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Abstract. The ASACUSA collaboration of CERN has recently carried out two-photon
laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were de-
termined with fractional precisions of 2.3–5 parts in 109. By comparing the results with
three-body QED calculations, the antiproton-to-electron mass ratio was determined as
1836.1526736(23).

1 Introduction

Antiprotonic helium (pHe+) is a three-body atom [1–4] consisting of a helium nucleus, an electron in
the 1s state, and an antiproton occupying a Rydberg state with high principal and angular momentum
quantum numbers n ∼ ` + 1 ∼ 38. The transition frequencies of pHe+ have been calculated by
QED calculations to fractional precisions of 1 × 10−9 [5]. The calculations included relativistic and
radiative recoil corrections up to order mec2α6/h, and nuclear size effects. By comparing the measured
and calculated transition frequencies, the antiproton-to-electron mass ratio was determined [4] as
1836.1526736(23).

We have previously measured some pHe+ transition frequencies with a fractional precision of
10−7 − 10−8, by single-photon laser spectroscopy [6–9]. The precision was limited by the Doppler
broadening of the resonance lines which arose from the thermal motions of the pHe+. Recently
[4], two-photon transitions of the type (n, `) = (n − 2, ` − 2) [Fig. 1(a)] were excited using two
counterpropagating laser beams, such that the Doppler broadening was partially canceled [10].

2 Experiment and results

The two-photon transitions were induced between pHe+ states with microsecond and nanosecond-
scale lifetimes against Auger emission of the electron. After Auger decay, the remaining two-body
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Figure 1. Energy level diagram of p4He+ involved in the two-photon transition (n, `) = (36, 34) → (34, 32) (a).
Cherenkov detector signals for two-photon transition (b). Experimental layout (c). From Ref. [4].

pHe2+ ion [11] was destroyed by Stark collisions with other helium atoms in the experimental target.
The charged pions emerging from the resulting antiproton annihilations were detected by Cherenkov
detectors [12] placed around the target. The two-photon resonance condition between the laser and
pHe+ was revealed as a sharp spike in the rate of antiproton annihilations [Fig. 1 (b)].

Two sets of Ti:Sapphire lasers [13] of pulse length 30-100 ns with a spectral linewidth of ∼ 6 MHz
and a pulse energy of 50–100 mJ were used to excite the antiprotonic transitions. The system included
continuous-wave (cw) lasers whose frequencies were measured to a precision of < 1 × 10−10 against
a femtosecond optical frequency comb [14].

The experiments were carried out at the Antiproton Decelerator (AD) facility of CERN as part
of its atomic physics [15] program. The AD provided 200-ns-long pulsed beams, which contained
∼ 107 antiprotons of kinetic energy 5.3 MeV. The antiprotons were decelerated to ∼ 70 keV using
a radiofrequency quadrupole decelerator [7]. Secondary electron emission detectors measured the
spatial profiles of the beam [16]. The pHe+ atoms were produced by stopping the antiprotons in a
target filled with 4He or 3He gas at temperature T ∼ 15 K and pressure p = 0.8 − 3 mbar. Two
horizontally-polarized laser beams of energy density ∼ 1 mJ/cm2 fired through the target excited the
two-photon transitions.

The Cherenkov signal corresponding to some 107 pHe+ atoms is shown in Fig. 1(b), as a function
of time elapsed since the arrival of antiproton pulses at the experimental target. Lasers of wavelengths
c/ν1 = 417 and c/ν2 = 372 nm were tuned to the two-photon transition (n, `) = (36, 34)→ (34, 32), so
that the virtual intermediate state lay ∆νd ∼ 6 GHz away from the real state (35, 33). This arrangement
strongly enhanced the transition probability. The annihilation spike which corresponds to the two-
photon transition can be seen at t = 2.4µs. The intensity of the spike reflects the number of antiprotons
populating state (36, 34) [17, 18]. When the 417-nm laser was tuned some ∼ 0.5 GHz off the two-
photon resonance condition, the signal disappeared as indicated in the same figure.

Fig. 2(b) shows the resonance profile measured by detuning the ν1 laser to ∆νd = −6 GHz, whereas
the ν2 laser was scanned between -1 and 1 GHz around the two-photon resonance defined by ν1 + ν2.
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Figure 2. Single-photon resonance (36, 34) → (35, 33) of p4He+ (a). Sub-Doppler two-photon profiles of
(36, 34) → (34, 32) (b) and (33, 32) → (31, 30) (c) of p4He+, and (35, 33) → (33, 31) of p3He+ (d). Solid lines
indicate best fit of theoretical line profiles (see text) and partly overlapping arrows the positions of the hyperfine
lines. From Ref. [4].

35

Figure 3. Fractional deviation between theoreti-
cal (squares) and experimental (circles) transition
frequencies of pHe+ isotopes measured by two-
photon laser spectroscopy. From Ref. [4].

Figure 4. Mass ratio Mp/me determined in this
work, compared with Mp/me measured previously
[21–24] and the CODATA 2002 value obtained by
averaging them. From Ref. [4].

The linewidth (∼ 200 MHz) of this two-photon resonance is more than an order of magnitude smaller
than the Doppler- and power-broadened profile of the single-photon resonance (36, 34) → (35, 33)
[Fig. 2(a)]. The two-peak fine structure arises due to the interaction between the electron spin and the
orbital angular momentum of the antiproton. We also detected the (33, 32)→ (31, 30) and (35, 33)→
(33, 31) resonances of p4He+ and p3He+, respectively [Fig. 2(c)–(d)]. The latter resonance profile
contains eight partially-overlapping hyperfine lines, which arose from the spin-spin interactions of the
three constituent particles. The spin-independent transition frequencies νexp were obtained by fitting
these measured profiles with a theoretical lineshape (solid lines in Fig. 2) which was determined by
numerically solving the rate equations of the two-photon process [10]. The positions of the hyperfine
lines were fixed to the theoretical values [19], which have a precision of < 0.5 MHz.

The experimental transition frequencies νexp (filled circles with error bars in Fig. 3) agree with the
theoretical frequencies νth (squares) within a fractional precision of (2.3 − 5) × 10−9. The calculation
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uses the fundamental constants compiled in CODATA2002 [20], such as the 3He- and 4He-to-electron
mass ratios, the Bohr radius, and Rydberg constant. The charge radii of the 3He and 4He nuclei give
relatively small corrections to νth of 4 − 7 MHz [5]. The correction from the antiproton radius is
less than 1 MHz. The theoretical precision of νth is now mainly limited by the uncalculated radia-
tive corrections of order mec2α8/h [5]. When the antiproton-to-electron mass ratio Mp/me in these
calculations was increased by a relative amount of 10−9, the νth-value changed by 2.3–2.8 MHz. By
minimizing the difference between νth and νexp and considering the systematic errors, we obtained
the above antiproton-to-electron mass ratio which yielded the best agreement between theoretical and
experimental frequencies. The uncertainty includes the statistical and systematic experimental, and
theoretical contributions of 18 × 10−7, 12 × 10−7, and 10 × 10−7. This is in good agreement with pre-
vious measurements[21–24] of the proton-to-electron mass ratio (Fig. 4). Under the assumption that
CPT invariance is valid (i.e, Mp = Mp = 1.00727646677(10) u), we derived a value for the electron
mass, me = 0.0005485799091(7) u [4].
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