. (2)

The last integral in Equation (2) defines the forces responsible for the movement of the

plasma boundary. In fixed boundary calculations, the plasma-vacuum interface remains

fixed. Therefore, by definition these forces vanish. The R and Z components of the

MHD force are given FR =
√
g∇v×∇Z ·F and FZ =

√
g∇R×∇v ·F corresponding to

the projection of the full force F = j×B - ∇ ·P. The λ force term is binormal (normal

to the field line on a flux surface) force projection given as Fλ = −
(√

gB ×∇s · F/B2
)
,

where λ is poloidal angle re-normalization parameter,
√
g is Jacobian and p = p‖ = p⊥

is the isotropic pressure.

This system of MHD equations is solved iteratively by applying an accelerated

steepest descent energy minimization scheme in VMEC. Fourier decomposition in the

periodic angular variables u and v is used and a finite difference scheme is incorporated

for the radial discretization. The radial force balance averaged over a flux surface is

considered as diagnostic for the convergence of reconstructed equilibrium state. It is

given by, 〈
Fs

Φ′(s)

〉
= −

〈
1

Φ′(s)

∂p‖
∂s
|B
〉
− ∂

∂s

〈
σBv√
g

〉
− ι(s) ∂

∂s

〈
σBu√
g

〉
(3)

where Φ is toroidal magnetic flux function, prime (′) denotes the derivative with respect

to s, σ = 1/µ0, Bu and Bv are poloidal and toroidal magnetic field covariant components

respectively and Fs is covariant representation of the radial force, while ι(s) = 1/q the

rotational transform of the magnetic field.

4. The Alfvén continuum solver STELLGAP

This section describes the mathematical model used for the calculation of Alfvén and

Alfvén-acoustic continuum structures for three dimensional systems. The description of

mathematical formulation is followed by the numerical scheme, employed in the extended

STELLGAP solver.

To investigate the full continuum spectrum of ideal MHD, an extension of the

STELLGAP solver [37] with slow-sound wave coupling [38] has been used. Computation

of the Alfvén continua with the coupling of slow-sound and Alfvén waves is viewed as

obligatory due to the low frequency oscillations in the experimental observations as

discussed in section 2. Three dimensional reduced MHD equations with the inclusion

of parallel compressibility and coupling to Alfvén and magneto-acoustic waves for low

beta toroidal plasmas have been derived [39] for finite geodesic curvature of the magnetic
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field lines. The curvature Ks of field lines is responsible for coupling between these two

waves, since at vanishing Ks the two waves decouple.

The inclusion of parallel compressibility into the system of equations allows us

to investigate, in addition to the shear Alfvén mode, the acoustic, geodesic acoustic

and coupled acoustic-shear Alfvén modes. These effects of compressibility are expected

to set a minimum frequency range at rational surfaces (k‖ = 0) for the continuum.

Following the approach of [40], the derived system of equations [39] is transformed into

an eigenvalue system in the extended STELLGAP code [22,23]. This eigenvalue system

can be written as,(
µ0ρmω

2 |~∇ψ|2

B2
+ ~B · ~∇

[
|~∇ψ|2( ~B · ~∇)

B2

])
ξs + γpKs(~∇ · ~ξ) = 0 (4)

Ksξs +

[
γp+B2

B2
+

1

µ0ρmω2
γp( ~B · ~∇)

( ~B · ~∇)

B2

]
(~∇ · ~ξ) = 0 (5)

In both equations, (~∇ · ~ξ) is the plasma compressibility, magnetic surface displacement

is ξs = ~ξ · ( ~B× ~∇ψ)/|∇ψ|2 and ~∇ψ = NfpF
′
p/2π~∇s , where ψ is the toroidal flux, Nfp is

field-period and F ′p is derivative of the poloidal flux with respect to normalized toroidal

flux s per period. Ks is the geodesic curvature of the background magnetic field given

by,

Ks = 2~κ ·

(
~B ×

~∇ψ
B2

)
with ~κ =

(
~b · ~∇

)
~b and ~b =

~B

B
(6)

Equations (4) and (5) are solved as a coupled system, expanding the unknowns in a

Fourier series in poloidal (m) and toroidal (n) mode numbers. This leads to a matrix

eigenvalue equation:

ω2←→A ~x =
←→
B ~x (7)

where ~x is a vector containing the Fourier components of ξs and ~∇ · ~ξ. With this set of

equations, the Alfvén and Alfvén-sound continuum is computed by STELLGAP for all

relevant mode numbers (m, n) using the DGEGV routine from the LAPACK library.

Equation (7) is solved in straight field line Boozer coordinates. The use of straight

field line coordinates preserves the zeros of the B · ∇ operator when coupled with a

Fourier series representation of ~∇ · ~ξ to avoid the presence of singularities due to the

compressibility effects. The unknowns ξs and ~∇· ~ξ are expanded in a Fourier series over

poloidal and toroidal angles, along with the coefficients in Equations (4) and (5). Series

resulting from the convolution of these product series is multiplied by the individual

Fourier test functions and integrated over each flux surface. This results in block

tridiagonal matrices with the block size equal to the number of Fourier modes. An

eigenvalue problem is then solved for each flux surface. A wide range of the Fourier

modes is implemented to cover the extended spectrum of shear Alfvén, acoustic and

coupled acoustic-shear Alfvén continua.
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5. Bifurcated MHD equilibrium reconstruction

The saturated internal-kink mode is dominated by m = 1, n = 1, surrounding the

magnetic axis and leads to the helical equilibria. They distort the symmetry properties

in the plasma core area by forming a 3D helical core surrounded by an axisymmetric

2D mantle. Plasma equilibria with a 3D helical core and axisymmetric boundary are

defined as bifurcated helical equilibrium states.

In our studies, we have modeled a bifurcated helical equilibrium by introducing

a small perturbation in the magnetic axis for AUG-tokamak discharge #20488, which

has q in the vicinity of unity in the core region of the tokamak. Two sister equilibria,

one axisymmetric and another helical are calculated simultaneously using an identical

boundary with the VMEC code [21]. The q-profile of the discharge #20488 presented

in Figure 3 is used as an input to the VMEC code together with the plasma boundary,

peaked pressure profile (Figure 4) and an initial perturbation in the magnetic axis. The

q-profile in Figure 3 shows the extended region of low shear up to ρ = 0.4 and q close

to one. These are the principal requirements for the formation of a helical core.

Figure 3: Safety factor (q) profile of

ASDEX-Upgrade discharge #20488.

Figure 4: Plasma pressure profile

of AUG discharge #20488. Here

pexp is the experimental pressure and

remaining four profiles are the scaled

pressures.

Figure 5: Poloidal cross-section of the toroidal magnetic flux surfaces for helical core

equilibria with δH = 0.37 at five toroidal angles φ = 0, π/2, π, 3π/2, 2π (left to right).

The deformations in flux surfaces are helical excursions of the bifurcated equilibrium

while preserving the plasma boundary
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The reconstructed equilibrium having the bifurcated behavior can be assessed

through the progression of modified magnetic flux surfaces. The magnetic flux surfaces

are plotted in the Figure 5, which clearly shows modifications in those flux surfaces

around the torus, which are clear signals of the helical core formation near the magnetic

axis. The saturated state of the magnetic axis can be characterized as an m = 1 and

n = 1 perturbation, the internal kink mode. It can be seen that while qualitatively

the helical formation is similar, it changes its orientation along the toroidal angle. In

comparison with these flux shape variations, the axisymmetric equilibrium calculations

display continuous magnetic flux surfaces with no deformation across the whole torus as

shown in Figure 6. In these calculations, identical pressure, inverse rotational transform

(q-profile) and plasma boundary are imposed. The only difference is the removal of the

seed perturbation of the magnetic axis, which is added for the helical core calculations

to allow the magnetic axis transform to a saturated internal-kink mode, if necessary

conditions permit [33].

Figure 6: Poloidal cross-section of the magnetic flux surfaces at two different toroidal

angles φ = 0, π/2 and π/2, π for the axisymmetric equilibria. In axisymmetric

equilibrium both contours have exactly matching flux surfaces and the same magnetic

axis. Here the magnetic axis is represented with blue and green colors.

In the comparison of magnetic flux surfaces contours at two different toroidal angles,

the results for axisymmetric case are shown in Figure 6, which confirm the zero level of

distortion in the flux surfaces. On the other hand, the 3D helical core comparison given

in Figure 7 for the two identical toroidal angles provides the proof of relative excursion of

magnetic axis due to helical core formation and simultaneous existence of two equilibria

solutions, one with helical equilibrium in plasma core and second with axisymmetric

equilibrium in the rest of contour are confirmed. This comparison shows the qualitative

excursion of the magnetic axis at two different toroidal angles and highlights the regions
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Figure 7: Poloidal cross-section of the magnetic flux surfaces at two different toroidal

angles φ = 0, π/2 and π/2, π for the helical core equilibria with δH = 0.37. In both

graphs, the excursion of the magnetic axis is clear and represented by red and black

symbols and the magnetic flux surfaces are represented by magenta and black color

lines. The red and black color dashed lines are the theta contours.

of closely packed magnetic flux surfaces due to the helical core formation.

The convergence of the reconstructed equilibria has been investigated by using the

volume averaged residual horizontal force FR as a function of number of iterations as

shown in Figure 8. The significant drop in FR along the number of iterations confirms

the convergence of helical core formation results. As in previous investigations [7], the

normalized radial force balance given in the Equation (3) has been used as a diagnostics

for the convergence of the equilibrium state by reaching to the value of the order of

10−8. In our results, with the number of flux surfaces equal to 799, we have achieved a

similar level of convergence in around 20 000 iterations for the experimental pressure.

In the higher pressure calculations, we have used around 40 000 iterations to achieve

the converged results for 500 radial grid points.

We have also modeled the excursion of the helical core δH defined in Equation (8)

with the number of iterations. It is found that the helical core saturates at an identical

number of iterations for different radial resolutions. In previous studies the saturation

of the helical core with a higher number of radial grid points [41] and the increase in the

helical core with the increase in number of iterations [35] has been associated with the

convergence of helical core equilibria. In our results presented in Figure 9, the helical

core for the lower number of iterations remains smaller, and after reaching a sufficient

number of iterations as defined by the threshold given in [41], it grows rapidly and

eventually saturates. At this point the helical core becomes fully resolved.

The quantitative measure of the helical excursion for the reconstructed equilibria
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Figure 8: The volume averaged horizontal force FR evolution with number of iterations

Figure 9: Dependence of helical core size δH on number of iterations Nit for different

levels of radial resolution Nr

can be provided with a parameter δH [7] defined as

δH =

√
R2

01(s = 0) + Z2
01(s = 0)

a
(8)

Here R01(Z01) corresponds to the Fourier amplitude of the R (Z) components of the

m = 0, n = 1 mode at the magnetic axis s = 0 (a = 0.4 meters is the effective plasma

minor radius).

In this work the helical excursion of the magnetic axis has been calculated with

respect to the plasma pressure as shown in Figure 10, as the peaked plasma pressure has

been considered an important parameter in the formation of helical structures. Results

computed with fixed boundary equilibrium calculations, show that the helical excursion

of the magnetic axis increases with the increase in the plasma pressure up to a certain

limit, from δH = 0.37 for the experimental pressure to δH = 0.7 for 1.75 times of the

experimental plasma pressure. When the plasma pressure is increased further, the helical
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Figure 10: The magnetic axis helical distortion parameter δH as a function of the

pressure normalized to the experimental pressure.

excursion decreases due to the fixed boundary nature of the equilibrium calculations.

In a fixed boundary equilibrium model, the Shafranov shift at the maximum plasma

pressure already distorts the magnetic flux surfaces strongly enough and leaves no room

for their further stretching. Therefore, a further excursion of the helical core is not

possible at the higher plasma pressures.

6. Alfvén continuum results and discussions

Alfvén continuum calculations have been performed for the experimentally observed

radially extended low-shear q-profile plasmas using axisymmetric and non-axisymmetric

MHD equilibria as discussed in section 5. Two different cases, one with axisymmetric

(2D) and the second one with helical (3D) equilibria have been investigated. In Alfvén

continuum calculations the parallel plasma compressibility γ = 1.6 is employed for the

low frequency Alfvén continuum calculations. In these calculations, we have limited

the selection of toroidal mode numbers (n) from 1 to 6, since a similar range of n was

measured in the experiments.

6.1. Alfvén continuum calculations with axisymmetric 2D equilibria

Axisymmetric equilibrium calculations for tokamaks are straightforward because ideal

tokamaks are inherently axisymmetric (2D) devices. Alfvén continua using an

axisymmetric equilibrium are calculated for n = 1 to 6. The Alfvén continuum structures

for the full radial extent and frequencies up to 475 kHz are shown in Figure 11. In these

continuum structures a frequency gap appears in the full plasma column. The gap is

wide in the core and becomes narrower towards the edge. These structures are similar

for all toroidal mode numbers, including their resonant extrema points.
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For the six toroidal mode numbers n = 1 to 6 considered here, the Alfvén continuum

structures at ρ ≈ 0.23 approach an accumulation point as shown in Figure 11 around the

q = 1 rational surface exhibited in Figure 3. Zooming in on these structures in Figure

12 shows that all continua accumulate around a single frequency of 35 kHz and there

is no splitting in the frequency range. These characteristics of non-splitting frequency

at the accumulation point around rational surfaces are the hallmarks of axisymmetric

continua. Here, we define frequency splitting (∆f) as the difference between the highest

frequency branch and the lowest frequency branch in the continuum structures around

the frequency accumulation point caused by the 3D effect of the helical core. We will

study this frequency splitting in detail in section 6.2 below.

It should be noted that in the experiment the BAE mode frequency was observed

at 60-70kHz. The remaining difference after taking into account the Doppler shift ∼
3kHz [17] can be attributed to a different model for the plasma compressibility: here the

value of γ = 1.6 is used where as in [17] the more sophisticated kinetic expression was

used. Nevertheless, the frequency splitting due to 3D effects is not expected to change

significantly due to the choice of this parameter.

Figure 11: Alfvén continuum struc-

tures with axisymmetric (2D) equilib-

rium for discharge #20488.

Figure 12: Zoom in of Alfvén

continua in Figure 11. Different colors

represent the corresponding toroidal

modes number (n)

6.2. Alfvén continuum calculations with bifurcated helical core equilibria

The continuum structures using helical 3D equilibria have been investigated for the

same discharge for the five different pressures (Figure 4) as discussed in the section 5.

The helical core excursion shown in Figure 10 is strongly dependent upon the plasma

pressure. The Alfvén continuum calculations are performed to investigate the effect
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of helical core size, since in the experimental investigations a peaked pressure profile

was measured after the sawtooth crashes. Simulation results of Alfvén continua for the

experimental pressure with an m = 1, n = 1 helical core and δH = 0.37 are presented in

Figures 13 and 14. For the maximum achieved helical core size of δH = 0.7 the Alfvén

continua are presented in Figures 15 and 16.

There are a number of significant differences in the Alfvén continua computed using

bifurcated MHD equilibria with the Alfvén continua computed using an axisymmetric

equilibrium. They include: frequency splitting in Alfvén continua, shifting of the modes

at the frequency accumulation point and the appearance of helical Alfvén eigenmodes

(HAE) gaps. In following, we discuss the differences in detail.

Alfvén continua computed using helical equilibrium and having exactly equivalent

plasma parameters as the axisymmetric calculations is shown in Figure 13. Around the

frequency accumulation point at ρ ≈ 0.23 there is a noticeable splitting in the frequency

range of continua as shown in Figure 14. Following the definition of frequency splitting,

we have the highest frequency branch at f = 36.4 kHz with toroidal mode number n =

5 and the lowest frequency branch at f = 33.4 kHz with toroidal mode number n = 6,

resulting in ∆f = 3 kHz. The radial shifting in the mode structures via coupling to the

n-1 continuum structures around an accumulation point is also clearly shown in Figure

14 e.g. a mode n = 1 converts to an n = 6 mode in the range 0.218 ≤ ρ ≤ 0.238, then

it reverts back to a n = 1 mode at higher ρ.

Figure 13: Alfvén continuum struc-

tures with 3D helical core equilibrium

having δH = 0.37 for discharge #20488

Figure 14: Zoom of Alfvén continua in

Figure 13. Different colors represent the

corresponding toroidal modes number

(n)

The radial shifting in mode structures is associated with the change in k‖ due to

the 3D excursion of magnetic axis. Due to the helical contribution, for the small k‖
at the accumulation point, the smaller non-axisymmetric sideband terms compete with
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the axisymmetric terms and become prominent. Close to k‖ = 0 they become more

significant. This prominence of non-axisymmetric sidebands at smaller k‖ values leads

to a radial shifting of modes around the accumulation point.

In figure 7 of [17], the shifting of the Alfvén continua relative to each other have

also been modeled using a kinetic Alfvén model. They observed that the modes with

higher n were shifted downwards after a few seconds of observation due to the strong

diamagnetic frequency. Similarly, we have computed the shifts in Alfvén continua

around the frequency accumulation point with the formation of helical core equilibria

with a saturated 3D magnetic axis.

For the extreme helical excursion of δH = 0.7, which happens at 1.75 times the

experimental pressure, the computed Alfvén continuum structures are presented in

Figure 15. In this case, the frequency gap around the plasma axis decreases by 20 kHz as

compared with the Alfvén continuum calculated at the experimental pressure and helical

core equilibria (Figure 13). The maximum frequency of the Alfvén continuum drops to

410 kHz from 475 kHz with minimum of 32 kHz. The splitting in the frequency range

around the accumulation point ρ ≈ 0.23 has also increased to 5 kHz, which corresponds

to the difference between thethe highest frequency branch f = 32.6 kHz with toroidal

mode number n = 4 and the lowest frequency branch f = 27.6 kHz with toroidal mode

number n = 1 as shown in Figure 16. In our analysis, for lower (δH = 0.37) as shown in

figure 14, the continuum of each n is shifted with the adjacent lower continuum of n− 1

around the frequency accumulation point. Only the continuum of n = 1 changes with

the continuum of n = 6 due to our selection of a maximum toroidal mode of n = 6 in

the STELLGAP code. In figure 16 with strong helical deformation (δH = 0.7) this type

of mode transitioning around the accumulation point from n to n-1 no longer holds, this

can be due to the stronger helical distortion resulting in further radial stretching of the

accumulation point. The radial drift of the accumulation point is associated with the

increase in the Shafranov shift due to the higher plasma pressures [42].

Coexistence of modes with similar n over a significant radial extent is associated

with the existence of radially extended rational surfaces and the saturation level of

the helical excursion of the magnetic axis. These factors mutually tend to maintain

smaller k‖ around the radially localized accumulation point; additionally for higher

δH the frequency accumulation point becomes radially extended as seen in figure 16.

As mentioned earlier, under these conditions the frequency shifting phenomenon and

prominence of the non-axisymmetric sidebands undergo the radial transition of the

modes which leads to the coexistence of modes over a wide radial extent since the

accumulation point at stronger δH gets stretched in radius. The successive transition of

the modes happens as shown in figure 16, in the mode n = 2 branch which converts into

a n = 1 mode in the range 0.205 ≤ ρ ≤ 0.236, and beyond ρ ≈ 0.236 it again changes

into an n = 3 mode. Later it transforms back to n = 1 and finally reverts back to n =

2. These successive transitions of the mode can be due to the radial extension of the

frequency accumulation point at the stronger helical core (δH = 0.7), as they are not

present for the lower helical excursion of (δH = 0.37) as shown in figure 14.
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Figure 15: Alfvén continuum struc-

tures with 3D helical core equilibrium

having δH = 0.7 in discharge #20488,

where pressure is scaled to 1.75 times

Figure 16: Zoom of Alfvén continua in

Figure 15. Different colors represent the

corresponding toroidal modes number

(n)

The dependence of frequency splitting around ρ ≈ 0.23 on the helical core size is

shown in Figure 17. It shows that splitting in frequency (∆f) increases with the helical

core size. It is very low, around 0.5 kHz for small δH = 0.22 values and reaches 5 kHz

for the maximum helical core size of δH = 0.7.

Around the frequency splitting accumulation point, the radial variation of the

Alfvén continuum extrema remains unchanged at the lower values of the helical core

size δH as shown in Figure 18. However a small increase of ρ = 0.025 has been noticed,

which suggests that frequency splitting appears with a very small radial excursion of

continua. For the maximum achieved helical core excursion (δH = 0.7), a small difference

of ρ = 0.016 between the continua minimum and maximum frequencies shows that the

frequency splitting is accompanied with a small movement of the accumulation point in

radius.

Alfvén continuum calculations for the different levels of the helical core equilibria

have been performed. The dependence of the Alfvén frequency gaps on δH , formed by

the extrema of n = 6 continua with helical equilibria, around the plasma axis and at

two further out radial locations is shown in Figure 19. Alfvén gaps at these three ρ

values show a decreasing tendency for further increases in helical core strength beyond

δH = 0.37. Around the plasma axis (ρ ≈ 0), the continuum gaps are narrower than

the gaps around ρ ≈ 0.23 and wider than the gaps ρ ≈ 0.35. Alfvén gaps for ρ ≈ 0 at

δH = 0 and δH = 0.37 are comparable having around 280 kHz frequency and for the

maximum helical excursion δH = 0.7, the gap is 255 kHz.

At the frequency splitting radial location ρ ≈ 0.23, the Alfvén gap is larger for

the axisymmetric case (δH = 0) having a frequency of 420 kHz as compared with the
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Figure 17: Alfvén continuum frequency splitting with helical core size around ρ ≈ 0.23

when toroidal mode numbers n = 1 - 6 have been taken into account in the calculations.

If a larger number of n’s had been included in the calculations, the ∆f could have been

different.

Figure 18: Radial variation of the frequency splitting accumulation point with helical

core excursion

increasing values of δH . The Alfvén gap around ρ ≈ 0.23 decreases with an increase in δH
= 0.37 to 0.7 and reaches to 365 kHz for largest helical core size. However for δH = 0.22
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Figure 19: Alfvén frequency gap variation with the helical core size at three different

radial locations

the gap is relatively smaller. It is also noticeable that at ρ ≈ 0.23, the continuum gaps

at δH = 0 and δH = 0.37 are comparable. The decrease in the Alfvén frequency gap has

been encountered for higher values of ρ, at the radial location ρ ≈ 0.35 the frequency

gap decreases around in the range of 126 kHz for the axisymmetric case. Contrary to

the gap around ρ ≈ 0.23, the Alfvén gap around ρ ≈ 0.35 follows a decreasing trend

from δH = 0.22 to 0.7 and reaches to 80 kHz for the maximum helical core size δH = 0.7.

In this case it is also noticeable, the Alfvén gaps at δH = 0 and δH = 0.37 are not alike

as they were in the case of ρ ≈ 0.23. The lower maxima of continuum structures for

the formation of these gaps remained constant around 190 kHz except for δH = 0.22

at which it decreased to 160 kHz. The gaps calculated at δH = 0.22 correspond to

the twice the experimental plasma pressure. The increased plasma pressured decreases

helical core excursion and hence the Alfvén gaps at all three radial locations. These

results show that the Alfvén frequency gap is strongly influenced by the helical core

size and also varies along the minor radius. Close to the plasma axis ρ ≈ 0, the gap is

smaller than at ρ ≈ 0.23 and as ρ increases from ρ ≈ 0.23 to 0.4 the Alfvén frequency

gap also decreases as shown in Figures 11, 13 and 15.

In these results, three major gaps have been found as characterized by their

frequencies. In low frequency region the gap is identified with the BAE gap which

is generated by the plasma compressibility and geodesic curvature. In between the

two identical toroidal mode numbers, a wider gap has been found due to the adjacent

poloidal mode couplings, therefore it is called TAE gap. At relative farther radial

location and higher frequency a gap also forms, which is identified as the EAE gap.
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These results show that the TAE gap is the largest gap and has its maximum value

around the frequency accumulations point ρ ≈ 0.23 and it decreases at the outer radii.

Thus it is expected that not only the BAE physics is modified but also the TAE (odd

and even) and EAE mode frequencies which will be investigated elsewhere.

In comparison with 2D results given in Figures 11 and 12, a distortion in the

continuum structures δfAC around ρ ≈ 0.35 has been noticed (Figures 13 and 15), which

appears only when the helical core 3D equilibrium is employed. We have inferred δfAC
as conversion of the mode from one toroidal mode number to another; this generates

localised gaps between the different continuum spectra along the radius starting from

ρ ≈ 0.35. Distortion in the Alfvén continuum provides an information about the

formation of the localised gaps between different continua and the mode conversion

which are absent in the axisymmetric calculations.

The maximum radial extent to which the effect of δfAC is modelled with the helical

excursion δH is shown in figure 20. This shows, for smaller helical core (δH = 0.22),

the distortion in continua ranges up to ρ ≈ 0.42 staring from ρ ≈ 0.35 and it reaches

up to ρ ≈ 0.56 (figure 15) for the maximum achieved helical core size. It generates

localised frequency gaps in radius between the different branches of continua. These

are Helical Alfvén Eigenmode (HAE) gaps since they emerge due to the coupling of

continuum branches from different n’s. Up to δH = 0.7, the radial extension around

0.35 ≤ ρ ≤ 0.56 of the HAE gaps between different continua suggests that they are

radially extended modes. At δH = 0.7, radially localized closed HAE gaps also appear

around ρ ≈ 0.56.

Figure 20: Variation in the radial extent of the Alfvén continuum distortion with

helical core size

As per HAE definition [37], n couples to n±δnNfp and m with m±δm, where n and
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m are toroidal and poloidal mode numbers, Nfp is field period and δn, δm are integer

mode displacements, therefore the coupling between successive n’s is possible; this leads

to open gaps between different n continua. In our calculations, for a significant helical

excursion of δH = 0.7, initially an n = 6 mode (in red) converts to n = 5 (yellow) and

then n = 4 (green) and generates a radially extended gap with the internal mode n = 5

frequency (yellow) which then converts to n = 6 (red), following to n = 4 (green) and

back to n = 5 as function of radius. These gaps are limited in radial extent associated

with the radial extension of q = 1 rational surfaces as shown in figure 3.

Effects of the 3D density inhomogeneities on the Alfvén spectrum for tokamak

plasmas [43] lead to the coupling of different n Alfvén continuum is possible. Specifically,

when the toroidal inhomogeneity is prominent these couplings produce new gaps

where the continua of the two toroidal harmonics were degenerate in the homogeneous

case. Similarly, for in helical equilibria the continuum spectrum is distorted, with the

generation of additional gaps caused by the coupling of successive n in radius.

This splitting of Alfvén continua with helical core size is helpful to explain the

experimental observations: first one has to note that lower mode numbers have lower

accumulation points for the acoustic-Alfvén modes (see e.g. fig 13 of [17]). However,

the BAE modes observed in the experiment show the inversion of the mode numbers

from the kinetic simulations [16]. Towards the end of the sawtooth cycle the splitting

of the modes remains in the model whereas it disappears experimentally (see t = 1.98

of fig 7 in reference [17]). Before the crash, the core pressure is at its maximum, and

despite some sawtooth precursors it remains large in the last 10 ms before the crash. The

modification of the BAE accumulation points due to the helical core suggest that the

splitting should decrease since it cancels the ’inverse diamagnetic’ splitting discussed in

reference [17]. In addition, also a small radial shift of the BAE accumulation point due

the helical core is observed (see fig. 16 [17]), changing the kinetic BAE accumulation

point because of radial profile (mainly Ti and Te) effects. Thus, the combination of

helical core (∼ 3-5kHz shift) and diamagnetic downshift may go hand in hand to explain

the experimental observations. Very demanding global kinetic 3D calculations would be

needed to investigate this question more quantitatively.

7. Summary and conclusions

Investigations for the Alfvén continuum spectra of helically distorted MHD equilibrium

have been carried out for improved understanding of observed low-frequency Alfvénic

modes in tokamak plasmas. First, we have carried out the bifurcated MHD equilibrium

investigations for the tokamak plasmas using a 3D numerical tool (VMEC). Identical

sets of parameters have been employed in the reconstructions of axisymmetric (2D) and

helical core (3D) equilibria, with the only difference being a small seed perturbation in

the magnetic axis. The formation of the helical core has been associated with a saturated

internal-kink m = 1, n = 1 mode [14] which determines its excursion level. In previous

studies [17], a kinetic model has been applied to the experimental findings. We find that
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near rational surfaces having q = 1, the Alfvén continuum splits into multiple frequencies

and the continuum of n couples with that of n-1. However, despite the promising results,

the kinetic model [17] alone could not well describe the remaining differences of the 2

to 5 kHz in the frequency splitting. Results for the Alfvén continuum calculations

obtained with the extended STELLGAP solver including the 3D effects of helical core

equilibria, explain these few kHz differences in the frequency splitting, and confirm the

frequency splitting phenomenon around q = 1 rational surfaces. The continua obtained

with gaps opened by the plasma compressibility and geodesic curvature are in the range

of frequencies of Alfvénic (BAE) and mixed acoustic-Alfvénic (BAAE) modes, which

support the experimental findings of low-frequency modes.

The sensitivity studies with pressure variation show that the helical excursion of

the equilibrium increases with increasing plasma pressure and eventually it drops at

extreme pressures due to the fixed boundary equilibrium calculations. Fixed boundary

reconstruction has been considered sufficient in these calculations because of the desired

plasma pressure scaling. The continuum results show that the frequency splitting around

the accumulation point also increases with increases in the helical excursion. The

accumulation point does not vary in radius with the plasma pressure. The distortion

in the continua along the radial extent starting from ρ ≈ 0.35 has been found, which is

also an effect from the helical core equilibria.

Finally, it is concluded that these new results are comparable with the experimental

findings discussed in [17], with the confirmation of frequency splitting in Alfvén

continuum via coupling of adjacent n continua around an accumulation point.

Additionally, the issue of few kHz differences in the frequency splitting is addressed

and explained by including 3D effects. Furthermore, the formation of additional low-

frequency gaps due to the coupling of acoustic-Alfvén waves are also addressed in our

calculations.
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