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Abstract 

What does semantic similarity between two concepts mean? 

How could we measure it? The way in which semantic 

similarity is calculated might differ depending on the 

theoretical notion of semantic representation. In an eye-

tracking reading experiment, we investigated whether two 

widely used semantic similarity measures (based on featural 

or distributional representations) have distinctive effects on 

sentence reading times. In other words, we explored whether 

these measures of semantic similarity differ qualitatively. In 

addition, we examined whether visually perceived spatial 

distance interacts with either or both of these measures. Our 

results showed that the effect of featural and distributional 

representations on reading times can differ both in direction 

and in its time course. Moreover, both featural and 

distributional information interacted with spatial distance, yet 

in different sentence regions and reading measures. We 

conclude that featural and distributional representations are 

distinct components of semantic representation. 

Keywords: semantic similarity, featural representations, 

distributional representations, spatial distance, eye tracking, 

reading. 

Introduction 

In the context of semantic representation of concepts, two 

perspectives have dominated research in the cognitive 

sciences. On one view, semantic representation is based on 

the perceived physical characteristics of objects (e.g., shape, 

color, etc.), but also the functional knowledge gained 

through direct interaction with them (e.g., is-edible, used-to-

cut, etc., see Cree & McRae, 2003; McClelland & Rogers, 

2003; McRae & Boisvert, 1998; McRae, de Sa, & 

Seidenberg, 1997; McRae et al., 2005; Rogers & 

McClelland, 2004, 2008; Vigliocco et al, 2004). For 

example, the word sheep refers to something that bleats, is 

covered with soft wool, is white or brown, has four legs, and 

eats grass. This sort of information is generally acquired 

through the senses. To put it in Andrews and colleagues‟ 

words (see Andrews, Vigliocco & Vinson, 2005, 2007, 

2009), this kind of representational information can be 

described as extra-linguistic, featural and experiential. We 

will refer to this sort of data as featural representations for 

the rest of the paper. 

On a different view, semantic representation can be 

captured by examining the statistical dependencies between 

words across corpora of spoken and written language. Such 

corpora could include novels, essays, or articles from 

newspapers and scientific journals, but also transcribed 

spoken conversations. Latent semantic indexing (LSI, see 

Deerwester, Dumais, Landauer, Furnas, Harshman, 1990; 

Landauer & Dumais, 1997), for instance, is a method that 

reduces the dimensionality of a language corpus by 

decomposing each text in a frequency matrix, or text-

document. In this model, the statistics are derived by a 

decomposition of the term frequencies in each of texts. 

Thus, this data can be described as intra-linguistic, 

disembodied and distributional, as we will refer to it for the 

rest of the paper. 

Indeed, both distributional and featural representations 

alone can produce models of semantic representation 

capable of accounting for human behavioral data (McRae et 

al., 1997; Landauer & Dumais, 1997; Lund & Burgess, 

1996; Vigliocco et al., 2004). For instance, McRae et al. 

(1997) used feature-based similarity cosines to predict a 

number of human behavioral responses such as reaction 

times and similarity ratings. Similarly, Landauer and 

Dumais (1997) used distributional similarity cosines to 

predict performance both of non-native speakers in an 

English synonym test and of native speakers in a word-

sorting task. Such studies, however, have concentrated on 

one of these sources of information, often neglecting the 

other. 

More recently, evidence from machine learning has 

showed that models integrating both featural and 

distributional information can outperform featural- or 

distributional-only models (Andrews et al., 2005, 2007, 

2009). For instance, Andrews et al. (2007) trained three 

Bayesian models using either a combination of both featural 

and distributional representations, or featural or 

distributional representations alone. The three models were 

then compared on their predictive power in modeling human 

data from three semantic tasks; word association norms 

from, reaction times from a lexical priming experiment, and 

picture-word interference latencies. Overall, the combined 

model was the best predictor of human performance in the 

three tasks. 

2309

mailto:ernesto.guerra@mpi.nl
mailto:falk.huettig@mpi.nl
mailto:knoeferl@cit-ec.uni-bielefeld.de


Andrews and colleagues advocate that featural and 

distributional representations are both critical for language 

acquisition and that both contribute to different aspects of 

semantic representation. Moreover, they argue that theories 

of semantic representation that exclude either of these two 

types of representations in favor of the other, would be 

inevitably limited in their scope (see Andrews et al., 2009: 

p. 466). Featural representations can be thought to 

contribute to semantic representation via direct interaction 

with things in the environment. For instance, a sheep is 

known to bleat, to be soft, white and to have four legs, all 

attributes perceptible through the senses. A clear limitation 

of featural representations, however, is that they can only be 

acquired for concepts that have a perceptible referent in the 

physical world. Concepts like peace or war are difficult to 

describe in terms of perceptible features (but see Kousta et 

al., 2011 for a focus on introspective information). 

Distributional representations, in turn, do not distinguish 

between levels of concreteness of concepts, equally treating 

sheep and war as vectors in a matrix. On the other hand, 

distributional representations from current linguistic corpora 

focus on the statistical patterns of words in a linguistic 

context and cannot say anything about the physical world. 

Thus, featural and distributional representations alone can 

only provide limited insight into semantic representations. 

Against this background, it seems plausible to argue that 

featural and distributional representations are in fact 

qualitatively different. Semantic priming and picture-word 

interference experiments can indeed provide measures of 

human behavior related to semantic similarity. However, 

response times in such tasks cannot reveal potential 

differences in the time course with which featural and 

distributional representations come into play during online 

semantic interpretation. Furthermore, if these two kinds of 

representations are qualitatively distinct, it is likely that they 

distinctively interact with other cues such as spatial distance 

(see, Casasanto, 2008; Guerra & Knoeferle, 2012). We 

examined these two questions using eye tracking. 

The present study 

The purpose of the present research is two-folded; first, we 

examined the time course of the effects of featural and 

distributional representations during real-time sentence 

interpretation, and, second, we examined whether these 

semantic similarity measures interact with spatial distance. 

The second question is based on recent evidence from eye 

movements during reading showing that spatial distance 

between objects (far vs. close) modulated online semantic 

interpretation of sentences expressing similarity (or 

difference) between abstract nouns (Guerra & Knoeferle, 

2012).  

Contrasting with those results, we first need to establish 

whether spatial distance could in fact interact with sentences 

expressing similarity between concrete nouns. Extending 

previous findings from abstract- to concrete-noun 

comparison would allow us to further investigate the kind of 

similarity that can interact with spatial distance, which in 

turn can further our understanding about the different 

components (e.g., featural, distributional, visuo-perceptual) 

that contribute to semantic representation and processing. 

Method 

Participants Twenty-eight native speakers of German with 

normal or corrected-to-normal vision were recruited to take 

part in the experiment. None of them learnt a second 

language before age six. They all gave informed consent 

and received a monetary compensation of six euros for 

participating. 

 

Materials and Design We constructed 60 German 

sentences, expressing either similarity (1) or difference (2) 

between two concrete nouns. Words that differed between 

the two versions of an item were matched for frequency and 

length. A translated example item is presented below 

(critical regions in bold font). 

 

(1) „A goatNP1 andcoord. a sheepNP2 areVP1 indeedADV 

similarADJ, arguedVP2 the teacherNP3‟. 

 

(2) „A ratNP1 andcoord. a sheepNP2 areVP1 indeedADV 

differentADJ, arguedVP2 the teacherNP3‟. 

 

Spatial distance was introduced into the design by 

presenting two playing cards in a visual context preceding 

each sentence. On critical trial, the two cards moved either 

close together or far apart. We combined each level of 

similarity (similar vs. different) and spatial distance (close 

vs. far) in a 2 x 2 within-subjects within-items Latin square 

design. This resulted in four experimental conditions, 

namely, Close-Similar, Far-Similar, Close-Dissimilar, and 

Far-Dissimilar. Each participant saw one condition of each 

item, and the same number of items per condition. 

 

 
 

Figure 1: Schematic representation of an experimental trial. 

 

Procedure Before the eye-tracking experiment, the 

experimenter performed a 9-point calibration procedure. 

Next, participants completed ten practice trials. After 
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practice, the experimenter re-calibrated the eye tracker and 

the experiment started. Figure 1 depicts an example 

experimental trial. On each trial, participants inspected a 

visual context with two playing cards that moved to 

different positions and turned around after three seconds, 

showing two nouns that appeared in the ensuing sentence. 

Subsequently, participants read a sentence and made a 

sensibility judgment. Finally, they verified whether a picture 

of two playing cards matched or mismatched the two 

playing cards presented before the sentence.  

Data Analysis 1 

Based on previous findings (see Guerra & Knoeferle, 2012), 

we defined three critical regions in the sentences (i.e., the 

NP2, ADJ and the VP2). Before computing reading 

measures, we removed all fixations longer than 1200 or 

shorter than 80 ms (cf. Sturt, Keller, & Dubey, 2010). 

Subsequently, we calculated three reading measures for 

each critical sentence. First-pass reading time was defined 

as the sum of all fixations from first entering a region until 

moving to another region. Regression path duration was 

defined as the sum of all fixations from first entering a 

region until moving to the right of that region. Finally, total 

reading time was defined as the sum of all fixations in a 

region during the trial (see Rayner, 1998). We analyzed the 

log-transformed reading measures using a “maximal” linear 

mixed effects regression (LMER; see Barr et al., 2013) 

including random intercepts for participants and items, and 

random slopes for the fixed effects (i.e., similarity, spatial 

distance) and their interaction. 

Results 

Data analysis revealed no reliable effects at the NP2 region 

(all p-values > 0.1) but a reliable main effect of spatial 

distance emerged at the ADV region (p < .03). More 

importantly, reliable interaction effects between spatial 

distance and similarity emerged in first-pass reading times 

(p < 0.004) and regression path duration (p < .03) at the VP2 

region. Additionally, a reliable main effect of similarity 

emerged in this region in total reading times (p = .01). 

Figure 2 presents the pattern of interaction for first-pass 

reading times and regression path duration for VP2. 

Discussion 

Previous findings showed that spatial distance could rapidly 

interact with the interpretation of semantic similarity 

between abstract nouns (e.g., war, peace) as reflected by 

sentence reading times (Guerra & Knoeferle, 2012). In the 

present study, we extended these results from abstract to 

concrete nouns. As can be seen in Figure 2, first-pass and 

regression path reading times were longer for sentences 

expressing similarity between concrete nouns when 

preceded by a visual context with objects far apart (vs. close 

together), while reading times for sentences expressing 

dissimilarity were longer when preceded by object close 

together (vs. far apart). We thus replicated the previously-

observed interaction effects. Next, we evaluated the 

influence of our two similarity measures (based on featural 

versus distributional representations) on reading times, and 

assessed how these two measures interact with spatial 

information. 

 

 
 

Figure 2: Mean first-pass reading time (on the left) and 

regression path duration (on the right) in milliseconds for 

the VP2 region as a function of sentence type (similar vs. 

dissimilar) and spatial distance (light-gray bars and dark-

grey bars represent close and far conditions, respectively). 

Error bars represent standard errors of the mean. 

Data Analysis 2 

We performed latent semantic indexing (LSI, see 

Deerwester et al., 1990; Landauer & Dumais, 1997) for each 

noun of the 60 concrete-noun triplets (e.g., goat, rat, sheep). 

A corpus of 20,000 Wikipedia articles in German was used 

to train our set of triplets. From that initial corpus, a number 

of 1,618 articles contained words from our item set and was 

used to calculate LSI vectors of length (K) 10,000. 

Similarity between the LSI vectors representing the words 

was calculated by means of the cosine similarity of the LSI 

vectors. Additionally, for a subset of our items (N=37) we 

obtained comparable cosine values between concrete nouns 

from feature-based similarity norms (McRae et al., 2005). 

Figure 3 presents the correlation between featural and 

distrubutional cosine values. 

 

 
 

 

 

Figure 3: Pearson correlation between featural (McRae et 

al., 2005) and distributional (LSI) cosine values 
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The effect of distributional and featural representations on 

log-transformed reading times, and their interaction with 

spatial distance, was evaluated on the subset of items for 

which we had both similarity cosine values using LMER 

models. Such models included, for each reading measure 

and critical region, distributional and featural cosines values 

as fixed effects and their interaction with spatial distance. 

Following the “maximal” logic, we also included random 

intercepts for participants and items, and random slopes for 

the fixed effects and their interaction. 

Results 

At the NP2 region, the LMER analysis revealed reliable 

main effects of distributional representations in first-pass 

and an interaction with spatial distance in total reading times 

(all ps < 0.03). Moreover, main effects of featural 

representations were marginal in first-pass (p = 0.05) and 

statistically significant in regression path (p = 0.03). No 

effects of distributional or featural representations emerged 

at the ADJ region (all ps > 0.1). 

By contrast, at the VP2 region, reliable interaction effects 

between spatial distance and featural similarity emerged in 

first-pass, regression path (both p-values < 0.003) and total 

reading times (p < 0.05), in addition to reliable main effects 

of distance in first-pass and regression path (both p-values < 

0.03). Yet, no interaction between spatial distance and 

distributional similarity emerged in this region. Figure 4 

illustrates the influence of distributional and featural 

representations, and their interaction with spatial distance, 

on sentence reading times. 

Discussion 

In our second analysis, we examined whether featural and 

distributional representations had a distinctive signature on 

reading times for sentences expressing either similarity or 

difference between two concrete nouns, and moreover, 

whether they interact with spatial distance.  

The results of the LMER showed that both featural and 

distributional representations have an early (at the NP2 in 

first-pass and regression path, respectively) but distinctive 

influence on reading times. As it can be seen when 

comparing panels A and B in Figure 4, reading times were 

positively correlated with the cosine values based on 

distributional representations (A), but negatively correlated 

Figure 4: Scatter plots of the LMER model residuals for four reading measures where statistically significant effects of 

distributional or featural representations were observed. On the y-axis, the reading time residuals from the LMER models 

are plotted. The x-axis plots the cosine values based on distributional representations (graphs on the left), and based on 

featural representations (graphs on the right). Panel A. depicts the main effect of the distributional factor on first-pass 

reading times at the NP2 region for both the far and the close conditions. Panel B. shows the main effect of the featural 

factor on regression path duration at the NP2 region for both spatial distance conditions. Panel C. presents the interaction 

effect between distributional factor and spatial distance in total reading times at the NP2 region. Panel D. shows the 

interaction effect between the featural factor and spatial distance in total reading times at the VP2 region. 
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with the cosine values based on featural representations (B). 

Moreover, the results showed reliable interaction effects 

between spatial distance and both featural and distributional 

representations. Yet, such effects emerged in different 

sentences regions and different measures; distributional 

representations interacted with spatial distance only in a late 

reading measure (i.e., total times) while we observed a 

pervasive interaction effect at the VP2 region between 

spatial distance and featural representations in early and late 

reading measures. 

Compared to the contrasting main effects of these 

semantic similarity measures on reading times at the NP2 

region, any reliable interaction effects followed the same 

pattern for both kinds of similarity measures. Overall, 

reading times increased as the cosine values (or the degree 

of association between words) increased, however this main 

effect was significantly reduced when sentences were 

preceded by objects close together compared to far apart. 

These findings are in coherence with the results from 

Analysis 1, and with previously reported interaction effects 

between spatial distance and semantic similarity during 

sentence comprehension (see Guerra & Knoeferle, 2012). 

General Discussion 

One major goal for the cognitive sciences is to elucidate the 

nature of human semantic representations. We described 

two main ways of measuring semantic similarity, and briefly 

discussed how, in most cases, each of them has been used to 

understand semantic representation in isolation. Indeed, 

both cosines based on statistical patterns of words among 

words (the distributional tradition) and cosines based on 

concepts features (the featural tradition) are good predictors 

of human-based behavioral data (see, e.g., Landauer & 

Dumais, 1997; McRae et al. 1997). However, recent 

computational-modeling evidence showed that the 

combination of both kinds of representations has better 

predictive power compared those using either of them (e.g., 

Andrews et al., 2007). 

We examined whether featural and distributional 

representations have qualitatively different effects in the 

context of sentence comprehension. Participants‟ eye 

movements were recorded as they read sentences expressing 

similarity (or dissimilarity) between two concrete nouns. In 

addition, two objects either far apart or close together 

preceded each critical item sentence. In two planned 

analyses, we assessed the effects of featural, distributional, 

and spatial information respectively on sentences reading 

times.  

The first analysis showed that spatial distance between 

objects in the visual context modulated sentence-reading 

times as a function of sentence meaning. This replicated 

previously-reported effects of spatial distance on reading 

times and extended them to concrete (rather than abstract) 

nouns. The second analysis revealed distinctive effect 

patterns of featural and distributional representations on 

reading times. At an early sentence region (i.e., NP2) and in 

early measures, both featural and distributional similarity 

cosines affected reading times significantly. Interestingly, 

these effects had opposite directionality: The stronger the 

association based on distributional representations, the 

longer the reading times; the stronger the association based 

on featural representations, the shorter the reading times. 

Qualitative differences between featural and distributional 

representations can thus be captured using online measures 

with fine temporal resolution. In addition to the early main 

effects, interaction effects between distance and both 

semantic similarity measures emerged in the reading times. 

While their time course was different for featural and 

distributional representations, the direction of the effect was 

the same. Spatial distance modulated the effect of 

distributional representations at the NP2 in a late measure 

(i.e., total times); in turn, it modulated the effect of featural 

representations at the VP2 region in early and late measures. 

Overall then, featural and distributional representations 

have distinct effects on semantic processing. In agreement 

with the proposal by Andrews and colleagues, our results 

suggest that these two indexes of semantic similarity are in 

fact qualitatively different. The outcome of our experiment 

offers two main contributions. First, our study examined the 

fine-grained time course of the effects of these two distinct 

similarity measures. In doing so, we showed that these 

measures can rapidly (e.g., in first-pass) and incrementally 

(as the sentence unfolds) index semantic interpretation. 

Moreover, examining these effects in the context of 

sentence reading provides a further evaluation of the 

influence of these measures on human semantic processing. 

Second, our study enabled further investigation of the 

relation between semantic similarity and spatial distance. 

Moving from abstract to concrete nouns permitted us to 

evaluate whether spatial distance modulated the effects of 

either or both featural and distributional information on 

reading times. In this regard, the interaction patterns 

observed in Data Analysis 1 were largely driven by the 

overlap of features between the two concrete concepts, 

rather than the statistical dependencies between the two 

words in corpora. However, the reliable interaction effect 

observed at the NP2 region in total reading times, suggests 

that spatial distance can also interact with distributional 

information although in later measures compared to featural 

representations. 

A limitation of the present study is that the feature-based 

similarity cosines were obtained from a norming study 

conducted in English (McRae et al., 2005), while the 

language of the reading experiment was German. Future 

research should address this open issue, either by collecting 

feature-norms from German speakers or by conducting a 

similar eye-tracking reading study in English. We chose 

McRae‟s norms, since it included a larger number of our set 

of word pairs compared to other existing semantic features 

norms (cf. Vinson & Vigliocco, 2008). Moreover, while the 

present results contribute to the understanding of semantic 

representations, we are at this stage hesitant to speculate on 

the directionality of these early effects and its explanation. 
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Future research should further explore the consistency of 

these patterns.  

Conclusion 

In sum, the results from the present study offer a number of 

new insights into the role of featural, distributional and 

spatial information for the semantic interpretation of 

similarity. First, we extended previous results on spatial 

distance-similarity interactions from abstract nouns to 

concrete nouns. Second, based on our results, it is clear that 

both featural and distributional representations index rapid 

and incremental effects during sentence processing. Third, 

such effects were qualitatively distinct, both in terms of 

their time course and directionality. Finally, we 

demonstrated that both representational sources can interact 

with spatial information, but that their interactions differ in 

the time course.  

In conclusion, our results support the idea that these two 

similarity measures represent qualitatively different aspects 

of semantic representation and that models that combine 

both representational sources can reveal their differential 

influence on human semantic interpretation. 
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