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Abstract: We consider the problems of frequency stability, voltage stability and power sharing
in droop–controlled inverter–based microgrids with meshed topologies and dominantly inductive
power lines. Assuming that the conductances in the microgrid can be neglected, a port–
Hamiltonian description of a droop–controlled microgrid is derived. The model is used to
establish sufficient conditions for local stability. Furthermore, we propose a condition for the
controller parameters such that a desired steady–state active power distribution is achieved. The
robustness of the stability condition with respect to the presence of conductances is analyzed via
a simulation example based on the CIGRE benchmark medium voltage distribution network.
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1. INTRODUCTION

The increasing amount of renewable energy sources present
in the electrical grid requires new technical concepts to
ensure a safe and reliable operation. Two main reasons
for this are: (i) most renewable generation sources are
small–scale distributed generation (DG) units connected
at the low (LV) and medium voltage (MV) levels; (ii) a
large portion of these DG units are interfaced with the
network via AC inverters, the physical characteristics of
which largely differ from the characteristics of conventional
synchronous generators (SGs).

In that regard, microgrids represent a promising near–
time concept to facilitate the integration of renewable
DG sources, see Lasseter (2002). A microgrid gathers a
combination of generation units, loads and energy storage
elements at distribution level into a locally controllable
system, which can be operated in isolation from the main
transmission system. A microgrid in the latter operation
mode is called an autonomous or islanded microgrid.

This paper addresses three important performance criteria
in such networks: frequency stability, voltage stability and
power sharing. Here, power sharing is understood as the
ability of the local controls of the individual generation
sources to achieve a desired steady–state distribution of
their power outputs relative to each other, while satisfying
the load demand in the network. The relevance of this
control objective lies within the fact that it allows to pre-
specify the utilization of the generation units in operation.

? Partial support from the HYCON2 Network of excellence (FP7
ICT 257462) is acknowledged.

A widely used, though heuristic, solution for the problem
of active power sharing in conventional power systems
is droop control, see Kundur (1994). In the case of an
SG, droop control is a decentralized proportional control,
which sets the mechanical output power in dependency
of the relative deviations of the rotational speed of the
SG. Given its successful application in such systems, this
technique has been adapted to inverter–based networks
in Chandorkar et al. (1993); Coelho et al. (2002).

Furthermore, the power lines in microgrids are typically
relatively short. Then, slight differences in voltage ampli-
tudes can lead to large reactive power flows and reactive
power sharing among sources can not be ensured. There-
fore, the automatic voltage regulator (AVR) used in con-
ventional power systems to control the voltage amplitude
at a generator bus to a nominal setpoint is, in general,
not adequate in microgrids. This motivates the application
of droop control to also achieve a desired reactive power
distribution. In networks with dominantly inductive power
lines, the most common approach is to control the voltage
amplitude with a proportional control, the feedback signal
of which is the reactive power generation relative to a
reference setpoint, see Chandorkar et al. (1993); Coelho
et al. (2002) and the recent survey Guerrero et al. (2013).

Stability analysis of droop–controlled microgrids has been
traditionally carried out by means of detailed numerical
small–signal analysis as well as extensive simulations and
experimental studies aiming to characterize a range for
the droop gains guaranteeing system stability, see Coelho
et al. (2002); Pogaku et al. (2007).
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Under the assumption of constant voltage amplitudes,
conditions for frequency stability and power sharing for
radial microgrids with first–order inverter models and
purely inductive power lines have recently been presented
in Simpson-Porco et al. (2013a). Conditions for voltage
stability for a parallel microgrid with inductive power lines
have been derived in Simpson-Porco et al. (2013b) under
the assumption of small or constant angle differences.

However, and as pointed out in Guerrero et al. (2013),
most work on microgrid stability has so far focussed
on radial microgrids, while stability of microgrids with
meshed topologies and decentralized controlled units is
still an open research area. In that regard, and under
the assumption of constant voltage amplitudes, analytic
synchronization conditions for a lossy meshed microgrid
with distributed rotational and electronic generation are
derived in Schiffer et al. (2013) using ideas from second or-
der consensus algorithms. A decentralized LMI–based con-
trol design for lossy meshed inverter–based networks guar-
anteeing overall network stability for a nonlinear model
considering variable voltage amplitudes and phase angles
is provided in Schiffer et al. (2012).

The main contribution of this paper is to give sufficient
conditions on the control parameters to ensure local stabil-
ity of droop–controlled inverter–based microgrids operated
with the control laws given in Chandorkar et al. (1993).
We hereby consider networks with general meshed topol-
ogy and inverter models with variable frequencies as well
as variable voltage amplitudes. Since the synchronization
frequency is the same for all DG units and their dynamics
depend on the angle differences, it is possible to translate—
via a time–dependent coordinate shift—the synchroniza-
tion objective into a (standard) equilibrium stabilization
problem, which is the approach adopted here.

Specifically, we follow the interconnection and damping
assignment passivity–based control approach of Ortega
et al. (2002) to represent the lossless microgrid in port–
Hamiltonian form, see van der Schaft (2000). This allows
to easily identify the energy–Lyapunov function and give
conditions for stability of the synchronization equilibrium
state. In contrast to Simpson-Porco et al. (2013a,b); Schif-
fer et al. (2013), no assumptions of constant voltage am-
plitudes or small phase angle differences are made.

The remainder of the paper is organized as follows. The
network model is presented in Section 2. The inverter
model and the droop control are introduced in Section 3.
Sufficient conditions for local stability for lossless micro-
grids are established in Section 4. In Section 5 we propose
a selection of the droop gains and setpoints that ensures
the DG units share (in steady–state) the active power
according to a specified pattern. The robustness of our
stability condition with respect to model uncertainties, e.g.
conductances, is evaluated in Section 6 with a simulation
example based on the CIGRE (Conseil International des
Grands Réseaux Electriques) benchmark MV distribution
network, see Rudion et al. (2006). The paper is wrapped–
up with some conclusions and future work in Section 7.

This paper is an abridged version of Schiffer et al. (2014),
in which further results on properties of droop–controlled
microgrids, also under the presence of conductances, are
given. These include, among others, a proof that for all
practical choices of the parameters of the droop controllers
global boundedness of trajectories is ensured. In addition,
based on this result, a relaxed stability condition for a
specific gain selection in a lossless network is derived.
Furthermore, extensive simulation studies illustrating the
theoretical analysis are provided.

Notation. We define the sets R≥0 := {x ∈ R|x ≥ 0},
R>0 := {x ∈ R|x > 0}, R<0 := {x ∈ R|x < 0}, S := [0, 2π)
and n̄ := {1, . . . , n}. Given a set U := {ν1, . . . , νn}, the no-
tation i ∼ U denotes “for all i ∈ U”. Let x := col(xi) ∈ Rn
denote a vector with entries xi for i ∼ n̄, 0n ∈ Rn
the zero vector, 1n ∈ Rn the vector with all ones and
diag(ai), i ∼ n̄, an n × n diagonal matrix with diagonal
entries ai. Let j denote the imaginary unit. The transpose
of the gradient of a function f : Rn→R is denoted by ∇f .

2. NETWORK MODEL

We consider a generic meshed network model in which
loads are represented by constant impedances. This leads
to a set of nonlinear differential–algebraic equations. It
is then possible to eliminate all algebraic equations cor-
responding to loads via a process called Kron reduction,
see Kundur (1994), and obtain a set of pure differential
equations. We assume this process has been carried out
and work with the Kron–reduced network.

In the Kron–reduced microgrid, composed of n nodes, each
node represents a DG unit interfaced via an AC inverter.
We denote the set of network nodes by n̄ and associate
a time–dependent phase angle δi : R≥0 → S, as well
as a time–dependent voltage amplitude Vi : R≥0 → R>0
to each node i ∈ n̄ in the microgrid. We further-
more assume that the power lines of the microgrid are
dominantly inductive. Then, two nodes i and k of the
microgrid are connected via a complex nonzero admit-
tance Yik := Gik + jBik ∈ C with conductance Gik ∈ R>0
and susceptance Bik ∈ R<0. For convenience, we define
Yik := 0 whenever i and k are not directly connected via an
admittance. The set of neighbors of a node i ∈ n̄ is given by
Ni := {k

∣∣ k ∈ n̄, k 6= i , Yik 6= 0}. For ease of notation, we
write angle differences as δik(t) := δi(t)− δk(t) and define
the vectors δ(t) := col(δi(t)) ∈ Sn, ω(t) := col(ωi(t)) ∈ Rn
and V (t) := col(Vi(t)) ∈ Rn, where δ̇(t) = ω(t).

Following Kundur (1994), the overall active and reactive
power flows Pi : Sn × Rn>0 → R and Qi : Sn×Rn>0 → R at
a node i ∈ n̄ are given by1

Pi= GiiV
2
i −

∑
k∼Ni

ViVk(Gik cos(δik) +Bik sin(δik)),

Qi=−BiiV 2
i −

∑
k∼Ni

ViVk(Gik sin(δik)−Bik cos(δik)),
(1)

with

Gii := Ĝii +
∑
k∼Ni

Gik, Bii := B̂ii +
∑
k∼Ni

Bik, (2)

where Ĝii ∈ R>0 and B̂ii ∈ R<0 denote the shunt con-
ductance, respectively shunt susceptance, at node i. The
apparent power flow is given by Si = Pi+jQi.We associate
to each inverter its power rating SNi ∈ R>0, i ∼ n̄.
We assume that the microgrid is connected, i.e. that for all
pairs {i, k} ∈ n̄×n̄, i 6= k, there exists an ordered sequence
of nodes from i to k such that any pair of consecutive nodes
in the sequence are connected by a power line represented
by an admittance. This assumption is reasonable for a
microgrid, unless severe line outages separating the system
into several disconnected parts occur. Since we are mainly
concerned with dynamics of generation units, we express
all power flows in ”Generator Reference Arrow System”.

1 To simplify notation the time argument of all signals is omitted in
the sequel.
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3. INVERTER MODEL AND DROOP CONTROL

The inverters are modeled as AC voltage sources with
controllable amplitude and frequency, see Lopes et al.
(2006)2 . The frequency regulation is assumed instanta-
neous, but the voltage control is assumed to happen with a
delay represented by a first order filter with time constant
τVi
∈ R>0. Then, the dynamics of the inverter at node

i ∈ n̄ can be modeled as

δ̇i = uδi ,

τVi
V̇i = −Vi + uV

i ,
(3)

where uδi : R≥0 → R and uVi : R≥0 → R are controls. The
active and reactive power outputs are assumed to be
measured and passed through filters with time constant
τPi
∈ R>0 and Pi and Qi given in (1), see Coelho et al.

(2002); Pogaku et al. (2007), i.e.

τPi
Ṗmi = −Pmi + Pi,

τPi
Q̇mi = −Qmi +Qi.

(4)

Differently from SGs, inverters do not have an inherent
physical relation between frequency and generated active
power. Droop control attempts at artificially establishing
such relation, since it is desired in many applications, see
Engler (2005). The typical (heuristic) argument for the
derivation of the droop control laws for inverter–based
systems with dominantly inductive power lines is as fol-
lows, see Chandorkar et al. (1993); Engler (2005). Assume
dominantly inductive power lines, i.e. Gik ≈ 0, and small
phase angle differences δik. Then, it follows from the power
flow equations (1) that the active power flow Pi is mainly
affected by the phase angle differences, while the reac-
tive power flow Qi is mostly influenced by differences in
voltage amplitudes. This motivates proportional feedback
laws coupling the frequency with the active power and the
voltage with the reactive power, namely

uδi = ωd − kPi
(Pmi − P di ),

uVi = V di − kQi
(Qmi −Qdi ),

(5)

where ωd ∈ R>0 is the desired (nominal) frequency, V di ∈
R>0 the desired (nominal) voltage amplitude, kPi ∈ R>0
and kQi

∈ R>0 are the frequency and voltage droop gains,
Pmi : R≥0 → R and Qmi : R≥0 → R the measured powers
and P di ∈ R and Qdi ∈ R their desired setpoints. Inserting
(5) in (3) together with (4) yields the closed–loop system

δ̇i = ωd − kPi
(Pmi − P di ),

τPi
Ṗmi = −Pmi + Pi,

τVi V̇i = −Vi + V di − kQi(Q
m
i −Qdi ),

τPi
Q̇mi = −Qmi +Qi.

(6)

Since, in general, τVi
� τPi

, we assume τVi
= 0 in the

sequel. In addition, we rewrite the system (6) following
Schiffer et al. (2013) and obtain

δ̇i = ωi,

τPi
ω̇i = −ωi + ωd − kPi

(Pi − P di ),

τPi V̇i = −Vi + V di − kQi(Qi −Qdi ),
(7)

2 An underlying assumption to this model is that whenever the
inverter connects an intermittent renewable generation source, e.g., a
photovoltaic plant or a wind plant, to the network, it is equipped with
some sort of storage (e.g., flywheel, battery). Thus, it can increase
and decrease its power output in a certain range.

where ωi denotes the inverter frequency. Defining

P d :=col(P di ) ∈ Rn, P := col(Pi) ∈ Rn,
Qd :=col(Qdi ) ∈ Rn, Q := col(Qi) ∈ Rn,
V d :=col(V di ) ∈ Rn, T := diag(τPi

) ∈ Rn×n,
KP :=diag(kPi

) ∈ Rn×n, KQ := diag(kQi
) ∈ Rn×n,

(8)

we can write the system (7) compactly as

δ̇ = ω,

T ω̇ = −ω + 1nω
d −KP (P − P d),

T V̇ = −V + V d −KQ(Q−Qd),
(9)

with power flows P and Q given in (1).

Remark 3.1. Note that P di can also take negative values
whenever an inverter connects a storage device to the
network. Then, the storage device functions as a frequency
and voltage dependent load, which is charged in depen-
dency of the excess power available in the network. We
refer to such operation mode as charging mode.

Remark 3.2. There are several other alternative droop
control schemes proposed in the literature, e.g., Zhong
(2013); Guerrero et al. (2013). The one given in (5) is
the most common one for dominantly inductive networks.
We therefore restrict our analysis to these control laws,
commonly referred to as “conventional droop control”.

4. STABILITY FOR LOSSLESS MICROGRIDS

In this section conditions for stability for lossless micro-
grids, i.e. Gik = 0 for all i ∈ n̄, k ∈ n̄, are derived. We
therefore make the following assumption on the network
admittances.

Assumption 4.1. Gik = 0 and Bik ≤ 0, i ∼ n̄, k ∼ n̄.
This assumption can be justified for certain microgrids,
especially on the MV level, as follows: while the line admit-
tance in MV and LV networks has usually a non–negligible
resistive part, typically the inverter output impedance
is inductive (due to the inductance of the output filter
and/or the presence of an output transformer). Then, the
inductive parts dominate the resistive parts.

We only consider such microgrids and absorb the inverter
output admittance (together with the possible transformer

admittance), Ỹik, into the line admittances, Yik, while
neglecting all resistive effects. In the present case this
assumption is further justified, since the droop control laws
introduced in (5) are mostly used in networks with domi-
nantly inductive admittances, see Guerrero et al. (2013).

Under Assumption 4.1, the power flows (1) reduce to

Pi=
∑
k∼Ni

|Bik|ViVk sin(δik),

Qi= |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk cos(δik).

Remark 4.2. The need to introduce the, sometimes un-
realistic, assumption of lossless admittances has a long
history in power systems studies. We are aware that in
the case of the Kron–reduced network the reduced network
admittance matrix does, in general, not permit to neglect
the conductances and our stability results might therefore
be inaccurate. An alternative is to consider the idealized
scenario in which part of the inverter–interfaced storage
devices operate in charging mode, hence acting as loads
while all constant impedance loads are neglected. Another
approach is to use other, possibly dynamic, load models

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6363



instead of constant impedances in the so–called structure
preserving power system models. However, in the presence
of variable voltages the load models are usually, somehow
artificially, adapted to fit the theoretical framework used
for the construction of energy–Lyapunov functions, see
e.g., Davy and Hiskens (1997).

To establish our main result we need the following natural
assumption on existence of a synchronized motion of
system (9).
Assumption 4.3. There exist constants δs ∈ Θ, ωs ∈ R
and V s ∈ Rn>0, where

Θ :=
{
δ ∈ Sn

∣∣ |δik| < π

2
, i ∼ n̄, k ∼ Ni

}
,

such that the system (9) possesses for all t ≥ 0 a
synchronized motion given by3

δ∗(t)=mod2π{δs+1nω
st}, ω∗(t)=1nω

s, V ∗(t)=V s, (10)

satisfiying

1nω
s − 1nωd +KP [P (δs, V s)− P d] = 0,

V s − V d +KQ[Q(δs, V s)−Qd] = 0.
Remark 4.4. It is well–known that in lossless power sys-
tems

∑
i∼n̄ P

s
i = 0. Hence, the synchronization frequency

can be uniquely determined by replacing the synchronized
motion (10) in (7) and adding up all nodes, yielding

ωs= ωd +

∑
i∼n̄ P

d
i∑

i∼n̄
1
kPi

.

It follows that, for any i ∈ n̄,
ωs − ωd − kPiP

d
i =

∑
k∼n̄,k 6=i

kPi

kPk

(
ωd − ωs + kPk

P dk
)
. (11)

4.1 Error dynamics

To establish conditions on the setpoints and gains of the
controller (5) such that the synchronized motion (10) is
stable, it is convenient to introduce the error coordinates

ω̃(t) := ω(t)− 1nωs, δ̃(t) := δ(0) +

∫ t

0

ω̃(τ)dτ

and to study stability of the synchronized motion (10) in

the coordinates col(δ̃(t), ω̃(t), V (t)) ∈ Rn × Rn × Rn>0.

Note that the power flows P and Q in (8) are invariant to
a uniform shift of all angles. Hence, δ∗ is only unique up to
such a shift and convergence to the desired synchronized
motion (10) (up to a uniform shift of all angles) does
not depend on the value of the angles, but only on
their differences. Therefore, we can arbitrarily choose one
node, say the n–th node, as a reference node, express δ̃i,
i ∈ n̄ \ {n} relative to δ̃n via the state transformation

θ := Rδ̃, R := [I(n−1) −1(n−1)] (12)

and study convergence to the synchronized motion (10) in
the reduced system of order 3n−1 with θ=col(θ1, . . . , θn−1)

replacing δ̃.

To simplify notation, we define the constant 4 θn := 0, the
shorthand θik := θi − θk (which clearly verifies θik ≡ δik
for k 6= n and θin ≡ θi) and the constants

c1i := ωd − ωs + kPiP
d
i , c2i := V di + kQiQ

d
i , i ∼ n̄. (13)

3 The operator mod2π{·} : R → [0, 2π), is defined as follows:
y = mod2π{x} yields y = x − k2π for some integer k with
sign(y) = sign(x) and y ∈ [0, 2π).
4 The constant θn is not part of the state vector θ.

In the new coordinates col(θ, ω̃, V ) ∈ Rn−1×Rn×Rn>0 the
dynamics (9) take for the i–th node, i ∈ n̄ \ {n}, the form

θ̇i = ω̃i − ω̃n,
τPi

˙̃ωi = −ω̃i − kPi

∑
k∼Ni

ViVk|Bik| sin(θik) + c1i
, (14)

τPi
V̇i =−Vi− kQi

(
|Bii|V 2

i −
∑
k∼Ni

ViVk|Bik| cos(θik)
)

+ c2i
,

while the dynamics of the reference node n are given by

τPn
˙̃ωn= −ω̃n + kPn

∑
k∼Nn

VnVk|Bnk| sin(θk) + c1n
, (15)

τPn
V̇n=−Vn− kQn

(
|Bnn|V 2

n−
∑
k∼Nn

VnVk|Bnk| cos(θk)
)
+c2n

.

This reduced system has an equilibrium at
xs := col(θs, 0n, V

s), (16)
the asymptotic stability of which implies asymptotic con-
vergence of all trajectories of the system (9) to the syn-
chronized motion (10) up to a uniform shift of all angles.

4.2 Main result

To present the main stability result it is convenient to
introduce the matrices L ∈ R(n−1)×(n−1), W ∈ R(n−1)×n,
D ∈ Rn×n and T (θs) ∈ Rn×n defined in Appendix A.

Lemma 4.5. Consider system (9), (1) with Assumptions 4.1
and 4.3. Then L > 0.

Proof. Consider the vector P defined in (8) under As-

sumption 4.1 and let L̃ be given by

L̃ :=
∂P

∂δ

∣∣
(δs,V s)

∈ Rn×n

with entries given in Appendix A. Under the given as-
sumptions, and recalling that the microgrid is connected
by assumption, L̃ is a symmetric Laplacian matrix of a
connected graph with the properties, see Simpson-Porco
et al. (2013a); Schiffer et al. (2013)

L̃γ1n = 0, v>L̃v > 0, ∀v ∈ Rn \ {v = γ1n}, γ ∈ R. (17)

Recall the matrix R defined in (12), let r :=
[
0>(n−1) 1

]
and note that

L̃
[R
r

]−1

= L̃

[
I(n−1) 1(n−1)

0>(n−1) 1

]
=

[ L 0n−1

b> 0

]
, (18)

where b = col(l̃in) ∈ R(n−1), i ∼ n̄ \ {n}. It follows from
(17) and (18) that for any ṽ := col(ϑ, 0) ∈ Rn, ϑ ∈ R(n−1)

ṽ>L̃
[R
r

]−1

ṽ = ṽ>L̃ṽ = ϑ>Lϑ > 0.

Moreover, L is symmetric. Hence, L > 0.

We are now ready to state our main result.
Proposition 4.6. Consider the system (9), (1) with As-
sumptions 4.1 and 4.3. Fix τPi , kPi and P di . Select V di , kQi

and Qdi such that

D + T (θs)−W>L−1W > 0. (19)

Then the equilibrium xs = col(θs, 0n, V
s) of system (14)–

(15) is locally asymptotically stable.

Proof. Following the interconnection and damping as-
signment passivity–based control approach of Ortega et al.
(2002), we establish the claim by representing the sys-
tem (14)–(15) in port–Hamiltonian form to identify the
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energy–Lyapunov function. Defining x := col(θ, ω̃, V ), the
system (14)–(15) can be written as

ẋ = (J −R(x))∇H (20)

with Hamiltonian H : R(n−1) × Rn × Rn>0 → R given by

H(x) =

n∑
i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i
ln(Vi)) +

1

2
|Bii|V 2

i

− 1

2

∑
k∼Ni

ViVk|Bik| cos(θik)
)
−
n−1∑
i=1

c1i

kPi

θi. (21)

The interconnection and damping matrices are

J =

[
0(n−1)×(n−1) J
−J> 02n×2n

]
, R = diag(0(n−1), Rω, RV ),

where J =
[
JK −kPn

τPn
1(n−1) 0(n−1)×n

]
,

JK = diag

(
kPk

τPk

)
∈ R(n−1)×(n−1), k ∼ n̄ \ {n},

Rω = col

(
kPi

τ2
Pi

)
∈ Rn, RV = col

(
kQi

Vi
τPi

)
∈ Rn,

i ∼ n̄. Notice that J = −J> and R ≥ 0 and hence

Ḣ = −(∇H)>R∇H ≤ 0. (22)

Consequently, xs is a stable equilibrium of system (14)–
(15) if H(x) has a strict local minimum at the equi-
librium xs. The latter can be ensured by showing that

∇H(xs) = 0(3n−1) and ∂2H(x)
∂x2

∣∣
xs > 0. That the first re-

quirement is satisfied follows from(
∂H

∂θ

∣∣∣
xs

)>
= col

(
ai −

c1i

kPi

)
∈R(n−1),

(
∂H

∂ω̃

∣∣∣
xs

)>
= 0n,(

∂H

∂V

∣∣∣
xs

)>
= col

(
−bl + |Bll|V sl +

1

kQl

(
1− c2l

V sl

))
∈Rn,

where i ∼ n̄ \ {n}, l ∼ n̄ and

ai :=
∑
k∼Ni

V si V
s
k |Bik| sin(θsik), bl :=

∑
k∼Nl

V sk |Blk| cos(θslk).

Evaluating the Hessian of H(x) at xs yields

∂2H(x)

∂x2

∣∣
xs =

[ L 0(n−1)×n W
0n×(n−1) A 0n×n
W> 0n×n D + T (θs)

]
where L, W, D and T (θs) are given in (A.1), (A.2) and
A := diag(τPi

/kPi
) ∈ Rn×n. Since A is positive definite,

the Hessian is positive definite if and only if the submatrix[
L W
W> D + T (θs)

]
(23)

is positive definite. Now, Lemma 4.5 implies that, under
the standing assumptions, L is positive definite. Hence,
the matrix (23) is positive definite if and only if

D + T (θs)−W>L−1W > 0,

which is condition (19). Note that from (2), it follows that
T (θs) is positive semidefinite.

From (22) and the fact that R(x) ≥ 0, it follows that the
equilibrium xs is asymptotically stable if

R(x(t))∇H(x(t)) ≡ 0(3n−1) ⇒ lim
t→∞

x(t) = xs (24)

along the trajectories of the system (20). This implies

∂H

∂ω̃
= 0n,

∂H

∂V
= 0n.

The first condition implies ω̃ = 0n and, hence, θ is con-
stant. The second condition implies V constant. Conse-
quently, the invariant set where Ḣ(x(t)) ≡ 0 is an equi-
librium. To prove that this is the desired equilibrium xs

we recall that xs is an isolated minimum of H(x). Hence,
there is a neighborhood of xs where no other equilibrium
exists, completing the proof.

Condition (19) has the following physical interpretation:
the droop control laws (5) establish a feedback intercon-
nection linking the phase angles δ, respectively θ, with the
active power flows P, as well as the voltages V with the
reactive power flows Q.

The matrices L and T (θs) represent then the network
coupling strengths between the phase angles and the active
power flows, respectively, the voltages and the reactive
power flows. In the same way, W can be interpreted as
a local cross–coupling strength originating from the fact
that P 6= P (δ) and Q 6= Q(V ), but P = P (δ, V ) and
Q = Q(δ, V ).

Condition (19) states that to ensure local stability of the
equilibrium xs defined in (16) the couplings represented
by L and T (θs) have to dominate over the cross–couplings
of the power flows contained in W. If that is not the case
the voltage variations have to be reduced by reducing the
magnitudes of the gains kQi

, i ∈ n̄.

Another possibility is to adapt Qdi and V di . This does,
however, not seem as appropriate in practice since these
two parameters are typically setpoints provided by a
supervisory control, which depend on the nominal voltage
of the network and the expected loading conditions.

Remark 4.7. To see that (20) is indeed an equivalent
representation of (14)–(15), note that the part of the
dynamics of ω̃n in (15) resulting from J∇H is

kPn

τPn

1>(n−1)

(
∂H

∂θ

)>
=
kPn

τPn

( ∑
k∼Nn

VnVk|Bnk| sin(θk)−
n−1∑
i=1

c1i

kPi

)
,

since
∑n−1
i=1

∑
k∼Ni,k 6=n ViVk|Bik| sin(θik) = 0. From (11),

we moreover have that

c1n = ωd − ωs + kPnP
d
n = −

n−1∑
i=1

kPn

kPi

c1i .

The remaining term in ω̃n is contributed by the dissipation
part R∇H.
Remark 4.8. The analysis reveals that stability properties
of the lossless microgrid (9) are independent of the fre-
quency droop gains kPi

, the active power setpoints P di and
the low pass filter time constants τPi , and only condition
(19) is imposed on V di , kQi and Qdi . In that regard, the
result is identical to those derived for lossless first–order
inverter models in Simpson-Porco et al. (2013a) and loss-
less second–order inverter models in Schiffer et al. (2013),
both assuming constant voltage amplitudes.

5. ACTIVE POWER SHARING

Following the ideas derived in Simpson-Porco et al.
(2013a), we derive a selection criterion for the controller
gains and setpoints such that the generation units share
the active power according to a user–defined performance
criterion in steady–state. We employ the following defini-
tion to formulate the selection criterion.
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Definition 5.1. Let χi ∈ R>0 denote weighting factors and
P si the steady–state active power flow, i ∼ n̄. Then, two
inverters at nodes i and k are said to share their active
powers proportionally if

P si
χi

=
P sk
χk
. (25)

A possible power sharing performance criterion would be,
for example, χi = SNi , i ∼ n̄, where SNi ∈ R>0 is the
nominal power rating of inverter i.

Lemma 5.2. Consider the system (9), (1). Assume that
it possesses a synchronized motion with synchronization
frequency ωs ∈ R>0. Then all inverters, the power outputs
of which satisfy sign(P si ) = sign(P sk ), achieve proportional
active power sharing if the gains kPi

and kPk
and the active

power setpoints P di and P dk are chosen such that

kPiχi = kPk
χk and kPiP

d
i = kPk

P dk , (26)

i ∼ n̄ and k ∼ n̄.
Proof. The claim follows in a straighforward manner from
Simpson-Porco et al. (2013a), where it has been shown
for first–order inverter models and χi = SNi , P

d
i > 0,

P si > 0, i ∼ n̄. Under conditions (26), we have along the
synchronized motion of the system (9)

P si
χi

=
−ωs + ωd + kPi

P di
kPiχi

=
−ωs + ωd + kPk

P dk
kPk

χk
=
P sk
χk
,

where i ∈ n̄ and k ∈ n̄ with sign(P si ) = sign(P sk ).

Lemma 5.2 guarantees proportional active power sharing
independently of the admittance values of the network.
Moreover, Lemma 5.2 also ensures that storage devices in
charging mode are charged proportionally.

Remark 5.3. As described in Section 3, the voltage droop
control law (5) follows a similar heuristic approach as the
frequency control droop law, aiming at obtaining a desired
reactive power distribution in steady–state. However, the
voltage droop control (5) does in general not achieve
proportional reactive power sharing since – unlike the
frequency – in general V si 6= V sk for i ∈ n̄ and k ∈ n̄.

6. SIMULATION EXAMPLE

We illustrate the theoretical analysis via a simulation
example based on the three–phase islanded Subnetwork
1 of the CIGRE benchmark medium voltage distribution
network, see Rudion et al. (2006). The network represents
a meshed microgrid composed of 11 main buses, see Fig. 1.
It possesses six controllable generation sources of which
two are batteries at buses 5b (i = 1) and 10b (i = 5),
two are FCs in households at buses 5c (i = 2) and 10c
(i = 6) and two are FC CHPs at buses 9b (i = 3) and 9c
(i = 4). We assume that all controllable generation units
are equipped with frequency and voltage droop control as
given in (5) and associate to each inverter its power rating
SNi = [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu, where pu
denotes per unit values with respect to the system base
power Sbase = 4.75 MVA. The maximum system load is
0.91 + j0.30 pu. The total PV generation is 0.15 pu. A de-
tailed model description together with further simulation
studies are given in Schiffer et al. (2014).

The simulation also serves to evaluate the robustness of the
model (1), (9) and the stability condition (19) with respect
to model uncertainties. In that regard, the inductances
are modeled by first–order ODEs opposed to constant
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Fig. 1. Benchmark model adapted from Rudion et al.
(2006) with 11 main buses and inverter–interfaced
units of type: PV–Photovoltaic, FC–fuel cell, Bat–
battery, FC CHP. PCC denotes the point of common
coupling to the main grid. The sign ↓ denotes loads.

admittances as in (1). Furthermore, loads are represented
by impedances. The simulation is carried out in Plecs.

We treat PV generation as negative loads and assume
all PV units work at 50% of their nominal power. The
wind turbine is neglected. To determine the equivalent
admittance of a load at a node i ∈ n̄, the load demand and
PV generation at each bus are added and the admittance
value is calculated at nominal frequency and voltage
(Vbase = 20 kV). In the corresponding Kron–reduced
network all nodes represent controllable DGs.

The largest R/X ratio of an element of the admittance
matrix of the equivalent Kron–reduced network is 0.22,
while a typical value for an HV transmission line is
0.31, see Engler (2005). Consequently, the assumption
of dominantly inductive admittances is satisfied and the
droop control laws (5) are appropriate. The active power
droop gains and setpoints of the inverters are designed
according to Lemma 5.2 with χi = SNi , P

d
i = αiS

N
i pu,

kPi
= 0.1/SNi Hz/pu and αi = 0.65, i ∼ n̄. The reactive

power setpoints are set to Qdi = βiS
N
i pu with βi = 0.25,

i ∼ n̄ and the reactive power droop gains are chosen in
the same relation as the active power droop gains, i.e.
kQi

= 0.2/SNi pu/pu and V di = 1 pu, i ∼ n̄. The low pass
filter time constants are set to τPi

= 0.5 s, i ∼ n̄.
The simulation results in Fig. 2 show that all trajectories
synchronize in less than 3 s. Condition (19) is satisfied,
which indicates that the condition is robust – to a certain
extent – to the presence of transfer and load conduc-
tances. As predicted by Lemma 5.2, the active power
is shared proportionally by the droop–controlled sources.
The voltage amplitudes satisfy the typical requirement of
0.9 < V si < 1.1 for V si in pu and i ∼ n̄. However, the
reactive power sharing among all units is not proportional.

The observation that the stability condition (19) is, to a
certain extent, robust to the presence of model uncertain-
ties is reconfirmed in numerous further simulation scenar-
ios with a large variety of different parameter settings.

7. CONCLUSIONS

We have considered the problems of frequency stability,
voltage stability and power sharing in a droop–controlled
inverter–based microgrid with dominantly inductive power
lines. Based on a port–Hamiltonian representation of the
microgrid (derived under the assumption of negligible con-
ductances) we have established a sufficient condition for lo-
cal stability, which depends on the choice of the controller
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Fig. 2. Trajectories of the power outputs Pi, Qi in pu, the
relative power outputs Pi/S

N
i , Qi/S

N
i , the internal

relative frequencies fi = (ωi − ωd)/(2π) in Hz and
the voltage amplitudes Vi in RMS of the controllable
sources in the microgrid given in Fig. 1. The lines
correspond to: battery 5b, i = 1 ’–’, FC 5c, i = 2
’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4 ’* -’,
battery 10b, i = 5 ’M -’ and FC 10c, i = 6 ’o-’.

gains and setpoints of the voltage droop controllers, but
does neither depend on the choices of the controller gains
and setpoints of the frequency droop controllers nor on
the low pass filter time constants. A design criterion on
the controller gains and setpoints guaranteeing a desired
steady–state active power distribution has been provided.

The robustness of the stability condition with respect to
model uncertainties, such as the presence of conductances,
has been evaluated in a simulation example based on the
CIGRE benchmark MV distribution network. The simula-
tions show that the derived stability condition is satisfied
and a desired steady–state active power distribution is
achieved for a wide selection of different control gains, set-
points, low pass filter time constants and initial conditions.

Since droop control fails in general to achieve a desired
reactive power distribution, future research concerns al-
ternative, possibly distributed, solutions to this problem.

Appendix A. DEFINITION OF THE MATRICES D, L̃,
L, W AND T (θS)

The matrix D is given by

D := diag

(
c2m

kQm
(V sm)2

)
= diag

(
V dm + kQm

Qdm
kQm

(V sm)2

)
,m ∼ n̄.

(A.1)

The entries of the matrices L̃,L,W and T (θs) are given by

l̃pp :=

n∑
q=1

|Bpq|V sp V sq cos(δspq), l̃pq:=−|Bpq|V sp V sq cos(δspq),

lii :=

n∑
q=1

|Biq|V si V sq cos(θsiq), lik := −|Bik|V si V sk cos(θsik),

wii :=

n∑
q=1

|Biq|V sq sin(θsiq), wiq := |Biq|V si sin(θsiq),

tpp := |Bpp|, tpq := −|Bpq| cos(θspq), (A.2)

where i ∼ n̄ \ {n}, k∼ n̄\ {n}, as well as p ∼ n̄ and q∼ n̄.
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