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1  Introduction

The tropical Atlantic circulation is largely controlled by 
land–ocean interactions involving the continents, Africa 
and South America, and the Atlantic basin in between. Sea 
surface temperature (SST) modulates the seasonal cycle of 
rainfall and its interannual variability in key areas such as 
the Amazonia and West Africa (Mitchell and Wallace 1992; 
Zebiak 1993; Okumura and Xie 2004; Yin et  al. 2012). 
Orographic features like the Atlas-Ahaggar mountains in 
north Africa induce changes in the large-scale circulation 
and influence the location of the intertropical convergence 
zone (ITCZ) (Sultan and Janicot 2003; Cook et  al. 2004; 
Hagos and Cook 2005). Because the circulation depends on 
such coupled processes, simulating the tropical Atlantic cli-
mate remains a challenge for climate models. For instance, 
most coupled general circulation models (GCMs) show a 
reversed SST gradient along the equator, with an anoma-
lously warm SST in the east and cold SST in the west 
(Richter et al. 2013). This reversed SST gradient is a result 
of the westerly wind bias originating from the atmospheric 
component of the models, and persists even in high-reso-
lution models (Chang et  al. 2007; Richter and Xie 2008; 
Richter et al. 2012, 2013; Patricola et al. 2012; Zermeno-
Diaz and Zhang 2013). Using the diagnostic framework 
developed by Stevens et  al. (2002), Zermeno-Diaz and 
Zhang (2013) deduced that the westerly wind bias over the 
equatorial Atlantic ocean was a result of insufficient mixing 
of momentum into the boundary layer and erroneous sea 
level pressure (SLP) gradient. The latter is linked to pre-
cipitation biases in the atmospheric component which are 
exacerbated in coupled simulations (Richter and Xie 2008; 
Chang et al. 2008; Richter et al. 2013).

Despite continued model improvement, precipitation 
biases over the tropical Atlantic persist in current GCMs in 
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their coupled as well as uncoupled mode. Previous studies 
have shown that some models exhibit common biases in 
this area such as the overestimation of precipitation in the 
Southern hemisphere, the rainfall excess in the Caribbean, 
and the Amazonian dry bias during boreal summer (Davey 
et al. 2002; Biasutti et al. 2006; Stockdale et al. 2006; Yin 
et  al. 2012). An explanation for the tropical Atlantic pre-
cipitation bias has been provided by Biasutti et al. (2006). 
Using a set of six atmospheric GCMs, they showed that 
in contrast to observations, models collocate precipitation 
and SST. This leads to excessive precipitation south of the 
equator during boreal spring and in the Caribbean sector 
during summer. The models’ apparent oversensitivity to 
SST is amplified by their lack of sensitivity to atmospheric 
humidity. The robustness of this result has not been tested 
with a larger ensemble of models and it remains unclear 
whether oversensitivity to SST is indeed the root cause 
of most model biases. In fact, there is a shortage of stud-
ies which try to identify atmospheric controls on tropical 
Atlantic precipitation.

This study aims to fill this gap by considering a larger 
ensemble of atmosphere-only models and by investigating 
controls on the precipitation distribution in each ensemble 
member. Focus is set on identifying and explaining robust 
precipitation biases across the models which are less likely 
to be influenced by the particular design of a model. Detailed 
consideration of the structure of precipitation simulated by 
each model is performed through an object-based method. 
The role of model sensitivity to SST and other factors which 
control the structure of the Atlantic ITCZ are explored in 
order to explain the results of the object-based analysis.

The paper is organized as follows: Sect.  2 describes 
the datasets and the object-based method for precipitation 
analysis. Section 3 presents the results of the object-based 
analysis in terms of the mean state and seasonal cycle of 
precipitation. Section 4 discusses possible controls on the 
Atlantic ITCZ structure, explaining the results of Sect.  3. 
Conclusions are given in Sect. 5.

2 � Methods

2.1 � Description of the datasets

In this study, precipitation is analyzed from 22 atmosphere-
only models under the Coupled Model Intercomparison 
Project Phase 5 (CMIP5). The models are run with pre-
scribed SSTs from observations following an Atmospheric 
Model Intercomparison Project (AMIP) style of integration 
(Gates 1992). Monthly output of model precipitation cover-
ing the period 1979–2008 is used. In addition to the CMIP5 
models, two high resolution versions of the MPI model 
under the German consortium project STORM/AMIP are 

examined (Stevens et  al. 2013). Table  1 lists the models 
included in this study together with their respective resolu-
tion (indicated by nLon, the number of gridpoints along the 
equator) and reference for their deep convection scheme. 
All models employ a mass-flux type of parameterization 
except for INMCM4, which uses a convective adjustment 
scheme. All data are interpolated to a fixed lat-lon grid with 
96 gridpoints in latitude and 192 in longitude, equivalent 
to a grid of 1.875◦. The study covers the tropical Atlantic 
sector, which is defined here as the domain encompass-
ing 90°W–45°E, 30°S–30°N. This includes the continents 
South America, Africa and the tropical Atlantic basin.

Table 1   Description of models used in this study with information 
on resolution and deep convection scheme

The model classification in the last column is discussed in Sect. 3

Model name nLon Deep convection scheme Class

ACCESS1.0 192 Gregory and Rowntree 
(1990)

West Atl

BCC-CSM1 128 Zhang and Mu (2005) East Atl

BNU-ESM 128 Zhang and McFarlane (1995) West Atl

CanAM4 128 Zhang and McFarlane (1995) East Atl

CESM(CAM5) 288 Zhang and McFarlane (1995) East Atl

CCSM4 288 Zhang and McFarlane (1995) East Atl

CMCC-CM 480 Tiedtke (1989)/Nordeng 
(1994)

East Atl

CNRM-CM5 256 Bougeault (1985) East Atl

CSIRO-Mk3.6.0 192 Gregory and Rowntree 
(1990)

East Atl

EC-EARTH 320 Fritsch and Chappell 
(1980)/Nordeng (1994)

West Atl

FGOALS-s2 128 Tiedtke (1989)/Nordeng 
(1994)

East Atl

GISS-E2-R 144 Gregory (2001)/Del Genio 
et al. (2007)

West Atl

GFDL-HIRAM-C180 576 Bretherton et al. (2004) East Atl

GFDL-CM3 144 Donner (1993)/Wilcox and 
Donner (2007)

West Atl

HADGEM2-A 192 Gregory and Rowntree 
(1990)

West Atl

INMCM4 180 Betts and Miller (1986) West Atl

IPSL-CM5A-LR 96 Emanuel (1991) West Atl

IPSL-CM5B-LR 96 Bony and Emanuel (2001) West Atl

MIROC5 256 Chikira and Sugiyama 
(2010)

East Atl

MPI-ESM-LR 192 Tiedtke (1989)/Nordeng 
(1994)

West Atl

MPI-ESM-HR 384 Tiedtke (1989)/Nordeng 
(1994)

West Atl

MPI-ESM-XR 768 Tiedtke (1989)/Nordeng 
(1994)

West Atl

MRI-AGCM32H 640 Yukimoto et al. (2011) East Atl

NorESM1-M 144 Zhang and McFarlane (1995) West Atl
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Precipitation from the AMIP models is compared with 
three observational data sets: the Global Precipitation Cli-
matology Project (GPCP) version 2 (Adler et  al. 2003), 
the Tropical Rainfall Measuring Mission (TRMM) prod-
uct 3B-42 (Huffman et al. 2007), and the Hamburg Ocean 
Atmosphere Parameters and Fluxes from Satellite Data 
(HOAPS) version 3 (Andersson et  al. 2010). The GPCP 
dataset is a combination of satellite and rain gauge data 
and covers the period 1979–2010 with a 2.5◦ spatial resolu-
tion. Precipitation data from TRMM is a merged product of 
high quality microwave and infrared precipitation and root-
mean-square precipitation error estimates. It covers the 
period 1998–2010 with a 0.25◦ spatial resolution. HOAPS 
only gives data for ocean points and is used as a supple-
mentary dataset to GPCP and TRMM over the tropical 
Atlantic ocean. It covers the period 1987–2005 with a 0.5◦ 
spatial resolution. All observational data are interpolated to 
the same model grid as is used to analyze the model results.

2.2 � Object‑based approach for analyzing precipitation 
distribution

Comparing precipitation between models and observa-
tions is usually performed through gridpoint-based meas-
ures such as root-mean-square error (RMSE) analysis. This 

gives information on where the model overestimates or 
underestimates the amplitude of precipitation with respect 
to observed values. However, precipitation is not only char-
acterized by amplitude but it takes on a complex structure 
as well. A gridpoint-based evaluation of precipitation is 
susceptible to the double penalty problem, where a model 
with correct amplitude and structure of precipitation but 
with a slight displacement in its position is rated as a low-
score model. Such a model would be rated as poorly as 
another model which did not get the precipitation event at 
all (Wernli et al. 2008). To circumvent the double penalty 
problem and to extract more meaningful information from 
the model, object-based measures in evaluating precipita-
tion distribution have been proposed (Ebert and McBride 
2000; Davis et  al. 2006; Wernli et  al. 2008). Instead of 
comparing precipitation values gridpoint by gridpoint, the 
original precipitation field is condensed into precipitation 
objects. The object identification procedure is illustrated 
in Fig.  1. A threshold Pf  is set and only gridpoints with 
precipitation values P > Pf  are considered. These remain-
ing gridpoints are then clustered into objects described by 
their structure, amplitude, and location, also known as SAL 
(Wernli et  al. 2008). This allows for a three-dimensional 
quality measure of model performance. The SAL method 
has been originally developed for high-resolution weather 

Fig. 1   From the a original precipitation field, a threshold Pf  is set and only b gridpoints with precipitation values P > Pf  are considered to get  
c precipitation objects with properties such as size (circle), amplitude (numbers), and location (cross)
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forecasts (Gilleland et al. 2009; Ebert and Gallus 2009) but 
has recently been proven useful for assessing low-resolu-
tion climate simulations (Hohenegger and Stevens 2013).

In this study, the threshold is set as: Pf = f · Pmax where 
Pmax is the maximum precipitation value of a model over 
a certain area and f is a fraction of this value. Note that 
Pmax is not an absolute reference value but instead depends 
on the model. The objects essentially represent regions 
where the model prefers to rain. Since precipitation differs 
between land and ocean, with stronger and more peaked 
precipitation over land, different thresholds are chosen for 
land and oceanic sectors. Hereafter, land and ocean terms 
will be denoted by the subscripts l and o, respectively. For 
the mean state precipitation over land, Pfl = 0.35 · Pmaxl 
while for oceanic precipitation Pfo = 0.60 · Pmaxo. To cap-
ture the seasonal cycle of the multimodel mean, the fraction 
fo is increased to 0.70 when considering seasonal averages. 
As pointed out by Wernli et  al. (2008), there is no objec-
tive criteria for the choice of fl and fo but a general rule is 
that if the fractions are well-chosen, the resulting precipita-
tion objects should be consistent with features which can 
be seen by eye. This is the case with the chosen thresholds. 
Note that if the threshold is too high, robust precipitation 
features cannot be captured because the objects will be too 
sensitive to sharp peaks (one or two pixels of very intense 
rainfall). On the other hand, if the threshold is too low, the 
objects will not be sensitive enough to capture distinct fea-
tures of precipitation. The model classification described in 

the next sections are found to be robust even if other thresh-
olds are used, ranging from 50 to 70 %.

After setting the thresholds Pfl and Pfo, land and ocean 
precipitation objects are identified. For each object, a set of 
three properties is calculated: (1) Size, the number of pix-
els comprising the object, (2) Amplitude, the mean inten-
sity of the pixels of the object, and (3) Location, the coor-
dinates of the weighted centroid of the object. To capture 
the observed precipitation structure in the central Atlantic 
as seen in Fig. 1a, it is practical to identify the main ocean 
object as the largest object. Precipitation features near the 
coasts are found to be insensitive to the land–ocean sepa-
ration implemented here. The results discussed in the suc-
ceeding sections are robust even when taking a larger area 
for the ocean to include the equatorial coastal regions.

3 � Representing tropical Atlantic precipitation

3.1 � The mean state

The ability of models to represent the mean state of pre-
cipitation over the Atlantic sector is assessed using the 
previously described object-based approach. By doing so, 
two classes of models emerge. Figure 2 illustrates the two 
classes of model behavior using MPI-LR and GFDL-C180 
as examples. The MPI-LR has a reasonable representation 
of the distribution of objects over land, with comparable 

Fig. 2   Land and ocean precipitation objects from two models, 
a MPI-LR and b GFDL-C180, and observations, c GPCP and d 
TRMM. Land objects are marked in red and ocean objects in blue. 

The cross marks the weighted centroid, the circle shows the equiva-
lent area, and the numbers indicate the mean intensity of the precipi-
tation object
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properties to objects in the observed precipitation field. The 
ocean object, however, is misplaced too far west, near the 
coast of Brazil. The GFDL-C180 model shows small-sized 
land objects with very high precipitation values. These land 
objects are located in regions with pronounced relief in the 
terrain, especially over the Andes in South America. For 
GFDL-C180, the oceanic precipitation structure is more 
longitudinally distributed, with the ocean object located 
near West Africa, hence too far east. It is noteworthy that 
over ocean, neither MPI-LR nor GFDL-C180 matches the 
observed precipitation distribution. GPCP and TRMM 
place the main object in the central Atlantic (28.125◦W).  
HOAPS also has a central ocean object located at 30◦W 
(not shown). The models place the ocean object either too 
far west (MPI-LR) or too far east (GFDL-C180). Further 
examination of the two models indicate that this behavior 
is evident in the individual years of the simulation. The 
MPI-LR ocean object has a mean location of 41.25◦W 
with an interquartile range of ±1.875

◦ across the years 
while the GFDL-C180 ocean object at 20.62◦E varies by 
±3.75

◦ across the years. Over land, GFDL-C180 does not 
reproduce the observed land objects and instead shows 
peaked precipitation objects. This is because GFDL-C180 
has a very strong Pmaxl, and thus a high threshold Pfl, pre-
venting the object identification algorithm to pick out the 
land objects seen in observations and in MPI-LR. The 
object identification algorithm emphasizes the fact that 
GFDL-C180 has a very different representation of land 
precipitation over Africa and South America as compared 
to observations or MPI-LR due to excessive production 
of orographic precipitation. Because of its higher spatial 
resolution, TRMM has four objects over equatorial Africa 
while GPCP clusters these features as one big object. Even 
so, the amplitude of the TRMM objects over Africa is not 
nearly as high as the two peaked objects in GFDL-C180.

Given the MPI-LR and GFDL-C180 object distribu-
tion, Fig.  3 summarizes the behavior of all models in 
terms of the longitude of the ocean object plotted against 
the intensity-area ratio of the land objects. This ratio is 
high when intense precipitation is concentrated over small 
areas. Models with land objects like GFDL-C180 have high 
intensity-area ratios. The low-ratio models, on the other 
hand, systematically place the ocean object westward, as 
seen in MPI-LR. The lower left and upper right circles in 
Fig. 3 indicate the model separation to West Atlantic class 
(low ratio, westward ocean object) and East Atlantic class 
(high ratio, eastward ocean object). None of the models 

Fig. 3   Longitude of the ocean 
object plotted against the 
intensity-area ratio (measure of 
peakedness) averaged over the 
three most rainy objects over 
land. The gray lines in GPCP 
and TRMM show the inter-
quartile range of the interan-
nual variability of their object 
properties

Fig. 4   Mean state of precipitation over the tropical Atlantic for mod-
els with a West Atlantic bias and b East Atlantic bias
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can reproduce the observations and the biases appear larger 
than the observed yearly variability in the object properties 
as given by the interquartile range.

Figure 4 shows the mean state behavior of the ensem-
ble of these two groups. The models have a similar pre-
cipitation structure over land, except that East Atlantic 
models (GFDL-C180) have intense precipitation values 
over orographic regions. Over ocean, even though SST 
is prescribed, the models show two different oceanic pre-
cipitation structures. The West Atlantic class (MPI-LR) 
has an ITCZ structure which appears as a dense blob of 
precipitation in the western part of the Atlantic basin. The 
East Atlantic class (GFDL-C180) has a much more lon-
gitudinal structure but rains more in the eastern than in 
the central part of the basin. Both model types miss the 
central Atlantic placement of the observed ITCZ maxi-
mum in the mean state. Some East Atlantic models have 
ocean objects near the central Atlantic (FGOALS, CESM, 
CAN-AM, CNRM, CCSM). This is a consequence of 
their more longitudinally distributed ITCZ structure being 
clustered as one contiguous region. While these models 
still rain more in the eastern than in the central Atlantic, 

they have a weaker bias compared to other models like 
GFDL-C180.

3.2 � The seasonal cycle

The mean state of precipitation in the models is influenced 
by how well they simulate the seasonal cycle. The relation-
ship of mean state biases with the seasonal cycle of pre-
cipitation is explored by again performing an object-based 
analysis.

Figure  5 shows the seasonal evolution of the Atlan-
tic marine ITCZ, as represented by the migration of the 
main ocean object per season. Observations (GPCP and 
TRMM averaged) show a central Atlantic placement of 
the precipitation object through all seasons, most mark-
edly so in March–April–May (MAM). The West Atlantic 
bias is apparent with Fig. 5b showing a consistent west-
ward placement of the ocean object for all four seasons. 
Figure  5c, representing models with the East Atlantic 
bias, shows a more longitudinally extended progression 
of the precipitation object following the seasonal cycle. 
During boreal fall and winter, the models and obser-
vations all show objects located in the western part of 
the basin. It is during spring that the two model groups 
begin to deviate from each other and from the observa-
tions. The models place the objects on opposite sides 
of the Atlantic with respect to the observations. Mod-
els with the East Atlantic bias place the main spring 
object at the Gulf of Guinea in West Africa. They have 
a secondary object located near the coast of Brazil (not 
shown), indicative of a tilted ITCZ structure in MAM 
(Richter and Xie 2008).

Previous studies have shown that the precipitation 
structure in MAM is a determining factor for the evolu-
tion of SST and surface winds during the next seasons in 
coupled simulations (DeWitt 2005; Richter and Xie 2008; 
Richter et al. 2013; Zermeno-Diaz and Zhang 2013). Such 
studies often used an ensemble mean of models to high-
light differences between observed and modeled precipi-
tation distributions, which can give a distorted view in the 
presence of two model clusters. Figure 6 shows the struc-
ture of precipitation anomaly when the ensembling takes 
into account the two classifications of models. During 
MAM, a southward shift of the ITCZ with a maximum 
over the coast of Brazil is apparent for models with the 
West Atlantic bias. This southward shift is also present in 
models with the East Atlantic bias, though it is less pro-
nounced and is further accompanied by excessive pre-
cipitation over the Gulf of Guinea. Excessive precipitation 
over the Gulf of Guinea and deficient precipitation west 
of this region, akin to Fig. 6b, has already been noted by 
Richter and Xie (2008). They argued that it is this east–
west precipitation bias in AMIP models which drives an 

Fig. 5   Seasonal progression of the main ocean precipitation object 
for the ensemble mean of a observations (GPCP and TRMM, aver-
aged), b West Atlantic bias class, and c East Atlantic bias class
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anomalous westerly flow, causing a reversed SST gradi-
ent in coupled simulations. In a later paper, Richter  et 
al. (2013) however proposed that it is the southward 
shift of the ITCZ in the models, a situation more akin to 
Fig. 6a, which leads to the westerly wind error by inhib-
iting southeasterlies from crossing the equator. While 
both the southward shift of the ITCZ and the excessive 
precipitation over the Gulf of Guinea during MAM will 
induce wind anomalies, it is unclear which one is actually 
responsible for the westerly wind error. But whether mod-
els rain more over the eastern or western coast in boreal 
spring is largely dependent on the models included in the 
ensemble. By distinguishing models with West Atlantic 
bias from those with East Atlantic bias and performing 
an ensemble mean for each group, one could see a clearer 
separation of the precipitation bias from one coast to the 
other.

During MAM, the East Atlantic models also have, 
in general, a wetter Sahel and Congo region than West 
Atlantic models. Over the Amazonia, both model classes 
have deficient precipitation, especially over the north-
eastern border (Amapa and Guiana regions). In June–
July–August (JJA), both models have a dry Amazonia 
but East Atlantic models have a wetter Sahel (Fig. 6c, d). 
Noteworthy are especially the differences over the Atlan-
tic ocean, in agreement with Fig. 5. Models with the West 
Atlantic bias show excessive precipitation along the coast 
of Brazil and deficient precipitation in the eastern basin. 
Models with the East Atlantic bias show excessive pre-
cipitation in a localized region along the coast of West 
Africa (Guinea Bissau and Senegal), accompanied by 
deficient precipitation west of this region. The anom-
aly structure in JJA is maintained in boreal fall. During 
boreal winter, the two classes both have excessive rain in 

the west and deficient rain in the east, but West Atlantic 
models rain more in the western basin than East Atlantic 
models (not shown).

Fig. 6   Precipitation anomaly 
(model minus GPCP observa-
tion) in MAM (a, b) and JJA 
(c, d) for models with the West 
Atlantic bias (a, c) and with the 
East Atlantic bias (b, d). Red 
boxes are used for the concep-
tual diagram in Fig. 9

Fig. 7   Mean state ITCZ structure in different resolutions of the MPI 
model: a LR-T63, b HR-T127, and c XR-T255
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4 � Controls on the Atlantic marine ITCZ structure

With a wide range of parameters which could change 
from one model to another, it is not obvious why the set 
of models considered in this study separate into two clus-
ters. Looking at Table  1, the model classification seems 
to follow a trend based on horizontal resolution. There is 
a tendency for the East Atlantic class to have more grid-
points along the longitude while most models with the West 
Atlantic bias have less gridpoints. A detailed consideration 
of the model MPI indeed indicates a dependence of the 
ITCZ structure on horizontal resolution as illustrated in 
Fig. 7. A reduction in the West Atlantic bias is apparent as 
the resolution is increased from T63 to T255 and a struc-
ture closer to observations is attained. Specifically, the pre-
cipitation maximum over ocean shifts towards the central 
Atlantic with higher resolution. The decrease in precipita-
tion near the coast of Brazil is accompanied by an increase 
in precipitation near the coastal regions of West Africa. The 
improvement is not as apparent in the African continent, 
where the precipitation distribution does not change signifi-
cantly when the resolution is increased. Over South Amer-
ica, the structure does not change except that the high reso-
lution runs tend to show intense precipitation values over 
the Andes and Guiana highland regions. That MPI-HR and 
XR remain under the West Atlantic class is a consequence 
of the object-identification algorithm which still places the 
ocean object a little to the west of the observed object.

Figure  8 shows the circulation in MAM (the season 
when the two classes start to diverge) using the MPI and 
GFDL models with their low and high resolution versions. 
Although their low resolution versions exhibit a distinct 
pattern, especially in vertical velocity, increasing the reso-
lution yields similar effects. Both models show that an 

increase in horizontal resolution leads to increased rainfall 
over the Gulf of Guinea, accompanied by stronger upward 
motion over this region. The enhanced convergence is asso-
ciated with stronger low-level (850 hPa) westerlies which, 
on one hand, can reinforce the anomalous deep convection 
along the coast. On the other hand, it also suppresses some 
of the precipitation that would otherwise have fallen over 
the Brazil coast. This results in a more eastward placement 
of the ocean precipitation object.

Precipitation over the Gulf of Guinea in spring is cru-
cial in determining the ITCZ structure during summer. The 
full loop is schematically illustrated in Fig. 9. The boxes in 
MAM indicate the location of the west and east coastal bias 
of the models. The boxes in JJA mark the observed loca-
tion of the ITCZ, split into an eastern and western part at 

Fig. 8   Mean large-scale 
circulation during boreal spring 
for low (top panel) versions 
of two models, a MPI and b 
GFDL. The vectors show the 
horizontal wind at 850 hPa 
and the shadings represent the 
vertical velocity at 500 hPa, 
green is for upward motion and 
red for subsidence. The bottom 
panel shows the horizontal wind 
difference (vectors) and vertical 
velocity difference (shading) 
between the high and low reso-
lution versions of c MPI and d 
GFDL

Fig. 9   Simplified sketch of the circulation during MAM and JJA 
for the two types of models. A plus indicates overestimation of pre-
cipitation with respect to GPCP observations while a minus indi-
cates underestimation. The thickness of the signs is proportional to 
the magnitude of the bias. The arrows illustrate the low-level zonal 
wind associated with the precipitation biases. The mean flow along 
the equator is easterly. The location of the red boxes is the same as in 
Fig. 6
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30
◦
W (central Atlantic). Similar boxes are shown in Fig. 6 

for reference. In MAM, the two model groups differ in 
the strength of convection from one coast to the other, as 
shown by the prominence of the symbols. The East Atlan-
tic class rains more over the Gulf of Guinea and as the 
ITCZ moves northwards in JJA, these models continue to 
rain in the east. The West Atlantic class rains more over the 
coast of Brazil in MAM and continues to rain in the west-
ern basin during JJA. Note that in both model classes, the 
boreal summer season replicates the location of the precipi-
tation maximum during spring. The east–west partitioning 
of precipitation in spring is carried over to the summer, and 
explains the two different Atlantic ITCZ structures in the 
mean state.

The previous explanation stresses the importance of the 
east–west partitioning of precipitation over the ocean and 
relates it to the effect of resolution. However, other factors 
may play a role. As Richter and Xie (2008) suggested, a 
small ocean basin like the Atlantic is strongly influenced 
by convection from the adjacent continents. Richter et  al. 
(2012) emphasized the role of the precipitation deficit over 
Amazon and excess over Congo in controlling the circu-
lation over the Atlantic. In particular, they suggested that 
increased convection over Amazon leads to stronger east-
erlies. If so, West Atlantic models with stronger easterlies 
than East Atlantic models (see Fig.  8) should have more 
Amazonian precipitation. However, this seems not to be the 
case with models investigated in this study as both model 
classes show a dry bias over Amazon in spring and summer 
(see Fig.  6). This is also supported by the study of Wahl 
et al. (2011) with one version of the Kiel Climate Model, 
where they demonstrated that stronger easterlies and a 
reduced SST bias emerge when there is more precipitation 
over the coast of Brazil, even though a dry bias persists over 
the Amazonia. With a tercile difference ensemble approach, 

Zermeno-Diaz and Zhang (2013) also found no relation 
with Amazon rainfall deficit and wind errors during MAM. 
They noted instead a rainfall excess over the coast of Bra-
zil. The atmospheric origin of the westerly wind problem 
may not be an issue of continent-to-continent precipitation 
biases alone but of how models represent the ITCZ struc-
ture from one coast to the other as well.

An alternative hypothesis for the West Atlantic bias 
would be the effect of the adjacent South American orogra-
phy on the large-scale circulation. It is plausible that mod-
els with the East Atlantic bias capture the South American 
circulation better, do not rain excessively over the coast of 
Brazil, and can still rain over the Gulf of Guinea. How-
ever, a regime-sorting analysis on deep convection over 
northern regions of South America versus deep convection 
over the coast of Brazil does not show a clear connection 
between the two. The peaked precipitation behavior of 
the East Atlantic class, mostly occurring in the Andes, is 
likely a consequence of high resolution rather than a cause 
for the suppression of the West Atlantic bias. This further 
strengthens our hypothesis that it is horizontal resolution 
which appears to have the largest influence on the marine 
ITCZ structure through its influence on coastal precipita-
tion along the equatorial Atlantic.

Biasutti et al. (2006) proposed that models collocate SST 
and precipitation too strongly, thus causing the southward 
shift of the ITCZ (near the coast of Brazil) during boreal 
spring. The present analysis does not support this SST-
precipitation maxima hypothesis (see Fig.  10). In spring, 
the West Atlantic class rains excessively over the western 
basin even though the SST maximum is located on the east-
ern coast, at the Gulf of Guinea. While the precipitation 
maximum in the East Atlantic class is indeed at the Gulf of 
Guinea during spring, it remains in the eastern basin dur-
ing summer, even though the SST maximum has shifted to 

Fig. 10   Boreal spring (a, 
b) and summer (c, d) SST 
(shaded) and precipitation 
(contours, interval is 4 mm/day 
starting at 2 mm/day) of West 
Atlantic (a, c) and East Atlantic 
class (b, d)
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the west. Neither the West nor East Atlantic model classes 
show a clear connection between the seasonal evolution of 
the SST maximum and precipitation maximum over the 
tropical Atlantic ocean.

Another player could be the convection scheme. Table 1 
indicates no obvious relationship between the model classi-
fication and the convective parameterization. It is difficult to 
see a systematic behavior, given that models with the same 
convection scheme fall into separate model clusters. The 
three versions of the MPI model, with different resolutions 
but same convective parameterization, indicate a reduc-
tion of the West Atlantic bias with increasing resolution. 
Even if convection is turned off, the low resolution MPI-
LR still exhibits the West Atlantic bias. Furthermore, if the 
call to the deep convection scheme is inhibited and most of 
the convection is explicit, as in the case with GFDL-C180 
(Zhao et al. 2009), the East Atlantic bias persists. However, 
the convection scheme may influence the resolution limit at 
which a particular model transitions from a West Atlantic 
bias to an East Atlantic bias. For instance, the GFDL model 
shows a transition from West to East Atlantic bias when the 
resolution is increased four times (see Table 1). On the other 
hand, with the same increase in resolution, the MPI model 
does not show a full transition to the East Atlantic bias.

It should be noted that the tropical Atlantic basin is 
flanked by two land masses less than 3,000 km apart, with 
more African land mass north of the equator and more 
South American land mass south of the equator. Perhaps it 
is this relatively small distance between the two continents, 
combined with their asymmetric distribution near the equa-
tor, which makes the representation of the marine ITCZ 
structure particularly sensitive to coastal precipitation and 
to how well these coastlines are captured by a model. In 
fact, Schiemann et  al. (2013) attributed the reduction in 
dry precipitation bias over the Maritime continent at higher 
horizontal resolution to better resolved land fraction and 
increased latent heat flux over coastal areas. The geometry 
of the tropical Atlantic is such that biases in coastal pre-
cipitation can significantly affect the overall marine ITCZ 
structure in the seasonal cycle and consequently, the mean 
state. The topography might also play a role, especially in 
north Africa whose orographic features influence the cir-
culation and precipitation patterns in Sahel. Indeed Fig. 8 
shows stronger westerlies over north Africa for high resolu-
tion. These ideas must be explored further through sensitiv-
ity analyses.

Coupling with the ocean introduces more complexities. 
For instance, Patricola et al. (2012) found that the relation-
ship between wind, SST, and precipitation is dependent on 
the spatial resolution of the ocean model used. It would be 
very interesting to investigate whether the relationships 
uncovered in this study remain apparent in coupled simula-
tions, a topic for future studies.

5 � Conclusions

This study investigated the tropical Atlantic precipitation 
distribution in 24 atmosphere-only models. An object-based 
analysis patterned after Wernli et al. (2008) was employed 
in order to condense the original precipitation field to areas 
of interest called precipitation objects. By performing such 
an analysis for the mean precipitation state, two classes of 
model behavior were found. Class 1 models place the ocean 
precipitation object in the west basin, whereas it is in the 
central Atlantic in observations. These are the models with 
the West Atlantic bias. Class 2 models rain excessively over 
orographic regions, showing peaked land objects. The oce-
anic precipitation in class 2 models is more longitudinally 
distributed like in the observations, but these models rain 
more in the eastern basin than in the central Atlantic, show-
ing the East Atlantic bias. The emergence of the two model 
classes are difficult to explain on the basis of the hypothesis 
of Biasutti et al. (2006), which says that model biases reflect 
a too strong coupling of convection to underlying SSTs.

Focusing on the marine ITCZ, the model classification 
in the mean state of precipitation is traced to a separation 
already present in the seasonal cycle. In boreal spring, the 
two classes of models place the ocean object on opposite 
coasts: south Brazil coast and Gulf of Guinea. In the suc-
ceeding boreal summer season, as the ITCZ moves north-
wards, the two classes maintain this west–east partitioning 
of precipitation. West Atlantic models continue to have 
their peak in precipitation over the coast of Brazil while 
East Atlantic models rain north of the Gulf of Guinea. The 
higher boreal spring precipitation over the Gulf of Guinea 
in East Atlantic models is found to be sensitive to horizon-
tal resolution in the two models studied here. Models with 
high horizontal resolution show stronger deep convection 
over the Gulf of Guinea and stronger westerlies, suppress-
ing precipitation in Brazil. Hence, the difference by which 
East and West Atlantic bias models represent coastal pre-
cipitation in the seasonal cycle results in the two different 
marine ITCZ structures.

The present study concludes that (1) the Atlantic ITCZ 
structure in the models is strongly influenced by the sea-
sonal cycle of precipitation along the coasts of Brazil and 
Gulf of Guinea, (2) the coast-to-coast precipitation in 
boreal spring influences the east–west partitioning of pre-
cipitation in summer, and (3) horizontal resolution influ-
ences the weight of precipitation bias from one coast to the 
other.
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