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Introduction
The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical
toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in
tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar
neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the mag-
netic field. A universal approach for this problem is usually provided by δ f Monte Carlo
methods [1, 2] where the linearized drift-kinetic equation (LDKE) is solved directly (without
bounce-averaging). Here, a more efficient universal approach for the numerical computation
of these fluxes (without model simplifications of the LDKE) is described where the problem
dimension is reduced by one using the quasilinear approximation. The only limiting condition
is that the non-axisymmetric perturbation field is small enough such that the effect of the per-
turbation field on particle motion within the flux surface is negligible. Therefore, in addition to
most of the transport regimes described by the banana (bounce averaged) kinetic equation [3, 4]
also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included
in this approach. The approach has been realized in the code NEO-2 [5] for general tokamak
geometry using the full linearized collision operator. The quasilinear approach and the results
of benchmarking the code NEO-2 with various existing models are the topic of this report.
Definitions
In Boozer coordinates (r,ϑ ,ϕ) with re-defined flux surface label, 〈|∇r|〉 = 1, the poloidal and
toroidal components of the ion fluid velocity in the covariant notation are

V ϑ =
ck Bϕ

ei
√

g〈B2〉
dTi

dr
, V ϕ =

c√
gBϑ

(
Er−

1
eini

d(niTi)
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)
+qV ϑ , (1)

where c, ei, ni, Ti, Er,
√

g, q and 〈. . .〉 are speed of light, ion charge, ion density, ion tem-
perature, radial electric field, metric determinant, safety factor and the “flux surface” average,
respectively. Here the coefficient k = 5/2−D32/D31 is determined by the neoclassical transport
coefficients D jk, which link the thermodynamic forces Ak and fluxes I j by the relations

I j =−nα

3

∑
k=1

D jkAk. (2)

The thermodynamic fluxes are expressed through flux surface averaged particle (I1 =Γα ) and
heat flux density (I2 =Qα/Tα ) and through the parallel flow density (I3 =nα〈V‖αB〉), whereas
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the thermodynamic forces are specified by
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1
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where α denotes the species and E‖ is the inductive electric field. The evolution of the radial
electric field is described by a simplified toroidal rotation equation neglecting contributions for
neutral beam injection or other external sources

∂
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where mα is α species mass, Πr
ϕ is the momentum flux density due to neoclassical and anoma-

lous transport and T NA
ϕ is the density of the toroidal torque driven by external non-axisymmetric

magnetic field perturbations. This toroidal torque density is linked with non-ambipolar particle
fluxes ΓNA

α via the flux-force relation,

T NA
ϕ =−1

c
√

gBϑ
∑
α

eαΓ
NA
α = −νtmini

〈
gϕϕ

(
V ϕ −V ϕ

in

)〉
, (5)

whereby the rotation relaxation rate νt (toroidal viscosity frequency) and the “intrinsic” (“off-
set”) rotation velocity V ϕ

in take a particular simple form if the electron particle flux is negligible,
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Quasilinear ansatz
For the evaluation of non-ambipolar particle fluxes within the standard neoclassical approach
the solution of the LDKE (which is 4D) is required. Within quasilinear approach, which reduces
the problem dimension by one, the perturbation field is split into an axisymmetric and small
non-axisymmetric part, B=B0 + δB. It is sufficient to find the solution to LDKE up to linear
order in the perturbation field amplitude, f1= f10 + f11. Expanding the non-axisymmetric parts
of the magnetic field and of the solution in a Fourier series over a field aligned toroidal angle,
ϕ0 = ϕ−qϑ ,

δB(ϑ ,ϕ0) = Re
∞

∑
n=1

Bn(ϑ)einϕ0, f11(ϑ ,ϕ0) = Re
∞

∑
n=1

fn(ϑ)einϕ0, (7)

the set of equations for the axisymmetric and the non-axisymmetric parts is
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Here, the velocity space variables are (v,η) where η = v2
⊥/(v

2B0), fM is a local Maxwellian,

L̂(n) ≡ v‖
Bϑ

0
B0

∂

∂ϑ
− L̂cL + in(ΩtE +ΩtB), (10)
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L̂cL is the full linearized collision operator and ΩtE and ΩtB are toroidal rotation frequencies due
to the electric and magnetic drift, respectively. The non-ambipolar particle flux density, which
determines the coefficients DNA

11 and DNA
12 , is expressed through Fourier amplitudes as
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In NEO-2, the dependence of f10 and fn on the velocity module v is discretized by a series
expansion over associated Laguerre polynomials of the order 3/2 and the resulting set of coupled
2D equations is solved using a finite-difference scheme on an adaptive (ϑ ,η) grid.
Benchmarking results
For benchmarking, a tokamak configuration with circular cross-section and aspect ratio A = 3.8
is used. The results for the full linearized collision model correspond here to the ion component.
The perturbation field is taken in the form of a single harmonic, δB= εMB0(r,ϑ)cos(mϑ +nϕ).
Since transport coefficients have a simple, quadratic dependence on εM, this quantity has been
set to 1 in all plots below. For the non-linear models, such as the DKES code [6], results are
obtained for εM = 10−3 and are then rescaled. Results of benchmarking with the DKES code
are presented in Fig. 1. There scans over the collisionality parameter ν∗ = 2νqRv−1

T of the
diffusion coefficient D11 normalized to the mono-energetic plateau diffusion coefficient Dp =
πqvT ρ2

L/16R are shown for various perturbation modes and for various radial electric fields
given in terms of toroidal Mach numbers (normalized toroidal rotation velocity values) Mt =
ΩtERv−1

T . Besides bounce-averaged regimes the ripple plateau and resonant diffusion regimes
are clearly reproduced by both codes.
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Fig. 1. Normalized coeffi-
cient D11D−1

p from NEO-
2 (Lorentz collision model)
and DKES [6] as a func-
tion of collisionality ν∗ for
various perturbation modes
and toroidal Mach numbers
Mt = 0 (♦), 2.8 · 10−7 (M),
2.8 · 10−6 (�), 2.8 · 10−5

(◦), 2.8 · 10−4 (×), 2.8 · 10−3

(+) and 2.8 · 10−2 (?). The
toroidal rotation frequency
due to magnetic drift is set
to zero for the four cases
shown above. Aspect ratio
and mode numbers are indi-
cated in the titles.

Results of the computation with the full linearized collision operator and the comparison to
the universal formula of Shaing et al [3] are shown in Fig. 2. A good agreement is seen in the
domain of validity of the bounce-averaged approach.
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Fig. 2. Normalized coeffi-
cient D11D−1

p from NEO-2
(full collision model) and
bounce-averaged model of
Shaing [3] (upper panel) and
“offset” rotation coefficient
kNA from NEO-2 (lower panel)
as functions of collisionality
ν∗ for various perturbation
modes and toroidal Mach
numbers Mt = 0 (♦), 2.8 ·10−7

(M), 2.8 · 10−6 (�), 2.8 · 10−5

(◦), 2.8 · 10−4 (×), 2.8 · 10−3

(+) and 2.8 · 10−2 (?). The
ripple-plateau diffusion co-
efficient [7] is shown with a
dashed line at the upper panel.

The comparison of NEO-2 results with the full collision operator in the superbanana plateau
regime to the respective asymptotic formula of Shaing et al [3] is shown in Fig. 3. The toroidal
magnetic drift is fixed by setting cTα (eαψa)

−1 = |ΩtE |where ψa is the toroidal flux at the edge.
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Fig. 3. Normalized coefficient
D11D−1

p from NEO-2 (full col-
lision model) and asymptotical
formula of Shaing [3] as a func-
tion of collisionality ν∗ for var-
ious toroidal Mach numbers.
Aspect ratio and mode number
are indicated in the title.

Conclusions
The developed quasilinear version of the drift kinetic equation solver NEO-2 allows for an ef-
ficient evaluation of the non-ambipolar particle flux, which determines the torque, in the whole
collisionality range. The only limiting assumption of sufficient smallness of the perturbation
field is valid in most cases of practical interest. The code has been benchmarked with a few
analytical and semi-analytical models as well as with the DKES code and stays in good agree-
ment in the validity domain of those models. As shown in the benchmarking, bounce averaged
models can give significant errors already in case of mild toroidal Mach numbers (Mt ∼ 0.03 in
the examples here) not only for short scale perturbations typical for the toroidal field ripple but
also for medium scale perturbations such as perturbations produced by ELM mitigation coils.
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