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Figure S1, related to Figure 3. 
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Figure S3, related to Figure 6. 
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Figure S5, related to Figure 8. 
Figure S6, related to Figure 8. 
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Table S2, related to Figure 3. 
Table S3, related to Figure 5. 
Table S4, related to Figure 6. 
Supplemental Experimental Procedures: 

- Patch-clamp recordings and analysis; 
- Characterization of the AMPAR clusters; 
- Molecular model of glutamate release, diffusion, AMPAR binding and gating; 
- “Ca2+-synchronized MQR” model; 
- Electron microscopy; 
- Homotypic fusion model of MQR. 

Supplemental References. 
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Figure S1. Model AMPAR organization in the PSD; difference between 

instantaneous release and release through a 6 nm pore; EPSC size as a function 

of release position for a disk AMPAR topography 

Related to Figure 3. 

(A) AMPAR arrangement for a peak-to-peak cluster size of 900 nm. The AMPAR 

density was 2,000 μm-2 in the inner disk and 4,000 μm-2 in the annulus. The resulting 

average density was 2,897 μm-2. 

(B) Difference in EPSC shape between instantaneous release of glutamate in the 

synaptic cleft and release from the SV with a fusion pore width of 6 nm. The amplitude 
of the average EPSCs (depicted here) were -265.77 pA and -266.4 pA, respectively. 

And the mean EPSC amplitudes were -280.75 pA and -280.3 pA, respectively (t test: p 
= 0.87). 

(C) Normalized monophasic EPSC amplitude as a function of release position for 

different GluR cluster sizes. AMPAR scheme from Häusser and Roth (1997) and 3,000 

glutamates released. The AMPAR cluster profile was a disk with a uniform density of 
3,000 μm-2. For each GluR cluster length, the EPSC amplitude was set to 1 for a 

release in the synapse center. To allow convenient comparison with Figure 3G, a disk 

profile with a given “GluR peak-to-peak length” had the same diameter as the overall 

diameter of the profile from Figure 3C with the same GluR peak-to-peak length. For 

example, a “GluR peak-to-peak length” of 0.8 μm corresponds to an outer diameter of 

0.92 μm for both the disk profile and the profile from Figure 3C. 
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Figure S2. Number of underlying elementary release events per EPSC displayed in 

the EPSC charge vs. amplitude scatter plot for the four other SGNs; Release 

duration and inter-eEPSC-intervals; eEPSC sizes within EPSCs for the four other 

SGNs 

Related to Figure 4. 

(A) Same as Figure 4C for four other SGNs. 

(B) Release duration of EPSCs. We defined the release duration as the interval between 

the first and the last underlying eEPSC in an EPSC. In 4 SGNs the distribution of 

durations was approximately exponential and all SGNs had EPSCs with release 
duration > 7 ms.  

(C) Inter-eEPSCs intervals within EPSCs. The mean interval among SGNs was 0.64 ± 

0.19 ms. 

(D) Same as Figure 4E for four other SGNs.  
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Figure S3. EPSC amplitude and charge decrease in BayK8644 can be explained 

by the increase in series resistance (Rs) 

Related to Figure 6. 

(A) Monophasic EPSC amplitude in control and BayK8644. 

(B) Multiphasic EPSC amplitude in control and BayK8644. 

(C) EPSC charge and recording series resistance (Rs) in control and BayK8644. 

The data points denoted with a star (*), correspond to recordings performed at – 60 mV 

holding potential. Their mean amplitude and charge was multiplied by 90/60 to be 
more easily comparable with other recordings performed at -90 mV holding potential. 
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Figure S4. Screening the temporal precision and efficiency of “Ca2+-synchronized 

MQR” model in terms of [Ca2+] and Tpulse; steady-state Ca2+ concentrations around 

an open Ca2+ channel; quantities used for the calculations of Nrel([Ca2+], τopen) and 

Tasync([Ca2+], τopen) 

Related to Figure 7 and Methods. 

(A) We calculated for which combination of pulse duration Tpulse and concentration 

[Ca2+] the “Ca2+-synchronized MQR” model model could generate monophasic and 

multiphasic EPSCs in terms of the mean number of SVs released per release event Nrel 

(left) and of the release asynchrony Tasync (right) for ranges of [Ca2+] (10 to 250 µM) and 
Tpulse (0 to 4.5 ms), potentially resulting from the opening of a single Ca2+ channel. The 
two blue and one green lines correspond to Tasync, mono, Tasync, multi, and Nrel, data, 

respectively. Nrel increased with [Ca2+] and Tpulse. In the region where Nrel ≈ Ntot (i.e., Prel ≈ 

1), Tasync mainly decreased with increasing [Ca2+]. In the region where Nrel ≈ 1 (i.e., Prel ≈ 

0), Tasync mainly decreased with Tpulse. The left consistency region (white stripes) 

corresponds to multiphasic EPSCs, and the right consistency region to monophasic 
EPSCs. 

(B) Steady-state Ca2+ concentrations around an open Ca2+ channel calculated using the 

linear approximation (Naraghi and Neher, 1997) assuming a Ca2+ channel current of 0.5 
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pA and a single buffer species (see legend, with kon and koff rates from (Naraghi and 

Neher, 1997)). For example, a [Ca2+] = 180 µM is reached at approximately 10 nm from 

the open Ca2+ channel center, assuming mild Ca2+ buffering (2 mM Ca2+ binding sites 
with EGTA-like kinetics). 

(C) Quantities used for the calculation of Nrel(C,τopen), where C is the Ca2+ concentration 

and τopen is the Ca2+ channel mean open time. T is the Ca2+ pulse duration. 

Red: SV release probability Prel(C,T). Blue: probability P1Ves(C,T) that at least one SV is 
released as a result of the Ca2+ pulse, calculated with equation (11) from Prel(C,T). 

Green: probability PT(T,τopen) that the Ca2+ channel opens for a duration T. Black: 

P1Ves(C,T)⋅PT(T,τopen) used in equation (9) for the calculation of Nrel(C,τopen). 

(D) Quantities used for the calculation of Tasync(C,τopen). 

Red: SV release probability Prel (C,D). Blue: probability P2Ves(C, T) that least two SVs are 

released, calculated with equation (12) from Prel(C,T). Green: probability PT(T,τopen) that 

the Ca2+ channel opens for a duration T. Black: P2Ves(T,τopen)⋅PT(C,T) used in equation 

(10) for the calculation of Tasync(C,τopen). 

Parameters: τopen = 1.2 ms, C = 120 µM, Ntot = 14, (Beutner et al., 2001) secretion model 

with γ = 10 ms-1.  



 

 7/41 

 
Figure S5. Quantal size distributions underlying the EPSC distributions in MQR 

Related to Figure 8. 

(A) Artificially generated EPSC amplitude histogram with amplitudes drawn from a 

normal distribution with mean of 300 pA and SD = 100 pA, corresponding to an 

average SGN (Grant et al., 2010) (Figure 2). 20,000 EPSCs were randomly generated 

from which all EPSCs with negative amplitude were discarded. The characteristics of 

the resulting EPSC amplitude histogram are written in black in the legend. The 

coefficient of variation, CV, is 0.33 and the skewness is close to 0 (γ1 = 0.03). The 
cumulative distribution of amplitudes was fitted by a sum of 12 cumulative distribution 

functions of Gaussians with means = i * 50 pA and SD = Sqrt(i) * 19 pA with i ranging 
from 1 to 12. The composing distributions are shown in blue, the mini amplitude 

distribution is shown in red dashed (mean 50 pA and CV = 0.38). The numbers at the 
top of each distribution are their relative contribution. The quantal size is the number of 

neurotransmitter quanta (i.e., number of uniquantal SV) an EPSC is made of. In blue we 

give the characteristics of the quantal size distribution. Note the negative skewness (γ1 
= -0.17) of the quantal size distribution, regardless of the fact the EPSC amplitude 

distribution had a skewness γ1 ~ 0. 
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(B) In the following, we describe how we determined the range of the CV and the 

skewness of the experimental quantal size distributions: 0.22 < CVdata < 0.34, -0.6 < 

Skewnessdata < 0.1. Color maps: characteristics of the possible quantal size distribution 

underlying the EPSC distribution of the IHC of (A). Fitting was done by a sum of 

Gaussian functions as in (A), using mEPSC distributions with different mean and CV. 

The root mean square error was obtained by integrating the squared difference 
between the EPSC Gaussian and the fit, then dividing it by 600 pA (the largest EPSC 

size in this distribution) and taking the square root. Where the error of the fitting is 
relatively small, the CV covers the range from 0.24 to 0.32 whereas the skewness from 

-0.5 to 0.0. Thus we took a slight expansion of these ranges as limits of experimental 
quantal size distributions: 0.22 < CVdata < 0.34, -0.6 < Skewnessdata < 0.1. 
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Figure S6. Parameter scan for 3 models of homotypic fusion 

Related to Figure 8. 

(A) Forces present in the simulation. The AZ attracts SVs that are in proximity 

(attraction of 4 pN), but hinders AZ crossing (repulsion of 50 pN). SVs repel each other 
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with a maximal force of 20 pN. The top of the simulation space pulled SVs into the 

space with a maximal force of 10 pN. 

(B) Homotypic fusion model 1. In this model, the critical parameter in shaping the 

exocytic quantal size distributions was the ratio αhom,1/αexo. Histograms of the number of 

SVs per EPSC (i.e., exocytic quantal size) for different values of αhom,1/αexo. 

(C) Key characteristics of the exocytic quantal size distributions as a function of 

αhom,1/αexo, for αhom,1 between 0.1·αexo to 10·αexo. Note the logarithmic scale of the x-axis. 

The mean exocytic quantal size, the CV, and the largest exocytic quantal size rose with 
increasing αhom,1/αexo, while the skewness decreased. For αhom,1/αexo < 1 the distributions 

were strongly positively skewed with the highest proportion of uniquantal SVs (Movie 

S1). For αhom,1/αexo ≳ 1, the distributions were very broad and extremely large SVs (Q > 

40, diameter > 256 nm) appeared (Movie S2). Horizontal dashed lines delimit the range 

of experimentally observed exocytic distributions (“Data range,” 0.22 < CVdata < 0.34, -

0.6 < Skewnessdata < 0.1, Figure S5) and reveal that this model could not reproduce 

experimental distributions. 

(D) Homotypic fusion model 2. Examples of homotypic fusion rate as a function of z, 

for different values of λZ and with Hmax = 100 s-1. A small λZ assures that homotypic 

fusion is mainly restricted to docked SVs. 

(E) Exocytic quantal size histograms from the homotypic fusion model 2 for different 

values of Hmax/αexo and λZ, sampled from different parameter space regions. 

(F) Homotypic fusion model 3. Examples of homotypic fusion rate as a function of the 

sum of the quantal sizes Q1 and Q2 of the “parent” SV, for different values of λQ and 

with Hmax = 100 s-1. 

(G) Homotypic fusion model 2. Key characteristics of the exocytic quantal size 

distributions as a function of Hmax/αexo (Hmax ranged from 0.1·αexo to 1,000·αexo) and λZ 

(range: ~3 to ~300 nm). Note the logarithmic scale in Hmax/αexo and λZ. The mean 

exocytic quantal size (Mhom,2) increased from 1 to ≈ 7, both with Hmax/αexo and with λZ, 

thereby only slightly reaching the Mdata of 6. The region of “runaway” homotypic fusion 
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(white space, SVs created with Q > 40) was very prominent, covering about one-third 

of this parameter space. The CV of the distributions had a similar dependence on 

Hmax/αexo and λZ as Mhom,2, and was higher than 0.4 for Mhom.2 > 2, whereas CVdata < 0.34. 

The skewness mainly decreased with Hmax/αexo and was predominantly positive, 

comparing to -0.6 < Skewnessdata < 0.1. The uniquantal-dominated region covered 

almost the whole parameter space. The tiny consistency region (white stripes at 
Hmax/αexo > 300 and λZ ≈ 6 nm) indicates where the model can reproduce the values of 

CVdata (falling between the green lines) and Skewnessdata (falling between the blue lines) 

of the exocytic quantal size distributions. However in this region the mean exocytic 
quantal size Mhom,2 did not match the experimental Nrel,data = 6.  Thus, this model could 

not reproduce experimental exocytic quantal size distributions.  

(H) Homotypic fusion model 3. Key characteristics of the exocytic quantal size 

distributions as a function of Hmax/αexo (Hmax ranged from 0.1·αexo to 1,000·αexo) and λQ 

(range: 0 to 5.4). Note the logarithmic scale for Hmax/αexo. Same conventions as in (D). 

Mhom,3 increased from 1 to > 9 both with increasing Hmax/αexo and λQ, covering the Mdata = 

6. No runaway fusion region was present in this parameter range, demonstrating that 
the self-amplification of homotypic fusion was effectively prevented. The CV of the 

distribution exhibited a complex dependence on Hmax/αexo and λQ. However, for Mhom,3 > 

2, the CV decreased both with increasing Hmax/αexo and decreasing λQ, and had values 

in the range 0.2 – 0.3 (overlapping with CVdata) for all Mhom,3. The skewness decreased 

with increasing Hmax/αexo and with decreasing λZ, and had values between -1 and 0 

overlapping with Skewnessdata for all Mhom,3. Finally the ratio of uniquantal to most 

frequent events could be close to 0 for all Mhom,3. The consistency region in terms of CV 
and skewness was thus extended (white stripes), showing that this model could 

robustly reproduce experimental quantal size distribution shapes. Inside this region, 
the range Mhom,3 ≈ 6 represents the region consistent with experimental data. λZ was 

100 nm. 

See also Figure S5 and Movies S1 and S2.  
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Movie S1. Simulation run for the homotypic fusion model 1 for low homotypic 

fusion rate αhom,1, αhom,1 = 0.1 αexo 

Related to Figure 8. 

First 500 ms of the beginning of a simulation. 1 frame per 1 ms of simulation. 1 ms 
represents 100 simulations steps (δt = 0.01 ms). 

 
 
Movie S2. Simulation run for the homotypic fusion model 1 for high homotypic 

fusion rate αhom,1, αhom,1  = 10 αexo, leading to the creation of extremely large SVs 

Related to Figure 8. 

Same as in Movie S1. The simulations stops at 410 ms, just before the creation of a SV 

with Q > 40 (not shown). 
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Table S1. Abbreviations, symbols, and parameters used 

Related to Main text and Methods. 

(In separate Excel file) 
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Table S2. EPSC charge, amplitude and CV for different shapes 

Related to the EPSC shapes in Figure 3I. 

SV Glu. content EPSC 1 EPSC 2 EPSC 3 EPSC 4 EPSC 5 
Mean charges (fC) 
2,000 290 249 243 219 232 
3,000 532 467 461 422 440 
4,000 796 710 702 648 678 
Mean amplitudes (pA) 
2,000 155 131 125 93 99 
3,000 281 240 230 173 181.6 
4,000 412 362 347 264 273 
Amplitude CV 
2,000 0.11 0.11 0.092 0.11 0.10 
3,000 0.064 0.08 0.081 0.082 0.072 
4,000 0.048 0.055 0.06 0.06 0.055 

 
Obtained from 100 repetitions from different random seeds. 

 
Shapes EPSC 1 and EPSC 2 would be in the “compact” category, because of the 

small deviation in the shape in EPSC 2. The decrease in EPSC charge of shapes 3-5 in 
comparison to the average charge of 1 and 2: 

SV Glu. content 
Average charge 

EPSCs 1 and 2 (fC) 
Charge reduction 

EPSC 3 EPSC 4 EPSC 5 
2,000 269.5 0.1 0.2 0.14 
3,000 499.5 0.08 0.15 0.12 
4,000 753 0.07 0.14 0.1 
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Table S3. Summary of recording properties in “1.3 Ca2+” and “0 Ca2+” conditions. 

Related to Figure 5. 
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“1.3 Ca2+” , n = 6, P9-P11 mice 

Mean 115 39.8 686 2.6 139 0.75 55.4 182 132 272 0.39 1.52 1.49 2.25 

SD 152 6.1 680 0.5 64 0.45 7.6 66 33 111 0.05 0.34 0.21 0.60 

“0 Ca2+”, n = 4, P9-P10 mice 

Mean 503 39.6 247 2.9  65 0.071 81.1 108 72 124 0.41 1.25 1.19 1.59 

SD 317 3.4 151 0.9  22 0.008 14.8 19 22 13 0.04 0.21 0.23 0.30 

t test* 0.03 0.96 0.18 0.58  0.01 0.01 0.07 0.01 0.02 0.38 0.20 0.06 0.08 

 
*Mann-Whitney U test for EPSC frequency and the percentage of monophasic EPSCs. 
P: postnatal age 

FWHM: full width at half maximum 
Mono: monophasic EPSCs 

Multi: multiphasic EPSCs 
Amp.: amplitude  
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Table S4. Summary of recording properties in control and BayK8644 conditions. 

Related to Figure 6. 

n = 8, P15-18 rats 
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Control 
Mean 33.2 3.3 790 5.6 79.2 432 287 296 0.22 0.74 1.0 1.28 

SD 7.7 1.7 579 4.7 12.4 124 65 65 0.05 0.15 0.1 0.31 

BayK8644 

Mean 39.8 2.7 806 6.9 93.3 391 314 260 0.18 0.74 0.98 1.13 

SD 10.3 1.0 808 6.2 4.6 123 102 61 0.04 0.16 0.18 0.33 

Paired 

t test* 0.005 0.15  0.5 0.01 10-3 0.16 <10-3 0.002 0.95 0.6 0.006 

 
*Wilcoxon signed-rank test for the percentage of monophasic EPSCs and the 

frequency. 
The charges and amplitudes of EPSC in cells recorded at -60 mV were multiplied by 

90/60 to compensate for the driving force differences with other cells recorded at – 90 
mV. 

P: postnatal age 
FWHM: full width at half maximum 
Mono: monophasic EPSCs 

Multi: multiphasic EPSCs 
Amp.: amplitude 
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SUPPLEMENTAL METHODS 

Patch-clamp recordings and analysis 

Preparation 

P9-11 C57BL6 mice and P10-18 Wistar rats of either sex were used. Animal handling 

and experiments compiled with national animal care guidelines were approved by the 
University of Göttingen Board for animal welfare and the animal welfare office of the 

state of Lower Saxony. After mice/rats were decapitated after deep anesthesia by 
carbon dioxide, their cochleae were removed from the temporal bones and immersed 

into the standard extracellular solution (for its composition, see below). The apical turn 
of cochlea was carefully excised, and placed under a grid in the recording chamber. 

The postsynaptic boutons of type I SGNs innervating the IHCs were visually identified 
on a monitor using a 40x/63x water immersion objective lens attached to an upright 

microscope with differential interference contrast optics (Axioskop FS2, Zeiss), and a 
4x/2.5x magnification camera (TILL Photonics).  

Postsynaptic patch-clamp recording 

Whole-cell voltage-clamp recordings from postsynaptic boutons of mouse/rat type I 
spiral ganglion neurons of the apical cochlear coil were performed as previously 

described for rats (Glowatzki and Fuchs, 2002; Grant et al., 2011; Rutherford et al., 
2012) and for mice (Jing et al., 2013; Pangrsic et al., 2010). The recording pipettes, 

fabricated with a puller (P-97 and P-2000, Sutter) from borosilicate grass with an outer 
diameter of 1 mm (1B100F-3 or 4 and TW100F-3. World Precise Instruments), had a 

resistance of 6-15 MΩ following pressure polishing (Goodman and Lockery, 2000) with 
a custom-built microforge. The intracellular solution contained (in mM): 150 CsCl (rat: 

137 KCl and 1.25 Na2GTP), 3.5 MgCl2, 0.1 CaCl2, 5 EGTA, 5 K-HEPES, and 2.5 
Na2ATP, pH 7.2 (adjusted with KOH, osmolarity approx. 290 mOsm). The extracellular 
solution for both dissection and recording contained (in mM): 5.8 KCl, 155 NaCl (rat: 

142-144), 0.9 MgCl2, 1.3 CaCl2, 0.7 NaH2PO4, 5.6 D-glucose, and 10 Na-HEPES, pH 
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7.4 (rat: 7.3) adjusted with NaOH, osmolarity approx. 300 mOsm. In the “0 Ca2+” 

experiment, no CaCl2 but instead 2 mM of the Ca2+ chelator EGTA was added to the 
extracellular solution. Note that the cochleae were immersed in the Ca2+-free 

extracellular solution for at least 30 min before the beginning of the recordings. In most 
recordings, tetrodotoxin (1-5 µM) was added to block voltage-gated Na+ channels. All 

chemicals were purchased from Sigma-Aldrich (St. Louis, MO), except for tetrodotoxin 
(Tocris). EPC-10 amplifier controlled by Patchmaster software (both HEKA Electronics, 

Lambrecht, Germany) was used to sample and filter currents at 20-50 kHz and 5-10 
kHz, respectively. EPSCs were recorded at a holding potential of -90 mV (liquid 
junction potential not corrected) at room temperature (21-24 °C). Two SGNs were 

recorded at -60 mV for the BayK8644 experiment. 

Data analysis mouse (“0 Ca2+” dataset, Figure 5) 

For detection and analysis of EPSCs, Mini Analysis software (Synaptosoft) was used 
with a detection threshold set at 3-5 times greater than the root mean square (rms) of 

the baseline noise. To classify EPSCs into mono- or multiphasic, the method described 
by (Grant et al., 2010) was employed. For plotting, IGOR Pro (Wavematrics), Sigmaplot 

(HULINKS), and Mathematica (Wolfram Research) were used. The series resistance (Rs) 
was calculated from the height of capacitive transient in response to a 10 mV voltage 

step. The membrane capacitance (Cm) was derived from single-exponential curve fitting 
of the decay phase of the capacitive transient. The membrane input resistance (Rm) 

was calculated from steady-state currents in response to the voltage step. Recording 

parameters of postsynaptic boutons are summarized in Table S3. A recording was 

discarded, if Rs > 50 MΩ or if it contained less than 30 EPSCs. Data is shown as mean 

± SD.  

Data analysis rat (BayK8644 dataset, Figure 6) 

For detection and analysis of EPSCs, Mini Analysis software (Synaptosoft) was used 

with a detection threshold set at 15-30 pA. To classify EPSCs into mono- or 
multiphasic, the method described by (Grant et al., 2010) was employed. For plotting, 
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IGOR Pro (Wavematrics) and Mathematica (Wolfram Reseach) were used. The series 

resistance (Rs) was calculated from the double exponential fit of the capacitive 

transient in response to a 10 mV voltage step. The membrane capacitance (Cm) was 
derived from single-exponential curve fitting of the decay phase of the capacitive 

transient. Recording parameters of postsynaptic boutons are summarized in Table S4.  

Recordings were discarded if Rs > 60 MΩ or if Rs changed by more than 10 MΩ during 

the recording. Data is shown as mean ± SD. 

Detailed EPSC analysis (for recordings from rat, Figures 2 and 4) 

The analysis was performed in Mathematica (Wolfram Research) on data from 5 rat 
SGN recordings with abundant spontaneous activity driven by the IHC (more than 110 

EPSCs per recordings, rate range: 1 to 8 Hz). Data is shown as mean ± SD. 
To allow accurate EPSC detection and analysis, all current traces were baseline-

subtracted. We first chose by eye several flat and EPSC-free segments of each 
recording to get an upper estimate of the recording background noise standard 

deviation σBG. σBG was within the range 1.6-3.6 pA. The recordings were then divided 

into 6 to 10 ms intervals, and selected for baseline calculations if their SD was smaller 

than 0.8 to 0.95 times σBG. Between 7-20% of the intervals were thus chosen. The 

mean value of these intervals was used as the baseline value in the center of the 
interval. The entire baseline was obtained as the linear interpolation between these 

selected points. EPSCs were detected using a threshold at -15 to -20 pA. The 
beginning and the end of EPSCs were set as the points where the current trace 

crossed a threshold value set between 0 and 2 pA. EPSC charge was calculated as the 
area between the beginning and the end of the EPSC. All events were inspected 

visually. Events were discarded when there was an unstable baseline, or when the 
detected event was noise or a clear superposition of multiple independent EPSCs. 

To estimate the mode of the non-compact EPSC charge distributions (Figure 

2J), we first constructed a smoothed version of the charge distribution, using a 

Gaussian smoothing kernel and Silverman’s rule (Silverman, 1986) to determine the 
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kernel’s bandwidth. Then the mode was obtained by finding the maximum of 

smoothed EPSC charge distribution. 
To estimate the fraction of non-compact EPSCs arising from random EPSC 

superposition, we first measured the EPSC rate: rateEPSC. We assumed that two 
releases occurring with an interval smaller than 3 ms will be counted as one non-

compact EPSC. Since the inter-EPSC-intervals are exponentially distributed 
(Rutherford et al., 2012), the fraction F of inter-EPSC-intervals smaller than 3 ms is 

predicted to be F = 1 – Exp(- 3 ms * rateEPSC). Multiplying F by the total number of 

EPSCs in the recording gives us approximately the expected number of non-compact 

EPSCs occurring from random EPSC superposition. This number varied from 1 to 13 
across recordings. 

EPSC deconvolution analysis (for recordings from rat, Figure 4) 

We performed a deconvolution of EPSC shapes into underlying “elementary EPSC” 
(eEPSCs). An eEPSC was defined as an EPSC triggered by a virtually instantaneous 

neurotransmitter liberation into the synaptic cleft. First, we constructed an “ideal 
EPSC” shape for each recording, which was the basis for the eEPSC shape. In the 

EPSC charge vs. amplitude plot we placed, by visual inspection, a line passing through 
the origin and through the middle of the right elongated high-density region. The 

EPSCs to the right of this line were normalized, aligned at their half-maximal point on 
their rising phase, and averaged. Normalizing the resulting shape, we obtained the 

“ideal EPSC” (EPSCideal(t)). To characterize its decay kinetics, we fitted its decay phase 

by a double exponential (e.g., Figure 4A, time constants τ1 

= 0.63 ± 0.1 ms and τ2 = 2.6 ± 1.2 ms with relative contributions 0.83 ± 0.12 and 0.17 ± 

0.12, respectively, n = 5). The beginning of the fit was at tdecay, chosen where 

EPSCideal(tdecay) was between 70% to 80% of the peak amplitude. The kernel of the 

deconvolution algorithm, the eEPSC shape, was constructed in the following way: 

  B1exp(−t / τ1) + B2 exp(−t / τ 2 )
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eEPSC(t,τ

1,fit ,τ 2,fit ) =
EPSCideal (t ) t < tdecay

B
1
exp(−t / τ

1,fit ) + B
2
exp(−t / τ

2,fit ) t ≥ tdecay

⎧
⎨
⎪

⎩⎪
 (1) 

where τ1,fit and τ2,fit were time constants of the double exponential decay of eEPSC; they 

were allowed to vary around τ1 and τ2, respectively: 0.65 · τ1  < τ1,fit < 1.5 · τ1, 0.85 · τ2  < 

τ2,fit < 1.2 · τ2. This enabled the eEPSC to account for some stochasticity of the EPSC 

decay phase. For convenience we shifted the function eEPSC(t, τ1,fit, τ2,fit) so that 

eEPSC(0, τ1,fit, τ2,fit) = 1, i.e., its peak is at t = 0.  
Using the following iterative deconvolution/fitting algorithm our goal was to 

obtain an optimal linear superposition of eEPSCs, f(n,t), that reproduced the EPSC 

shape, without overfitting: 

   
f (n,t ) = ai ⋅eEPSC(t − ti,τ1,fit,i,τ 2,fit,i )

i=1

n

∑  (2) 

where t was time, n was the number of eEPSCs composing the fitting function, ai and ti 

were the amplitudes and the times of the underlying eEPSCs, respectively, τ1,fit,i and 

τ2,fit,i were the fast and slow time constants of the double exponential decay of the 
eEPSC i. We used an iterative approach to find the optimal deconvolution. Starting at n 

= 1 and then increasing n, we fitted the EPSC with f(n,t) using the Levenberg–

Marquardt algorithm (damped least-squares method) with ai, ti, τ1,fit,i, τ2,fit,i for i = 1 to n 
as free parameters. We stopped at the n for which the fit satisfied two criteria: (1) the 

mean error Emean of the fit was smaller than σthreshold; (2) the maximum deviation of the fit 

was smaller than Maximum(20 pA, 0.1 · EPSC amplitude). The mean error Emean was 
defined as: 

 
 (3) 

where EPSC(t) is the EPSC shape, tbegin and tend are the beginning and the end of the 

EPSC, respectively. f(n,t) was the fit function. σthreshold was defined as σthreshold
2 = (2 · 

σBG)2 + σAMPAR
2 and incorporated the two principal components of noise in the 

  
Emean (n) = f (n,t ) − EPSC(t )( )2 dt

tbegin

tend

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2
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recording: σBG the recording background noise, and σAMPAR the noise due to the 

stochastic gating of the AMPAR. Assuming 20 pS as AMPAR conductance 
(Budisantoso et al., 2013; Sahara and Takahashi, 2001) we expect a single channel 

current of 1.8 pA at -90 mV holding potential. This allowed us to calculate the number 
of open AMPAR channels at the EPSC peak, NAMPAR,open. During the EPSC decay phase 

channels close stochastically, and when the open probability reaches 0.5 for these 

channels, the variance is maximal. The standard deviation of the current at that time 

can be computed from binomial statistics: σAMPAR,max = (NAMPAR,open · 0.52)0.5 · 1.8 pA. We 
assumed that no additional channels opened during the decay phase of the EPSC. We 

chose σAMPAR = σAMPAR,max /2, which corresponds to 5.8 pA for an EPSC of 300 pA 
amplitude. 

Additionally, the iteration stopped at n if increasing the number of eEPSCs to n 

+ 1 did not reduce the mean error Emean by more than 5%, i.e., if Emean(n + 1) > 0.95 · 
Emean(n), or if the newly positioned eEPSC was closer to an other eEPSC by less than a 

sampling distance, or if the additional eEPSC had a smaller amplitude than σthreshold. For 
the fit at n = 1, starting values for the fit for a1 and t1 where the EPSC amplitude and the 

peak time, respectively. For the fits at n > 1, the starting values for ai and ti (i from 1 to 

n - 1) were the values provided by the fit at n - 1, and the starting values for an and tn 

were the amplitude and the time of the maximum error of the n - 1 fit. 

  



 

 23/41 

Characterization of the AMPAR clusters 

Immunohistochemistry and superresolution microscopy of immunolabeled hair 

cells 

Freshly dissected apical cochlear turns from p16 Wistar rats were fixed with 4% 
formaldehyde (FA) in phosphate buffered saline (PBS) for 1 hour on ice. Thereafter, the 

tissue was washed 3x10 min in PBS and incubated for 1 hour in goat serum dilution 
buffer (GSDB: 16% normal goat serum, 450 mM NaCl, 0.3% Triton X-100, 20 mM 

phosphate buffer, pH 7.4) in a wet chamber at room temperature. Primary antibodies 
(mouse anti-bassoon, Abcam, 1:200 and rabbit anti-GluR2/3, Chemicon, 1:200) were 
dissolved in GSDB and applied overnight at +4°C in a wet chamber. After washing 10 

min in wash buffer (450 mM NaCl, 20 mM phosphate buffer, 0.3% Triton X-100) and 
3x10 min in 20% goat serum in PBS, the tissue was incubated with secondary 

antibodies (goat anti-mouse and sheep anti-rabbit, labeled with Atto590 and KK1212, 
1:60) in 2-3% goat serum in PBS in a wet light-protected chamber for 1 hour at room 

temperature. Then the preparations were washed 3x10 min in 20% goat serum in PBS, 
placed onto glass microscope slides with a drop of Mowiol mounting medium and 

covered with thin glass coverslips. Images were acquired on a custom-built 2 color 
STED microscope with a lateral resolution of <50 nm. 

GluR cluster length and line profile estimations 

For each synapse an area of interest was defined, usually 82 by 82 pixels, 
corresponding to 1,600 nm x 1,600 nm. To remove the image background, the most 

frequently occurring value in the image was subtracted from everywhere in the image 
and all values below 0 were set to 0. Then the image values were normalized from 0 to 

1. 
 From side-imaged clusters one line profile was taken, oriented in the long axis of 

the AMPAR cluster (Figure 3, right column, white dashed lines). For each en-face 

imaged clusters, 1 to 3 line profiles were taken, in order to obtain a good sampling of 

the profile in the long axis orientation (Figure 3, first 2 columns, white dashed lines). 
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 For each line profile, the most external peaks were found (Figure 3A, white 

crosses on the dashed lines) and for each synapse one average peak-to-peak distance 

was obtained and reported in Figure 3B. 

 To obtain the “grand-average” line profile, first one average line profile was 

calculated for each AMPAR cluster. All line profiles in each synapse were aligned and 
stretched so that their peak positions were at -1 and 1 and averaged. Each line profile 

f(x) was taken twice, once in each orientation (i.e., f(x) and in the reversed orientation f(-
x)). The obtained average line profile in each synapse was normalized to 1. The “grand-

average” line profile among synapses was calculated as the average of all the 

individual synaptic line profiles. 
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Molecular model of glutamate release, diffusion, AMPAR binding and gating 

The simulations were done in MCell 3.2.1 (Kerr et al., 2008; Stiles et al., 1996; Stiles 
and Bartol, 2001) and were typically run on a cluster of Linux cores. 

The simulation space was composed of a square synaptic contact of 1,600 nm 
wide separated by an effective synaptic cleft height δ = 15 nm (Savtchenko and 

Rusakov, 2007). The model effective synaptic cleft height is smaller than the true cleft 
height, as it simulates the actual volume available for glutamate diffusion. The AMPARs 

were placed on grids of different densities according to the density profile of Figure 

3C. The density had circular symmetry and was scaled to match the observed peak-to-

peak cluster length (Figure S1A). The average AMPAR density of the whole cluster was 

~3,000 receptors/µm2 (Saito, 1990). To calculate the synaptic currents, the AMPAR 

conductance was set to 20 pS (Budisantoso et al., 2013; Sahara and Takahashi, 2001) 
and the holding potential to -90 mV. We used both a fast AMPAR kinetic scheme 

derived from cerebellar Purkinje cells (Häusser and Roth, 1997) and an AMPAR 
scheme obtained from the calyx of Held (Budisantoso et al., 2013). 

The diffusion coefficient of glutamate DGlu was set to 0.33 µm2/ms (Nielsen et al., 
2004). The lateral openings of the synaptic aposition absorbed glutamate, mimicking 
the escape of glutamate into the extracellular medium. Glutamate was either released 1 

nm below the presynaptic membrane (for Figures 3E-G) or from a SV (Figures 3H,I). 

The SV had a cube shape with a 26 nm edge. This corresponds to a volume of 17,576 

nm3, a SV with an inner radius of 16 nm has a volume of 17,157 nm3. Since the volume 
and the dimensions of the model and real SVs are very similar (only the shape is 

different), the non-spherical geometry of the model vesicle induces negligible 
differences in the dynamics of transmitter release. The pore was a column with a 

square cross section of various widths. The pore length was 8 nm, corresponding to 
the thickness of two lipid bilayers. The EPSC amplitude resulting from instantaneous 

release of the entire glutamate content placed into the synaptic cleft and from release 

through a pore of 6 nm width was virtually identical (Figure S1B). 
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For Figure 3H, only the glutamate that reached the synaptic cleft was 

considered as released. The glutamate inside the SV and the SV fusion pore was 
considered as not released.  

The simulation time step was chosen 10 ns for simulations of release through a 
SV fusion pore and 50 ns for simulations with release modeled as neurotransmitter 

placement into the synaptic cleft. Data was sampled at 5 μs time intervals. For Figures 

3E,F, 100 repetitions with different random seeds were performed to obtain the mean 

EPSC amplitude. For Figure 3G, 400 repetitions were performed. For Figure 3H, 10 

repetitions were performed. To calculate the mean EPSC amplitude we averaged the 

peak amplitudes of individual EPSCs. 
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“Ca2+-synchronized MQR” model 

Each of the Ntot SVs’ Ca2+ sensors was exposed to a rectangular Ca2+ pulse of 

concentration [Ca2+] for a duration Tpulse, mimicking the opening of an adjacent Ca2+ 
channel. The concentration time course was: 

  (4) 

We calculated the mean number of SVs released during such pulses (Nrel) and 

the mean release asynchrony (Tasync), defined as the mean time lag between the fusion 

of two SVs. This measure is a lower bound of the mean time lag between the release of 
first and the last SV during a release event composed of more than two SVs. Based on 

the Ca2+-dependent release scheme at the IHC (Beutner et al., 2001), we numerically 
solved the Master equation for the sensors state occupancy Si(t), where each state is 

related to the number of Ca2+ bound to the sensor and S6 is the released state. All 

simulations started from the initial condition S0(0 ms) = 1 and Si(0 ms) = 0 for i = 1 to 6. 

We solved the system of differential equations for Si(t) with NDSolve in 

Mathematica 7.0.1.0 (Wolfram Research) on the two segments 0 ≤ t ≤ Tpulse and Tpulse ≤ t 

≤ Tpulse +10 ms separately. The discontinuity of [Ca2+](t) at t = Tpulse was thus treated by 

taking the states of the end of the first segment as the initial condition for the second 
segment. Error tolerance in NDSolve was set to 10-20. 

The SV release probability Prel was taken as Prel = S6(Tpulse + 10 ms). We derived 

Nrel using binomial statistics, neglecting non-release events: 

 
  
Nrel (Ntot,Prel ) = k b(k;Ntot,Prel )

k=1

Ntot

∑ b(k;Ntot,Prel )
k=1

Ntot

∑ =
Ntot Prel

1− (1− Prel )
Ntot

 (5) 

where 
  
b(k;n,p) = n!

k ! n− k( )! pk (1− p)k  is the probability mass function of the binomial 

distribution with n trials and probability p. 

  

[Ca2+ ](t ) =
0

[Ca2+ ]
0

t < 0 ms
0 ms ≤ t < Tpulse

t ≥ Tpulse

⎧

⎨
⎪⎪

⎩
⎪
⎪
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The release probability density function frel(t), which is also the SV release rate, 

was obtained by taking the temporal derivative of S6(t), frel(t) = S6’(t). The probability 

density Plag(l) that two SVs exocytose with an absolute time lag l > 0 ms can be 

determined from: 

  (6) 

The mean release asynchrony Tasync is then: 

  (7) 

We evaluated (6) and (7) numerically. We sampled frel(t) in the interval 0 to Tpulse + 

10 ms with a step size of 5 µs and performed an auto-correlation (using FFT) of this list 
of numbers, by padding 0 on the right (maximal overhang at the right-hand end). Due 

to the numerical integrations scheme, when S6(t) saturated, frel(t) could slightly oscillate 

around 0. In that case, the interval of interest was limited up to the first negative value 
of fR(t). This calculation gave us the probability Plag(l) of a certain time lag l, up to 

normalization. Tasync was calculated using the discrete version (Riemann sum) of (7). 

We also calculated the mean number of SVs released Nrel and the mean release 

asynchrony Tasync for different [Ca2+] and Ca2+ channel mean open time τopen. Ion 

channels have in the simplest case exponentially distributed open times. For a given 

τopen, the probability density PT(Tpulse,τopen) for the ion channel to open for a duration Tpulse 

is: 

  (8) 

In the following, [Ca2+] and Tpulse are abbreviated as C and T, respectively. For given C 

and τopen, the mean number of SVs released Nrel is: 

  (9) 

  
Plag ( l ) ∝ frel (t ) ⋅ 

−∞

+∞

∫ frel (t + l ) dt + frel (t ) ⋅ 
−∞

+∞

∫ frel (t − l ) dt = 2 frel (t ) ⋅ 
−∞

+∞

∫ frel (t + l ) dt

  
Tasync = l ⋅Plag ( l ) dl

0

+∞

∫

  PT (Tpulse,τ open ) = exp(−Tpulse / τ open ) / τ open

  

Nrel (C,τ open ) =
Nrel (C,T ) ⋅PT (D,τ open ) ⋅P1Ves (C,T ) ⋅dT

0

∞

∫

PT (T,τ open ) ⋅P1Ves (C,T ) ⋅dT
0

∞

∫
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while the release asynchrony Tasync is: 

  (10) 

where P1Ves(C,T) and P2Ves(C,T) are the probabilities that at least one and at least two 
SVs get released during a Ca2+ pulse of duration T and concentration C, respectively: 

  (11) 

  (12) 

It is important to notice that Nrel(C,T) is a distinct function from Nrel(C,τopen) and 

Tasync(C,T) is distinct from Tasync(C, τopen). To compute (9) and (10) for given C and τopen we 

first calculated the functions Prel(C,T), P1Ves(C,T), P2Ves(C,T), Nrel(C,T), and Tasync(C,T) for T 

from 0.01 to 20 ms with a maximum step size of 0.1 ms (up to 10 ms and 0.5 step form 
10 to 20 ms). Because the largest changes in Prel(C,T) and Tasync(C,T) occurred for small 

T, from 0.01 to 0.31 ms we used finer logarithmic steps in T: T = 10dx for dx from -2 to -

0.5 in step of 0.1. Then, we performed a third order interpolation of all the points and 

resampled the interpolated function with a step size of 10 µs. For the point T = 0 ms, 
we took Prel(C,T = 0 ms) = 0 (as we found that Prel(C,T = 0.01 ms) < 10-6 ) and Tasync(C,T 

= 0) = Tasync(C,T = 0.01 ms). Finally, we calculated the integrals as a Riemann sum using 

the resampled points. An ion channel with τopen = 3 ms has >99% of its openings 

shorter 20 ms. Terminating the calculations at T = 20 ms thus only slightly 

underestimated Tasync(C,τopen) and Nrel(C,τopen).  

In Figures S4C,D, we show PT(T,τopen), Prel(C,T), P1Ves(C,T), P2Ves(C,T), 

P1Ves(C,T)⋅PT(T,τopen) and P1Ves(C,T)⋅P2Ves(T,τopen) for a representative choice of 

parameters. 
The IHC Ca2+-dependent release scheme (Beutner et al., 2001): 

   (13) 

  

Tasync (C,τ open ) =
Tasync (C,T ) ⋅PT (T,τ open ) ⋅P2Ves (C,T ) ⋅dT

0

∞

∫

PT (T,τ open ) ⋅P2Ves (C,T ) ⋅dT
0

∞

∫

  P1Ves (C,T ) = 1−  1− Prel (C,T )( )Ntot

  P2Ves (C,T ) = 1−  1− Prel (C,T )( )Ntot − Ntot ⋅Prel (C,T ) ⋅ 1− Prel (C,T )( )Ntot−1
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And the corresponding differential Master equation of the sensor occupancy: 

 
  (14) 

with b = 0.4, kon = 27.6 µM-1s-1, koff = 2,150 s-1, and γ = 10,000 s-1 (instead of 1,695 s-1 as 
in the publication).  
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Electron microscopy 

Apical cochlear coils from p14 C57BL6/J wild type mice were explanted and either 
stimulated or inhibited for 15 min as described previously (Pangrsic et al., 2010). 

Subsequently samples were placed in 200 µm/100 µm aluminum planchettes covered 
with an according lid and prepared for high-pressure freezing and freeze-substitution 

essentially as described previously (Wong et al., 2014). Briefly, samples were frozen 
under high pressure (HPM 010; Baltec), followed by freeze-substitution. Substitution 

was performed in a Leica AFS2 in acetone with 0.1% tannic acid at −90°C for 4 d, 
followed by acetone with 2% osmium during the last 7 h. The samples were warmed 

(5°C/h) to −20°C and incubated for 16 additional hours before being warmed (10°C/h) 
to 4°C. At 4°C, the samples were washed in acetone and warmed to room temperature 

and Epon embedded. After trimming and ultrathin sectioning with a Leica EM UC6 
ultramicrotome slices were placed on 1 x 2 mm copper slot grids and poststained with 
uranyl acetate/lead citrate following standard protocols. Micrographs were taken with a 

JEOL electron microscope (JEM 1011) equipped with a Gatan Orius 1200A camera 
using the Digital Micrograph software package or a ZEISS EM 902A with a 1,024 x 

1,024 charge coupled device detector (HSS 512/1,024, Proscan Electronic systems).   
For quantification random 70 nm AZ sections were taken. The SV diameter of all 

SVs in the first row around the ribbon has been determined using the ImageJ software 
package. In the stimulated condition there were 151 SVs from 16 sections using 2 

organs of Corti. In the inhibited condition there were 572 SVs from 37 sections using 2 
organs of Corti. 

We derived the predicted SV diameter distribution by convolving the model SV 
quantal size distributions with the experimental uniquantal SV diameter distribution. As 

uniquantal SV diameter distribution we used the Gaussian fit to the experimental 

diameter distribution of membrane-proximal SVs in the inhibited condition (Figure 8F). 

We chose this distribution because it contained the smallest proportion of large SVs, 
and is the best candidate for the true uniquantal distribution. We stochastically 

calculated the diameters of SVs with quantal size Q: 
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   ρQ = ρ1,1
2 + ρ1,2

2 + ...+ ρ1,Q
2  (15) 

where ρ1,i are independent identically distributed random variables representing the 

uniquantal SV diameter, and ρQ is the random variable representing the diameter of a 
SV with quantal size Q. This equation satisfies the conservation of the total membrane 

surface upon homotypic fusion. To obtain the model curve in Figure 8M, 200,000 SVs 

were randomly drawn. 

Data are expressed as mean ± SD. 
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Homotypic fusion model of MQR 

To examine the homotypic fusion scenario of MQR, we simulated the dynamics of SVs 
on the synaptic ribbon surface. Our goal was first to construct a homotypic fusion 

model that would reproduce experimental exocytic quantal size distributions and then 
to compare predicted SV size distributions on the ribbon with ultrastructural data. The 

model, implemented as a stochastic simulation, incorporated the Brownian motion of 
SVs in a fixed two-dimensional (2D) geometry, homotypic fusion, SV docking to the AZ, 

exocytosis, and SV replenishment. At each simulation time step, the order of 
processes was the following: replenishment, homotypic fusion, exocytosis, and 

diffusion of SVs. At the end of each homotypic fusion and diffusion event, SVs 
extending below the AZ were translated directly above it. 

Simulation space and SV pool replenishment 

The simulation space represented the whole 2D ribbon surface (Figure 4A). SV centers 

moved on the surface of the ribbon, modeled as a cylinder with a perimeter Per = 500 

nm and height H = 300 nm (Nouvian et al., 2006). The bottom of the simulation space 

corresponded to the AZ. Simulations were initialized with 0 SVs on the ribbon surface. 

A SV packing density φ = Aves / Aribbon was set and maintained by adding SVs to 

the simulation space, modeling trapping of SVs by the ribbon. Aribbon = H⋅Per was the 

total ribbon surface and Aves was the area filled by SVs, i.e., the sum of surfaces of the 

maximal SV cross-sections: , where Ri is the radius of SV i and n is the 

number of SVs in the simulation. As soon as φ decreased below a fixed φmin (i.e., φ < 

φmin), a new SV with quantal size Q = 1 and R = 20 nm was added and placed with its 

center Z at H + 20 nm, directly above the simulation space. The horizontal coordinate X 

was chosen randomly among 10 equally spaced positions. Due to forces at the upper 

boundary, the SVs were pushed into the simulation space. For the model 4 (Figure 

8M), SVs were added on the whole ribbon surface, down to 40 nm above the AZ. The 

theoretical maximum packing density in 2D is φ ≈ 90% (hexagonal packing). SVs were 

  
Aves = πR2

i
i=1

n

∑
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added at a maximal rate of 2 kHz and at least three SVs were always maintained in the 

simulation space.  

Brownian motion of SVs 

To simulate SV movement, we used an “overdamped” Langevin equation, i.e. a first 

order stochastic differential equation. In this simplified “position” Langevin equation 
(Allen and Tildesley, 1989), the evolution equation for a SV i, subject to deterministic 

and stochastic forces is: 

  (16) 

where  is the position of the SV i at time t, Ri its radius, Di its diffusion coefficient, 

 the force of SV j on SV i,  the force acting on SV i due to the 

ribbon area boundaries, kB is the Boltzmann constant, and T the absolute temperature 

(295 K = 22 °C used).  is a zero-mean Gaussian white noise, satisfying the auto-

correlation relation , where is the Dirac function, δij is 

the Kronecker delta, and d the number of dimensions in the system, here 2. 

 We did not consider the evolution of velocities, as we were interested in time 
scales significantly longer than the decay time constant of the velocity auto-correlation 
function τi = mi/ζi ≈ 10-9 s = 1 ns, where ζi is the drag constant (i.e., the inverse of the 

mobility, unit: kg/s) due to the surrounding medium and mi is the SV mass (Allen and 

Tildesley, 1989). The following consideration shows that this approximation is well 

justified for our system. The Stokes’ law for small Reynolds number and spherical 
objects is: 

  (17) 

where η the medium viscosity. We can rewrite τi as: 

  (18) 
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where ρ is the density of a SV, which is well approximated by the density of water (ρ = 

1,000 kg/m3) (Takamori et al., 2006). For a rough estimation of τ, we took the viscosity 

of water η = 1 mPa s (viscosity of water at 22°C is ~1 mPa s, the cytoplasm has higher 

viscosity and is non-Newtonian) and the largest SV we have in the simulations: 253 nm 

of diameter (quantal size Q = 40). With these values τ = 3.6⋅10-9 s. 

To simulate these equations we used a stochastic 2nd order Runge-Kutta 
method (Honeycutt, 1992) with a time step δt = 10 µs. 

The diffusion coefficient 

The Einstein-Stokes equation gives the diffusion coefficient for a spherical object of 

radius R as a function of temperature and viscosity η of a medium: 

  (19) 

Thus, the predicted diffusion coefficient of a 20 nm radius SV in water is around 10,800 
nm2/ms. Due to the higher viscosity of the cytoplasm, its probable non-Newtonian 

nature, and the crowding due to the presence of other macromolecules, the free 
diffusion coefficient of a 20 nm radius SV is expected to be around 500 nm2/ms (Luby-

Phelps, 2000). The impact of ribbon tethering on SV mobility is not well understood - 
depending on the tethering force properties, SV motion might or might not be slowed 

down. We assumed a SV diffusion coefficient of D = 50 nm2/ms for a 20 nm radius SV, 

which is 10 times smaller than predicted for the cytoplasm. Measurements of the 
diffusion of SVs in ribbon synaptic terminals indicated values from 10 or 30 nm2/ms 

(Holt et al., 2004) to 110 nm2/ms (Rea et al., 2004). These apparent diffusion 
coefficients are smaller than the expected free diffusion coefficient partly because of 
SV packing (Cichocki and Hinsen, 1990; Gaffield et al., 2006). We used (19) to account 

for the dependence of the diffusion coefficient on the SV radius. For a uniquantal SV, 
the mean square root displacement was 1 nm in a given direction, according to 

. The total mean square displacement is , where d is the 

dimensionality of the system, here 2. 

  
Di =

kB T
6π Ri η

  δ x2 = 2Dδ t   δ x2 = 2d Dδ t
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SV repulsion forces  

We modeled the elastic repulsive forces between SVs so that they do not overlap and, 

if they do, rapidly repel each other. The force of a SV j on a SV i was (Figure S6A): 

  (20) 

with FV = 20 pN and where  and Ri are the position and the radius of a SV i, 

respectively. S(d) is a sigmoid function: 

  (21) 

with Δx = 1 nm. For a point positioned at the border of a force field F, the mean 

penetration depth due to random diffusion into the force field is given by kB⋅T/F. At 

room temperature and for F = 20 pN, this is only 0.2 nm. Thus, two SVs diffusing 

randomly would hardly overlap, as already when touching, the force they exert on each 

other is FV/2 = 10 pN. If a diffusing SV penetrates by a distance Y into the force field F, 

the average time to diffuse out is: Y/v0 = Y⋅kB⋅T/(F⋅D), where v0 is the steady-state 

velocity resulting from the force. Thus two 20 nm radius SVs completely overlapping 

would be separated after only 41 µs, when D = 50 nm2/ms. 
In atomic force microscopy experiments, SVs were shown to be less stiff during 

small deformation, with a stiffness of around 0.2 pN/nm (Awizio et al., 2007). In the 
linear regime a 10 nm deformation would thus produce a force of only 2 pN. But for 

larger deformation the force increased up to 400 pN. We chose the force to grow only 
up to 20 pN to guarantee numerical stability in the simulations. The force amplitudes 

were independent of SV sizes. 

Boundary repulsion and attraction forces  

We modeled boundary forces so that SVs stayed inside the simulation space and 

added a short-range attracting force to the AZ to mimic docking. With 1 the coordinate 

   


F ( x j,Rj,

xi,Ri ) = FV ⋅S
xi −
x j − Ri − Rj( ) ⋅

xi −
x j

xi −
x j
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S(d ) =

1

1+ exp d
Δx

⎛
⎝⎜

⎞
⎠⎟
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0 otherwise
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⎪
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perpendicular to the AZ and  its unitary vector oriented towards the cytoplasm, the 

boundary force acting on a SV i was defined as (Figure S6A): 

  (22) 

where FM = 50 pN, FB = 10 pN, FA = 1 pN, and the attraction force: 

  (23) 

with Δx1 = 1 nm and Δx2 = 3 nm. The AZ repulsion force was thus assumed stronger 

(50 pN) than the SV force (20 pN). The maximal attraction force was about 10 times 

weaker than the maximal force of repulsion. The forces canceled each other when the 
SV was at a distance of about 3 nm from the AZ. The time a SV stayed docked with no 

other SV in the simulation space was 15 ± 15 s (mean ± SD). 

Homotypic fusion 

The homotypic fusion reaction was implemented with the kinetic scheme: 

  (24) 

which could only happen if the membranes of the 2 SVs i and j were closer than 15 nm. 

This is motivated by the length of the synaptobrevin molecules (Takamori et al., 2006). 

αhom was fixed or depended on the positions and/or the sizes of the 2 SVs. 

At each simulation time step, for every pair (i, j) of SVs for which: 

  (25) 

homotypic fusion occurred stochastically with probability phom = δt αhom. This probability 

was always much smaller than 1. When required, the height z of SVs interaction was 

calculated as following: 

  (26) 

  ê1
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1
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⎠⎟
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0 otherwise
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⎟
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When homotypic fusion occurred, the two “parent” SVs i and j disappeared and 

a new SV k emerged in their center of mass: 

  (27) 

with quantal size  and radius  with R0 = 20 nm. Thus 

the total lipid bilayer of the “parent” SVs was preserved and their neurotransmitter 

content was summed. The newly created SV could potentially overlap with an already 
existing SV. Due to the SV forces, such SVs were rapidly pushed apart. 

Exocytosis 

The exocytosis reaction was implemented with the kinetic scheme: 

  (28) 

which could happen when the SV membrane was closer than 15 nm from the AZ 
surface. At each time step when it was the case, exocytosis occurred with probability 

pexo = δt αexo. This probability was always much smaller than 1. After exocytosis, the SV 

was removed from the simulation space. The exocytosis rate was fixed to 3 Hz. It 

yielded a total maximum release rate of about 36 Hz (maximally 12 uniquantal SVs of 
40 nm diameter were docked at the AZ) and allowed time for SVs to perform 

homotypic fusion before exocytosis. 

4 models of homotypic fusion 

In homotypic fusion model 1, we assumed that the homotypic fusion rate αhom,1 is 

constant on the whole ribbon (Figures S6B,C).  

In homotypic fusion model 2, we assumed that the homotypic fusion rate αhom,2 

decayed with the distance z of the 2 SVs interaction point from the AZ, mimicking for 

example a Ca2+ concentration gradient from the AZ (He et al., 2009; Roberts, 1994) 

(Figures S6D,E,G): 

  (29) 

   

xk =
xi ⋅Ri

3 +
x j ⋅Rj

3

Ri
3 + Rj

3

 Qk = Qi +Qj   Rk = R2
i + Rj

2 = Qk R0

  Vesicle + AZ αexo⎯ →⎯⎯ AZ

  α hom,2 (z ) = Hmax e− z /λZ( )2 / e− z0 /λZ( )2
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where z0 was set to 20 nm (a uniquantal SV radius) and corresponded to the most AZ-

proximal interaction point for SVs. Hmax was the maximum homotypic fusion rate, found 

at z = z0. λZ was the characteristic decay length of the homotypic fusion rate from the 
AZ. 

In homotypic fusion model 3, the homotypic fusion rate αhom,3 decreased both 

with the distance z from the AZ and with Q1 and Q2 of the interacting SVs (Figures 8K, 

S6F,H): 

  (30) 

where αhom,2(z) is defined in equation (29) and λQ quantifies how fast homotypic rates 
decrease with Q. This model would still reproduce experimental exocytic quantal size 

distributions for different λZ, making the z-dependence dispensable in the third model. 
In homotypic fusion model 4, SVs were replenished everywhere on the ribbon, 

down to 40 nm from the AZ. The homotypic fusion rate function was as in model 3, and 
the exocytosis rate increased with SV quantal size: 

   α exo,4 (Q) = 10 *α exo (Q −1) +α exo  (31) 

Summary of parameters used for simulations 

Table S1 summarizes the parameters used for the simulations. For each point in the 

parameter space (Figures S6), 25 simulation repetitions were performed. If one of the 

simulations led to the creation of a SV with Q > 40, this parameter point was 

considered as “runaway fusion”. Otherwise, from 1,200 exocytosis events, the last 

1,000 were taken to construct the exocytic size histograms. Simulations were 
performed in C++ and analyzed in Mathematica (Wolfram Research).   

  α hom,3 (z, Q1, Q2 ) = α hom,2 (z ) ⋅e
−

Q1+Q2−2
λQ

⎛
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