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a b s t r a c t

Dental calculus is increasingly recognized as a major reservoir of dietary information. Palaeodietary
studies using plant and animal micro remains (e.g. phytoliths, pollen, sponge spicules, and starch grains)
trapped in calculus have the potential to revise our knowledge of the dietary role of plants in past
populations. The conventional methods used to isolate and identify these micro remains rely on
removing them from their microenvironment in the calculus, thus the microenvironment that traps and
preserves micro remains is not understood. By using scanning electron microscopy and energy-
dispersive X-ray spectroscopy (SEMeEDX) on modern chimpanzee calculus from the Taï Forest, Côte
d’Ivoire, and human calculus from the Chalcolithic site of Camino del Molino, Spain, we present the first
reported observations on characteristics of the matrix setting that are conducive to the survival of starch
in dental calculus. We also assess the potential for SEMeEDX to detect starch and differentiate it from
structurally and molecularly similar substrates. We demonstrate that SEMeEDX may offer a non-
destructive technique for studying micro remains in certain contexts. Finally, we compare traditional
optical analytical techniques (OM) with less invasive electron microscopy. The results indicate that SEM
eEDX and OM are both effective for observing micro remains in calculus, but differ in their analytical
resolution to identify different micro remains, and we therefore recommend a sequential use of both
techniques.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Dental calculus, or dental plaque calcified by salivary calcium
phosphate, was first noticed as a reservoir of dietary information
when Armitage (1975) recognized plant remains on the teeth of
archaeological ungulates. Dobney and Brothwell (1986, 1988) later
demonstrated the value of calculus in the study of human diets.
Analysis of plant and animalmicro remains in archaeological dental
calculus is a rapidly growing field in dietary reconstruction (e.g.
Boyadjian et al. 2007; Henry, 2012; Liu, 2012; Mickleburgh and
Pagán-Jiménez, 2012; Warinner et al. 2014). Researchers have re-
ported starch, phytoliths, pollen, diatoms, chrysophycean cysts,
þ49 (0)15237044289.
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sponge spicules, and mineral particles in human calculus up to tens
of thousands of years old (e.g., Boyadjian, 2012; Dobney and
Brothwell, 1988).

Despite this interest in dental calculus as a source of dietary
information, there are still many questions about the mechanisms
by which plant micro remains, particularly starch grains, are pre-
served within the calculus. Native starch grains (i.e., starches in
their original, unaltered state) are the major focus of many recent
and ancient dietary studies (Leonard et al., 2013). Starch is a fore-
most nutritional component in many human and non-human pri-
mate diets, and it can also survive in the archaeological record over
long periods of time due to its semi-crystalline polysaccharide
structure (Hardy et al. 2009; Henry et al. 2011; Mercader et al.
2008; Salazar-García et al. 2013). The means by which starch em-
beds and preserves in calculus is still unclear. Themouth is a hostile
environment for starch preservation because of the action of
under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Table 1
Calculus samples analysed using SEMeEDX and OM. Sex and age classification of the
Camino del Molino remains are preliminary (Haber Uriarte et al., 2013).

Lab
identifier

Individual
number

Type Tooth Sex Age Weight

SJ-13-32 Sujeto 6 Camino del
Molino

P1 mandible F 26e28 1.76 mg

SJ-13-33 Sujeto 8 Camino del
Molino

C maxilla M 22e24 0.51 mg

SJ-13-36 Sujeto 11 Camino del
Molino

I2 mandible ? ? 6.06 mg

SJ-13-37 Sujeto 17 Camino del
Molino

M2 mandible M? 43e55 10.0 mg

SJ-13-38 Sujeto 113 Camino del
Molino

M2 mandible F 24e28 1.88 mg

SJ-13-39 Sujeto 151 Camino del
Molino

C mandible M 30e35 1.09 mg

Venus 15001 Taï chimpanzee M3 maxilla F 27 0.72 mg
Leo 15012 Taï chimpanzee M3 mandible M 19 1.19 mg
Fanny 11780 Taï chimpanzee M3 mandible F 25 3.34 mg
Goma 15004 Taï chimpanzee M3 mandible F 28 2.40 mg
Rubra 15023 Taï chimpanzee M3 mandible F 38? 3.88 mg
Castor 13439 Taï chimpanzee M3 mandible F 22 2.25 mg
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salivary digestive enzymes and bacterial metabolic activity (Lukacs
and Largaespada, 2006). Calculus forms gradually as bacteria-rich
plaque biofilms mineralize from calcium phosphate in the saliva
over a period of days to years (Abraham et al. 2005). During this
formation and mineralization process, the starch grains are
exposed to a-amylase, which is present in the saliva of humans and
several orders of mammals (Butterworth et al., 2011). Amylase
quickly digests starch by breaking down the polysaccharide crys-
talline structure into various simple and complex sugars through
hydrolysis (Lukacs and Largaespada, 2006). Theoretically, starch
may avoid oral digestion and survive in protected niche areas in
calculus, but this has not yet been empirically confirmed.

In addition to the difficulties with starch preservation in the oral
cavity, there is also the possibility that the starches that have been
recovered from calculus are actually the result of modern
contamination. Modern starches are abundant in the air, water, and
working surfaces of most facilities, making environmental
contamination a strong possibility. Archaeological and field site
contexts suffer from sources of contamination such as airborne
starch rain, but the greatest risk of contamination comes from
excavation and post-excavation handling in the presence of food or
due to the use of gloves powdered with corn or other starches
(Laurence et al. 2011; Loy and Barton, 2005; Newsom and Shaw,
1997).

Currently, the standard methodology for starch grain recovery
from calculus is too destructive to confirm whether observed
starch came from the calculus or from contamination. This method
involves mechanically or chemically removing calculus from the
tooth, grinding or dissolution to break up the sample, and finally
examining the particles using optical light microscopy (OM)
(Henry and Piperno, 2008). Furthermore, to the untrained eye,
several other calculus components, such as cysts, mineral grains,
fungal spores, wood cells, and air bubbles may be confused with
starch grains when viewed only under OM. Some have proposed
confirming starch presence by measuring amylase activity on
treated samples (Hardy et al. 2009), but this enzyme destroys the
starch in the process. One common and reliable means to detect
starch is to apply iodine potassium iodide (IKI) solution, which
binds to the amylose molecule, and look for the characteristic
blueeblack stain. However, this temporarily obscures the starch’s
diagnostic surface features. Furthermore, it is impractical to apply
a staining solution to an intact calculus matrix because objects
within the mineralized matrix are protected from moisture.
Accordingly, there is a great need for more sophisticated and non-
destructive methods to confirm the successful detection of starch
grains in dental calculus. Some researchers have suggested the
possibility of using scanning electron microscopy (SEM) to study
plant micro remains in calculus (Dobney and Brothwell, 1986;
Reinhard et al. 2001; Tromp, 2012). Despite the success of this
method in locating phytoliths (Arensburg, 1996; Charlier et al.
2010; Lalueza-Fox et al. 1996; Kucera et al. 2011; Tao, 2011;
Tromp, 2012), the detection of starch grains through SEM has not
yet been attempted.

In this study, we present SEM coupledwith energy-dispersive X-
ray spectroscopy (EDX) as a novel means for identifying starch and
other micro remains in intact human and chimpanzee dental cal-
culus. This system provides us with the ability to identify micro
remains, including starch grains, by their morphology and
elemental composition in situ in the calculus, thus ruling out
contamination. It also allows us to explore the kinds of environ-
ments within the calculus that may permit starch preservation.
Furthermore, we examine the potential of EDX to detect starch by
comparing the elemental makeup of native starch to those of
saliva-hydrolysed starch and other non-starch saccharides to learn
whether EDX distinguishes starch from other polymers of similar
elemental makeup. This identification allows us to positively show
that starch grains survive in calculus. Finally, we compare the re-
sults from SEMeEDX to those from OM on the same human cal-
culus samples to determine whether these techniques offer
comparable or complimentary results. Due to time constraints, we
were unable to conduct this portion of the analysis on the chim-
panzee samples and instead only used human dental calculus
samples.
2. Materials and methods

2.1. Study groups

The calculus samples were obtained from two groups, modern
wild chimpanzees from the Taï Forest (Côte d’Ivoire) and humans
from the Chalcolithic collective burial of Camino del Molino in
Spain (Table 1). We chose these two test groups for multiple rea-
sons: 1) individuals from both have abundant calculus on their
teeth; 2) they represent modern (chimpanzee) and archaeological
(Chalcolithic humans) timeframes; and 3) both groups maintained
very different dietary strategies and should therefore have different
microfossil profiles.

The sample of chimpanzee calculus came from the Taï Chim-
panzee Osteology Collection curated at the Max Planck Institute for
Evolutionary Anthropology (MPI-EVA) in Leipzig, Germany. The
behaviour of the wild chimpanzees living in the Taï Forest has been
monitored and documented since the commencement of the Taï
Chimpanzee Project in 1979 (Boesch and Boesch-Achermann,
2000). Taï Forest data collection complied with the requirements
and guidelines of the Ministère de l’Enseignement Supérieure et de
la Recherche Scientifique, and adhered to the legal requirements of
Côte d’Ivoire. The osteology collection contains 77 chimpanzees.
We chose calculus samples from individuals who had compre-
hensive observational records documenting diet, sex and age. After
their death, the remains of these individuals were interred for
defleshing and later exhumed and curated. We collected calculus
from molars or canines of six individuals; two females and four
males. The Taï Chimpanzees consume native starch from wild nuts
and seeds such as the Gabon nut (Coula edulis Baill.) and Kola nut
(Cola nitida (Vent) Schott et Endl.) (Hohmann et al. 2010; N’guessan,
2012), and unlike humans, they consume no cooked or processed
foods. Our preliminary reference collection of Tai Forest
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chimpanzee foods shows that ten of the 82 foods we have analysed
are starch-rich. However, these 82 species represent less than a
third of plants this population is known to consume, andwe are still
building this reference collection. Chimpanzees also produce sali-
vary amylase, though likely at much lower quantities than do
humans (Behringer et al. 2013; Perry et al. 2007).

Camino del Molino is a Chalcolithic collective burial pit found
during constructionwork in the city of Caravaca de la Cruz (Murcia,
southeast Spain). Radiocarbon dates from bone collagen samples
spanning the burial sequence indicate that the site was in continual
use over a span of 300e400 years during the first half of the third
millennium B.C. The site contained a minimum of 1300 individuals,
likely the remains of 16e20 generations of one population buried at
one place (Lomba Maurandi et al., 2009). Approximately 30% of the
individuals are classified as juvenile (<14 yrs.), and the rest are
adults spanning from young to old (Haber Uriarte et al., 2013). We
collected dental calculus preferably from lower molars for stand-
ardisation from the teeth of six individuals; two female, two male,
and two individual of unknown sex (Table 1). There are no archae-
obotanical studies from Camino del Molino or from the broader
region of Murcia contemporary to the site. However, studies of Late
Neolithic and Chalcolithic deposits in neighbouring regions suggest
that the number of cultivated species is low and consists mainly of
naked wheat (Triticum sp.), barley (Hordeum vulgare L), some lentil
(Lens culinaris Medikus) and common vetch (Vicia sativa L) (e.g.
Pérez Jordà, 2005; Pérez Jordà and CarriónMarco, 2011). There is no
published study fromthe site on culinary practices, inpart because it
is a necropolis and not a habitation site. Despite this, its Chalcolithic
age indicates that this population consumed cooked food, because
cooking is widespread across the European Neolithic and Bronze
Age societies (Halstead, 2012; Thissen et al. 2010).
Table 2
List of reference samples analysed using EDX.
2.2. Calculus sampling

We selected teeth encrusted with a prominent band of calculus
present on the enamel surface. We sampled only supragingival
calculus (above the gum line), since it is unclear if subgingival
calculus (below the gum line, on the neck of the tooth) preserves
food remains. We photographed the calculus before sampling, and
then brushed the sample tooth gently with a dry, sterile toothbrush
to remove surface contaminants. We then used a dental scaler to
remove small areas of supragingival calculus (w4 mm area), from
the enamel. We conducted all calculus sampling in a positive
pressure hood at the archaeological science laboratories at theMPI-
EVA. We thenweighed each of the samples and transferred them to
microcentrifuge tubes for storage until further use. Following
sampling, the teeth and surviving calculus were photographed
again. Additionally, we collected control samples, including the
packing material in which the teeth had been stored.
Reference sample Part Type Source

Fructose N/A Lab-grade Roth e 4981.1
Sucrose N/A Lab-grade Roth e 4621.1
Maltose N/A Lab-grade Roth e 8951.1
Glucose N/A Lab-grade Sigma e G7528
Maize (Zea mays

subsp. Mays L.)
Grain Cornstarch Speisestärke, RUF

Lebensmittelwerk
Kola nut (Cola nitida

(Vent) Schott et Endl.)
Nut Bulk plant Collected in Taï

National Park
Xylia (Xylia evansii Hutch.) Nut Bulk plant Collected in Taï

National Park
Gabon nut (Coula edulis Baill.) Nut Bulk plant Collected in Taï

National Park
Potato (Solanum tuberosum L) Tuber Flour Kartoffelmehl, RUF

Lebensmittelwerk KG
Wheat (Triticum aestivum L.) Grain wheat starch Weizella, Hermann

Kröner GmbH
2.3. Electron microscopy analysis

We conducted the SEMeEDX analysis at University College
Dublin’s Nano-Imaging and Materials Analysis Centre (NIMAC) in
Dublin, Ireland. The calculus samples were mounted on stubs using
double-sided carbon tape, and sputter coated with gold for 20 s
using an Emitech K575X Sputter Coating Unit, to prevent surface
charging by the electron beam. We then examined the calculus
using a FEI Quanta 3D FEG DualBeam (FEI Ltd, Hillsboro, USA) SEM
with an attached EDAX ED APOLLO XV Silicon Drift Detector with a
5e10 kV accelerating voltage. EDX detected and documented most
elements of interest excluding hydrogen, which is non-detectable
with this method. We omitted the gold elemental peak from each
spectrum since the gold was added during sputter coating. We
photographed and documented every tentative micro remain and
later described our observations.

2.4. Optical microscopy analysis

We performed optical microscopy on the ancient human re-
mains at the Plants Working Group laboratory in the MPI-EVA,
Leipzig. We removed the gold plated calculus samples from the
SEM mounting stubs, and then ground them in a 5 ml Eppendorf
microcentrifuge tube with a micro pestle containing w30 mL of a
25% glycerine solution to reduce sample loss due to static elec-
tricity. The samples were then centrifuged at 1691� g (Heraeus
MEGAFUGE 16 with TX-400 Swinging Bucket Rotors) for 10 min. All
of the resulting pellets were mounted on glass slides and examined
under brightfield and cross-polarized light on a A1 Zeiss Axioscope
microscope at 400� magnification. Larger samples were mounted
on several slides. Each micro remain was photographed and
described.

2.5. Carbohydrate reference standards and partially hydrolysed
controls

We used a variety of reference standards (see Table 2) to assess
the accuracy of EDX reads on the experimental sample types of
starch. Starches from a variety of plants were selected to represent
major starch types such as corn starch, potato starch, and common
dietary components for each population (Boesch and Boesch,
1983): wheat (Triticum aestivum L.), Gabon nut (Coula edulis
Baill.), Xylia (Xylia evansii Hutch.) and Kola nut (Cola nitida [Vent]
Schott et Endl.). The nuts were ground, dried and weighed to derive
nut flour suitable for use. Wheat, potato and corn were purchased
from local distributors in Germany (Table 2).

Laboratory-grade fructose, sucrose, maltose and glucose (Roth,
Germany) were included as standards because they have nearly
identical elemental compositions as starch but with structurally
different molecular arrangements (e.g. sucrose has 2.1 wt % (mass
fraction) more carbon than fructose, but 2.1 wt % less than starch).

To compare EDX element signatures for the different types of
saccharides, we took EDX measurements from five individual
grains of fructose, sucrose, maltose, glucose, wheat starch, corn
starch, Kola nut starch, Xylia starch and potato starch. This allows
the comparison of monosaccharides, a disaccharides, and a poly-
saccharide (starch).

Finally, to assess whether EDX signatures and detection accu-
racy is affected by the salivary modification (hydrolysis) of starch,
we experimentally hydrolysed the native starches from the wheat
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flour and both nut varieties using salivary amylase derived from
human saliva e a simulation of the effects of oral digestion on
starch that can occur. One of us (R.C.P.) provided the saliva used in
all experiments, which was collected on a single occasion. We split
each of the individual plant samples into nine subsamples of
approximately 2 mg each: three subsample per plant remained
untreated (control), three were exposed to amylase (35 mL of saliva)
for 30 min, and three were exposed to amylase (35 mL of saliva) for
90 min. We also similarly partitioned the wheat flour into nine
aliquots into three subsamples of 2 mg each for identical amylase
treatment. We ceased hydrolysis by displacing the saliva with
alcohol and centrifugation at 1691� g to remove as much liquid
from the sample as possible and stop hydrolysis. Then the
remaining alcohol was evaporated at 35� Celsius in a drying oven.
We performed measurements using SEMeEDX in triplicate on one
starch grain from each subsample, creating nine readings per
category (e.g. wheat 30 min hydrolysed). A summary of these an-
alyses is provided in Figs. 1 and 2.
3. Results

3.1. Standards

The EDX spectrum of starch is distinct from other saccharides
but not sufficiently to permit reliable identification (Fig. 1; S1.1).
The EDX results from all the samples indicate that oxygen is un-
derrepresented. Though carbon comprises roughly 40e50 wt % of
these saccharides, the EDX spectra indicates carbon at 60e90 wt %
(Fig. 1). Comparing the short-chain saccharides to the starches
there is a difference but some type of starch overlaps with each
short-chain saccharides. This indicates that some starch may be
distinguishable from short-chain saccharides through EDX. There
was far more variability in carbon values in starch than in short-
chain saccharides. Starch is composed of oxygen, hydrogen and
carbon (C6H10O5)n, where n ranges from 300 to 1000, so starch is
approximately 42.1% ¼ carbon, 6.5% ¼ hydrogen, 51.4% ¼ oxygen
(Newman et al., 1996). Thus maize starch comes closest to the
Fig. 1. Plot of carbon wt % (mass fraction) from five individual grains of fructose, sucrose, gl
minor contaminating elements such as potassium from sweat (S1.1).
expected values of starch. This variability possibly reflects the
heterogeneous nature of the starch. Starch varies in both propor-
tion of amylose and amylopectin and minor compounds such as
proteins and lipids (Belitz et al. 2009). We see further evidence of
this elemental variability in the native starch samples in Fig. 2,
which had a higher variability of both carbon and oxygen than the
hydrolysed starches. The EDX profiles of hydrolysed starches fall
within the range of their native counterparts, yet they show
noticeable less variation and reduced oxygen values (Fig. 2). The
reduction in variation and lower oxygen levels in these samples
may be either from the result of the added ethanol reducing oxygen
in the starch or the ethanol washed off debris on the starch surface.
A few of the damaged starches have slightly increased oxygen
percentages, but this is not consistent across all hydrolysed sub-
samples. We found no evidence that saliva-activated hydrolysis
could obscure starch’s EDX elemental signature. Thus when large
starch shaped objects are present under SEM, it is possible to test
whether these particles have a molecular make-up that is similar to
starch and other saccharides.
3.2. Calculus samples

Examination of the SEM images of the calculus confirmed that
this matrix has a heterogeneous texture, with many pores, cracks
and crevices. Most of the pores appear to be the result of rod bac-
terial pseudomorphs, which are shallow and measure only be-
tween 0.3 and 1 mm in width (bottom left in Fig. 4 and widely
scattered in Fig. 5). Although these pores are too small to shelter
and preserve micro remains, the cracks and crevices often con-
tained them (Fig. 4). Further examination of the calculus revealed
several types of inclusions within the matrix. In some cases, these
inclusions were consistent with the overall size (15e40 mm) and
shape (ovoid to pyriform) of certain starch grain types, and
inconsistent with other micro remains such as yeast and bacterial
cells (Fig. 3). The supposed starch clusters were clearly embedded
in the matrix, with grains occluded by overlying deposits of the
matrix material. Interestingly, the starch grains were not evenly
ucose, maltose and various starches detected with EDX. Percent values exclude largely



Fig. 2. Plot of carbon wt % comparing native starch versus samples that were hydrolysed with amylase for 30 and 90 min at room temperature. Three starches were sampled with
triplicate readings. Percent values exclude largely minor contaminating elements such as potassium such as potassium from sweat (S1.2).

Fig. 3. (A) SEM image showing a group of starches trapped in the matrix of one of the chimpanzee dental calculus samples (Venus), with the corresponding EDX spectrum (right)
showing a calcium phosphate and silicon mantle covering a carbon rich starch (B) and solely a carbon-rich starch (C).

R.C. Power et al. / Journal of Archaeological Science 49 (2014) 160e169164



Fig. 4. SEM image showing a concentration of pollen (A) and sponge spicules (B) in SJ-
13-39 from Camino del Molino. Micro remains were often found clustered.
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distributed in the matrix, but often appeared in clumps (Figs. 3 and
4). This could be explained in two ways; i) plant micro remains are
deposited in groups originating from clumps in food lumps, or ii)
micro remains are only preserved in localised niches, such as larger
cracks and crevices, in the calculus matrix.

The EDX spectra of the calculus matrix from all of our samples
indicate that it is mostly composed of calcium and phosphorus
(S1.3), with trace amounts of aluminium, magnesium, silicon, so-
dium andmanganese. These elements confirm our supposition that
the majority of our samples consist of calculus, a mixture of hy-
droxyapatite and other minerals, rather than contaminating exog-
enous matter (Charlier et al. 2010; Salazar-García et al. 2014). In
some instances, silicon was locally abundant in the calculus (Fig. 3,
S1.3), which may be important for the preservation of starch grains.
In contrast to the mineral matrix, the suspected starch clusters,
such as on chimpanzees Venus and Castor, had significant carbon
peaks (Fig. 3). Additionally, the starches often had calcium and
phosphorus peaks, reinforcing visual observations that they were
indeed embedded in calculus (Fig. 3). The combination of shape and
elemental data (Fig. 3) is strongly suggestive of in-situ findings of
Fig. 5. SEM image showing localised damage that arises from higher primary voltage SEM
(right).
micro remains preserved in the dental calculus environment. This is
possible as starch is morphologically distinct from other carbon
rich particles such as fungal filaments, Candida albicans cells, cel-
lulose and sugars. We also note that the starch we located with
SEMeEDX was undamaged (Fig. 3) and we did not locate any
gelatinized or hydrolysed starch.

In addition to the starches, we also identified a variety of other
plant and animal micro remains preserved in the calculus using
SEMeEDX, including phytoliths, sponge spicules, diatoms and
pollen (Table 3). These micro remains were identified by their
diagnostic morphology using conventional methods (e.g. Nadel
et al. 2013; Power et al. 2014; Rosen, 2010; Torrence and Barton,
2006), and this identification was confirmed by their EDX spectra.
For example, spicules were easily identified based on their long
rectangular shape and high level of regularity (Figs. 4 and 5) unlike
smooth long-cell phytoliths, and EDX readings confirmed their
biogenic silica composition (S3).

OM also demonstrated the presence of a rich assemblage of
plant micro remains (Table 3). Some of these micro remains were
also seen during the SEM analysis, such as the abundant monoaxon
spicules (Fig. 4), but some, such as multi-cell long-cell phytoliths,
unsilicified plant cells and calcium oxalate (Fig. 6), were only
detected with OM.

A comparison of the micro remains observed under SEMeEDX
with those seen in OM revealed important differences (Table 3). We
observed more starch micro remains using OM than SEMeEDX.
This is probably because the sample preparation for OM breaks
down the calculus matrix, freeing starch micro remains that were
trapped in the middle of the calculus chunk. Yet paradoxically,
other micro remains, such as sponge spicules, were more
commonly seen in SEMeEDX than in OM of the same samples.

Based solely on the SEM results (we did not perform OM on the
chimpanzee samples), the two groups we studied did present some
differences. The chimpanzee samples were rich in starch grains and
diatoms, while the human samples had an abundance of unsilici-
fied plant cells and sponge spicules (Table 3).
4. Discussion

Analysis of calculus samples by SEMeEDX and OMprovides data
that validates the study of micro remains recovered from this bio-
logical material. By SEMeEDX, we were able to identify the
elemental constituents of starch, and confirm its position in situ in
calculus particles. This is the first time that starch has been iden-
tified by its elemental signature while still embedded within the
(10 kV) and EDX on a spicule in calculus from Camino del Molino. Before (left); after



Table 3
Counts of recovered micro remains using both microscopy approaches.

Scanning electron microscopy Optical microscopy

Taï chimpanzees Camino del Molino Camino del Molino

Venus Leo Fanny Goma Rubra Castor SJ-13-32 SJ-13-33 SJ-13-36 SJ-13-37 SJ-13-38 SJ-13-39 SJ-13-32 SJ-13-33 SJ-13-36 SJ-13-37 SJ-13-38 SJ-13-39

Starch 29 2 3 4 40 22 3 1 1 6 1 8 10 1 3
Phytoliths Single-cell long-cell 1 1 1 1 2 3 5 10 1 3

Multi-cellular long-cell 1 11 1
Short-cell 1 3 1 2 3
Parallelepipedal 1 1 1 1 6 1
Bulliform 1 2
Plate 1 1 1
Rugulose spheroid 2 1
Smooth spheroid 3 2 1 1 1
Hair 2 1 1 1 1
unidentified 1 1 3 2 3

Unsilicified plant cell 15
Prism calcium oxalate 5 8 2
Annular ring 2
Monaxon spicule 30 1 5 1 15 46 8 5 14 18 11 10
Quartz grain 1 2
Pennate diatom 20
Other diatoms 2 2
Echinate pollen 1 1 1 3 3
Other pollen 3 1 1 3 1 1 2
Chrysophycean cyst 4
Fungal filaments a a

Fibre a 1
Invertebrate 1
Other 2

a Several unquantified microremains.
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calculus matrix, and confirms that starch can be preserved in cal-
culus, and can therefore be a reliable source of dietary information.

The analysis suggests that certain features of the calculus may
promote the preservation of microfossils, and starch grains in
particular. While the pores caused by bacteria were too small to
provide a protected niche for starches, larger cracks and crevices
were full of micro remains, possibly because these areas provided a
protected environment. Furthermore, the siliconwe detected in the
dental calculus may be significant. Silicic acid can induce sponta-
neous precipitation of calcium phosphate in the saliva, which is the
precursor mineral necessary for calculus formation. Silicic acid may
be consumed directly via water or indirectly via plants, as it enters
plants along with groundwater. Consuming polysilicic acid and
silica increases calculus formation, thereby regulating this process
(Damen and Ten Cate, 1989; Jin and Yip, 2002; Roberts-Harry and
Clerehugh, 2000). Our observations of silicon concentrations
adjacent to embedded starch clusters (Fig. 3) corroborates these
reports, suggesting that dietary exposure to silica or silicic acid
enables enhanced calculus formation and thus the preservation of
native starch in dental calculus.

By following the SEM analysis with an OM examination of the
same samples, we are able to compare the effectiveness of each for
specific micro remain types. Sponge spicules were easily visualized
under SEM, but were seen less with OM. This may be because the
spicules are relatively fragile and are damaged when the calculus is
processed, possibly explaining why spicules are rarely reported in
dental calculus studies (Dudgeon and Tromp, 2012; Tromp, 2012).
Because these particles, as well as diatoms and Chrysophycean
cysts, are highly dependent upon water sources, they may indicate
source type and provenance of consumed water, making them
powerful potential ecological markers for primatology and
archaeology studies (Dudgeon and Tromp, 2012). In contrast, cal-
cium oxalate crystals were only visible under OM, and not SEM.
These crystals, whichmay occur as druses, raphides or other similar
forms, are a potentially useful marker of plants. They may be more
visible using OM because they have high interference colours that
are visible under cross polarized light (Fig. 6). For reasons that
remain unclear, calcium oxalate is rarely reported or discussed in
calculus literature. Some research indicates that calcium oxalate
does not survive due to acidity in the mouth (Tromp, 2012), but
given their sheer abundance in plants and the relatively neutral oral
pH, it is likely that calcium oxalates do survive and are simply
overlooked. On the other hand, starch grains were clearly visible
using both SEM and OM. However, we did note that within in-
dividuals, the starches that we observed under OM typically did not
match the size and morphology of those seen in SEMeEDX. This
contrasts with the spicules, which often matched size and shape.
Fig. 6. A calcium oxalate prism observed with optical microscopy in SJ-13-37; under
brightfield optical microscopy (left), and polarising optical microscopy (right).
This is likely due to the small number of starches but high number
of spicules. We did also observe pollen grains embedded in the
calculus using SEM (Fig 4) and OM. Although this type of pollen
grain were too small to analyse with the EDX, we do believe that
SEMeEDX may be appropriate for identifying many larger types of
pollen grains, since these plant remains are composed of potas-
sium, magnesium, sodium and calcium (Szczęsna, 2007) and
should be easily visible in the EDX spectra.

Finally, The SEM analysis accurately reflected some stark dif-
ferences between our study groups. The differences in microfossil
number and types between the chimpanzee and humans likely
reflect the dietary behaviour and the age of the remains. The
chimpanzees consumed only raw plants, while the human group
potentially cooked much of their food. The chimpanzees therefore
consumed many more native, undamaged starch grains, and so
there is greater opportunity for the preservation of native starch
grains in dental calculus. Though the humans may have consumed
more starch overall, many of these starches would have been
gelatinized through cooking, disrupting the semi-crystalline
structure and reducing the potential for starch preservation in the
mouth (Holm et al. 1988). Cooking, combined with higher levels of
salivary amylase in humans relative to chimpanzees (Behringer
et al. 2013; Perry et al. 2007) may have greatly reduced the rela-
tive proportion of starch entering the human calculus matrix dur-
ing its formation. Furthermore, the chimpanzee samples are
modern and likely to be well-preserved while starch in the human
calculus may have depleted due to digenesis over thousands of
years.

Overall, SEMeEDX does allow us to visualize and identify micro
remains embedded in dental calculus, but this technique is not
without limitations and constraints. Internal features of starch
grains that are vital for identifying the taxonomic origin of the
starch are not visible under SEM. We found that when using EDX
combined with higher primary voltage (10 kV), the beammoved or
damaged fragile micro remains such as spicules (Fig. 5). EDX can
only give reliable data on objects �4 mm due to the penetration of
the beam, making it impossible to measure very small micro re-
mains including smaller starches. We found other techniques such
as backscatter detection to be of little additional advantage in
detecting starch, though this method may be useful in certain
contexts such as examining calculus for embedded phytoliths
(Tromp, 2012). It is possible to examine only the surface portion of
intact calculus matrix using SEMeEDX, and so this is not a viable
method for visualizing interior dental calculus structure and micro
remains. Sample preparationmay also be destructive since samples
must be gold-plated and mounted, but use of SEM without the
plating may cause the sample image quality and identification
power to deteriorate.

5. Conclusions

The visual identification and subsequent elemental testing of
micro remains embedded in the dental calculus of humans and
chimpanzees suggests that these important dietary markers are
indeed trapped and preserved in calculus during the lifetime of the
individual. Clearly, this matrix has a protective quality that shields
fragile and degradable components, namely starch, from the
enzymatic oral environment.

SEMeEDX and OM have different sensitivity to different micro
remains. SEMeEDXoffers ameans to confirm the presence of starch
by combining morphological and elemental information without
having to destroy either the calculus, as required in processing for
OM, or the starch grains themselves, as proposed when using
enzymatic reactions. Even if starch is gelatinized it should preserve
an elemental signature that is suggestive of starch. We applied
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SEM-EDX to intact calculus to witness micro remains in situ, but
this technique is equally viable for more finely processed calculus
samples mounted on plates, or even to calculus still attached on the
original tooth. However, it is important to note that diagnostic
features of starch grains, such as the hilum and lamellae, are only
visible using OM.

Our study indicates that SEMeEDX is a viable alternative to OM
analysis of calculus, but researchers should choose their analytical
method based on the questions they seek to answer, and the plant
micro remains that they intend to study. Furthermore, on very
sensitive osteological remains, it may be possible to use SEMeEDX
to study calculus using entirely non-destructive means to examine
embedded micro remains directly on the tooth; a useful technique
if the tooth is not firmly attached in the mandible or maxilla. We
prefer to consider SEMeEDX a complimentary rather than
replacement technique in the study of dental calculus micro re-
mains. A sequential workflow that first examines calculus under
SEMeEDX and then under OM may be the optimal solution for
highest resolution of micro remains, though we recognize that this
approach is time intensive and can be costly. We believe that
further exploration and experimentation of SEM techniques is
important in the field of archaeological and paleodietary recon-
struction. The continued refinement and expansion of dental cal-
culus analysis techniques is an important focus in order to
maximize the informationwe can harvest from this ephemeral and
fragile material.
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