
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
Published online 8 October 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3154

SPECIAL ISSUE PAPER

ResAna: a resource analysis toolset for (real-time) JAVA

Rody W. J. Kersten 1,*,†, Bernard E. van Gastel 2, Olha Shkaravska 3,
Manuel Montenegro 4 and Marko C. J. D. van Eekelen 1,2

1Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
2School of Computer Science, Open University of the Netherlands, Heerlen, The Netherlands

3Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
4Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

SUMMARY

For real-time and embedded systems, limiting the consumption of time and memory resources is often an
important part of the requirements. Being able to predict bounds on the consumption of such resources during
the development process of the code can be of great value. In this paper, we focus mainly on memory-related
bounds. Recent research results have advanced the state of the art of resource consumption analysis. In this
paper, we present a toolset that makes it possible to apply these research results in practice for (real-time)
systems enabling JAVA developers to analyse symbolic loop bounds, symbolic bounds on heap size and both
symbolic and numeric bounds on stack size. We describe which theoretical additions were needed in order
to achieve this. We give an overview of the capabilities of the RESANA (Radboud University Nijmegen,
The Netherlands) toolset that is the result of this effort. The toolset can not only perform generally appli-
cable analyses, but it also contains a part of the analysis that is dedicated to the developers’ (real-time)
virtual machine, such that the results apply directly to the actual development environment that is used in
practice. Copyright © 2013 John Wiley & Sons, Ltd.

Received 27 December 2012; Revised 5 September 2013; Accepted 5 September 2013

KEY WORDS: resource analysis; polynomial interpolation; ranking function; loop bounds; heap bounds;
stack bounds

1. INTRODUCTION

Both in industry and in academia, there is an increasing interest in more detailed resource analysis
bounds than orders of complexity. In correctness verification for industrial critical systems, the focus
is often mainly on functional correctness: does the program deliver the right output with the right
input. However, for such systems, it is just as important to make sure that bounds for the consump-
tion of time and space are not exceeded. Otherwise, a program may not react within the required
time, or it may run out of memory and come to a halt (making it vulnerable to a denial-of-service
attack).

Traditionally, the focus has been on performance analysis taking time as resource that is con-
sumed. More recently, several researchers have produced significant results in heap and stack
bound analysis. In this paper, we focus on such memory-related resource analysis. The symbolic
loop-bound analysis part however may be used both for memory and for time analysis.

Many real-time and embedded systems critically depend on operating within a fixed amount of
memory. Clearly, for such systems, it can be important to know an upper bound on the consumed
memory. For safety critical applications, it can be essential. Programmers may be able to guess a

*Correspondence to: Rody W. J. Kersten, Institute for Computing and Information Sciences, Digital Security, Mailbox
number 47, Faculty of Science, University of Nijmegen, Postbus 9010, 6500GL Nijmegen, The Netherlands.

†E-mail: r.kersten@cs.ru.nl

Copyright © 2013 John Wiley & Sons, Ltd.

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2433

bound and to prove it by hand. That activity is quite tedious and error-prone. A tool that in many
cases is able to automatically infer bounds and proof them may be very helpful in the software
development process. This paper presents such a tool.

For safety-critical applications often domain specific programming languages are used that have
strong support for loop bounding or regular programming languages with strict coding conven-
tions. In the recently finished European Union Artemis Critical and High Assurance Requirements
Transformed through Engineering Rigour (CHARTER) project, real-time JAVA was considered as
possible programming language for safety-critical systems. Reasons for studying real-time JAVA
include more possibilities for code reuse, more available tools and more programmers that are highly
experienced in the use of the language. The RESANA toolset, which is presented in this paper, is one
of the results of the CHARTER project [1–3]. Together, the tools produced by the CHARTER project
provide a first step towards the use of general programming languages for safety-critical systems.
For full deployment in safety-critical context the CHARTER tool chain should be advanced further.
For now, the RESANA toolset can already be used in everyday practice, for example, for inferring
and proving memory consumption properties of existing library functions and of non-critical appli-
cations for which memory bounds are relevant like applications for mobile devices. Another usage
may be the development of prototype applications with verified resource consumption properties.
These prototypes can then be transformed to the language that is in actual use for the safety-critical
system. The techniques presented in this paper can, in principle, be used for other languages too.
Of course, that would require both an adaptation of the front-end of the tool and of the annotation
language that is used for expressing the properties.

Even if memory is abundantly available, applications can be hindered significantly when more
memory is consumed than expected. Effectively, the system may come to a halt because of exces-
sive swapping. Some denial-of-service attacks are based on this principle. A known upper bound of
consumed memory may prevent attacks of that kind.

A variety of different memory analysis techniques have been developed independently not only
on the language level but also on the byte code level [4]. Researchers use polynomial interpola-
tion [5], reachability-bound analysis [6], amortization [7], polynomial quasi-interpretation [8] and
new language features such as programmer-controlled destruction and copying of data structures
[9]. Of course, such analyses are undecidable in general. In practice, however, an increasingly large
set of problems can be handled.

This research builds upon earlier resource analysis work developed in the Netherlands Organ-
isation of Scientific Research Amortized Heap Space Usage Analysis project [10]. In this paper,
we focus on the JAVA language and on resource consumption properties related to heap and stack
usage. Using the scoped memory that is offered by real-time JAVA, one can enforce constant mem-
ory bounds and facilitate simple memory management. However, in order to deal with more complex
bounds, a more thorough analysis is needed. While our research mainly focuses on real-time JAVA,
the techniques and the tool described here are also applicable to regular JAVA programs. The loop-
bound analysis provided by the RESANA tool can be of further use both for deriving memory bounds
and for deriving time bounds. This article is an extended version of an earlier paper [2]. How this
paper extends [2] is described in Section 6.

With the goals of making these results applicable in practice, our heap and stack resource analy-
sis goes beyond orders of complexity. We aim at obtaining bounds that are expressions of relevant
variables and parameters. If a resource is consumed quadratically with respect to the value of a
parameter x, then a typical bound could be, for example, 2x2 � 4x C 15, thus indicating the exact
dependency of the bound on the variable. In order to achieve that in practice, we developed a tool,
ResAna‡, that contains a general process that has two phases.

Inference In the inference phase, the RESANA tool analyses the JAVA source of the program in
order to propose a possible resource bound for the program. It uses traditional analysis techniques
like solving cost relation systems (CRSs) and a novel polynomial interpolation technique. This
interpolation-based approach is very powerful. It allows also non-monotonic polynomial bounds

‡RESANA is an open source software and can be downloaded from http://resourceanalysis.cs.ru.nl/resana/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2434 R. W. J. KERSTEN ET AL.

to be derived (the developer does not have to indicate the exact dependencies: they are derived).
The obtained result is added to the JAVA program via an annotation using the JAVA Modelling
Language (JML) specification language [11].

Verification Results are achieved by solving cost relations or by interpolating polynomials. Solv-
ing cost relations is sound by construction. The use of interpolation is not guaranteed to be
sound. Therefore, the results achieved by interpolation must be verified, for example, by the KEY
(Karlsruhe Institute of Technology, Germany; Technical University Darmstadt, Germany;
Chalmers University of Technology, Sweden) verification tool [12] or the QEPCAD

(North Carolina State University, Raleigh NC, USA) algebraic decomposition tool [13]. If the
tool is not able to verify them, one can proceed with a new inference phase with other user
options, such as, for example, trying a higher degree polynomial.

The RESANA tool supports three kinds of analysis.

Loop-bound analysis An expression that gives a symbolic upper bound for the number of times a
loop is executed may be derived and verified using the integrated combination [14] of the tools
RESANA and KEY.

Heap bound analysis An expression for a symbolic upper bound of the consumed heap is derived
using RESANA extended with a variant of the external tool COSTA [15]. The COSTA tool (Uni-
versidad Politécnica de Madrid, Spain; Universidad Complutense de Madrid, Spain) has been
adapted to produce accurate values for OPENJDK (Oracle Corporation Redwood Shores, CA,
USA), as well as the real-time JAMAICAVM (aicas GmbH, Karlsruhe, Germany) virtual machine
(VM) [16]. Furthermore, the capabilities of the COSTA tool have been enlarged through the
internal use of interpolation technology [17].

Stack bound analysis An expression for a symbolic upper bound of the space for the stack is
derived using RESANA with the enlarged COSTA that provides an upper bound for the depth of
recursive calls; this information is used by the VERIFLUX (aicas GmbH, Karlsruhe, Germany)
tool [18] to obtain a numeric stack bound.

These three kinds of analysis are integrated in a common program development environment
through an ECLIPSE plug-in, such that a developer can easily switch between development and
verification activities guaranteeing the memory safety of critical real-time software applications.

In Section 2, loop-bound analysis is described. Section 3 presents heap bound analysis and the
adjustments that have been made to make it applicable in practice. Analysing stack bounds is dis-
cussed in Section 4. User experience with RESANA is described in Section 5. Finally, in Sections 6
and 7, related work is discussed and conclusions are drawn, respectively.

2. LOOP-BOUND ANALYSIS

In order to prove the termination of a piece of software or, even harder, to calculate bounds on run-
time or usage of resources such as heap space or energy, finding bounds on the number of iterations
that the loops can make is a prerequisite. While in some cases, a loop may iterate a fixed number
of times, its execution will often depend on program input. Therefore, we consider symbolic loop
bounds or ranking functions.

A loop ranking function is a function over (some of) the program variables used in the loop, which
decreases at each iteration and is bounded by zero. Listing 1 shows a simple while loop. Although
100 � i is a perfectly fine ranking function as well, the most precise one for this loop is 15 � i .
This gives the exact number of iterations the loop will make, for arbitrary i (given that i < 15,
Section 2.6).

In this section, we present a method for the automatic inference of polynomial ranking functions
for loops, based on polynomial interpolation. The basic procedure was first presented by Shkaravska
et al. in [14]. It can infer polynomial ranking functions, whereas other methods are limited to linear

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2435

symbolic or concrete bounds. Note that to derive concrete bounds from symbolic bounds, the anal-
ysis could be combined with data-flow analysis. To derive concrete upper and lower bounds on
the number of iterations of a loop, upper and lower bounds have to be known statically for all the
program variables in the symbolic bound.

We introduce polynomial-interpolation-based ranking function inference in Section 2.1. In
Section 2.2, a quadratic example is given. The soundness of the method is discussed in Section 2.3.
Then, extensions to the basic method are discussed in Sections 2.4 (ranking functions with rational
or real coefficients), 2.5 (branching inside the loop body) and 2.6 (disjunctional loop guards). In
Section 2.7, a limitation to the extension for disjunctional loop guards and a solution are discussed.
Another application of our polynomial interpolation method is discussed in Section 3.1.

2.1. Test-based inference of polynomial ranking functions for loops

In [14], Shkaravska et al. present a method for the inference of polynomial ranking functions
for loops. Only loops in which the guards are conjunctions over arithmetical (in)equalities are
considered:

guard WD inequality j inequality^ guard

inequality WD num1 b num2

where numi is a numerical program variable or constant, and b WD f<,>,D,¤,6,>g.
The method proceeds in the following steps:

1. instrument the loop with a counter
2. run tests on a well-chosen set of input values
3. find the polynomial interpolation of the results

Here, well-chosen means that test nodes have to be picked such that there exists a unique inter-
polating polynomial. This is the reason we can refer to the polynomial interpolation in step 3.
Remember that a polynomial p .´1, : : : , ´k/ of degree d and dimension k (the number of vari-
ables) has N k

d
D
�
dCk
k

�
D .dCk/Š

dŠ�kŠ
coefficients. This is the number of test nodes that we need. To

ensure the existence of a unique interpolation, the test nodes are chosen to lie in the so-called node
configuration A (NCA). This condition was first presented in [19]; its application to loop-bound
analysis is described in [14]. Besides lying in NCA, test-nodes must also satisfy the guard of the
considered loop. An algorithm for node search is presented in [14].

In the current version of RESANA, the ranking function can contain primitive data types, object
field access and array access. Note that in theory, the method could also handle loops for which the
ranking function depends on, for instance, the height of a tree. However, because this height is not
readily available in a program variable, this would require the addition of such a variable expressing
the tree height by the programmer.

2.2. Quadratic example

Consider the example in Listing 2. The most precise ranking function for this loop is the degree two
polynomial a � b � cC 1.

The inference of a ranking function for the loop in Listing 2 is depicted in Figure 1. Firstly, the
loop is instrumented with a counter. The user inputs the expected degree two of the polynomial

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2436 R. W. J. KERSTEN ET AL.

Figure 1. Test-based inference method applied to the example from Listing 2.

Figure 2. The basic inference procedure from a bird’s-eye view: infer-and-check cycle.

ranking function. Because there are three variables, a set of N 3
2 D

.2C3/Š
2Š�3Š

D 10 test nodes in NCA
is generated. By interpolating the results from test runs using these input values, the most precise
quadratic ranking function a � b � cC 1 is found.

2.3. Soundness

The presented method infers a hypothetical ranking function. It is not sound by itself but requires an
external verifier. The JML is used to express the ranking functions [20]. Inferred ranking functions
are expressed in JML by defining a decreases clause on the loop. This is an expression which
must decrease by at least one on each iteration and has a value greater than or equal to zero, refer
to the JML reference manual [11]. It therefore forms an upper bound on the number of iterations of
the loop. An example is shown in Listing 3.

When the loop condition does not hold, the loop iterates zero times. Therefore, the shown anno-
tation actually expresses the maximum of a � b � cC 1 and 0. In general, a ranking function RF. Nv/
for a loop with condition b can be expressed as follows: decreases b ‹ RF. Nv/ W 0. Such JML
annotations can be verified by a variety of tools, for instance, KEY [12]. The procedure described
here should be used in conjunction with such a prover to provide soundness.

Figure 2 depicts a bird’s-eye view of the overall procedure. After a ranking function is inferred,
the JAVA sources are annotated and sent to the verification tool (KEY). The verifier might be able to

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2437

prove correctness of the annotation automatically, manual steps may be needed for complex ranking
functions (non-linear, rational coefficients, et cetera) or the user may not be able to construct a proof
at all. In the latter case, the user can go back and try the procedure for a higher expected degree of
the polynomial ranking function. If an expected degree higher than the actual degree of the polyno-
mial is used, the correct result will still be found. There will however be a performance penalty on
the analysis.

2.4. Extension: ranking functions with rational or real coefficients

The ranking functions inferred by the basic method are polynomials with coefficients that are natu-
ral, rational or real numbers. However, when a polynomial has rational or real coefficients, its result
is not necessarily a natural number, which, of course, any estimate of a number of loop iterations
must be. Consider for instance the loop in Listing 4.

The exact number of iterations of this loop is given by dend�start
4

e. In other words, when
end�start

4
does not equate to a natural number, for instance to 3

4
, it must be ceiled. In general,

when the coefficients of an inferred polynomial ranking function RF. Nv/ are not natural numbers,
ceiling should be added as such: dRF. Nv/e. Unfortunately, there is no ceiling operator in JML. KEY
simply truncates non-integer values after the decimal. We therefore chose to overestimate ceiling by
adding one to the KEY truncation: dRF. Nv/e6RF. Nv/C 1.

When choosing test nodes for the loop in Listing 4 naively, for instance, (0,1), (1,2) and (1,3), an
incorrect ranking function will be the result (in this case the constant 1). We must take into account
that if a variable v is updated by increasing or decreasing by a constant step, the test nodes must lie
a step apart. In this example, if we pick test nodes (0,4), (4,8) and (4,12), then the correct ranking
function will be found.

2.5. Extension: branching inside the loop body

The basic procedure finds correct ranking functions for most loops containing branching, such as,
for example, the one in Listing 2. However, there are cases in which the basic procedure fails because
the different paths affect the bound in different ways. Such a case is shown in Listing 5.

To solve this problem, we have invented branch splitting. This procedure finds ranking functions
for loops where the if statements, if they exist in a loop body, have the following worst-case com-
putation path property:

For each loop body, there is an execution path such that, for any collections of values of the loop
variables, if one follows this execution path in every loop iteration, one reaches the worst case, that
is, the upper bound on the number of iterations.

This condition is not checked by the loop-bound inference procedure. It is given here to spec-
ify the class of loops for which the procedure is successful. Soundness of the result is ensured by
verification using KEY.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2438 R. W. J. KERSTEN ET AL.

With branch splitting, we mean that we generate multiple new loops from the original, one for
each possible path. We then do the analysis for each of these paths. The ranking function is then the
maximum of all the inferred ranking functions. Thanks to the worst-case computation path property,
we can easily find the ranking function that always specifies the maximum, by supplying a set of
values for the variables (say, all ones) to all the ranking functions. For the example in Listing 5, this
yields the ranking function i .

2.6. Extension: piecewise ranking functions for loops with disjunctive guards

In this section, we formally describe an extension to the basic procedure for handling loops with
disjunctions in their guards. The set of considered loops is here thus extended to those with, as
guard, any propositional logical expression over arithmetical (in)equalities, including disjunctions.
We will see that for those loops for which the guard contains disjunctions, the ranking function will
become piecewise.

Note that in fact, any ranking function for a well-formed loop is a piecewise one, because there is
always the piece where the loop guard does not hold, and the loop iterates zero times. For instance,
for the loop in Listing 1, the ranking function is actually�

15� i if .i< 15/
0 else

(1)

This is of course a trivial case. A more involved example of a loop for which a piecewise ranking
function can be defined is shown in Listing 6.

Its ranking function is the following:8<
:

20� i if .i> 0/^ .i< 20/
i� 50 if i> 50
0 else

(2)

We will now formally define a generic method for inferring ranking functions for loops with dis-
junctive guards. The first step is to transform the guard into disjunctive normal form (DNF) by using
the laws of distribution and DeMorgan’s theorems. Thereafter, it has the form

guard WD conj j conj_ guard

conj WD inequality j inequality^ conj

inequality WD num1 b num2

where numi is a numerical program variable or constant, and b WD f<,>,D,¤,6,>g.
Each conjunction ci represents a logical conjunction over numerical (in)equalities. We can now

split up the guard by applying the following function:

DNFspli t.c1 _ : : :_ cn/ WD

8<
:

^
ci2CP

ci ^
^

cj2Crest

:cj

ˇ̌̌
ˇ̌̌ CP 2 P.fc1, : : : , cng/n;
Crest D fc1, : : : , cngnCP

9=
;

This transforms the condition c1 _ : : : _ cn into a set P ieces of 2n � 1 conjunctive conditions.
For instance, DNFspli t.i > 10_ i < 3/ yields three pieces: i > 10^:i < 3, i < 3^:i > 10 and

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2439

i > 10^ i < 3. This set may be simplified using a Satisfiability Modulo Theories (SMT) solver. In
this case, the negations can be removed from the first two conditions. The third condition is unsat-
isfiable; thus, it may be removed altogether. We refer to the procedure of transforming a guard into
DNF and separating the pieces as DNF splitting. The set P ieces defines the pieces of the piecewise
polynomial ranking function.

After DNF splitting, the basic method can be applied separately for each of the pieces. If RFp
is the polynomial ranking function inferred for a piece p 2 P ieces, then this yields the following
piecewise ranking function: 8̂<

:̂
RFp1 if p1
: : : if . . .
RFpm if pm
0 else

(3)

In this piecewise polynomial ranking function, m 6 2n � 1, because unsatisfiable pieces have
been removed.

2.7. Condition jumping

In this section, we define a complication that may arise during DNF splitting, which we call condi-
tion jumping. We show how to detect its occurrence and how to infer ranking functions even in the
presence of condition jumping.

Consider the loop in Listing 7. Naively, one could say that its ranking function is the following:8<
:
d.20� i/=4e if .i> 0/^ .i< 20/
i� 22 if i> 22
0 else

(4)

But what if i is 19, 15, or any n 2 Œ1, 19� with n mod 4 D 3? Indeed, then, there is a shift from
the first condition (0 < i < 20) to the second one (i > 22). We call this condition jumping. Jumping
from the second condition into the first one is not possible in this case.

Because of the presence of condition jumping, regular DNF splitting does not suffice here. The set
of nodes from which condition jumping occurs must be considered as a separate piece as follows:8̂<

:̂
d.20� i/=4e C 1 if .i> 0/^ .i< 20/^ i mod 4D 3
d.20� i/=4e if .i> 0/^ .i< 20/^ i mod 4¤ 3
i� 22 if i> 22
0 else

(5)

A method to detect condition jumping is described in Section 2.7.1. This method is then applied
in an algorithm that detects all nodes for which jumping occurs in Section 2.7.2, in order to infer a
correct piecewise ranking function.

2.7.1. Detection of condition jumping using symbolic execution and Satisfiability Modulo Theories
solving. To detect condition jumping in the example in Listing 7, we first use symbolic execution
[21] to construct an update function, which captures the relation between the values of the program
variables pre-execution and post-execution of the loop body. We can then use this relation as input
to an SMT solver and search for a model for which one part of the loop guard is true pre-execution
of the loop body and another part is true post-execution.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2440 R. W. J. KERSTEN ET AL.

Obtaining an update function
We will name the pre-execution/post-execution relation for a variable v the nextv function. The
function nexti WW Int ! Int for the loop in Listing 7 can be determined by symbolically executing
the loop with value ˛i for i . This results in the following symbolic post-execution value, which we
will name �i :

�i .˛i /D

�
˛i � 1 if ˛i > 22
˛iC 4 if :.˛i > 22/

(6)

By replacing the ˛ symbol by i , this easily translates to the nexti function we were looking for:

nexti .i/D

�
i� 1 if i> 22
iC 4 if :.i> 22/

(7)

In general, such an update function can be derived by symbolic execution of the loop body. Start
by giving the variables v1 : : : vn symbolic values ˛1, : : : ,˛n. After the symbolic execution of the
loop body, each variable vi will now have a value that is a set of polynomials over the symbols
˛1, : : : ,˛n and constants, with associated path conditions, which capture branching. Effectively,
this is again a piecewise polynomial. The function nextvi is now obtained by replacing the ˛’s by
the corresponding program variables in this piecewise polynomial.

Detecting condition jumping
The SMT-LIB is a library of SMT background theories and benchmarks [22]. It has a common file
format for SMT problems, which can be read by most SMT solvers. An SMT-LIB script to detect
jumping in the example from Listing 7 is given in Listing 8. The function nexti WW Int ! Int from
Equation 7 is defined on line 2. Then, on line 4, we define the condition expressing that jumping
occurs for this example, and on line 6, we check satisfiability of this condition.

Let us now consider the general case. Condition jumping will be detected pairwise for conditions
with multiple disjunctions. Here, we thus consider a single condition pair, that is, a loop with guard
b1_b2. Here, b1 and b2 are conditions over CV � LV � PV , where CV are the program variables
in the condition, LV are the program variables in the loop and PV are all program variables.

For each vi 2 LV , we can define an associated function nextvi WW Tv1 ! : : : ! Tvi ! : : : !
Tvn ! Tvi , where Tvi is the type of vi and n D jLV j, which takes the values of all v 2 LV as the
state and computes the value of v after a single execution of the loop body in that state, by following
the procedure described in the previous paragraph. Once these functions have been derived, the ques-
tion whether jumping from b1 to b2 is possible can be answered by any SMT-LIB conforming SMT
solver§ by determining the satisfiability of b1.v1, : : : , vn/^ b2.nextv1.LV /, : : : ,nextvn.LV //.

2.7.2. Generating ranking functions in the presence of condition jumping. The SMT-LIB script
in Listing 8 can be used to find a model for which jumping occurs by adding the expression
(get-value (i)). A model is an instantiation of the variables for which the formula for which
satisfiability is checked holds. In the SMT-LIB script from Listing 8, a model for i is 19.

§For instance, Z3, which can be used online at http://research.microsoft.com/en-us/um/redmond/projects/z3/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2441

Subsequently, by adding the expression (assert (distinct i 19)), one can search for
models other than i D 19 for which jumping occurs. The answer of the SMT solver is that the
combination of propositions in this script is unsatisfiable. Thus, i D 19 is the only possible model.
We can now see if there are any models from which the state i D 19 can be reached in a single
iteration, by changing line 6 to (= (nexti i) 19))). In the example, this will be the model
i D 15. Subsequently and similarly, we can search for other nodes that can reach the state i D 19
in a single step or that can reach the state i D 15. By repeating these steps, we can find the set
J D f3, 7, 11, 15, 19g. These are the models from which jumping can occur.

In general, the method described in Section 2.7.1 can be extended to detect all models from which
condition jumping can occur, by first finding all models that can jump directly from b1 to b2 and
then recursively finding models that can reach a model from this first set. This can be done by imple-
menting the following algorithm around an SMT solver. In this algorithm, J is the set of models of
which it is known that condition jumping occurs, andQ is a queue of models. We assume a function
next WWM !M (where M is the type of a model), which applies to each variable vi in a model Nv
its corresponding nextvi function.

1. Is there a model Nv for which b1. Nv/^ b2.next. Nv//^ Nv 62 J ?

� SAT! Add Nv to J and Q, goto 1.
� UNSAT! Goto 2.

2. Is Q empty?

� Yes! Done.
� No! Goto 3.

3. For a model Nq on the queue Q, is there a model Nv for which b1. Nv/^ next. Nv/D Nq ^ Nv 62 J ?

� SAT! Add Nv to J and Q, goto 3.
� UNSAT! Remove Nq from Q, goto 2.

After execution, J contains exactly all nodes for which jumping occurs. Because, here, a queue
is used, this algorithm implements a breadth-first search. This can easily be adapted to a depth-first
search by using a stack. Because the set of models is finite, the algorithm will always terminate. It
may however require jJ j runs of the SMT solver, so one may choose to set an upper bound on the
size of J and abort (‘give up’) early.

Now that we know J , we can split condition b1 into two: b1. Nv/ ^ Nv 2 J and b1. Nv/ ^ Nv 62 J .
We can then apply the basic method to each of these disjunctive pieces. This algorithm only detects
jumping from one piece into another. It should be applied iteratively over all the pieces, until no
more jumping can occur. Note that this approach does not terminate until all condition jumping
cases have been found. Because there are loops for which jumping occurs for every value of, for
instance, an Integer, it should give up after an upper bound on the number of jumps is reached.

3. HEAP-SPACE USAGE ANALYSIS

RESANA’s heap consumption analysis is based on the COSTA [15] tool, which provides a generic
analysis infrastructure for JAVA byte code. The symbolic upper bound that COSTA generates for a
method depends on the logical sizes of the method’s arguments, the structures pointed to by the
object fields and the costs of the called (library) methods. The (logical) size of an integer is the max-
imum of the integer and 0, the size of an array is its length and the size of an object is its maximal
reference chain. These assumptions constitute the size model in the COSTA terminology.

For instance, let a method allocate n objects of class X, where integer n is a parameter of the
method. Then, COSTA generates a symbolic bound of the form nat.n/ � c.size.X//, where nat.n/ is
maxfn, 0g (the logical size of integer n) and c.size.X// is the memory cost of creating an object of
type X.

COSTA implements different garbage collection models [23]. This functionality is retained in
RESANA. Inside JAVA real-time threads, no garbage collection is used, so, in RESANA, a user can

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2442 R. W. J. KERSTEN ET AL.

select to ignore garbage collection. For normal JAVA code, one can select to use the garbage col-
lection feature of COSTA, which calculates an upper bound for all possible executions of a program.
Firstly, for every method, the amount of memory that can escape the method’s scope is deduced.
Using this information, peak consumption cost relationships are calculated and solved, which give
upper bounds on the amount of memory used, even if using garbage collection.

We have added a number of improvements to the existing COSTA tool. The recurrence solver
was improved with interpolation-based height analysis. Secondly, the ability to calculate concrete
bounds for a number of JVMs, like OPENJDK and JAMAICAVM, was added. Thirdly, we changed
the bounds calculation of arrays, from an under-approximation to an over-approximation. And
finally, we added a post-processing step to simplify the expressions, so a programmer can easily
interpret the information.

3.1. Interpolation-based height analysis for improving a recurrence solver

COSTA’s approach to resource analysis is based on the classical method devised by Wegbreit [24],
which involves the generation of a recurrence relation capturing the costs of the program being
analysed and the computation of a closed form (non-recursive cost expression) that bounds the
results of this recurrence relation. In COSTA terminology, recurrence relations are called CRSs.
The main feature that distinguishes CRSs from the classical concept of recurrence relations is non-
determinism: a CRS defining the costs of a JAVA method may be defined by a set of equations
guarded by non-disjoint conditions. As an example, consider the loop in Listing 9.

We assume that the value of the if condition cannot be determined at compile time. Its memory
costs are described by the following (simplified) CRS:

T .x,y/D 0 fx > yg (8)

T .x,y/D cC T .xC 1,y/ fx 6 yg (9)

T .x,y/D cC T .x,y � 2/ fx 6 yg (10)

where c denotes the constant c.size.java.lang.Object//, that is, the memory cost of creating
an instance of Object. The COSTA system provides the recurrence solver Practical Upper Bounds
Solver (PUBS) [4], which computes the following closed form:

nat.y � xC 1/ � c.size.java.lang.Object//
C c.size.java.lang.Object//

This is an upper bound to the values of T .x,y/ given previously. The resulting closed form
corresponds to the worst-case execution of the loop (i.e. when the if condition always holds).

An important issue in the search of a closed form of a CRS is to approximate the maximum
number of unfoldings that must be undergone in order to reach a base case (height analysis). If we
consider the CRS as a function being evaluated in a non-deterministic way, the number of unfold-
ings is closely related with the concept of ranking functions (Section 2). For instance, in the CRS
given previously, we obtain the following unfolding sequence of length y � xC 1:

T .x,y/! T .xC 1, y/! T .xC 2,y/! � � � ! T .y,y/„ ƒ‚ …
y�xC1 unfoldings

PUBS derives a ranking function for T by applying Podelski and Rybalchenko’s method [25], which
is complete for linear ranking functions. Unfortunately, it fails when the number of unfoldings does
not depend linearly on the arguments of the CRS, as the following example shows:

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2443

R.x,y/D c fx D 0, y D 0g (11)

R.x,y/D cCR.x � 1, x � 1/ fx > 0, y D 0g (12)

R.x,y/D cCR.x,y � 1/ fx > 0,y > 0g (13)

By Equation (13), the variable y is decreased in every recursive call, until it reaches zero. Then,
by Equation (12), it is set to x � 1, from which it starts decreasing again. The worst-case evaluation
of R.x,y/ yields a chain of length 1

2
x2C 1

2
xC y C 1, which does not depend linearly on .x,y/.

We have extended the PUBS system so that it can infer polynomial ranking functions via testing
and polynomial interpolation, as has been explained in Section 2. This extension was described in
detail in [17]. It is described briefly here, with an additional contribution of verification of the inter-
polation results. The approach is, essentially, the same: choose a set of points (lying in an NCA)
in the domain of the relation defined by the CRS, evaluate the CRS at these points and find the
interpolating polynomial. However, the evaluation of a CRS is more involved than the evaluation
of a program instrumented with a counter, as it was done in Section 2.1. The main difficulty lies in
non-determinism. Assume we want to evaluate T .5, 9/, where T is defined as in the CRS shown in
Equations (8–10). We can unfold the definition of T .5, 9/ by using Equation (10) until we reach a
base case, so we obtain the following sequence:

T .5, 9/! T .5, 7/! T .5, 5/

This sequence is of length three, which is not maximal, because we could have evaluated T by
always using Equation (9), so as to obtain a longer sequence:

T .5, 9/! T .6, 9/! T .7, 9/! T .8, 9/! T .9, 9/

As a consequence of this, we would have to examine all the possible evaluations of T .5, 9/ in
order to obtain the longest unfolding sequence. However, the number of possible evaluations may
be infinite even if the evaluation yields a finite number of results. We have addressed this problem by
evaluating the CRS in a bottom-up way (Figure 3 left). We start from the set B1 of pairs .x,y/ such
that the evaluation of T .x,y/ does not fall into a recursive case. The longest obtainable sequence
in these cases is of length one. Now, let us define the set B2 of pairs .x,y/ such that the evaluation
of T .x,y/ falls into a recursive case, but the recursive call belongs to B1. Thus, we ensure that the
evaluation of these pairs does not require more than two unfoldings. By following this procedure,
we obtain a sequence of sets fBig each of which can be described as a disjoint union of convex
polyhedra with the help of quantifier elimination techniques. We use a gradient-based approach for
selecting the interpolation nodes from the Bi sets (Figure 3 right). The algorithm involves the search
of climbing paths starting at the B1 set and minimizing the distance between Bi and BiC1 for each
i 2 N. It is possible that, given a point .x,y/ in a set Bi , there are several candidates in the next
level BiC1 lying at the same distance from .x,y/. In this case, the climbing path forks, and the next
interpolation nodes are searched from all these candidates. The process ends when the interpolating
polynomial is uniquely determined.

Figure 3. Meaning of the Bi sets and their representation as convex polyhedra.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2444 R. W. J. KERSTEN ET AL.

Once we have found the interpolating polynomial on the set of test nodes, we have to check
whether the resulting bound is correct. This can be done as follows: for each CRS, the system can
derive some predicates, whose satisfiability is a sufficient condition guaranteeing that the polyno-
mial is an upper bound to the values of the CRS. These conditions involve inequalities between
polynomial expressions, which are decidable in Tarski’s theory of real closed fields. For instance,
the system would generate the following logical statement for checking that y � x C 1 is an upper
bound to T .x,y/:

8x,y, x0,y0 W ..x 6 y ^ x0 D xC 1^ y0 D y/_ .x 6 y ^ x0 D x ^ y0 D y � 2//
H) y � xC 1> 1C y0 � x0C 1

If these generated predicates hold, then y � x C 1 is indeed an upper bound to T .x,y/. Our
extension to PUBS delegates the task of checking such inequalities to the QEPCAD tool [13]. For
instance, in our running example T .x,y/, the following script is generated¶:

Given this script, QEPCAD yields the message An equivalent quantifier-free formula:

TRUE, which validates the inferred bound.

3.2. Correct array-size analysis

Because of the way memory is handled, an array header will always be included with information
about the array. As an array is a regular JAVA object, the array header also includes the normal
object header. Almost all architectures impose constraints on the memory allocator, for example,
memory allocators on the x86 architecture will allocate memory blocks in multiples of quad word
sizes, so in multiples of 16 bytes. Although less bytes are requested, the memory allocator will add
padding to an object that cannot be used for other purposes. This array header and padding need to
be taken into account, otherwise the bound would be an under-approximation.

For instance, all JAMAICAVM allocations are in (multiple) blocks of 32 bytes, considering the
32-bit version of JAMAICAVM. If multiple blocks are needed, they are stored in a tree structure
with the array content stored in the leafs of the tree. The array header is 16 bytes long, so this leaves
up to four pointers to the tree structures. In partial trees (in which the number of elements is not
4 � 8n), nodes leading to unused array contents and unused array contents blocks are not stored,
for example, 16 pointers (four bytes each) stored will take only three blocks: two for the leafs and
one intermediate block pointing to the leafs [16]. An example array structure is shown in Figure 4.
COSTA takes into account neither the array header, nor the structure needed to store the contents,
nor padding. Only the space needed by the array contents (object references and primitive types)
is included in the bound. This results in COSTA producing a bound for new int[n] equal to
n�size.int/, making it indistinguishable from the sequence new int[1]; new int[n-1];,
so neglecting to account for the extra array header, padding and structure overhead. The (structure)
overhead is dependent on the VM used. To deal with these deficiencies, we implemented a special
mode in COSTA when generating a concrete bound for arrays in JAMAICAVM, as explained next.

¶Variables have been renamed for better readability.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2445

Figure 4. Graphical representation of a JAMAICAVM array of size n, with 33 6 n 6 255 and with aŒi �
representing the contents of the array. Allocating an array of 63 elements takes 10 blocks.

3.3. Virtual-machine specialization by adding type-size information

COSTA has no knowledge of specific JVMs like JAMAICAVM. Our approach is to replace in all the
symbolic bounds generated by COSTA the symbolic object sizes by the exact sizes of objects in
bytes. The exact sizes are retrieved from the target VM by means of a specially generated program.
For JAMAICAVM, this generated program depends on the scoped memory extensions of real-time
JAVA. For other JVMs, we use the reflection API in JAVA, which is more general and can be run on
any VM which supports the reflection API. We validated this method for OPENJDK, by interfacing
directly with the VM by means of a (JAVA Native Interface) plugin.

For generating bounds for arrays allocated in an instance of JAMAICAVM, we adjusted COSTA

to include an over-approximation. A simple way of calculating the size of arrays, by means of the
small recursive function defined in Equation 14, could not be implemented in COSTA, because of
the manner COSTA represents and calculates the bounds internally. This recursive function is valid
for data types of 4 bytes||, which correspond to the size of pointers used in the tree structure pointing
to the leafs, resulting in a cleaner formula.

arrayblocks.n/D

�
n if n6 8˙
n
8

�
C arrayblocks

�˙
n
8

��
otherwise

(14)

By transforming the formula to an over-approximation (by replacing dn
8
ewith nC7

8
), we were able

to solve this new recurrence equation. The results in a new formula, after integrating adjustments for
the start cases, is listed in Equation 15. We have implemented this solution in our version of COSTA,
which is included in RESANA, so that analysing arrays now gives a correct over-approximation.

arrayblocks.n/ 6 nC 5

7
C log8.nC 7/ (15)

We have a similar formula for arrays in OPENJDK, which uses continuous allocation with a small
header by default (an array of n elements uses 4nC8 bytes, on a 32-bit target architecture). For each
new JVM, a new specialization for arrays needs to be added in order to correctly generate bounds
for code using arrays.

3.4. Simplification of bounds

COSTA internally calculates the symbolic bounds without considering the format of the expression.
The produced expressions are not necessarily user friendly, for example,

||These results are valid for data types with a representation of 4 bytes. Alternate data types (e.g. byte, char, short,
double) can be calculated by multiplying the input n by a factor of 1

4
, 1
2

, 1
2

, 2 respectively.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2446 R. W. J. KERSTEN ET AL.

nat.n/�
.nat.n/ � .c.size.java.lang.Object, 1//C

c.size.java.lang.Object, 2///C
nat.n/ � .c.size.java.lang.Object, 1//C

c.size.java.lang.Object, 2///C
nat.n/ � .c.size.java.lang.Object, 1//C

c.size.java.lang.Object, 2////

We implemented a recursive descent parser with reductions of mathematical expressions in order
to make the expressions generated by COSTA more user readable. The result of an expression is
not altered**, but the formula is reordered and reduced to a more user-friendly expression. The
aforementioned expression is transformed into

6n2 � size.java.lang.Object/

One can now easily see that the bound is quadratic. This simplification is built into RESANA and
applied to all user-visible expressions.

3.5. Example

The complexity of calculating Fibonacci numbers is well known. The run-time complexity (in terms
of methods calls) of calculating the nth Fibonacci value using a double recursion is related to the

golden ratio ' D 1C
p
5

2
, which results in a complexity of O.'n/ method calls. Standard text-

books on complexity analysis use over-approximation, which results in a complexity of O.2n/
for the same function. By adding an object allocation to each iteration, the heap consumption
should be the same as the run-time complexity. The resulting code is given in Listing 10. Our
tool annotates this function with the bound .2n � 1/ � size.java.lang.Object/, matching the
expected bound.

The nth Fibonacci number can also be calculated by using a single recursion, for which
the complexity should be O.n/. The resulting code, with added object allocations, is listed in
Listing 11. This single-recursive function is annotated by our tool with a bound of .n C 1/ �
size.java.lang.Object/, also matching the expected complexity bound.

**Technically, the output is altered a little bit as the allocation order, which only matters internally, is neglected. The
allocation order is included in the size construct as the second argument. The nat function is also omitted for brevity
and should always be applied to variables.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2447

4. STACK-SIZE ANALYSIS

The proposed method of stack analysis requires global knowledge of the program, including
its data. A data-flow-based static analyser VERIFLUX is used to provide this knowledge [18]
(http://www.aicas.com/veriflux.html).

Analysis of recursive methods is a challenge in static evaluation of stack consumption. To deal
with it, VERIFLUX’s stack-size analysis relies on recursion-depth annotations. A recursion-depth
annotation consists of an expression that evaluates to a natural number that is an upper bound on the
number of nested recursive calls. Syntactically, recursion-depth annotations are provided as JML
measured_by clauses. A measured_by expression is a usual symbolic expression like a.length
- 1. VERIFLUX outputs the stack bound in bytes, which is the number computed from the anno-
tations and the input data of the main method. If VERIFLUX discovers recursive methods that do
not carry a recursion depth annotation, it uses a default recursion depth, which is a positive natural
number or infinity. This number can be configured in the tool’s GUI. In case the default recursion
depth is configured to be infinity, the stack size analysis will report an infinite stack size for all
threads that call recursive methods that do not carry a recursion-depth annotation.
Expressions for measured_by annotations are obtained using COSTA, which computes both

1. a symbolic upper bound on the depth of recursion (i.e. a ‘ranking function’ for recursive calls)
for a given method

2. a symbolic upper bound on the number of calls of the method from itself.

The former corresponds to the height of the call tree; the latter represents the number of the nodes
in the call tree. For instance, the depth of recursion for a typical implementation of the nth Fibonacci
number calculation belongs to O.n/, whereas the number of call belongs to O.2n/. Both a ranking
function and a bound on the number of recursive calls can be used as measured_by expressions.
The former and the latter coincide if the recursion branching factor b < 2. The number of calls leads
to exponential over-approximation when b > 2.

Initially, COSTA did not output ranking functions, even though they were a part of the tool’s inter-
nal computations. The tool has been adjusted within the CHARTER project by adding an option that
allows ranking functions to be shown.

Consider the method fib, computing the nth Fibonacci number, in Listing 10. As expected,
COSTA produces the ranking function nat.n � 1/. This represents the depth of the recursion tree.
It is transformed by RESANA into the annotation measured_by n-1. The upper bound on the
number of recursive calls that COSTA generates is 2 � .2nat.n�1/ � 1/. This corresponds to the total
number of nodes in the recursion tree.

A JAVA VM has two stacks: a JAVA stack and a native one. Interpreted code and dynamically
generated code execute on the JAVA stack. External C libraries, Just-In-Time compiled (JAVA) code
and Java functionality implemented natively execute on the native stack. Both have different stack-
usage characteristics. We consider JAVA stack usage while running the VM in interpreted mode.
While methods utilizing the native stack cannot be analysed automatically, the user can specify
bounds in their JML contracts.

JAVA applications typically call methods from libraries. To obtain good stack-consumption
bounds for such applications, one should provide stack-consumption bounds for library methods.
In principle, library methods are analysed by CHARTER methodology in the same manner as
applications, that is, as the example presented previously. However, analysis of libraries requires
additional technical overhead, because of two issues: libraries are large, and library methods call
native routines.

4.1. Adjustments for analysis of libraries

Because a call to a library-method typically amounts to long chains of calls to other methods, the
corresponding call graph becomes very large. The COSTA analysis is based on call graphs, so obtain-
ing resource bounds in this case becomes unfeasible. Computations take too much time, and/or at
the end, one obtains a huge unreadable symbolic expression. Therefore, when performing the stack

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2448 R. W. J. KERSTEN ET AL.

analysis on programs with library calls, it is best to begin with analysis of the methods belonging
to one strongly connected component (SCC) of the call graph††. From our experience, COSTA per-
forms it in reasonable time. After that, methods that call the already analysed ones can be analysed.
The annotations of the already analysed methods can now be used as contracts. Eventually, all the
library is analysed in a bottom-up manner.

Technically, native stacks are needed to cope with methods that are compiled to native machine
code (for optimization purposes) and with native methods that are called through the JAVA Native
Interface (in order to access services provided by platform-specific native libraries). VERIFLUX

does not address StackOverflowErrors due to overflows of native stacks. Because verification of C
native methods is beyond the scope of this work, one has to rely on the known information about
the behaviour of these methods, that is, corresponding contracts.

As an example for both issues, consider the toString method, which belongs to the
Integer class and maps an integer number to a string, shown in Listing 12. Before run-
ning COSTA, place this method in the abstracted class MyInteger, which contains only
toString and the methods called from it. Create the abstracted versions of the classes
StringIndexOutOfBoundsException and String, which contain the methods called
from toString, the ones called from them and so on. COSTA produces a ranking function that
symbolically depends on the costs of two native methods: copyChars and cast2string. If
their contracts say that they do not call JAVA methods (which is, indeed, the case for this example),
their costs are turned into zeros by RESANA, and the final measured_by expression is 0. This
result can be approved by an accurate data-flow analysis of the method toString by using pen
and paper.

4.2. Stack-size analysis by VeriFlux

In this section, we consider the principles on which VERIFLUX its stack analysis is based. VER-
IFLUX computes an invocation graph, in which nodes correspond to methods and edges represent
method invocations. Recursive method calls correspond to cycles in the graph. In order to eliminate
cycles, one first computes the SCCs of the invocation graph. Each SCC with more than zero nodes
is then replaced by a single node that is annotated by the sum of the sizes of all stack frames that
correspond to nodes (i.e. method invocations) in that SCC, multiplied by the maximal recursion
depth over all the nodes (i.e. method invocations) in that SCC. The recursion depths are computed
by evaluating the measured_by annotations of invoked methods or using the default recursion
depth for methods that do not carry these annotations. All nodes that are not in an SCC with more
than zero nodes are simply annotated by the size of the stack frame of the corresponding method
invocation.

After merging each SCC, one is left with a directed acyclic graph, where each node is annotated
with a positive integer. Let this annotation be called the stack-frame size of the node. To obtain the
final result, VERIFLUX adds the stack frame size of the node to the maximum of the (recursively
computed) stack sizes of its successor nodes. This can be achieved, for all nodes, in a depth-first
traversal of the directed acyclic graph.

††Recall that a SCC of a directed graph is a sub-graph in which for any two nodes, a and b, there is a path from a to b
and vice versa.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2449

From the user perspective, VERIFLUX performs stack analysis in the following way. The tool
starts from the main method and evaluates the measured_by annotations of all called methods in
an abstract environment. Variables (and expressions) in this environment are evaluated to intervals
that represent all possible values they may have according to data-flow analysis. For instance, a
variable n is replaced with the interval Œ0, 21� if data-flow analysis shows that fib.n/ will be called
on n from 0 to 21.

The value that VERIFLUX outputs is an upper bound on the used stack in bytes, computed from
the symbolic measured_by expressions and the input data of the main method. Note that VERI-
FLUX’s computation of the abstract environment is approximate. In the worst case, VERIFLUX may
have computed the abstract value ‘any’ for some of the variables that occur in the measured_by
expression. Then, the concrete value of the measured_by expression evaluates to ‘any’ as well.
If a symbolic measured_by expression is not given, then a concrete default bound is involved,
given by the user. The correctness of this given numerical upper bound is not checked; VERIFLUX

simply uses this value in the analysis. The upper bounds computed by VERIFLUX are not tight, that
is, they may be higher than necessary.

Now, proceed with the Fibonacci example. Let it be called from the main method in Listing 13.

VERIFLUX computes the depth of recursion, which, as expected, is equal to 20. The upper bound
on consumed stack space computed by VERIFLUX is 1156 bytes. This consists of 20 stack frames
for the fibmethod, which use 56 bytes each, plus 36 bytes of stack space needed to call the method.
Calling the same method with nD 22 results in a bound of 1212 bytes. This means that a stack over-
flow will not occur if 1156 and 1212 bytes of stack space are reserved for the main thread in the first
case and in the second case respectively.

To deal with virtual method invocations, VERIFLUX has an option ‘resolve opaque calls’. When
switched on, it considers all possible implementations or subclasses of a given interface or a super-
class. If the analysis cannot resolve which virtual method is actually called, the maximum over the
stack sizes of all those methods that are possibly called is used. Conceptually, the invocation graph
will then have edges from the caller to all possibly called methods.

5. USER EXPERIENCE

We have combined all the CHARTER verification tools in a VIRTUALBOX (Oracle Corporation,
Redwood Shores, CA, USA) image for easy installation. This image, the ECLIPSE plugin and the
source code can be downloaded from the RESANA website‡‡.

The Dutch National Aerospace Laboratory (NLR) has used the VIRTUALBOX image in the devel-
opment of a safety-critical avionics application. Their experience is described in [3]. They have
selected the environment control system on board an aircraft for evaluating the CHARTER tool
chain. The environment control system is responsible for air conditioning and air pressurization.
The application is written in real-time JAVA and runs on JAMAICAVM.

Before using the CHARTER tools, NLR did not determine any ranking functions for loops or
memory-usage bounds, because manually devising them would require a very large effort. Now,
thanks to RESANA, these bounds can be inferred relatively quickly, so the programmers now have
a better understanding of the workings and hardware requirements of their software. They applied
RESANA for loop-bound and heap space analyses. The tool was found to be easy to use. Their
industrial user feedback has led to several (small but important) improvements of the RESANA tool.

‡‡http://resourceanalysis.cs.ru.nl/resana/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2450 R. W. J. KERSTEN ET AL.

Table I. Summary of the cases studied.

No. of loops Analysable Percentage (%)

Hunt et al. 2 2 100
DIANA 4 4 100
CDx 38 23 61
Total 44 29 66

DIANA, Distributed, Equipment Independent Environment
for Advanced Avionics Applications.

The NLR has used the complete CHARTER tool chain in their evaluation. The use of the tool set
resulted in a considerable (89%) reduction of the errors that appeared during the testing phase of
the project.

We ourselves have conducted several case studies as well. For loop-bound analysis, three case
studies were done. These are all parts of safety-critical JAVA systems, suggested as test cases by the
CHARTER partners. The results are shown in Table I. As can be read from the table, we can handle
roughly two-thirds of the loops found in the case studies. This means that we can infer a ranking
function for these loops using our prototype and prove it using KEY. Almost all of the loops for
which no ranking function could be inferred are loops for which the guard depends on a different
program thread. An example of this is given in Listing 14. Analysing the temporal behaviour of
such loops would require a fundamentally different analysis, which should take into account the
code of all threads as well as the scheduling of threads. An example of a loop from the case studies
for which a ranking function could be inferred and proved is given in Listing 15.

1. Collision detector case study. The first case is the collision detector example from the paper
‘Provably Correct Loops Bounds for Realtime Java Programs’ by Hunt et al. [26]. This code
stems from a safety-critical avionics application.

2. DIANA package. This package is developed in the FP6 project Distributed, Equipment Inde-
pendent Environment for Advanced Avionics Applications (DIANA). The package is described
in detail in [27].

3. CDx Collision Detector package. The CDx Collision Detector package is a publicly available
real-time JAVA benchmark. It is described in [28].

During a course on software analysis, we have asked undergraduate students to perform a series
of exercises using RESANA. Students successfully used the tool to infer ranking functions, heap

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2451

bounds and stack bounds for various examples. Also, they performed a small case study on the code
of Pygmy (a small web server). Again, ranking functions could be generated for roughly two-thirds
of the loops. Similar exercises were also given to PhD students at the 2013 IPA§§ school on Software
Engineering and Technology, who found the tool to be very useful.

6. RELATED WORK

This article is an extended version of an earlier paper [2]. It was extended on several distinct points.
The extensions to the loop-bound inference method discussed in Sections 2.4 (rational or real coeffi-
cients), 2.5 (branch-splitting) and 2.6 (piecewise ranking functions) were already described in more
primitive form in [14]. Condition jumping and the corresponding extension to the loop-bound infer-
ence method, described in Section 2.7, were not previously published. There are also some new
contributions with respect to heap analysis. Firstly, verification of ranking functions derived with
our experimental method using QEPCAD was implemented within COSTA. This is described in
Section 3.1. Furthermore, a specialization of the results for OPENJDK was made (previously, only
a specialization for JAMAICAVM was available), Section 3.3. All these extensions are implemented
in the current version of RESANA.

The polynomial-interpolation-based technique was successfully applied in the analysis of output-
on-input data-structure size relations for functions in a functional language, in [5, 29–32] and [33].
This method can, for instance, be used to determine that if the append function gets two lists of
lengths n and m as input, it will return a list of length nCm.

6.1. Loop-bound analysis

Hunt et al. discuss the expression of manually conceived ranking functions in JML, their verification
using KEY and the combination with data-flow analysis in [26]. What is ‘missing’ in the method is
the automated inference of ranking functions, which RESANA supplies.

In [34], an approach that is similar to ours is taken, in the combination of COSTA with the KEY
tool. The results that COSTA gives are output as JML annotations, which may then be verified
using KEY.

Various other research results on bounding the number of loop iterations are described in the lit-
erature. However, most approaches generate concrete (numerical) bounds [35–37], as opposed to
symbolic bounds. The methods that are able to infer symbolic loop bounds are limited to either
bounds that depend linearly on program variables (the procedure described in this paper infers
polynomial bounds) [25] or that are constructed from monotonic subformulae [6, 38].

Several syntactical methods are discussed [39, 40], which will be more efficient for simple cases,
but less general. Our procedure can be seen as complementary to those methods. In case a syntactical
method is not applicable to a certain loop, our more general method can be used.

To generate algebraic loop invariants, Sharma et al. [41] use a procedure that, as our loop-bound
inference algorithm, employs interpolation and separated inference and verification phases. They
refer to their algorithm as guess-and-check, as it employs a non-sound inference phase and a veri-
fication phase. In the inference phase, the program is executed on data from unit tests, and results
are interpolated. For checking the invariants, they use an SMT solver. The main difference to our
work is that they search for so-called algebraic invariants, which are defined as algebraic equalities
over program variables, whereas we search for a specific variant (a ranking function) specifying
the number of remaining iterations of the loop, the value of which is required to decrease on each
iteration. This ranking function implies an algebraic inequality as invariant.

6.2. Time performance analysis

There is a number of parallels of our work with time performance analysis. This can be average
execution time analysis or , more common, worst-case execution time (WCET) analysis. As already

§§Institute for Programming research and Algorithmics: http://www.win.tue.nl/ipa/

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2452 R. W. J. KERSTEN ET AL.

mentioned, loop-bound inference can be used for time analysis, in particular for WCET analysis.
Depending on the cost function associated with each iteration of the loop, one can compute a mem-
ory bound or a timing bound. To properly use this for WCET analysis, one has to incorporate extra
analysis of , for example, cache behaviour, context switches and so on, to precisely approximate the
worst case execution time as is done in [42, 43].

As memory allocators and cache policies are rather slow and unpredictable, the number and the
amount of memory allocated have an impact on performance [42]. One has to resort to special
means to alleviate these problems [44]. Our heap analysis can also be used to gain insight into the
allocations of a program. This can help reduce the number and amount of allocations in a program,
which can lead to smaller WCETs.

6.3. Heap-space usage analysis

We have taken the COSTA system [15] as our point of reference. The authors have recently improved
[45] the precision of PUBS, its recurrence solver, by considering upper and lower bounds to the cost
of each loop iteration. In a different direction, COSTA has improved its memory analysis in order
to take different models of garbage collection into account [23]. However, the authors claim that
this extension does not require any changes to the recurrence solver PUBS. Thus, the techniques
presented in Section 3.1 should fit with these extensions.

In the field of functional languages, the work of Hoffmann and Jost [46] is a seminal paper on
static inference of memory bounds. A special type inference algorithm generates a set of linear con-
straints that, if satisfiable, specifies a safe linear bound on the heap consumption. One of the authors
extended this type system in [7, 47] in order to infer multivariate polynomial bounds. Surprisingly,
the constraints resulting from the new type system are still linear.

6.4. Stack-size analysis

In practice, stack usage in JAVA is often measured by instrumenting or transforming the source
code so that it counts consumed resources (and computes other relevant information) on the inputs
of the original code. To our knowledge, there are two commercial tools that perform JAVA stack
analysis: Coverity Static Analyzer (Coverity, Inc., San Francisco, CA, USA) and Klocwork Insight
(Klocwork, Burlington, MA, USA), with its kwstackoverflow. Another tool, GNATStack (AdaCore,
New York, NY, USA), analyses object-oriented applications, automatically determining maximum
stack usage on code that uses dynamic dispatching in ADA and C++.

In [48], a static stack-bound analysis for abstract JAVA bytecode is described. The described
method considers JAVA bytecode with recovered high-level control structures (conditionals and
while loops). The inference process is divided into three key stages: frame-bound inference, abstract-
state inference and stack-bound inference. Recall that a frame is a piece of stack reserved for each
method invocation. Each stage applies a corresponding set of inference rules. In these rules, the
authors use Presburger (linear) arithmetic formulae to describe states of programs. It is stated that
an implementation is under development.

7. CONCLUSION AND FUTURE WORK

To assist in making resource analysis practical, we have introduced new techniques and combined
these techniques in our new tool, RESANA. Complex loop, heap and stack bounds can be inferred in
an integrated way within the ECLIPSE Integrated Development Environment. Bounds can be inferred
that are specific for the underlying VM (shown both for JAMAICAVM and OPENJDK).

Obviously, a full resource analysis tool would also need to build in an elaborate time analysis. For
now, we will rely on other tools to provide such information. The ability to infer resource bounds
contributes to improving the development process of producing real-time safety-critical systems
both with respect to ease of development and with respect to improved reliability. The Dutch NLR
has successfully used RESANA in the development of a demonstrator safety-critical real-time JAVA
avionics application.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2453

7.1. Future work

The capabilities of time analysis tools could of course be incorporated in our tool or it could be made
easy to switch from our tool to time analysis tools and to exchange information. Another direction
of future research could be to include work on other kinds of resources that are consumed, for
example, also inferring and proving energy-related properties of JAVA programs might be impor-
tant. Furthermore, one could define, instead of a single overall memory bound for the complete
run-time of a program, a time-dependent memory bound that gives a bound for the consumption on
a certain moment in the execution of a program. Such a time-dependent bound is called a live mem-
ory bound. Together with information on synchronization moments, this opens up the possibility to
derive more precise memory bounds by adding upper bounds of processes in the periods between
synchronization moments.

ACKNOWLEDGEMENTS

We would like to thank James Hunt, Isabel Tonin and Christian Haack of AICAS for their help and insights
in developing the stack-size analysis. Also, we would like to thank Gosse Wedzinga and Klaas Wiegmink
at NLR for their useful feedback on RESANA use in practice. We thank Sebastiaan Joosten for his valuable
advice on elements of this paper. We would like to thank Samir Genaim for his technical support regarding
COSTA, and we thank the anonymous reviewers for their important suggestions in improving this paper.

ARTEMIS Embedded Computing Systems Initiative; ARTEMIS-2008-1-100039 (CHARTER).

REFERENCES

1. de Mol MJ, Rensink A, Hunt JJ. Graph transforming Java data. In Proceedings of the 15th International Conference
on Fundamental Approaches to Software Engineering (FASE 2012), Talinn, Estonia, Vol. 7212, Lecture Notes in
Computer Science. Springer: Berlin, Heidelberg, 2012; 209–223.

2. Kersten R, Shkaravska O, van Gastel B, Montenegro M, van Eekelen M. Making resource analysis practical for
real-time Java. In Proceedings of the 10th International Workshop on Java Technologies for Real-Time and Embed-
ded Systems, JTRES ’12. ACM: New York, NY, USA, 2012; 135–144. Available from: http://doi.acm.org/10.1145/
2388936.2388959.

3. Wedzinga G, Wiegmink K. Using charter tools to develop a safety-critical avionics application in Java. In Proceed-
ings of the 10th International Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES ’12.
ACM: New York, NY, USA, 2012; 125–134, DOI: 10.1145/2388936.2388958. Available from: http://doi.acm.org/
10.1145/2388936.2388958.

4. Albert E, Arenas P, Genaim S, Puebla G. Closed-form upper bounds in static cost analysis. Journal of Automated
Reasoning February 2011; 46(2):161–203.

5. van Kesteren R, Shkaravska O, van Eekelen M. Inferring static non-monotonically sized types through testing. In
16th International Workshop on Functional and (Constraint) Logic Programming (WFLP’07), Vol. 216C, Electronic
Notes in Theoretical Computer Science: Paris, France, 2008; 45–63.

6. Gulwani S, Zuleger F. The reachability-bound problem. In Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10. ACM: New York, NY, USA, 2010; 292–304.

7. Hoffmann J, Aehlig K, Hofmann M. Multivariate amortized resource analysis. In POPL’11, Ball T, Sagiv M (eds).
ACM: New York, NY, USA, 2011; 357–370.

8. Amadio RM. Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae August 2005; 65(1-2):29–60.
Available from: http://portal.acm.org/citation.cfm?id=1227143.1227146.

9. de Dios J, Montenegro M, Peña R. Certified absence of dangling pointers in a language with explicit deallocation. In
8th International Conference on Integrated Formal Methods, IFM 2010, LNCS 6396. Springer: Berlin, Heidelberg,
2010; 305–319.

10. van Eekelen M, Shkaravska O, van Kesteren R, Jacobs B, Poll E, Smetsers S. AHA: amortized heap space usage
analysis. In Selected Papers of the 8th International Symposium on Trends in Functional Programming (TFP’07),
New York, USA, Morazán M (ed.). Intellect Publishers: UK, 2007; 36–53.

11. Leavens GT, Poll E, Clifton C, Cheon Y, Ruby C, Cok D, Müller P, Kiniry J, Chalin P. JML reference manual. Draft
revision 1.200, February 2007.

12. Beckert B, Hähnle R, Schmitt PH (eds). Verification of Object-Oriented Software: the KeY Approach, LNCS 4334.
Springer: Berlin, Heidelberg, 2007.

13. Brown CW. QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin
December 2003; 37(4):97–108. Available from: http://doi.acm.org/10.1145/968708.968710.

14. Shkaravska O, Kersten R, Van Eekelen M. Test-based inference of polynomial loop-bound functions. In PPPJ’10:
Proceedings of the 8th International Conference on the Principles and Practice of Programming in Java, Krall A,
Mössenböck H (eds). ACM: New York, NY, USA, 2010; 99–108.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

2454 R. W. J. KERSTEN ET AL.

15. Albert E, Arenas P, Genaim S, Puebla G, Zanardini D. COSTA: design and implementation of a cost and ter-
mination analyzer for Java bytecode. In Formal Methods for Components and Objects, Vol. 5382, de Boer F,
Bonsangue M, Graf S, de Roever W (eds), Lecture Notes in Computer Science. Springer: Berlin, Heidelberg, 2008;
113–132.

16. Siebert F. Hard realtime garbage collection in modern object oriented programming languages. PhD Thesis,
University of Karlsruhe, 2002.

17. Montenegro M, Shkaravska O, van Eekelen M, Peña R. Interpolation-based height analysis for improving a recur-
rence solver. In Proceedings of the 2nd Workshop on Foundational and Practical Aspects of Resource Analysis,
FOPARA 2011, LNCS 7177. Springer: Berlin, Heidelberg, 2012; 36–53.

18. Hunt JJ, Tonin I, Siebert FB. Using global data flow analysis on bytecode to aid worst case execution time
analysis for real-time Java programs. In JTRES ’08: Proceedings of the 6th International Workshop on Java
Technologies for Real-Time and Embedded Systems. ACM: New York, NY, USA, 2008; 97–105. Available from:
http://doi.acm.org/10.1145/1434790.1434806.

19. Chui CK, Lai MJ. Vandermonde determinants and Lagrange interpolation in Rs . Nonlinear and Convex Analysis
1987; 107:23–35.

20. Poll E, Chalin P, Cok D, Kiniry J, Leavens GT. Beyond assertions: advanced specification and verification with
JML and ESC/Java2. In Formal Methods for Components and Objects (FMCO) 2005, Vol. 4111 of LNCS, Revised
Lectures. Springer: Berlin, Heidelberg, 2006; 342–363.

21. King JC. Symbolic execution and program testing. Communications of the ACM July 1976; 19:385–394.
22. Ranise S, Tinelli C. The SMT-LIB format: an initial proposal, 2003. Available from: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.123.9580.
23. Albert E, Genaim S, Gómez-Zamalloa M. Parametric inference of memory requirements for garbage collected

languages. In ISMM’10, Vitek J, Lea D (eds). ACM: New York, NY, USA, 2010; 121–130.
24. Wegbreit B. Mechanical program analysis. Communications of the ACM 1975; 18(9):528–539.
25. Podelski A, Rybalchenko A. A complete method for the synthesis of linear ranking functions. In Verification, Model

Checking, and Abstract Interpretation, Vol. 2937, Steffen B, Levi G (eds), Lecture Notes in Computer Science.
Springer: Berlin, Heidelberg, 2004; 465–486.

26. Hunt JJ, Siebert FB, Schmitt PH, Tonin I. Provably correct loops bounds for realtime java programs. In JTRES ’06:
Proceedings of the 4th International Workshop on Java Technologies for Real-Time and Embedded Systems. ACM:
New York, NY, USA, 2006; 162–169. Available from: http://doi.acm.org/10.1145/1167999.1168026.

27. Schoofs T, Jenn E, Leriche S, Nilsen K, Gauthier L, Richard-Foy M. Use of PERC Pico in the AIDA avionics plat-
form. In Proceedings of the 7th International Workshop on Java Technologies for Real-Time and Embedded Systems.
ACM: New York, NY, USA, 2009; 169–178.

28. Kalibera T, Hagelberg J, Pizlo F, Plsek A, Titzer B, Vitek J. Cdx: a family of real-time Java benchmarks. In Proceed-
ings of the 7Th International Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES 2009,
Madrid, Spain, September 23-25, 2009. ACM: New York, NY, USA, 2009; 41–50.

29. Shkaravska O, van Kesteren R, van Eekelen M. Polynomial size analysis for first-order functions. In Typed Lambda
Calculi and Applications (TLCA’2007), Paris, France, Vol. 4583, Rocca SRD (ed.), LNCS. Springer: Berlin,
Heidelberg, 2007; 351–366.

30. Shkaravska O, van Eekelen M, Tamalet A. Collected size semantics for functional programs over lists. In Proceed-
ings of the 20th International Conference on Implementation and Application of Functional Languages, IFL’08.
Springer-Verlag: Berlin, Heidelberg, 2011; 118–137. Available from:http://dl.acm.org/citation.cfm?id=2044476.
2044483.

31. Shkaravska O, van Eekelen M, van Kesteren R. Polynomial size analysis of first-order shapely functions. Logic in
Computer Science 2009; 2:10(5). Available from: http://arxiv.org/abs/arxiv:0902.2073.

32. Tamalet A, Shkaravska O, van Eekelen M. Size analysis of algebraic data types. In Trends in Functional Program-
ming, Vol. 9, Achten P, Koopman P, Morazán M (eds), Intellect: Bristol, United Kingdom, 2009; 33–48. ISBN
978-1-84150-277-9.

33. Gobi A, Shkaravska O, van Eekelen M. Higher-order size checking without subtyping. In Proceedings of the 13th
International Symposium on Trends in Functional Programming (TFP2012), Vol. 7829, Loidl HW, Hammond K
(eds), Lecture Notes in Computer Science. Springer: Berlin, Heidelberg, 2013; 53–68.

34. Albert E, Bubel R, Genaim S, Hähnle R, Puebla G, Román-Díez G. Verified resource guarantees using COSTA and
KeY. In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
’11. ACM: New York, NY, USA, 2011; 73–76.

35. De Michiel M, Bonenfant A, Cassé H, Sainrat P. Static loop bound analysis of C programs based on flow analysis
and abstract interpretation. In RTCSA ’08: Proceedings of the 2008 14th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications. IEEE Computer Society: Washington, DC, USA, 2008;
161–166.

36. Ermedahl A, Sandberg C, Gustafsson J, Bygde S, Lisper B. Loop bound analysis based on a combination of program
slicing, abstract interpretation, and invariant analysis. In 7th International Workshop On Worst-Case Execution Time
(WCET) Analysis, Rochange C (ed.). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany: Dagstuhl, Germany, 2007; 58–63.

37. Lokuciejewski P, Cordes D, Falk H, Marwedel P. A fast and precise static loop analysis based on abstract
interpretation, program slicing and polytope models. In CGO ’09: Proceedings of the 7th Annual IEEE/ACM

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

A RESOURCE ANALYSIS TOOLSET FOR JAVA 2455

International Symposium on Code Generation and Optimization. IEEE Computer Society: Washington, DC, USA,
2009; 136–146.

38. Gulwani S. SPEED: symbolic complexity bound analysis. In CAV ’09: Proceedings of the 21st International
Conference on Computer Aided Verification. Springer-Verlag: Berlin, Heidelberg, 2009; 51–62.

39. Fulara J, Jakubczyk K. Practically applicable formal methods. In SOFSEM ’10: Proceedings of the 36th Conference
on Current Trends in Theory and Practice of Computer Science. Springer: Berlin, Heidelberg, 2010; 407–418.

40. Gulwani S, Jain S, Koskinen E. Control-flow refinement and progress invariants for bound analysis. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM:
New York, NY, USA, 2009; 375–385.

41. Sharma R, Gupta S, Hariharan B, Aiken A, Liang P, Nori A. A data driven approach for algebraic loop invari-
ants. In Programming Languages and Systems, Vol. 7792, Felleisen M, Gardner P (eds), Lecture Notes in Com-
puter Science. Springer: Berlin, Heidelberg, 2013; 574–592, DOI: 10.1007/978-3-642-37036-6 31. Available from:
http://dx.doi.org/10.1007/978-3-642-37036-6_31.

42. Reineke J, Grund D, Berg C, Wilhelm R. Timing predictability of cache replacement policies. Real-Time Systems
November 2007; 37(2):99–122. DOI: 10.1007/s11241-007-9032-3. Available from: http://rw4.cs.uni-saarland.de/
~grund/papers/rts07-predictability.pdf.

43. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann R, Mitra T,
Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P. The worst-case execution-time problemoverview of meth-
ods and survey of tools. ACM Transactions on Embedded Computing Systems May 2008; 7(3):36:1–36:53. DOI:
10.1145/1347375.1347389. Available from: http://doi.acm.org/10.1145/1347375.1347389.

44. Herter J, Backes P, Haupenthal F, Reineke J. CAMA: a predictable cache-aware memory allocator. In Proceedings
of the 23rd Euromicro Conference on Real-Time Systems (ECRTS ’11). IEEE Computer Society: Washington, DC,
USA, July 2011. Available from: http://rw4.cs.uni-sb.de/~jherter/papers/CAMAecrts11.pdf.

45. Albert E, Genaim S, Masud AN. More precise yet widely applicable cost analysis. In VMCAI’11, Vol. 6538, Jhala
R, Schmidt DA (eds), Lecture Notes in Computer Science. Springer: Berlin, Heidelberg, 2011; 38–53.

46. Hofmann M, Jost S. Static prediction of heap space usage for first-order functional programs. In POPL’03. ACM
Press: New York, NY, USA, 2003; 185–197. Available from: http://doi.acm.org/10.1145/604131.604148.

47. Hoffmann J, Hofmann M. Amortized resource analysis with polynomial potential. A static inference of polynomial
bounds for functional programs. In ESOP’10, LNCS 6012. Springer, ACM: New York, NY, USA, 2010; 287–306.

48. Wang S, Qiu Z, Qin S, Chin WN. Stack bound inference for abstract Java bytecode. In Proceedings of the 2010 4th
IEEE International Symposium on Theoretical Aspects of Software Engineering, TASE ’10. IEEE Computer Society:
Washington, DC, USA, 2010; 57–66. Available from: http://dx.doi.org/10.1109/TASE.2010.24.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2432–2455
DOI: 10.1002/cpe

