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Abstract
Vasilievʼs higher-spin (HS) theories in various dimensions are uniformly
represented as a simple system of equations. These equations and their gauge
invariances are based on two superalgebras and have a transparent algebraic
meaning. For a given HS theory these algebras can be inferred from the
vacuum HS symmetries. The proposed system of equations admits a concise
AKSZ formulation. We also discuss novel HS systems including partially-
massless and massive fields in AdS, as well as conformal and massless off-
shell fields.

Keywords: higher spin theory, AdS/CFT, gauge field theories

1. Introduction

In this paper we study algebraic structures underlying Vasilievʼs higher-spin (HS) theories in
various dimensions [1–5] (see [6–8] for reviews). These HS theories are defined by classical
equations of motion whose underlying geometrical principles are not entirely settled. More
precisely, the equations of interacting HS fields are encoded [9] in the flatness condition
imposed on the connection of a sufficiently large algebra, called the embedding algebra in
this work. The connection is further constrained through its coupling to a set of 0-form fields
which in turn are subject to certain algebraic constraints.

Another algebraic ingredient of the HS theory is an algebra of dynamical symmetries
which is somewhat hidden in the usual formulations. This is a finite-dimensional Lie
superalgebra that remains undeformed at the interacting level. On the other hand the infinite-
dimensional HS algebra is a subalgebra of the embedding algebra preserving the most
symmetric vacuum, which corresponds to empty AdS space. We argue that in HS theories the
embedding algebra can be constructed as a twisted tensor product of the HS algebra and the
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algebra of dynamical symmetries. In particular, both factors turn out to be subalgebras of the
embedding algebra.

In this paper we propose a formulation of HS equations, where these algebraic structures
are realized in a manifest way. More precisely, in addition to the 1-form connection of the
embedding algebra, there is a set of 0-form fields which are associated to the basis elements of
the dynamical symmetry algebra. The constraints on these fields are simply the (anti)com-
mutation relations of the algebra.

In this approach all the ingredients needed to formulate HS equations are the algebra of
dynamical symmetries and the embedding algebra. More generally, this gives a new class of
gauge invariant equations defined by a pair of superalgebras so that known HS theories form a
particular subclass. Furthermore, we demonstrate that the system admits a concise AKSZ
formulation in terms of the Chevalley–Eilenberg cohomology differentials of the two
superalgebras.

Depending on the realization of the HS algebra the equations may describe off-shell
theory in which case the system can be put on-shell through a version of the factorization
procedure from [5]. We cover the variety of models including Vasilievʼs HS theories in
various dimensions as well as variations of the d-dimensional HS theory involving partially-
massless or massive fields. The latter two are AdS/CFT dual to non-unitary singletons and
generalized free fields respectively. Finally, we also discuss conformal and massless off-shell
fields.

2. Uniform representation

2.1. Equations of motion and gauge symmetries

The equations of motion are built out of the following data: a Lie (super)algebra g, which is
the algebra of dynamical symmetries and the associative (super)algebra A, which is the
embedding algebra. In the known examples g is u (1), sp (2) and osp (1|2) or its extension. It
is convenient to pick basis elements ea in g so that the graded commutation relations are

= e e e[ , ]a b ab
c

c and the (anti)symmetry relations are = − −e e e e[ , ] ( 1) [ , ]a b
e e

b a
| || |a b , where

e| |a is the Grassmann degree of ea. A is an embedding (usually star-product) algebra for a HS
algebra under consideration and the product in A is denoted by ⋆. In particular, A typically
contains a Lie subalgebra isomorphic to so d( , 2), i.e. AdSd+1 spacetime isometries.

Given a space-time manifold with coordinates x m, where = …m d0, , , the fields are 1-
form =W W x x( )dm

m and 0-forms =T T x( )a a , all taking values in A. The full set of equations
is

+ ⋆ =
+ =

− =
⋆

⋆
± 

[ ]
[ ]

W W W

T W T

T T T

d 0,

d , 0,

, 0, (2.1)

a a

a b ab
c

c

where = ⋆ − − ⋆⋆
±T T T T T T[ , ] ( 1)a b a b

e e
b a

| || |a b . The above system is invariant under the gauge
transformations of the form

δ ξ ξ δ ξ= + =⋆ ⋆[ ]W W T Td [ , ] , , , (2.2)a a

where ξ ξ= x( ) also takes values in A.
Disregarding x-dependence, fields Ta can be seen as components of a map τ →g A: with

respect to the basis ea so that τ=T e( )a a . Then the last equation in (2.1) simply implies that τ
is compatible with the algebra, i.e., τ is a homomorphism. The Grassmann degree in g and A
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determines the parity of the component fields. More precisely, if EA denote basis in A and
component fields are introduced through =T T Ea a

A
A and =W x W Ed m

m
A

A then
= +T x e E| ( ) | | | | |a

A
a A and =W E| | | |m

A
A . Note that one can consistently put to zero all the

fermionic component fields. This bosonic truncation corresponds to τ being a homomorphism
of superalgebras.

System (2.1) determines a background independent field theory in the sense that the
equations do not involve any background fields. Moreover, the space-time manifold plays a
passive role in the formulation and can be, at least formally, taken arbitrary. However,
background fields enter through the choice of the vacuum solution whose existence in general
restricts the space-time geometry. In what follows we assume that a fixed vacuum solution

= =W W T T, a a
0 0 is given and a system is interpreted as a perturbative expansion around

W T, a
0 0. In HS theories T0a are space-time independent, i.e. =Td 0a

0 , while W0 is a flat
connection of the anti-de Sitter algebra ⊂ Aso d( , 2) .

Given a vacuum solution global symmetries are by definition gauge transformations that
leave the vacuum solution intact,

ξ ξ ξ+ = =
⋆ ⋆

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦W Td , 0, , 0. (2.3)a0
0

0
0

0

The first equation uniquely fixes the space-time dependence of global symmetry parameters
ξ ,0 while the second one implies that ξ0 is g-invariant in A. At least locally in space-time this
means that global symmetries are one-to-one with subalgebra ⊂hs A of g-invariants. As we
are going to see, in the specific HS theories considered later hs is the respective HS algebra.

It is worth mentioning that the choice of the vacuum is closely related to the precise
definition of A. Indeed, two distinct vacua can either be equivalent being related by a gauge
transformation or nonequivalent depending on particular functional class used to define a star-
product in A. Not to mention that the entire physical content of the HS theory critically
depends on the choice of the functional class.

Although system (2.1) looks very natural and similar systems are known in lower
dimensions, in the HS theory context this was first considered in [10], where it was shown to
describe off-shell constraints and gauge symmetries for HS fields on AdS for =g sp (2) and
suitable choice of algebra A and the vacuum. Also, the simplest version with =g u (1) has
been proposed in the earlier work [11] to describe HS fields at the off-shell level. It is
important to note, however, that now we are mainly concerned with Vasiliev equations in
various dimensions, where the representation (2.1) is implicit in the literature, and where A
and g originate from the conventional formulation of HS theory [1–5].

Depending on the realization of A, the equations (2.1), (2.2) may describe off-shell or
reducible system. In this case, in addition to the equations of motion one needs to define a
consistent factorization needed to eliminate unphysical components. The factorization is
determined by an ideal ⊂h g whos associated fields { ⊂αT T} { }a are generators of extra
gauge symmetry δ λ= ⋆α

αT Ta a such that the system (2.1) is well defined on equivalence
classes. Details of this procedure are explained in section 3.3.2, where we discuss d-
dimensional HS equations.

2.2. Nontriviality and cohomology

It is instructive to show the way system (2.1) can yield propagating degrees of freedom. To
this end, let us consider its linearization. Denoting the perturbations by w and ta, the linearized
system reads
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δ ξ

δ ξ

= =

+ =

+ − = =

⋆

⋆

±

⋆

±

⋆


⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

D w w D

D t w T

t T T t t t T

0, ,

, 0,

, , 0, , , (2.4)

a a

a b a b ab
c

c a a

0 0

0
0

0 0 0

where = + ⋆
±D d W[ , ·]0

0 is the background covariant derivative, =D 00
2 .

The last line represents a standard cohomology problem. Indeed, ta are maps →g A or,

equivalently, elements of Λ ⊗g A( *)1 , which by definition is the space of 1-cochains. From
this perspective the last line contains the cocycle and the coboundary conditions for ta. If, for
instance, g is such that  g A( , )1 is empty, then one can use the gauge symmetry to set ta = 0
so that we are left with

= =
⋆

⎡⎣ ⎤⎦D w w T0, , 0. (2.5)a0
0

This system does not contain 0-forms and hence does not describe local degrees of freedom.
More precisely, taking into account residual gauge symmetry and making use of natural
technical assumptions, the space of inequivalent solutions is empty. Indeed, w is just a
linearized flat connection.

We now turn to the case where  g A( , )1 is not empty and show that the linearized system
directly leads to the familiar unfolded representation of the linearized HS equations [12, 13]
(the form is also known as ‘on-mass-shell theorem’ in the literature [13, 14]). Let ra para-
meterize representatives of  g A( , )1 . This means that using gauge symmetry we can replace
ta by ra so that the system reads

= =D w D r ad w0, , (2.6)a a0 0

where = ⋆ad T[ , •]a a
0 . The second equation can be solved for w modulo elements of  g A( , )0

: ω= + −w ad D ra a
1

0 and ω =ad 0a . Note that ω can be seen as taking values in  g A( , )0

which in turn is the HS algebra hs (cf (2.3)). Plugging this into the first equation of the system
(2.4) we find

ω = − −D D ad D r , (2.7)a a0 0
1

0

which has the structure of unfolded HS equations if one identifies ω as HS connection 1-form
and 0-forms ra as parameterizing curvatures. This equation merely expresses the linearized
curvature of ω in terms of generalized Weyl tensors (or Riemann tensors at the off-shell level)
ensuring that the system may describe local degrees of freedom. In other words, it specifies a
deviation from being a flat connection. However, to see what the dynamical content exactly is
the general considerations are not enough and one is to study concrete choice for g A, , and
the vacuum solution.

The embedding algebra A is a key element of the whole construction. It should be large
enough to contain the HS algebra hs and the algebra g of dynamical symmetries, actually the
full image of gU ( ). That the dynamics should be nontrivial is a crucial restriction, which is
manifested by nonzero right-hand side (rhs) of (2.7). In particular, it follows that the algebra
A cannot be just a tensor product ⊗hs gU ( ), for which the two factors commute. Indeed, in
this case =− −D ad ad Da a0

1 1
0 since operators associated to the commuting subalgebras also

commute. Then, using =D 00
2 one finds out that the rhs of the relation (2.7) vanishes

identically. A reasonable way out is provided by the twisted product of associative algebras
[15]. It seems to be the most general construction that allows one to build an algebra that
contains two given algebras as subalgebras but their images do not necessarily commute to
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each other. In practice, the twisted product is realized through a specific star-product (see
section 4.3).

The following comments are in order.

(i) The linear equations of the form (2.4) naturally appear in describing various HS fields at
the free level in the so-called parent approach. In particular, for =g u (1) and =g sp (2)
and suitable choice of A the system (2.4) describes free HS fields on respectively flat [16]
and AdS space-time [17] (see also [10, 11, 18]). Furthermore, equations of motion for
nearly generic (including mixed-symmetry, partially-massless, etc) HS fields can
naturally be formulated in the form (2.4) [19–21] or (2.7) [22–26], which for certain
class of fields requires an extension of (2.1) with higher degree forms, the modification
that we do not discuss in detail.

(ii) The system (2.4) as well as its equivalent reduction to (2.7) have a simple homological
interpretation. Namely, if one combines both w and ta into a homological complex with
the differential being Δ= +Q D0 , where Δ is the Lie algebra differential of g, the system
(2.4) takes the form Ψ =Q 0, δΨ Ξ= Q . The differential of the form + −D D ad Da0 0

1
0 in

(2.7) as defined on  g A( , )-valued fields is just the differential induced by Q in the
cohomology of Δ (In this form the homological technique for elimination of auxiliary and
Stueckelberg fields was developed in [16, 17]. Note also a related σ−-cohomology
approach of [27]).

3. Specialization to the Vasiliev equations

At present, there exist several HS theories in various dimensions, namely, 2d HS theory of
matter fields interacting via topological HS fields [28]; the minimal 3d HS theory with
massless matter fields [3]; Prokushkin–Vasiliev d3 theory that admits a one-parameter
family of vacua with massive excitations [29]; d4 bosonic HS theory [1, 30] and its
supersymmetric extensions with any  [31–33]; d-dimensional bosonic system [5]. All of
them can be further extended by adding internal (Yang–Mills) symmetries, while certain
truncations of the spectra are also possible (see [6, 33] for review). There are also topo-
logical HS systems in three [34] and two dimensions [35, 36] which are HS extensions of
Chern–Simons and Jackiw–Teitelboim gravity models. A brief review of the Vasiliev
equations in =d 2, 3, 4 and any d is given in the appendix.

In this section we show that the system (2.1) reduces to the Vasiliev equations provided
the appropriate choice of the Lie superalgebra g. We observe that for all ⩾d 3 HS systems a
Lie superalgebra g contains osp (1|2) subalgebra. More precisely, in the Vasiliev system g
-relations are encoded in terms of the polynomial Serre type relations imposed on a subset of
g-generators.

3.1. Serre type relations for osp(1, 2)

Let us first show how the Serre type realization works in the case of sp (2) algebra and then
consider its supersymmetric extension. Indeed, the conventional definition of sp (2) algebra
relies on the three commutation relations among three basis elements,

= + = − =H E E H F F E F H[ , ] 2 , [ , ] 2 , [ , ] , (3.1)

where [· , ·] is the Lie product. Treating the last relation as a definition we reduce them to two
cubic Serre type relations,
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= + = −E F E E E F F F[[ , ], ] 2 , [[ , ], ] 2 . (3.2)

Note that there are two independent equations imposed on two basis elements of the Lie
algebra.

In the osp (1|2) superalgebra case three even basis elements E F H, , are now supple-
mented with two odd ones e f, . Their non-vanishing graded commutation relations take the
form

= − = =e e E f f F e f H a{ , } 2 , { , } 2 , { , } , (3.3 )

= = − = =H e e H f f E f e F e f b[ , ] , [ , ] , [ , ] , [ , ] , (3.3 )

= + = − =H E E H F F E F H c[ , ] 2 , [ , ] 2 , [ , ] , (3.3 )

where [ · , · ] and { · , · } define the graded Lie product. Relations between odd basis
elements in the first line can be considered as definitions of even basis elements, while the
second line contains nontrivial cubic relations between odd elements. Relations in the third
line are algebraic consequences of the first two lines. In this way, we arrive at four cubic
relations between two odd elements

= = − = − =e f e e e f f f e e f e f f e f[{ , }, ] , [{ , }, ] , [{ , }, ] 2 , [{ , }, ] 2 , (3.4)

which define the osp (1|2) superalgebra. However, the above Serre type relations can be
reduced even further. Assuming that g is embedded into its universal enveloping algebra gU ( )
, and expanding the (anti)commutators we see that the first two relations are equivalent to the
last two relations.

While everything above is true for any Lie (super)algebra with appropriate modifications,
the following property is special for osp (1|2). We define an even element Υ ∈ U osp( (1|2)),

Υ = +e f[ , ]
1

2
, (3.5)

which has a rather special property to (anti)commute with (odd)even elements

Υ Υ= =e f a{ , } 0, { , } 0, (3.6 )

Υ Υ Υ= = =E F H b[ , ] 0, [ , ] 0, [ , ] 0. (3.6 )

Obviously, Υ squared is the quadratic Casimir of osp (1|2) superalgebra, i.e.,  Υ=2
2. Using

Υ one can show that defining relations of osp (1|2) superalgebra, namely the first two of (3.4)
follow from

Υ Υ= =e f{ , } 0, { , } 0, (3.7)

by simply plugging the definitions (3.3a) into (3.3b). Two equations (3.7) can be rewritten as

= − =⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦e f e f e f, , , . (3.8)2 2

Again, just as in the sp (2) case, there are two cubic equations for two basis elements—five
basis elements of osp (1|2) can be reduced to only two that obey (3.7). The associative algebra
generated by e f, subjected to the above relations is isomorphic to U osp( (1|2)) [37].

3.2. HS equations in three dimensions

In the d3 HS theory [3, 29], the Lie superalgebra of dynamical symmetries is chosen to be

=g osp (1 2). (3.9)

Recalling that fields Ta determine a map τ →g A: , we unify the images of odd elements τ e( )
and τ f( ) into a doublet αS , where α = 1, 2 and the images τ τ τE F H( ), ( ), ( ) into a
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symmetric tensor =αβ βαT T . The osp (1|2) graded relations (3.3a)–(3.3c) now read as

ϵ ϵ ϵ= + = + =αβ γρ αγ βρ αβ γ αγ β βγ α α β αβ
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ { }T T T T S S S S S T, 3 terms, , ,

i

4
, , (3.10)

where ϵ ϵ= −αβ βα is sp (2) invariant form. The sp (2) indices are raised and lowered as
ϵ=α

β
βαS S and ϵ=α αβ

βS S . In particular, ϵ ϵ δ=αβ
αγ γ

β. The factor i

4
is introduced anticipating

the star-product realization of A.
The Serre type relations (3.8) uniquely determine τ and hence all Ta so that the system

(2.1) can equivalently be rewritten in terms of 1-form fields W and 0-form fields αS as follows

+ ⋆ =W W W ad 0, (3.11 )

+ =α α ⋆[ ]S W S bd , 0, (3.11 )

⋆ ⋆ =β α
β

αS S S S c
i

4
. (3.11 )

Here, a component form of the last equation (3.11c) reproduces relations (3.8) upon rescaling.
In the Vasiliev theory, the image τ Υ( ) of the element (3.3a) also denoted as Υ has been

introduced as a new but not independent field. Taking into account that (3.8) can be
equivalently represented as (3.5) and (3.7) the constraint (3.11c) can be split into the fol-
lowing two equations

ϵ Υ Υ= − + =α β αβ α⋆ ⋆
⎡⎣ ⎤⎦ { }S S S, 2i (1 ), , 0, (3.12)

which have a more familiar form of the deformed oscillator algebra [38]. In order to match
Vasiliev equations the field Υ needs to be redefined as Υ = ⋆ϰB , where B is an arbitrary field,
while ϰ satisfying ϰ = 12 , called Klein operator, is a specific element of the embedding
algebra A. In our formulation, the Klein operator is introduced for convenience in the process
of solving equation (3.11) over a specific vacuum, see section 4.5. For a suitable choice of A
the system (3.11) is exactly the 3d Vasiliev system [3, 29] (see also the appendix). To be
precise, one usually adds the covariant constancy Υ Υ+ =⋆Wd [ , ] 0, which is a consequence
of (3.11b) and (3.12).

For systems in four and any dimensions establishing a relation with the known Vasiliev
systems requires extra steps, which can be traced back to specific realizations of the HS
algebras. Furthermore, these Vasiliev systems involve in addition factorization/extra con-
straints needed to describe irreducible systems. All these subtleties are analyzed in some more
details in sections 3.3 and 3.4.

3.3. HS equations in any dimensions

3.3.1. Off-shell system. The Vasiliev system in +d( 1)-dimensions is formulated in two
steps: first one formulates the off-shell system and then performs the consistent factorization
which puts the system on-shell [5] (see also review [7]). The off-shell system can be
reformulated in the form (2.1). As an algebra g one takes a semi-direct sum

= ∈+g sp osp(2) (1 2). (3.13)

If α αβS T, denote fields associated to osp (1|2) basis elements and αβF to sp (2) ones the last
equation in (2.1) reads as
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ϵ ϵ ϵ

ϵ ϵ

= + ⋯ = + ⋯ = + ⋯

= = + ⋯ = + ⋯

αβ γδ βγ αδ αβ γδ βγ αδ αβ γ αγ β

α β αβ αβ γ αγ β αβ γδ βγ αδ

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ }

F F F F T T F S S

S S T T S S T T T

, , , , , ,

i

4
, , , , , , (3.14)

where the ellipsis denote proper symmetrizations. The first line contains sp (2)-relations and
sp (2)-module structure of osp (1|2) while the second line contains osp (1|2) relations.

Let αβF0 denote specific vacuum values of αβF . This implies that αβF0 form sp (2) which

makes A into an sp (2)-module. If in the above system one puts αβF to its vacuum value αβF0 by
hand (and hence αβF are not anymore on equal footing with S T W, , fields) it is not difficult to
see that the system coincides with the Vasiliev system [5] (see the appendix) provided one
redefines Υ = ⋆ϰB and reformulates the osp (1|2) relations solely in terms of αS and ⋆ϰB just
like in the d = 3 case presented in section 3.1.

It turns out, however, that there is no need to put =αβ αβF F0 by hand. Indeed, consider the

first equation in (3.14) around the vacuum solution =αβ αβF F0 . Then the cohomological
argument given in section 2.2 applies because sp (2) is simple and the corresponding
cohomology is empty. It follows that αβF can be set to its vacuum value αβF0 (at least
perturbatively). In so doing one also restricts gauge parameters to preserve this on-shell gauge
choice: ξ =αβ ⋆F[ , ] 00 . At the same time equations + =αβ αβ ⋆F W Fd [ , ] 0 in this gauge imply

=αβ ⋆F W[ , ] 00 so that both the gauge parameter and the connection belong to the off-shell HS
algebra. To conclude, the system (2.1) for the constraint algebra given by (3.13) yields a more
general theory than the original Vasiliev equations, but they are perturbatively equivalent over
the specific vacuum =αβ αβF F0 .

The above argument is based on the Whitehead lemma which, strictly speaking, only
applies to cohomology with coefficients in finite-dimensional modules. This is enough if, for
instance, the sp (2)-cohomology differential preserves the decomposition of A into a direct
sum of finite-dimensional subspaces. It turns out that this is indeed the case if one takes a
standard vacuum solution αβF0 for αβF because αβ ⋆F[ , ·]0 as well as the cohomology differential
is of vanishing homogeneity in all the oscillators and hence preserve the subspaces of definite
homogeneity. This is shown in section 4.4, where explicit definitions for A and αβF0 are also
given. An example where such a decomposition does not exist and sp (2) relations do have
nontrivial solutions can be found in section 4.6.

3.3.2. Factorization. Now we elaborate on the consistent factorization needed to put the off-
shell system on-shell. We show that factorization can be performed at the level of the system
determined by (3.14). Moreover, it can be seen as a certain gauge symmetry at the price of
introducing extra fields. This gives a better understanding of the factorization procedure even
in the conventional formulation of the Vasiliev system.

In this context it is often convenient to use the following set of fields4 α αβ αβS T F, , ¯ , where
= −αβ αβ αβF F T¯ . In terms of the new fields, relations (3.14) involving αβF̄ take the form

ϵ= + ⋯ = =αβ γδ βγ αδ αβ γ αβ γδ⋆ ⋆ ⋆
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦F F F F S F T¯ , ¯ ¯ , ¯ , 0, ¯ , 0, (3.15)

while the relations between α αβS T, stay unchanged.
In terms of the off-shell system the factorization means to eliminate the ideal generated

by αβF̄ . It turns out that system (2.1) is well-defined on equivalence classes of fields with
respect to the following equivalence relation

4 The similar trick is used within the Vasiliev equations, when enforcing sp (2) invariance at the nonlinear level [7].
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λ λ∼ + ⋆ ∼ + ⋆W W F T T F¯ , ¯ , (3.16)i
i a a a

j
j

which we present in the infinitesimal form and where = α αβ αβT S T F{ , , }a and = αβF F¯ { ¯ }l .
Equations (2.1) understood as those on equivalence classes can be explicitly written as

+ ⋆ = ⋆
+ = ⋆

− = ⋆
⋆

⋆
± 

[ ]
[ ]

W W W u F

T W T u F

T T T u F

d ¯ ,

d , ¯ ,

, ¯ , (3.17)

l
l

a a a
l

l

a b ab
c

c ab
l

l

where u-fields are not treated as dynamical (in other words the equations only imply that such
u do exist). Then the equivalence relations (3.16) can be seen as the gauge transformations of
W T, a. In these terms the consistency of the factorization is just the invariance of the above
equations under (3.16) supplemented by appropriate transformations of u-fields. What one
actually checks is that variation of the equations under (3.16) is proportional to F̄i.

The above construction applies to a generic system (2.1) provided the factorization is
performed with respect to the generators of the ideal ⊂h g. In the case at hand, ideal h is the
diagonal sp (2) in ∈+sp osp(2) (1|2), i.e. we have the following coset

∈+sp osp

sp

(2) (1 2)

(2)
. (3.18)

More generally, one can consider consistent factorizations based on ideals in the enveloping
algebra gU ( ) (see below).

Consider now the linearized system by taking = + = + =α α α αβW W w S S s T, ,0 0

+ = +αβ αβ αβ αβ αβT t F F f,0 0 . Linearization of the gauge symmetry (3.16) allows to gauge away

components of α αβ αβw s t f, , , proportional to αβF̄0 . Upon the elimination of αβ αβf t, (using
gauge invariance and equations of motion) the system becomes equivalent to the linearized
on-shell Vasiliev system describing massless fields of all integer spins.

One can go even further and consider u-fields entering (3.17) at the equal footing with
W T, a. In this interpretation in addition to gauge transformations of u induced by (3.16) extra
gauge symmetry may be needed to ensure that u do not bring new degrees of freedom.

The core of the above system is the last equation in (3.17). Its gauge symmetry is given
by δ λ ξ= ⋆ + ⋆T F T¯ [ , ]a a

i
i a , where the standard gauge symmetry with parameter ξ has been

reinstated and the corresponding gauge transformations for u are assumed. These can be
written as follows

δ λ ξ

δ λ λ λ λ

λ ξ

= ⋆ = ⋆ +

= ⋆ + − − ⋆ +

+ ⋆ +

⋆
±

⋆

⋆ ⋆

⋆

( )
[ ] [ ]

[ ] [ ]
[ ]

T T U T T T T

U U T U T

U U

, , , ,

, ( 1) ,

, , (3.19)

a a ab
c

c a a
b

b a

ab
c

a
d

db
c

a b
c a b

b
d

da
c

b a
c

ab
d

d
c

ab
c

where Uc
ab is to be identified as + uab

c
ab
c and some of the components in λb

a and ucab vanish
identically. More precisely, only those corresponding to the ideal ⊂h g are nonvanishing.
Equation (3.19) and gauge symmetries are precisely those defining the constrained
Hamiltonian system with constraints Ta and structure functions Uc

ab . In particular, gauge
transformation with parameter λb

a is nothing but the infinitesimal redefinition of the
constraints which is a natural equivalence of constrained systems. Further details on the field-
theoretical interpretation of constrained Hamiltonian systems can be found in, e.g. [18, 39].
Note, however, that in contrast to the constrained system where all λb

a can be nonvanishing in
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our case λ = 0b
a if ea is not in h. In other words, the equations for a usual constrained system

correspond to =h g.
To complete the discussion of totally-symmetric HS fields in +d( 1)-dimensions let us

mention that the off-shell system based on g (3.13) may describe other on-shell systems if one
allows for more general factorizations. For instance, consider an ideal generated by

λ= − − C ( 1)0 2
2 , where = − ⋆αβ

αβC F F¯ ¯2
1

2
is the sp (2) Casimir element. When λ = l is an

integer there appears an additional ideal, which can be seen to be generated by

= ⋆…⋆α α α α α α… − F F¯ ¯ , (3.20)( )ℓ ℓ ℓ1 2 1 2 2 1 2

for ⩾l 1 and where all the sp (2)-indices in the second expression are symmetrized. Replacing
F̄l with 0 and α α… ℓ1 2 in (3.17) (and hence replacing u l

· with α α…u·
ℓ1 2 and u·

0 as well) one ends
up with a consistent system. It is clear that for =ℓ 1 one recovers (3.17) describing massless
fields. The resulting HS system describes an interacting system of (partially)-massless fields
of depth = … −t ℓ1, 3, , 2 1 on AdSd+1. The generalization of the Vasiliev theory to
partially-massless fields was suggested in [36, 39, 40].

In order to see partially-massless fields in the spectrum let us consider 1-form gauge
fields subjected to sp (2) singlet condition =αβ ⋆F W[ ¯ , ] 0. These can be decomposed in αβF̄ so
that expansion coefficients are identified with (partially)-massless fields of odd depth [41, 42].
At the same time the factorization eliminates the coefficients associated to the ideal in the
algebra of sp (2)-singlets generated by λ− −C ( 1)2

2 and α α… ℓ1 2 [36] so that only fields of
depth … −ℓ1, 3, , 2 1 remain.

Let us say a few words about the AdS/CFT interpretation of various HS theories [43, 44].
The bosonic Vasiliev theory should be generically dual to a free boson theory in d dimensions
[45]. For λ = l the dual theory is ϕ□ = 0ℓ or multi-critical points of vector models [39]. At
generic λ we find massive HS fields in the spectrum, the CFT dual should be a mean field
theory—a generalized free field of dimension λ±d

2
, depending on the boundary conditions

imposed.
One way to see that massive or partially-massless fields appear in the spectrum is to make

use of the linear relation between quadratic Casimir elements of the Howe dual algebras o d( , 2)
and sp (2). Indeed, in our setting = − − +c d C( 4)2

1

4
2

2, where c2 and C2 are respectively
orthogonal and symplectic Casimir operators [46]. For c2 one then finds Δ Δ= − −λ λc d( )2 ,

where Δ λ= −λ
d

2
. The irreducible conformal module with this value is λ−D ( , 0)d

2
. The

spectrum of the respective HS theory in the bulk is − ⊗ −D ℓ D ℓ( , 0) ( , 0)d d

2 2
which

decomposes into irreducible modules of particular AdS fields. Note that possible energy values
of these fields are determined by λ. For λ = ℓ the module is the (higher order) singleton

−D ℓ( , 0)d

2
whose square decomposes into (partially)-massless fields of depth

… −ℓ1, 3, , 2 1 (for =ℓ 1 this is the well-known Flato–Fronsdal theorem, the case of >ℓ 1
was in [39]). For λ generic, modules with the non-special values of energy (these are associated
to massive fields) appear in the tensor square. Note also that in this case λ−D ( , 0)d

2
is a Verma

module and hence the conformal scalar it describes is off-shell (from the Verma module
perspective equations are associated to singular vectors which are not present as λ−D ( , 0)d

2
is

irreducible, see e.g. [47]).
There is a group theoretical explanation for the ideals λ= − − C ( 1)0 2

2 and (3.20). We
have an image of gU ( ) in A generated by Ta and can consider a more general quotient
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λ
∈+

− −
= ⊗λ( )

U sp osp

C
gl U osp

( (2) (1 2))

1
( (1 2)). (3.21)

2
2

The first factor is the Feiginʼs λgl [48], which is defined as a quotient of U sp( (2)) by a two-
sided ideal generated by 0. At generic λ algebra λgl is infinite-dimensional and simple. When
λ = l is an integer the value of the Casimir is that of the l-dimensional irreducible
representation of sp (2). In this case gll contains a two-sided ideal generated by (3.20) with the
quotient being gl(l).

3.4. HS equations in four dimensions

In the d4 case the Lie superalgebra of dynamical symmetries is given by a direct sum

= ⊕g osp osp(1 2) (1 2) (3.22)

where each factor can be defined along the lines of the previous section using sp (2) vectors αS
and αS̄ ˙ . Namely, using (3.12) one finds

ϵ Υ ϵ Υ= − + = + +α β αβ α β αβ⋆ ⋆
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )S S S S a, 2i (1 ), ¯ , ¯ 2i 1 ¯ , (3.23 )˙ ˙ ˙ ˙

Υ Υ= =α α⋆ ⋆{ } { }S S b, 0, ¯ , ¯ 0, (3.23 )˙

=α α ⋆{ }S S c, ¯ 0, (3.23 )˙

where Υ and Ῡ are elements (3.5) associated to two copies of osp (1|2). The last condition
accounts for a direct sum of Lie superalgebras osp (1|2).

In the standard realization of A (see section 4.4), this system does not describe an
irreducible HS theory. The problem is that Υ and Ῡ are related to the selfdual and anti-selfdual
components of the Weyl tensor and its HS generalizations and hence cannot be independent.
It follows that some further constraints that belong to gU ( ) are needed.

In order to get an irreducible system we need to take the elementary extension of the Lie
superalgebra g (3.22). It means adding an odd element K that (anti)commutes with

⊕osp osp(1|2) (1|2) basis elements. In particular, we have

Υ Υ= = = =α α⋆ ⋆ ⋆ ⋆
⎡⎣ ⎤⎦{ }{ }K S K S K K, 0, , ¯ 0, [ , ] 0, , ¯ 0. (3.24)˙

The additional restriction that makes the system irreducible reads

Υ Υ= ⋆K¯ . (3.25)

We can think of U osp( (1|2)) as of a noncommutative 2-sphere R, whose radius squared is

given by the Casimir operator  Υ= =R2
2

2. The additional constraint implies Υ Υ= ¯2 2, i.e.
it is a square root of =R R̄2 2, so that we have  ×R R.

To get a system that is explicitly equivalent to the original Vasiliev equations one
redefines → ⋆α αS S K¯ ¯˙ ˙ provided that K is invertible. It follows that the system (3.23a) remains
mainly intact while the only changes are that =α α ⋆S S{ , ¯ } 0˙ goes into =α α ⋆S S[ , ¯ ] 0˙ , and

α β ⋆S S[ ¯ , ¯ ]˙ ˙ is now opposite in sign. In the Vasiliev system element K is identified with the so-
called total Klein operator, see the appendix. The supersymmetric extensions of the d4
equations follow the same logic, but we do not discuss them here.

The d4 theory must be isomorphic to the d-dimensional theory, discussed in the previous
section, when d = 4. However, they are realized differently. This difference can be attributed
to the fact that there are two realizations of the same HS algebra available in d4 , which we
discuss in section 4.
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4. HS dynamics and star-product

Here we describe a standard oscillator realization of the embedding algebra A and respective
HS algebra hs in various spacetime dimensions. Also, we review relevant types of the star-
products with particular emphasis to the so-called twisted star-product. It will be shown that
the choice of the star-product and/or specific vacuum solution essentially determines whether
respective HS theory has local degrees of freedom or not.

4.1. HS algebras

In section 2 the HS algebra hs was introduced as the symmetry algebra of the vacuum.
Indeed, according to the defining relation (2.3) HS algebra is spanned by g-invariants.
Equivalently, its elements are given by the cohomology  g A( , )0 . Obviously, being a global
symmetry algebra, hs plays a fundamental role in HS theory in contrast to the embedding
algebra A which is basically a convenient tool for generating interaction vertices.

Apart from the above definition of hs, there are more physical, but equivalent, definitions
that naturally reflect various aspects of HS field dynamic. Basically, this happens because of
the AdS/CFT correspondence that identifies gauge symmetries of the bulk theory with the
global symmetries of its boundary dual. Below we briefly consider a few relevant realizations.

• From the CFT perspective, algebra hs is the associative algebra of global symmetries of a
conformally invariant field equation. In the simplest case, one considers the massless
Klein–Gordon equation in  −d 1,1 spacetime, i.e., ϕ□ = 0. It is known to be conformally
invariant, enjoying the symmetry generated by so d( , 2) conformal Killing vectors, which
are first order differential operators. Since the equation is linear one can multiply
symmetries to generate an infinite-dimensional symmetry algebra formed by the
differential operators associated to conformal Killing tensors. It turns out that this algebra
exhaust all global symmetries of ϕ□ = 0 and hence is hs itself [49]. The corresponding
Noether currents are generated by totally-symmetric conserved tensors

ϕ= ∂ − ∂ =μ μ μ ϕ
μ

μ μ… ⋯∂ ∂ ⋯∂ …μ μ μ+
j jtraces, 0, (4.1)*(s k k s s1 1 1 )

1
1

where = … ∞s 1, 2, , [50].
• Algebra hs can also be thought of as a unique algebra generated by the stress tensor μνT
and at least one HS conserved tensor μ μ…j

s1
, >s 2 of some CFT [51–55]. The uniqueness

theorem holds under further assumptions that the only conserved tensors are totally
symmetric ones and there is a special case of d4 where one finds a one-parameter family
[53, 56–58], provided the locality is relaxed.

• From the AdS perspective, algebra hs is the global symmetry algebra of a given HS
theory at the linearized level, or, equivalently, a symmetry algebra of the most symmetric
vacuum. It can also be seen as a gauge algebra of HS theory in the sense that the 1-form
HS connections take values in hs [14, 59–61]. One should stress, however, that the
algebra structure of hs is deformed at the nonlinear level.

• One can formalize above realizations by taking the universal enveloping algebra
U so d( ( , 2)) and factor out a two-sided ideal Ann(S) that annihilates the irreducible
so d( , 2)-module S [49, 62],

=hs U so d S( ( , 2)) Ann( ). (4.2)

The module S is a spin-0 Dirac singleton representation spanned by solutions of ϕ□ = 0.
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The other way around, the symmetry algebra of S is the endomorphism algebra of S, i.e.,
⊗S S*, which coincides with U so d S( ( , 2)) Ann( ).

4.2. Oscillator realization

For applications, an efficient realization of HS algebras is needed. It turns out that in all
known cases bosonic HS algebra can be realized as the Weyl algebra (or its quotient) which is
the associative algebra generated by operators with canonical commutation relations.

In particular, it implies that AdS algebra ⊂ hsso d( , 2) enjoys an oscillator realization.
Indeed, a simple but crucial fact is that given a set of n variables ζ satisfying

ζ ζ =⋆   [ ], 2i , (4.3)

their quadratic combinations form sp n(2 ) algebra with  being the invariant tensor,

ζ ζ= + =⋆ ⋆      [ ] { }T T T T, 3 terms,
1

4i
, . (4.4)

The symplectic algebra is either isomorphic to AdS algebra in lower dimensions or contains
AdS algebra as a subalgebra in higher dimensions as listed in the table below.

Dim AdS-algebra Isomorphism Lorentz-algebra Isomorphism

2 so(1,2) sp(2, ) so(1,1) u(1)
3 so(2,2) sp(2, ) ⊕ sp(2, ) so(2,1) sp(2, )
4 so(3,2) sp(4, ) so(3,1)  sp (2, )
d+1 so(d,2)⊂ sp(2d + 4) so(d,1)⊂ sp(2d + 2)

The oscillator realizations of the AdS algebra together with its splitting into Lorentz
subalgebra and translations are summarized in the table below (see, e.g., reviews [6, 7])5.

Dim Generators AdS Lorentz Translations

2 ϵ=α β αβ⋆y y[ , ] 2i =αβ α β ⋆T y y{ , }1
4i

= ⋆L y y{ , }1
4i 1 2 =P y y1

1
2i 1 1

=P y y2
1
2i 2 2

3 ϵ=α β αβ⋆y y[ , ] 2i αβ αβL P, =αβ α β ⋆L y y{ , }1
4i

ψ=αβ αβP L

ψ = 12

3 ϵ ν= +α β αβ⋆y y k[ , ] 2i (1 ) αβ αβL P, =αβ α β ⋆L y y{ , }1
4i

ψ=αβ αβP L

=α ⋆y k{ , } 0
ψ = =k1, 12 2

4 =⋆A B ABy y C[ , ] 2i = ⋆AB A BT y y{ , }1
4i

=αβ α β ⋆L y y{ , }1
4i

=αα α αP y ȳ˙
1
2i ˙

= α αAy y y( , ¯ )˙ =αβ α β ⋆L y y{ ¯ , ¯ }˙ ˙
1
4i ˙ ˙

d
+ 1

η ϵ=α β αβ⋆Y Y[ , ] 2iA B AB = α
α

⋆T Y Y{ , }AB A B1
4i

= α
α

⋆L y y{ , }ab a b1
4i

= α
αP y ya a1

2i

=α α αY y y( , )A a a

Note that the d3 AdS algebra is a direct sum of two sp (2). This doubling is achieved using an
additional element ψ , ψ = 12 , which makes Clifford algebra in one dimension. Also, both two
and three dimensional AdS algebra generators can be built via the so-called deformed

5 The sp (2) indices are α β … =, , 1, 2 and α β … =˙, ˙, 1, 2; the sp (4) indices … = …A B, , 1, , 4 can be split into
a pair of sp (2) ones, α α=A ( , ˙ ); the AdS so d( , 2) indices are … = … +A B d, , 0, , 1, the Lorentz o d( , 1) indices
are … = …a b d, , 0, , . Tensors ηAB, ABC and ϵαβ are the invariant metrics of so d( , 2), sp (4) and sp (2),
respectively.
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oscillators with commutation relations parameterized by a continuous ν [38, 63, 64], see the
third line in the table.

According to (4.2), the HS algebra is defined as a quotient. In lower dimensions, using
sp n(2 ) oscillators allows to resolve the ideal (see, e.g., [65]). It follows that in =d 2, 3, 4
dimensions HS algebras are identified with the enveloping algebra of the relations in the table
above, i.e. an element of the HS algebra is a function f(y) or f y k( , ) in two dimensions, ψf y( , )
or ψf y k( , , ) in three dimensions, and f y y( , ¯) in four dimensions, see, e.g. [6] for review.

It is worth noting that without the ψ element in d3 case, the enveloping algebra of the
deformed commutation relations is isomorphic to U osp I( (1|2)) , where I is the two-sided
ideal generated by the shifted Casimir element ν− −C( ( 1))2

1

4
2 [37]. The subalgebra of even

in y elements decomposes into a direct sum of two λgl (which was defined after (3.21)) for

ν ν= ± −C ( 3 3)2
1

4
2 .

In +d 1 dimension, the AdS algebra is only a subalgebra of +sp d(2 4), so that the ideal
is only partially resolved and certain further constraints are needed. The oscillator approach
developed in [5] makes the Weyl algebra generated by oscillators αY A a bimodule of two
algebras −so d sp( , 2) (2), where τ η= −αβ α βY Y{ , }A B

AB
i

4
are the sp (2) generators, which

form a Howe dual pair, i.e. τ =αβT[ , ] 0AB . Then, hs can be realized as an sp (2)-invariant
subspace of the Weyl algebra further quotiented by a two-sided ideal spanned by the elements
proportional to sp (2) generators

τ τ∋ = ∼ + ⋆α αβ
αβ

αβ⋆
hs ⎡⎣ ⎤⎦( )f Y f Y f Y f Y g Y: ( ), 0, ( ) ( ) ( ) . (4.5)A

The Taylor coefficients of the quotient representatives f(Y) carry so d( , 2) indices described by
traceless two-row rectangular Young diagrams of arbitrary length

ð4:6Þ
Naturally, these tensor expansion coefficients are in one-to-one correspondence with both
connections of the HS algebra hs, and conformal Killing tensors discussed in section 4.1.

Let us mention again that considering more general ideals one can get HS algebras for
partially-massless and massive fields following the same procedure as in section 3.3.2 with

αβF̄ replaced by ταβ. The CFT interpretation is that these are the algebras of higher symmetries

of the polywave equation ϕ□ = 0ℓ [39], when λ = l is an integer and the algebra of sym-
metries of generalized free field of dimension λ±d

2
.

We stress that the d2 , d3 (at ν = 0) and d4 algebras are isomorphic to the d-dimensional
algebra for =d 2, 3, 4 provided that the functions of respectively αy , αy , and Ay , are restricted
to be even, i.e., half-integer spins are projected out6. Each of the oscillator realizations given
above has its own features that do not bear any invariant meaning in contrast to the HS
algebra itself. However, these features affect the choice of g and, hence, the realization of the
embedding algebra A.

4.3. Twisted star-product

As we argued in the introduction the embedding algebra A has the structure of a twisted
product, where it is the twist that is responsible for nontriviality of the theory. The factors are

6 A relation between vector and spinor realizations of =d 2, 3, 4 HS algebras is explicitly discussed in [46].
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the HS algebra hs and the full algebra of dynamical symmetries, i.e. the image of gU ( ) in A.
This is the structure present in all HS theories constructed so far. Because HS algebras admit
oscillator realizations it is possible to give a concrete realization of the twisted product as the
star-product [9]. Below we collect some basic definitions and properties of star-products.

The star-product algebra is the algebra of functions in commuting variables ζ that is
equipped with a non-commutative product, called star-product,

ζ ζ
ζ

Ω
ζ

ζ⋆ = ∂
←

∂
∂
→

∂



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f g f g( )( ) ( ) exp i ( ). (4.7)

The anti-symmetric component of Ω, Ω Ω= − ( )T1

2
is the symplectic metric, which

specifies the commutation relations ζ ζ =⋆   [ , ] 2i . The symmetric part of Ω is
responsible for ordering prescription for the operators that ζ A are symbols of. For example,
the matrix Ω that corresponds to the totally-symmetric ordering is just :

ζ ζ
ζ ζ

ζ⋆ = ∂
←

∂
∂
→

∂



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f g f C gsymmetric: ( )( ) ( ) exp i ( ). (4.8)

Another commonly used prescription is the normal ordering, which corresponds to particular
splitting of ζ into qm and pn, i.e. ζ = q p( , )m

n . Then, the product implementing the qp
-ordering is

Ω⋆ = ∂
←

∂
∂
→

∂
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥f g q p f q p

p q
g q p Inormal: ( )( , ) ( , ) exp i ( , ), 0

0 0
. (4.9)

n
n

It is remarkable that the HS theory uses a specific mixture of normal and symmetric
orderings, which was introduced by Vasiliev [9]. We will refer to it as the twisted star-
product. Suppose ζ with = … 1, , 4 splits into a pair of variables ζ = α β y z( , ), where
α β =, 1, 2. The twisted star-product corresponds to the symmetric ordering among αy and
among βz with the symplectic structure given by the epsilon-symbol ϵαβ in both the sectors,
while it is normal ordered with respect to = +α α αq y z and = −α α αp y z . Namely, let A0 be
an algebra of functions in αy and αz endowed with the following product:

ϵ⋆ = ∂
←

∂
+ ∂

←

∂
∂
→

∂
− ∂

→

∂α α
αβ

β β

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f g y z f y z

y z y z
g y z( )( , ) ( , ) exp i ( , ). (4.10)

or, more generally, with a one-parameter family of star-products:

ϵ ϑϵ
ϑϵ ϵ

⋆ = ∂
←

∂
∂
←

∂
−

×

∂
→

∂

∂
→

∂

ϑ α α

αβ αβ

αβ αβ

β

β

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

f g y z f y z
y z

y

z

g y z

twisted : ( )( , ) ( , ) exp ,

( , ), (4.11)

interpolating between (4.10) at ϑ = 1 and the symmetric product (4.8) at ϑ = 0. Note, that at
ϑ = 0 there is no mixing among αy and βz . In section 4.5 we show that for ϑ ≠ 0 the HS
theory is nontrivial, while taking the limit ϑ = 0 yields a topological theory.
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It is important to stress that all star-products are equivalent when restricted to poly-
nomials. However, in the HS theory certain non-polynomial elements appear in perturbative
solution of (2.1). With this being said, we have to consider ϑ ≠ 0 twisted and ϑ = 0 sym-
metric star-products as non-equivalent. Then, the twisted star-product can be thought of as a
particular example of the general concept of twisted tensor product of associative algebras.

Indeed, let A and B be two associative algebras. According to [15], algebra C is a twisted
tensor product of A and B iff there exists injective algebra homomorphisms →i A C:A and

→i B C:B such that the linear map ⊗ ⊗ →i i A B C:A B defined by
⊗ ⊗ = ⋆i i a b i a i b( )( ) ( ) ( )A B A B is a linear isomorphism. Here ∈a A, ∈b B and ⋆ is a

product in C.
In the case of interest we have the associative HS algebrahs and the algebra of dynamical

symmetries. In all known cases the nontrivial part of the embedding algebra A has the same
realization as the twisted star-product (4.10), where A and B are the star-product algebras of
functions αa y( ) and αb z( ), respectively, with the products μA and μB given by

μ ϵ μ ϵ= + ∂
←

∂
∂
→

∂
= − ∂

←

∂
∂
→

∂α
αβ

β α
αβ

βy y z z
exp i , exp i . (4.12)A B

The algebra C is the algebra of functions c y z( , ) equipped with the twisted product (4.11).
The map μ μ⊗A B determined by

τ ϑ τ ϑ ϑ ϵ⊗ ↦ ⋆ = = − ∂
←

∂
∂
→

∂α
αβ

β
a b i a i b a y b z

y z
( ) ( ) ( ) ( ) ( ), ( ) exp i , (4.13)A B

is an isomorphism for a suitable class of functions because τ is formally invertible:
τ ϑ τ ϑ= −− ( ) ( )1 . At ϑ = 0 we get back to the usual product of associative algebras. It is
crucial for nontriviality of the theory that ≠i a y i b z[ ( ( )), ( ( ))] 0A B while both =hs A and

=gU B( ) are subalgebras of C.

4.4. Embedding algebra and vacuum

The section is aimed at defining the embedding algebra A and the vacuum solution for Ta and
W. The general structure of the algebra A is a twisted product of the HS algebra hs and the
algebra of dynamical symmetries gU ( ). Therefore, A always includes the generators/relations
we used to define hs. The twist enters through one or more factors of the algebra A0, which is
the twisted star-product algebra generated by α αy z, , where αy ʼs belong to the realization of hs.
A number of discrete elements, which can be combined into Clifford algebras, can also
appear. It is always possible to take the tensor product with matrix algebrasMatn, which allow
HS fields to carry Yang–Mills indices. The algebras so defined can be truncated by some
reality conditions and other (anti)-automorphisms. For example, the Yang–Mills factor can be
truncated to compact forms su, so, usp [31, 32].

In the table below we list some of the cases where A is known. Below, +Ad 1 denotes the
Weyl algebra formed by αy

a in the +d( 1)-dimensional HS algebra and the relations deter-
mining the star-product in the sector of α αy z( , ) and ( α αy z,˙ ˙) variables are those of A0 and are
omitted.

Dim Generators, relations A Vacuum

3 ψ ψ δ=α αy z, , { , } 2i j ij
⊗A Cl0 2,0 =α αS z0

4 α α α αy z y z, , ¯ , ¯˙ ˙
⊗A A0 0 = =α α α αS z S z, ¯0

˙
0

˙
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(Continued ).

Dim Generators, relations A Vacuum

d+1 η ϵ=α α α β αβ⋆y z y y, [ , ] 2ia b ab ⊗ +A Ad0 1 =α α αβS z F0 0 =

η + −α β α β α β⋆ ⋆ ⋆( )Y Y y y z z{ , } { , } { , }a b
ab

1
4i

An essential ingredient of the theory is the vacuum solution W0, T0
a. In HS theories 1-

form W0 is a flat connection of the anti-de Sitter algebra ⊂ hsso d( , 2) . By definition, the
background W0 has vielbein ha and spin-connection ϖ a b, as its components along Lorentz
and translation generators. For instance, in the d-dimensional notation we have

ϖ= +W L P hab
a b

a
a0 1

2
, . Then, any non-degenerate solution of the flatness condition

+ ⋆ =W W Wd 00 0 0 (2.1) describes empty anti-de Sitter space.
According to (2.3), the HS algebra hs is the centralizer of the vacuum. Since the gen-

erators Ta of the osp (1|2) part can be reduced to a two-component field αS , it is sufficient to
specify a vacuum value only for αS . It is always =α αS z0 . It is obviously consistent with W0

since = − ∂α α⋆z f f[ , ] 2i , where ∂ =α
∂

∂ αz
and the generators of the HS algebra are z-inde-

pendent. Therefore, + =⋆T W Td [ , ] 0a a
0 0 0 is satisfied. For the same reason, the global

symmetries of the vacuum, which are solved from (2.3), belong to  g A( , )0 and form the HS
algebra.

In section 3.3.1 we proved that fluctuations of αβF0 are trivial. The proof crucially relies on

the assumption that ad( αβF0 ) = αβ ⋆F[ , ·]0 are of vanishing homogeneity degree in α α αY y z, ,a .
While it is obviously true for the αy

a part of the generators, its validity for α αy z, relies on an
important property of the twisted star-product. Because of the twisting that take place in
(4.11) the action of each of the two sp (2) subalgebras associated with αy and αz is deformed,
for example,

ξ ξ ϑ= − ∂
∂

∂
∂

= −αβ
αβ

αβ
α α β αβ α β⋆ ⋆

⎜ ⎟⎡⎣ ⎤⎦ ⎛
⎝

⎞
⎠ { }L f y z y

z y
f y z L y y

1

2
, ( , ) i ( , ),

i

4
, , (4.14)y y

but the diagonal sp (2) algebra that contributes to αβF0 still acts canonically

ξ ξ+ = ∂
∂

+ ∂
∂

=αβ
αβ αβ

αβ
α β α β αβ α β⋆ ⋆⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟L L f y z y

y
z

z
f y z L z z

1

2
, ( , ) ( , ),

i

4
{ , } . (4.15)y z z

Therefore the Whitehead lemma used in section 3.3.1 can be applied.

4.5. Linearized HS dynamics and star-product

In what follows, it will be shown that the nontriviality of a given HS theory depends
essentially on the choice of the star-product. With an appropriate choice of the star-product
we show that the cohomology groups  g A( , )1 that parameterize the deviation from the flat
connection are not empty and (2.7) describes free fields of all spins.

Let us consider first-order perturbations (2.4) of the system (2.1). We expand
= +W W w0 and = +α α αS z s . The linearized equations together with the gauge transfor-

mations have the form7

7 For the d4 system there is a doubling αs , αs ˙ , which we do not consider in detail.
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δ ξ= =D w w D a0, , (4.16 )0 0

= ∂α αD s w b, (4.16 )0

δ ξ∂ = = ∂α γ
γ

α α⋆{ }z s s c, 0, , (4.16 )

where D0 is the background covariant derivative = + ≡ +⋆D d W d ad[ , ·] W0
0 0 and ∂γ

γs is
the linearization of Υ, see e.g. (3.12). To get these equations we used = − ∂α α⋆z[ , ·] 2i , where
∂ =α

∂
∂ αz

.
Equation (4.16c) is convenient to solve assuming that A contains an element called Klein

operator (see, e.g., [6]) that implements the 2 automorphism,

ρ ζ ζ ζ= ϰ⋆ ⋆ϰ = −−  ( ) . (4.17)1

The choice of ordering prescription affects the functional form of the Klein operator. For
instance, see also appendix B in [66] for discussion of different orderings,

δ ζ

ϵ ϑ ϵ

ϰ = ϰ =

ϰ = ϰ =α β
αβ

ϑ α β
αβ−( ) ( )

( )q p

z y z y

symmetric: ( ) normal: exp i ,

twisted: exp i twisted : exp i . (4.18)

m
m

1

Ignoring the issue of functional class we can map anti-commutators to commutators using the
Klein operator. Indeed, according to (4.17), the vacuum satisfies ϰ⋆ ⋆ϰ = −α α

−z z1 , so that

Υ Υ Υ Υ∂ ≡ = ⋆ϰ ⋆ϰ = ⟺ ∂ ⋆ϰ =γ
γ

α α α⋆ ⋆
−[ ]{ }s z z: , , 0 ( ) 0, (4.19)1

where the last equation is true thanks to invertibility of ϰ. It implies that Υ ⋆ϰ is z-
independent,

Υ ⋆ϰ = C y x( ), (4.20)

whereC y x( | ) is an arbitrary function of all variables but αz , i.e. of x m, αy and possibly of αy
a or

ψi, depending on the theory we consider. In order to reconstruct the gauge potential αs from Υ
we represent equation Υ∂ =γ

γs in the dualized form as follows

ϵ Υ ϵ∂ − ∂ = = ⋆ϰα β β α αβ αβs s C y x( ) . (4.21)

At this point it is useful to translate everything into the language of differential forms, by
contracting all indices with anticommuting differentials αzd . Then the last equation is simply

Υ ϵ∂ = ∧α β
αβs z zd d , (4.22)

where ∂ = ∂α
αzd is the d2 de Rham differential. Then, the general solution is

Υ ξ= ∂ + ∂−s ( )1 , where ∂−1 is any representative of anti-derivative, and the last term
represents exact forms (4.16c). For example, one can use the standard contracting homotopy
for the de Rham complex to obtain

∫Υ Υ ϵ ϵ Υ= ∂ ≡ ∂ ∧ =αβ
α β α

αβ
β− − ( )s z z z t t zt z( ) d d d ( )d , (4.23)1 1

0

1

where we worked in the Schwinger–Fock gauge =α
αz s 0. We would like to stress that Υ does

depend on αz because of the Klein operator ϰ, cf (4.20).
Now we lift expression for αs (4.23) to equation (4.16b), which again has a form of

∂ =w D s0 and can be solved as before, ω= + ∂−w y z x y x D s y z x( , | ) ( | ) ( , | )1
0 , where

homogeneous part satisfies ω∂ =y x( | ) 0. According to the general discussion of section 2.2,
ω represents cohomology  g A( , )0 . It follows that the HS field ω is identified with  g A( , )0

connection. Using identities ∂ ≡−d{ , } 01 and ∂ ∂ ≡− − 01 1 the solution can be simplified to
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ω= + ∂−w ad s( )W
1

0 . On substituting this to the first equation (4.16a) we can restrict to z = 0
surface to get

ω Υ= − ∂ ∂− −
=

D ad ad . (4.24)W W
z

0
1 1

0
0 0

Thus, we arrive at the particular realization of (2.7) used in the Vasiliev theory. The
dynamical content of the equation (4.24) relies on the particular choice of the star-product.
E. g., using the twisted star-product at ϑ ≠ 0 in d dimensions yields the standard unfolded
equations

ω ϵ= ∧ ∂
∂ ∂

=αβ
α β

α α( )D y x h h
y y

C y y x( ) , 0 , (4.25)a b
a b

a
0

2

where function C y x( | ) on the rhs parameterizes all spin-s Weyl tensors (see [7] for more
details).

Let us consider again equation (4.16c). Taking the limit ϑ = 0 one finds out that the star-
product corresponds to the symmetric ordering and the Klein operator is realized as the δ-
function, (4.18). Even without Klein operator it is obvious that equation

Υ Υ= =α α⋆z z{ , } 2 0 has only a trivial regular solution Υ = 0. Therefore, the embedding
algebra based on the untwisted product of hs and gU ( ) leads to a topological system for the
particular vacuum =α αS z0 .

4.6. Relation to parent system

As we have just seen the nontriviality of the Vasiliev system has to do with the nonvanishing
symmetric part (4.11) of Ω in the star-product (4.7), which makes the Klein operator
regular. Using the formulation in +d( 1) dimensions we now demonstrate that it is never-
theless possible to describe degrees of freedom using just untwisted star-product. In this case
the nontriviality enters through the specific choice of the vacuum solution.

Having found that ∂ =ν
νs 0 at ϑ = 0 and hence αs is pure gauge we observe that the

second equation in (3.15) then implies =αβ
∂

∂ ν F̄ 0
z

and the extended system takes the form

ϵ+ ⋆ = + = = + ⋯αβ αβ αβ γδ βγ αδ⋆ ⋆
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦W W W F W F F F Fd 0, d ¯ , ¯ 0, ¯ , ¯ ¯ , (4.26)

known in the literature [10]. Note that this is again of the type (2.1) with =g sp (2).
According to the discussion in 3.3.1, taking as a vacuum solution η=αβ α β ⋆F Y Y¯ { , }A B

AB
1

4i
allows to perturbatively eliminate αβF̄ . However, the system can describe degrees of freedom
if the vacuum is chosen differently. Following [10] we first fix the allowed class of functions
to be polynomials in Y2

A with coefficients in formal series YA1. With this choice the vacuum

η=αβ α β ⋆ → +{ }F Y Y¯ 1

4i
, (4.27)A B

AB Y Y V
0

A A A
1 1

is not equivalent to the one without shift in Y1 (the shift is not well-defined for formal series).
As a consequence, the linearized system is non-empty and was shown in [10] to describe
massless fields of all integer spins at the off-shell level (i.e., equivalent to the linearized
Vasiliev system before factorization). Note that in this case the argument based on Whitehead
lemma does not work because αβF[ ¯ , ·]0 is not homogeneous in Y (in particular, Δ-cohomology
is nonempty in degree 1 and, in a certain sense, is precisely a configuration space of HS
fields).

A closely related system makes sense in the context of conformal HS fields on the d-
dimensional boundary. More precisely, replacing AdSd with its boundary and the AdS
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compensator VA satisfying + =V V 1 0A
A with the conformal one satisfying =V V 0A

A the
system (4.26) describes, in particular, off-shell conformal HS fields. More precisely, the
system describes totally symmetric conformal HS gauge fields at the off-shell level provided
one performs a consistent factorization, as described in 3.3.2, with respect to the sp (2)
algebra. Remarkably, these fields can be seen as leading boundary values for the bulk HS
fields. For more details see [39].

4.7. Vasiliev theory squared

It is instructive to see what happens if instead of the Lie superalgebra =g osp (1|2) one takes
the Lie algebra =g sp (2) while keeping the algebra A0 and the vacuum as in section 4.5. The
odd generators αS of osp (1|2) are now absent and the sp (2) generators αβT satisfy

ϵ= +αβ γδ αδ βγ⋆
⎡⎣ ⎤⎦T T T, 3 terms. (4.28)

If we take the same vacuum =αβ α β ⋆T z z{ , }0 i

4
as before then the second equation in (2.3) is a

second order equation because of (4.14). Namely, using (4.14) one finds that global
symmetries ξ are solved from

ξ ξ α β ξ α β= + ↔ = + ∂
∂

∂
∂

+ ↔ =αβ α β α
α β⋆ ⋆ ⋆

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟{ }T z z z

y z
,

i

4
, , ( ) i ( ) 0, (4.29)

whose general solution involves two arbitrary functions of αy , namely,

ξ ξ ξ= + ∂ ⋆ϰα
α

−
⋆( ){ }y z z y( ) d , ( ) , (4.30)0

1
1

where ∂ = ∂α
αzd . Therefore, ξ ∈ g A( , )0 turns out to contain two branches. These are

parameterized by original ξ y( )0 appearing in the osp (1|2) case, and additional ξ y( )1 in the
sp (2) case.

The advantage of having a bosonic oscillator realization of the superalgebra osp (1|2) is
that the vacuum odd generators act as = −α ⋆

∂
∂ α

z[ , ·] 2i
z

and the centralizer of the vacuum,

which is the HS algebra, is independent of the auxiliary variables αz . In the sp (2) case the
vacuum bosonic generators αβ ⋆T[ , ·] are second order operators giving rise to the centralizer
bigger than the original HS algebra.

When solving the field equations one can either ignore the second branch at every order
of the perturbative expansion or define a certain projector that explicitly removes these
modes. One way or another, every solution in the osp (1|2) case is a solution in the sp (2) case
as well.

It is worth noting that the above extra branch arises due to the particular choice of the
star-product and the vacuum which were previously used in the standard osp (1|2) case. On
the other hand, in section 4.6 we showed that the extra branch in  g A( , )0 can be avoided by
taking a slightly different vacuum.

5. Algebraic structure and AKSZ form

In this section we discuss the structure of the basic system (2.1) in some more mathematical
details. Starting with a Lie superalgebra g and associative superalgebra A let us consider the
superspace of linear maps τ →g A: , where A is understood as a Lie superalgebra, i.e. with
the Lie operation = ⋆ − − ⋆⋆f g f g g f[ , ] ( 1) f g| || | . The Grassmann degree on the space of
maps originates from those on g andA. More precisely, if = ⊕g g g0̄ 1̄ and = ⊕A A A0̄ 1̄ are
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the decompositions into homogeneous components then degree-0 maps sends g0̄ to A 0̄ and g1̄
to A1̄ while degree-1 map sends g0̄ to A1̄ and g1̄ to A 0̄. The condition that τ is a homo-
morphism reads as

τ τ τ τ τ⋆ − − ⋆ = ∀ ∈ ga b b a a b a b( ) ( ) ( 1) ( ) ( ) ([ , ]), , . (5.1)a b

If ea denote a basis in g then the above condition takes the form of the third equation in (2.1).
There is a natural equivalence on the superspace of homomorphisms:

τ τ∼ ◦ ◦A g  , (5.2)

where A and g are inner automorphisms of respectively A and g. An infinitesimal versions
of the above equivalence relations read as 8

τ τ τ ξ τ τ τ β∼ + ∼ +⋆a a a a a a( ) ( ) [ ( ), ] , ( ) ( ) ([ , ]), (5.3)

where ξ ∈ A and β ∈ g. In the context of HS theories the equivalence A is interpreted as a
genuine equivalence. Indeed, the above transformation is precisely the gauge symmetry (2.2)
in the sector of Ta variables. At the same time g is treated as a physical symmetry. Note that
interpreting g as a gauge symmetry can also be useful though we do not have meaningful
examples at the moment.

It turns out that the superspace of homomorphisms subject to the equivalence relation
generated by A completely determines the gauge invariant system (2.1). To see this it is
convenient to switch to the language of Q-manifolds. First one defines a supermanifold
associated to the superspace. Namely, if EA is a basis in A the components of the homo-
morphism are τ =e T E( )a a

A
A. One then reinterprets TAa as coordinates on a supermanifold M0

by prescribing Grassmann parity as = +T E e| | | | | |a
A

A a . Note that we assume (5.1) imposed so
that M0 is a surface in the space of coordinates TAa singled out by =⋆ T T T[ , ]a b ab

c
c.

In order to take into account the gauge symmetry one promotes parameters ξ to ghost
coordinates extending M0 to M. More precisely, introducing components of the gauge
parameter ξ through ξ ξ= EA

A, ξ A are promoted to coordinates WA such that = +W E| | | | 1A
A

and =Wgh( ) 1; ghost degree of TAa is zero. Finally, M is equipped with the odd nilpotent
vector field Q determined by

= =⋆ ⋆[ ]QT W T QW W W, ,
1

2
[ , ] . (5.4)a a

The gauge symmetry induced by Q is precisely the above equivalence A .
Given a Q-manifold equipped with a nonnegative ghost degree one can define a free

differential algebra on a given space-time manifold (see e.g. [11, 67] for more details).
Namely, to each coordinate ψ I of ghost degree p one associates a p-form field Ψ I on the
space-time manifold. Furthermore, if ⩾p 1 then coordinate ψ I also gives rise to a gauge
parameter ϵI which is a −p( 1)-form. The equations of motion and gauge symmetries read as

Ψ Ψ δ Ψ ϵ ϵ Ψ
Ψ

+ = = −ϵQ
Q

d ( ) 0, d
( )

. (5.5)I I I I J
I

J

Applying the above construction to the Q manifold M one finds 0-form fields Ta
A and 1-form

fields = μ
μW x WdA A (by slight abuse of notation we use the same symbol for a coordinate on

M and its associated field) along with the 0-form gauge parameters ξ A associated to WA.
Equations and gauge transformations (5.5) are then equations (2.1) and (2.2). Note, however,

8 Everywhere in this section ⋆A B[ , ] denotes the supercommutator ⋆ − − ⋆A B B A( 1) A B| | | | , where A| | stands for the
total Grassmann degree of A.
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that the third equation in (2.2) does not arise this way but is satisfied thanks to the definition
of M.

There is a natural way to encode the third equation from (2.1) by a certain extension of
the Q-manifold M and by using a more general AKSZ framework. The extension amounts to
introducing extra coordinates of the negative ghost degree needed to incorporate the con-
straints on Ta into the Q-structure. This can be done in a nice way using the BRST machinery.
Indeed, introducing ghost variables ca such that =cgh( ) 1a and = +c e| | | | 1a

a let us consider
polynomials in ca with values in A. The coordinates on the extended supermanifold  are
components of a generic element of this algebra

∑Ψ ψ

ψ ψ

= …

= − = + + ⋯ + −

=

∞

…

… …( )( )

c c E

E k E e e k

,

gh gh , (5.6)

k
a a
A a a

A

a a
A

A a a
A

A a a

0
k

k

k k k

1
1

1 1 1

so that Ψ =gh( ) 1 and Ψ =| | 1. Note that coordinates ψa
A and ψ A are precisely TAa and ξ A

introduced above. The Q-structure on  is introduced as follows

Ψ Ψ Ψ Ψ= + = − ∂
∂⋆ Q q q c c
c

1

2
[ , ] ,

1

2
. (5.7)a b

ab
c

c

It is easy to check that it coincides with (5.4) for ψ ϵ=A A and ψ = Ta
A

a
A while in general acts

nontrivially on ψ …a a
A

k1
with ⩾k 1. The two terms in Q have a simple interpretation: the second

term originates from the cohomology differential of the Lie superalgebra g while the first one
from that of A understood as a Lie superalgebra. The later identification becomes clear if one
considers ψ A as a ghost variable associated to a basis element EA.

Given a Q-manifold equipped with the not necessarily non-negative ghost degree the
AKSZ procedure [68] (for a review and further details see e.g. [10, 69]) determines an
associated gauge theory. In this case, in addition to equation (5.5) there are extra algebraic
equations associated with coordinates of ghost degree −1:

Ψ ψ= = −Q ( ) 0, gh( ) 1. (5.8)I I

There are no fields associated to coordinates of negative ghost degree. In particular, the
coordinates with negative degree are put to zero in ΨQ ( )I entering the above formula.
Coordinates with ghost degree−2 and higher do not produce new equations of motion. In fact
they are needed to encode identities (identities between identities, etc) between the equations
in the Batalin–Vilkovisky description of the AKSZ system. To conclude, the equations of
motion and gauge symmetries of the AKSZ system defined by (5.6) and (5.7) are respectively
(2.1) and (2.2). In the particular case where g is a Lie algebra (not superalgebra) the above
AKSZ system was originally proposed in [10].

As a final remark let us mention that the consistent factorization given in section 3.3.2
can be also naturally embedded into the AKSZ framework. If αc denote ghost variables
associated to the ideal ⊂h g determining the factorization then in addition to ghost variables
ca one introduces the ghost momenta αb , = −αbgh( ) 1 conjugated to αc . By allowing Ψ to
depend on αb as well this leads to extra fields including, in particular, u-fields in (3.17). The
extended AKSZ system then naturally incorporates equations (3.17) and gauge transforma-
tions (3.16).
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6. Conclusions

In this paper we have attempted to uniformize all known Vasiliev HS theories within a single
framework given by system (2.1), whose algebraic origin is manifest. We observed that the
specific features of the realization of HS algebra hs do affect the choice of dynamical
symmetries g and the embedding algebra A. It would be interesting to try to avoid any
specific realization of HS algebras and give an invariant description of HS theories.

More generally, system (2.1) provides a class of integrable, as we expect, models that are
defined by the following data: (i) the symmetry algebra of the vacuum, which in the HS
context is the HS algebra, hs; (ii) the algebra of dynamical symmetries, g, namely by the
image of gU ( ) in A, which in the HS story is related to the Lorentz algebra. For example, in
d3 and d4 theories the image is such that we get the enveloping algebra of the vacuum
Lorentz algebra. In d-dimensional theory the relation to the Lorentz algebra is made some-
what implicit because of the Howe duality [7].

With these two data one can construct the embedding algebra A as a twisted product of
gU ( ) and hs and write (2.1). The dynamics at the linearized level is determined by con-

nections of  =g A hs( , )0 whose curvatures are not zero but given by  g A( , )1 . The
dynamics is nontrivial if the rhs of (2.7) is non-vanishing, possibly at higher orders of the
perturbation theory.

Any theory is substantially characterized by its observables. A natural class of obser-
vables for (2.1), advocated in [70–72], is given by Casimir operators of g, i.e. invariant
polynomials of Ta. Another type of observables are Wilson loops ∮tr WPexp . Wilson
loops can be generalized to decorated Wilson loops where there are insertions of any func-
tions of Ta in the adjoint representation of A. It was shown in [73] that all correlation
functions in Vasiliev theory can be computed in terms of such observables. It would be
interesting to prove that the models described by (2.1) are integrable at least for a subset of
observables in the sense of having a free-field realizations, as it happens for the holographic
S-matrix in the HS theories with boundary conditions preserving full HS algebra.

A question, which we leave for further developments, is how big is the class of HS
theories that are covered by the system (2.1). The known HS theories of Vasiliev type do not
exhaust all possible HS fields. In dimensions higher than four the spin degrees of freedom,
which are characterized by irreducible (spin)-tensors of the Wigner little group can be of more
general symmetry type than just totally symmetric and the spectrum of string theory involves
such fields.
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Appendix. Standard form of Vasiliev equations

2d system. In d2 dimensions we distinguish between two types of HS systems: first are
topological models and second are models with propagating matter fields. Both of them are of
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the form (2.1) with =g u (1). The choice of A depends on the presence or absence of local
degrees of freedom. It follows that the two-dimensional fields are given by 1-form W(x) and
0-form T(x) subjected to the BF equations of motion

+ ⋆ =
+ =⋆

W W W
T W T
d 0,

d [ , ] 0. (A.1)

The embedding algebra A can be taken either finite-dimensional [35] or infinite-dimensional
[28, 36, 74]. The particular choice of infinite-dimensional A yields local degrees of freedom
[28]. In both cases the system (A.1) follows from d2 BF action functional.

3d system. The full system of equations has the form [3]

+ ⋆ = ⋆ϰ =α ⋆{ }W W W S Bd 0, , 0, (A.2)

ϵ⋆ϰ + ⋆ϰ = = − + ⋆ϰα β αβ⋆ ⋆
⎡⎣ ⎤⎦B W B S S Bd( ) [ , ] 0, , 2i (1 ), (A.3)

+ =α α ⋆[ ]S W Sd , 0. (A.4)

Let us note that the Prokushkin–Vasiliev system, [4], can be cast into the same form as above,
but A is slightly different. The bosonic projection is made by the following kinematical
constraints

ϰ = ϰ = ϰ =α⋆ ⋆ ⋆{ }B W S[ , ] 0, [ , ] 0, , 0, (A.5)

where ϰ is the Klein operator. Alternatively, this is just a condition that W and S belong to
respectively even and odd components of A or in the formulation given in section 2, αS
determine a parity-even map from g toA. These constraints imply that ϰ can be removed from
the third equation, giving simply + =⋆B W Bd [ , ] 0.

4d system. The full system of equations has the form [2]

+ ⋆ =W W W ad 0, (A.6 )

⋆ϰ + ⋆ϰ =⋆B W B bd( ) [ , ] 0, (A.6 )

+ = + =α α α α⋆ ⋆
⎡⎣ ⎤⎦[ ]S W S S W S cd , 0, d ¯ , ¯ 0, (A.6 )˙ ˙

ϵ ϵ= − + ⋆ϰ = − + ⋆ϰα β αβ α β αβ⋆ ⋆
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )S S B S S B d, 2i (1 ), ¯ , ¯ 2i 1 ¯ , (A.6 )˙ ˙ ˙ ˙

⋆ϰ = ⋆ϰ =α α⋆ ⋆{ } { }S B S B e, 0, ¯ , ¯ 0, (A.6 )˙

=α α ⋆
⎡⎣ ⎤⎦S S f, ¯ 0, (A.6 )˙

along with kinematical constraints ensuring the theory is bosonic

= = = =α α⋆ ⋆ ⋆ ⋆{ } { }K B K W K S K S[ , ] 0, [ , ] 0, , 0, , ¯ 0, (A.7)˙

where = ϰ⋆ϰK ¯ is the total Klein operator, ⋆ =K K 1. Thanks to the bosonic projection ϰ can
be replaced with ϰ̄ in the second equation. Again, conditions (A.7) are equivalent to bosonic
truncation introduced in section 2. Let us note that the extra constraint (3.25) we had to
impose is a way to say that Υ = ⋆ϰB and Υ = ⋆ϰB¯ ¯ from (A.6d) originate from the same B.

d-dimensional system. The full system of equations has the form [5]

+ ⋆ = ⋆ϰ =α ⋆{ }W W W S Bd 0 , 0, (A.8)
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ϵ⋆ϰ + ⋆ϰ = = − + ⋆ϰα β αβ⋆ ⋆
⎡⎣ ⎤⎦B W B S S Bd( ) [ , ] 0, , 2i (1 ), (A.9)

+ =α α ⋆[ ]S W Sd , 0, (A.10)

supplemented with the constraints from the sp (2)-factor of the coset

ϵ ϵ

= =

= + ϰ =

αβ αβ

αβ γ αγ β βγ α αβ

⋆ ⋆

⋆ ⋆

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

F W F B

F S S S F

, 0, , 0,

, , , 0. (A.11)

0 0

0 0

Taking into account the explicit realization of A and αβF0 as a star product algebra the above
conditions imply that bosonic truncation from section 2 is fulfilled automatically.

Let us stress that in the original paper [5] the oscillators αY A were doubled by introducing

αZ A, which have extra components αz a as compared to αz we used. Correspondingly, there
were more fields αS A introduced. However the equations for the Lorentz components αS a have
the form of Weyl algebra ϵ η= −α β αβS S[ , ] 2ia b ab since there is no deformation due to B.
Therefore, =α αS za a is an exact solution to all orders and oscillators αz a can be removed from
the definition of A, as we did, while the field αS a can be removed from the Vasiliev equations.
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