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1. Introduction

Feedback stabilization can be seen as the task of making a given work-
ing trajectory, for example from aopen-loopcontroller [10], more robust
with respect to disturbances. We want to applinear quadratic regulator
(LQR) approach to stabilize this open-loop trajectory [17]. Raymond [19]
deduces boundary feedback stabilization of 2D incompressible flow prob
lems and extends this approach to finite dimensional controllers in [20].
Bansch/Benner investigate several ideas for the numerical realizatiofy in [2
where they apply standard Taylor—Hood finite elements [11]. This type of
discretization naturally leads to a discrete differential algebraic system of
equations of differentiation index 2 [22]. The differential algebraicraba

ter of the equations causes several technical difficulties in the regufator a
proach. Most of these have been solved by the approach given inljh

is following ideas from [9]. Still, when solving the appearing linear systems
approximately, i.e., by an iterative linear solver, one can not guarantee the
validity of the divergence freeness condition.

This paper is devoted to two major subjects. On the one hand, we want
to show how the numerical methods for the feedback computation can be
reformulated independently of the actual spatial discretization. On the other
hand, we present a new type of finite element that overcomes the difficulties
regarding the algebraic constraints by guaranteeing the divergawreefs
of the discrete solutions computed in each step of our algorithm.

To be independent of the numerical discretization, we first formulate
the problem as aardinary differential equatiofODE) defined in &ilbert
spaceand apply theNewton-ADIprocess [3] to compute the optimal control
to the resulting operator equations in a formal way. We identify the main
steps of the algorithm, i.e., the shifted linear operator equations in terms of
stationary linear PDEs containing an additional reaction term resulting from
the shift. These PDEs can be solved by any spatial discretization method.
One efficient realization of the solver for the PDEs is given by the use of
our quadrilateral finite elements.

An advantage of the usage of quadrilateral finite elements is that, in or-
der to decompose a two-dimensional domain into simple cells, one needs
approximately half the number of quadrilateral cells compared to triangu-
lar cells. In the three-dimensional case at least about 5 times more tetra-
hedra compared to hexahedra are required for decomposing a domain. O
the other hand, the reference transformation for quadrilateral ohbédral
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elements is more complicated than for triangular or tetrahedral elements
where it is simply an affine mapping. For an affine mapping the Jacobian is
constant and has to be computed only once for all integration points when
assembling the local element matrices.

Therefore, we work as a compromise wibmposite quadrilateral el-
ementswhere the reference transformation is continuous and piecewise
affine. This is realized by subdividing each quadrilateral mesh cell into 4
son-trianglesand getting profit from the affine mapping between each son-
triangle of the original cell and its corresponding son-triangle of the ref-
erence cell. One can regard this approach also as a blocking of 4 triangu
lar finite elements to one quadrilateral element. The advantage is that one
can eliminate all interior degrees of freedom of the quadrilateral cells by
means of the well-known static condensation technique which leads to a
much smaller linear system that has to be solved.

Our motivation for using non-conforming instead of conforming finite
elements is the following:

e it allows us to use the low order element pair of Crouzeix—Raviart
(see [7] and [6, pp.107-109]) on the son-triangles which is inf-sup
stable and has low computational costs;

e it guarantees pointwise mass-conservation within the son-triangles;

e the basis functions for the velocity aké-orthogonal which leads to
a diagonal mass matrix;

e after eliminating the interior degrees of freedom of the quadrilateral
elements, the remaining basis functions have a much smaller number
of couplings compared to the conforming case.

The remaining paper is structured as follows. In Section 2, we give a
brief overview of the LQR idea in the operator setting and identify all PDEs
we have to solve to compute the optimal control. Afterwards, we introduce
our new composite non-conforming quadrilateral elements in Section 3. We
show numerical results in Section 4 and conclude the paper at the end.

Finally, before getting to the main part of the paper, we fix some no-
tation. LetQ ¢ R? be a bounded domain iR? with boundaryl” := 9Q.

We denote the outer unit normal vector brnby n and use the standard
Sobolev spaced/kP(G), H¥(G) = W*2(G), H(G), andLP(G) = WOP(G)
for a measurable one- or two-dimensional Get Q with its measureG,
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where 1< p < «. The norms, semi-norms in the scalar and vector-valued
versions inW*P(G) are denoted by} - ||k p.c and| - |k p.c, respectively. The

L? inner product orG is denoted by(-,-)g. The broken norms and inner
products defined over some partitioffgare indicated by the additional sub-
scripth. To simplify the notation, we will drofi if G=Q andpif p= 2.
Z(X,Y) stands for the set of linear operatéks X — Y between Hilbert
spacesX, Y. The adjoint operator of will be denoted byA* whereasx’
stands for the dual space Xf

2. Feedback stabilization of Stokes flow

In this section, we consider the feedback stabilization of flow problems by
means of boundary control. Though Stokes flow is stable, feedbadkecan
used in order to achieve steady state faster than in the uncontrolled situa-
tion. Moreover, external disturbances can be attenuated. In this, pe@er
consider the Stokes flow as the first simple candidate for a non-stationary
incompressible flow problem. This will be a prime step on the way to the
treatment of non-self-adjoint and non-linear incompressible NaviereStok
equations.

2.1. Non-stationary Stokes problem

Let Q be a two-dimensional domain with the bound&rye I'p U, con-
sisting of the Dirichlet parf p and thedo-nothingpart',,. The Dirichlet
partl'p = UT g4 is further decomposed into the control pggtand the re-
maining Dirichlet parf” 4. We consider the following non-stationary Stokes
problem:

Find a velocity fieldv(t) : Q — R? and a pressure field(t) : Q — R
such that for alt € (0, ) it holds

%v(t) —VAV(t)+0p(t)=f inQ (2.1a8)
divv(t) =0 inQ (2.1b)

v(t)=0 onfl; (2.1¢)

v(t)=g only (2.1d)
—vOv(t)-n+pt)n=0 only (2.1e)

v(0)=vp inQ. (2.1



Non-conforming composite quadrilateral FE 195

Here,v > 0 denotes the constant dynamic viscosfty[], as well as div,
represent the usual differential operators with respect to the spaicdie

x; f denotes an external force influencing the sysganme given Dirichlet
data,n the unit outer normal vector dn, andvg the initial velocity. Based

on the ideas of Raymond [19, 20], we want to apply a feedback boyndar
stabilization technique. The arising linear-quadratic control problem will be
presented in the next subsection.

2.2. Riccati-based boundary feedback stabilization

Let (w, x) denote the velocity and pressure solution of the stationary Stokes
equations

—vAw+Ox=f inQ (2.2a)
dvw=0 1inQ (2.2b)

w=0 onl (2.2¢)

w=g only (2.2d)
—viw-n+xn=0 onl, (2.2e)

with some special properties we want to achieve. Such properties cquld be
for example, thatw, x) solves a possibly constrained open loop (boundary)
control problem. That means|(x) is a stationary solution of (2.1), see [19].
Our aim is to stabilize the solutiofw, x) by means of a feedback control
driven by a time dependent control vectdt) = (u(t)) € RMe. The vector

u(t) determines the velocity at the control boundagy= U'lz‘il Fék) in the

way that the componeni(t) is responsible for the Dirichlet data on the
part FE"). To be more specific, we introduce a boundary control operator
be : RNe — (HY(I"))2 which assigns the control vectoft) to some Dirichlet
data ol ¢ defined as

(beu(t)) (x) = NZ () EN(X)  vxerl. (2.3)
k=1

Here,E® ¢ (H1(M))? with E® |0 =0 denotes the prescribed shape func-

tion associated with the control boundary n'aéli) forallk=1,...,Nc.
Using the splitting

(v, p) = (W+V, X +P)
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we defing(V, f) as the perturbation in the solutiown p) of (2.1) with respect
to the desired solutiofw, x) of (2.2). Then, the control problem fd¥, p)
reads:

Fort € (0,), find a velocity fieldv(t) : Q — R? and a pressure field
p(t) : Q — R such that for alt € (0, ) it holds

%V(t) — VAV(t) +Op(t) =0 inQ (2.4a)
divi(t) =0 inQ (2.4b)

V(t) =beu(t) onl¢ (2.4c)

V(t)=0 only (2.4d)

—VvOV(t) -n+ p(t)n=0 only (2.4e)
V(0) =V inQ. (2.4f)

The boundary contrdi.u from (2.3) describes the influence of the feedback
via boundary stabilization. The feedback stabilization computed via (2.4)
then forces the instationary solution p) of (2.1) to the stationary solution
(w, x) of (2.2) by means of the modified boundary conditigh) = beu(t)

onrl ¢ for anyt € (0,).

Raymond [19] determines a linear feedback law to stabilize (2.4). Based
on his ideas, Bnsch/Benner show in [2] initial steps for the numerical re-
alization. Benner et al. use a mixed finite element method [11] to show
first numerical realizations based on a matrix approximation of (2.4) in [4].
Thereby, it is shown that one can use the projection idea presentedtin [9]
have a matrix approximation of thesray projection.

In the following, we combine the matrix based approach in [4] with
the operator formulation in [19, 20] in a formal way, using some notations
of [21] and avoid the weak formulation of operatord #(Q).

From now on we skip the argumeritsx) where they are obvious. Fur-
thermore, we use the following spaces

V2(Q) ={ve (L3%(Q))?: divv=0inQ, v.n=0 onl'}
V3 (Q) = {ve (HY(Q))?: divv=0 inQ, v=0 onlp}.

Let 2 : (L?(Q))% — V2(Q) denote the so calleiderayor Helmholtzprojec-
tor and lete be the Stokes operator defined as

AHt) = vPNI(t) V() € (H3(Q))2NVE(Q).
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Recasting the influence of the Dirichlet contbgli(t) as the action of a con-
trol operatorZ : RN — V9(Q), (2.4a)—(2.4b) can be reformulated (using
the propertw= 2V for the solutionv) in the spirit of [19] as

9”;‘7(” = o PU(t) + Bu(t). (2.5)

The computed contral(t) € R can be used independently of the approx-
imation we applied for the underlying PDE. Note, however, that we may
introduce a certain suboptimality when applying the control computed with
respect to one approximation, to a much finer approximation, or even the
original system.

We introduce the observation variable

y(t) = C2N(t) (2.6)

where the output operatéf maps the velocity field onto our observation
spaceRMNets and can be chosen in different ways, which is explained for
our model problem in Subsection 4.1. The linear-quadratic regulator JLQR
problem reads as follows:

Minimize the cost functional

=5 [ IO+ Juw)a @72

subject to
@%V(t) = of (L) + Bu(t) (2.7b)
y(t) = € 2. (2.7¢)

Itis known (e.g., [14,16]) that the optimal conttel G(t) € RN that solves
the LQR problem (2.7) can be represented as

d=—-V
with the feedback operator

—

HNAQ) RN =B
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where2 = 27 € 2(V2(Q),VO(Q)) is the unique stabilizing weak solu-
tion of the Riccati operator equation

0=CC+ A" X+ XA~ XBEX = RL). (2.8)

A common way to solve the non-linear operator equation (2.8) is a Newton-
type iteration as described in [1,13]. Using leinmanreformulation [12],
it turns out that we have to determit® (™1 from the equation

(7 MYy g (D) o g (M) g7 (M) — gy (M) (5 (M) (2.9)

where 7™ = o7 — %* 2™ and w M = [¢*, (%*2™)*] in each
Newton stepm. Thereby,# (™ is the operator column matrix [21] defined
as

/M RNobs 5 RNe 5 \O(Q) x VO(Q)'.

A solution strategy for the matrix version of equation (2.9) islthe-rank

ADI iteration [3, 15], where low-rank factors of the solution are computed.
The operator version of the low-rank ADI iteration is presented in [21].
Combing this with the Newton iteration, we end up with tBgerator
Newton-ADI iterationpresented in formal operator notation in Algorithm
2.1 to determine the desired feedback operator In practice, we need
finite dimensional approximations of the infinite dimensional operators. A
common way is to use a finite element method to explicitly create the ma-
trix representations for a fixed finite element basis. The main difficulty is to
fulfill the algebraic constraints given by equation (2.1b), which means the
finite element space has to fulfill this property by default or we need a nu-
merical realization of théeray projector. As mentioned before, Benner et
al. show in [4] a realization using mixed finite elements, liley/lor—-Hood
elements [11]. Here, we consider a possibly matrix free approachewttner
crucial steps of Algorithm 2.1 are handledlaack-box-functionssolving

the underlying generalized Stokes problems with the algebraic constraints.
In the next subsection, we give a brief overview about the requitack-
box-functiongn Algorithm 2.1. The convergence of the ADI iteration de-
pends on the shift paramete{ai}{‘:’*i'. In the numerical experiments we
apply the heuristi®enzlIshifts [18].
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Algorithm 2.1 Operator Newton-ADI method

Input:  shift parameter§pi, . . ., Un,g, + With (i € C~
Output: feedback operatof”

1.0 =0

22m=1

3: while not convergedio

a =g, (M)
5. Get7; by solving
(" +mI) PV =™

6 A" = _2Re(l)- B NI

7. i=2

8:  while not convergedio

9 Get 7 by solving (via Sherman—Morrison—Woodburry formula)

(" — (VY B VPV = PV

10: Y=H - (4 m1)V
w4 = 04" - 2Re(u) BN
12: i=i+1
13:  end while
14: M= 7™
15 m=m+1
16: end while

17: H =M
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2.3. Practical realization of main steps in Algorithm 2.1

The main computational steps in Algorithm 2.1 are the lines 5 and 9. In line
5, we have to solve fo¥; in the equation

(A +mI) PV =™,

Therefore, one maiblack-box-functions to solve thegeneralizedstation-
ary Stokes problem

—VAV—pv+0p=f,m InQ (2.10a)
divv=0 inQ (2.10b)

v=20 onlp (2.10c)
—vlv-n+pn=0 only (2.10d)

for severals right hand sidef,  depending on the realization o (M),
This means every column it (™ creates a different functiofy, m and we
arrange all solutiong again in columns of the operat®f. In line 9 there is
an additional tern{.z (™-1))*2* 2 of two low-rank operators resulting
from the formulation of the low-rank ADI. To avoid this term in (2.10),
we use, analogous to the matrix version [4, Subsection 3.1 leeman—
Morrison—Woodburnformula [8] and solve the operator equation

(o + W I) PV = [PV q, (™D

which means we have to solve the PDE (2.10) for the right hand dides
depending on??¥_; andf . depending orf.# (™1)*_ We, thus, get dif-
ferent solutions from the different right hand sides which form therools

of the operator/7. Additionally, we need the computation of the action of
the operators’* and .7 * asblack-box-functionsin practice, we have to
approximate the solution of (2.10) by means of discrete solution. We apply
a finite element discretization which we explain in detail in Subsection 3.3.

3. Non-conforming composite quadrilateral finite elements

First, we introduce some notation concerning the used space grids. We
denote by.%, an admissible approximate decompositiontdfnto shape-
regular quadrilaterals (with straight edges), where the curved bounda
part is polygonally approximated. The mesh-size parantetsrgiven by
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h:=max{hk : K € 9}, wherehk denotes the diameter of the cKlle %,.
From a given meshZ;, at grid level/ we create the next finer mesh at
grid level ¢+ 1 by subdividing each quadrilateral mesh dele %, into
4 quadrilaterals, where the midpoints of opposite edgésafe connected.
For mesh cellK € %, having an edg& located at a curved boundary part
of the domain, the midpoint dt is shifted onto™ before being used as a
new vertex in the new mesb, ;. Thus, a domai® with curved boundary
parts is approximated on each grid level by a polygonally bounded domain
Qp = Ukez K. However, for the presentation of our theoretical basics, we
will always assume thdR = Qy,.

In Subsection 3.1, we describe the decomposition of the reference ele-
ment into son-triangles and the global space of non-conforming composite
quadrilateral finite elements in Subsection 3.2.

3.1. Composite quadrilateral reference element

Let K = (—1,1)2 denote the reference cell ad its decomposition into
(open)son-trianglest;, i.e.,

_ 4 _
T ={Ty,..., T4}, K=JTi
i=1

such that all son-triangles have a common vertex-at0"(see Fig. 1). The
concept of composite elements consisting of triangular son-gglisfor

alli =1 ... 4 exploits the fact that one can profit from a continuous and
piecewise affine reference transformatken: K — K such that

Tk =Fl:(f),  Flse [PuM]® vi=1...4 (3.1

where the son-triangl& x C K has the vertices;, a1, andag using the
convention thalg denote the barycenter arg, ... ,a4 the vertices oK,
respectively, withas := a;. The advantage is that the Jacobian of the restric-
tion Fx|+. is constant which simplifies the generation of the element matrices
since many terms can be pre-computed in advance on the reference element.
In order to define finite element spaces and basis functions on the refer-
ence elemeri and the original elemerit, we have to introduce some more
notation about the decomposition KfandK. The decomposition of the
original cellK into son-triangles will be denoted by = {Tik, ..., Tak}-
We define& as the set of all edges of the son-triangleKofurthermore,
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as ag

=)

z5 ay as

0 Ty

Figure 1. The composite ceK = F (K), wherefFg|; € [Py(T)]%

we denote byf"”t C & the subset of all edges in the mtenorléfand by
&P the subset of all edges on the bounda. To an edgeE €&, we
assign a unit normal vectog on E with an arbitrary, but fixed orientation.
For a given possibly discontinuous functign K — R", we define for each
interior edgeE € &M thejump[[¢] ¢ as the function

[#]e(®) = lim §(%+7hg)— lim $(R—Thg) VX E.

T—+0
In the following, let(-, -) ¢ denote the inner product It?(E). Now, the local
non-conforming composite polynomial space}%nan be described as

PIR) = {9 € L2(K) : Wz ePy(T) vT e 7,
_ (3.2)
([9e.2)e =0 vEem).

To ensure the existence of traces of a function on the eﬁges?, we
introduce the broken Sobolev space
Hi(Z) = {UeL?(K): V; eHY(T) vTeT}).

The degrees of freedom of the non-conforming compd3jtelement
are associated with the edges of the son-triangles. Therefore, we ntirabe
edges ing (see Fig. 2) with the convention that

= {El7"'7é\4}7 @@mt {E57 7E8}
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Es
°
Es E;
E,® L )
Es Eg
®
E,

Figure 2. Numbering of the edges of the son-trianglgs on the reference eleme:hocal
degrees of freedom (marked #y of the composité]°(K)-element.

and assign to each son-edgehe nodal functional
NG HYZ) =R, N@ =B *(01g, i=1..,8
where|E;| denotes the length of the ed§e These nodal functionals are

unisolvent with respect to the polynomial spé’(fl\é(lz) and define uniquely
the reference basis functiofis P(K) by means of the conditions

Nij($)=3aj, i,j=1,....8 (3.3)

whered;j denotes the Kronecker delta. In order to show the approximation
properties of the discrete velocity space on the reference element we intro
duce the velocity interpolation operatior. H(K) — P1¢(K) as

8
IVGa(X) := ZNi(O)dii(f() Vi e HY(K).
i=
Applying the Bramble—Hilbert lemma [5] on each son—trian‘ﬁle 9\ we
can show the estimate
I6-Rall ¢ <Cldl,7 YT e 7, GeH(K) (3.4)

which is the basis to prove optimal approximation properties on the original
mesh.Z,. For a vector-valued function€ (H1(K))2, the operatot, is ap-
plied to each component of ~
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3.2. Global finite element spaces for velocity and pressure

In this section, we describe the construction of the global finite element
space$/, andQy, for approximating velocity and pressure, respectively. We
start with the definition o#, which is based on the piecewise affine ref-
erence transformatiori& : K — K and the previously defined polynomial
spacéP’QC(IZ) on the reference element. In order to keep the consistency error
of the global non-conforming discretization within the right asymptotic or-
der, we have to ensure for each discrete functjps i, that the jumps ofy,
across the edges of the son-triangles of all quadrilateral cells arénzibe
integral mean value. Therefore, we need some notation on edges and jumps
analogously to the previous section for the reference element. For @ give
quadrilateral celK € .7, the symbols’(K) denotes the set of all boundary
edges of the quadrilateral c&llwhich are the images of the eddes &bnd

via the mappind : K — K. Furthermore, le&, denote the set of all edges

in the union of thes’ (K) over all cellsK € ., and&™, &P"dthe subsets of

the edge£ € & in the interior and on the boundary of the dom&inThe
set&PM s split as

éahbnd _ éahD U éahN

where &P denotes the set of boundary edges with prescribed Dirichlet
boundary conditions, whiléahN denotes the set where ‘do-nothing’ bound-
ary conditions are imposed. To each edge &, we assign a unit vector

nz normal toE which is assumed to point outwards with respecftaf

E e £hb”d. For a given edgé& € &}, and a possibly discontinuous function

¢ : Q — R, which is continuous on each sub-triangle of the cKlls .7,

we define for allk € E thejump[¢] e as the function

oo o | AP T — lim pxwre), B
Tllm-o(p(X_TnE% Ee éahbnd_

Now, we are in the position to define the scalar discrete velocity spade
can be described via the piecewise affine reference mappings — K as
follows:

Sii= {6 €L?(Q): plcoFc c PIK) VK e F,
([9]e.De=0 VEe&M)
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For the test functions in the discrete problem, we need also the subspace
$ C S with discretely homogeneous Dirichlet boundary conditions, i.e.,

K= {p €S ([#le.De=0 VEeEY}.

The associated vector-valued discrete velocity spaces/are- (S,)? and

V2 := (S)2. The jump conditions in the definition &, are realized by the
following choice of the global basis functions. One subset of basigiurs

is associated with the set of the interior edges and the set of the non-Oirichle
boundary edges. Therefore, we number these edges as

gri]nt U ghN = {El, ceey ENEDG}'

For each edgg; € &™uU &N, we define an associated scalar basis function
¢ by its restriction to an arbitrary elemelite !

. -1 ] o ~
9ilk(x) = {‘“FK (). Ej€&(K), Ej=F(E).

x e K.
0, Ej € £(K),

Due to the Kronecker-delta property (3.3) of the reference basigidunsc
i, we get the jump-property[¢;Je, 1)z = O for all edgesE € &MU &P
which implies¢; € S,. The remaining basis functions & are so-called
non-conforming bubble functiorsince their support is just one cell. For
each celK € %, there are four of such bubble functiOtpﬁi defined for all
xe Qas:

b . ) Pari(FCI(X),  xeK, .
¢K,|(X)-—{O’ 2K, Vi=1,....4

The scalar velocity space in the case of homogeneous Dirichlet boundary
conditions can be represented by means of its basis functions as

S =spar{¢;, j=1,....Neps, ¢£;, K€ T, i=1...,4}.

Remark 3.1. It is easy to verify that for each son-triangfa\, m =
1,...,4, ofKit holds

((ﬁj,(ﬁi)fmzo, ije{l,...,8}, i #].

Since the reference mappifg : K — K is affine on eacfim, we get that the
local basis functiong; o F,{l are orthogonal i.?(K). This implies that the
above constructed global basis functionsSpfandV4, are orthogonal with
respect to the inner productslif(Q) and(L?(Q))?, respectively.
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In the following, we will describe the discrete pressure sg@geSince
this space consists of piecewise constant functions, it is not necessary
define it via the reference mapping. We start with the definition of the local
composite pressure space for an arbitrary quadrilateraKcellZ, which is
given as

PE(K) :={qe L®(K): glr. €Po(Tix), i=1,....4}  (3.5)
where theT g := FK('ﬁ) denote the son-triangles &f. The natural basis
functions ofPd%(K) are the characteristic functiopsk, i = 1,...,4, which
are defined to be 1 on the associated son-trialgdeand O on the remain-
ing part of the celK. Using the local composite spadégc(K), the global
pressure spadgy, can be described as

Qnh:={9eL¥Q): gk € PF(K), Ke T} 3.6)
=spanxix, i=1,...,4, K %}. '

3.3. Discretization of the generalized Stokes problem

In this subsection, we treat the discretization of the following weak formu-
lation of the generalized Stokes problem (2.10), which is the key ingredient
in performing the main steps in Algorithm 2.1:

Find (v, p) € (Wb +V) x Q such that

(divv,q) =0 vgeQ. (3.8)

Hereu < 0 denotes a given constant (shift parameter from Algorithm 2.1),
the space® andV are defined by := L?(Q),

Vi={¢ € (H'(Q)?: $Ir, =0}

wherev, € (H1(Q))? is an extension t& of the given Dirichlet boundary
data, andf € (L?(Q))? a given body force. The nangeneralizedStokes
problem comes from the presence of the term with the fgctohich arises
from our approach to compute the feedback control. This extra term does
not cause any problems in theory and practice.

In the non-conforming case, the first derivatives of the discrete igloc
function exist only locally on the son-triangles of the quadrilateral mesh
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cells. Therefore, we introduce the following discrete bilinear forms

Ke

4
an(v.9):= 3 3 {v(OvO9)m— U9}
4

br(v,0) :=— 3 Zl(divv,qm

Kehi=

for all v,¢ € Vi, andq € Qp. Let vyh € Wy, be a discrete function which in-
terpolates the Dirichlet data with optimal order. The discrete generalized
Stokes problem reads as follows:

Find (v, pn) € (Von+V2) x Qn such that

an(Vh, ®n) +bn(dn, pn) = (f.dn)  Vor eV

= (3.9)
bn(Vh,0h) =0 V0h € Qh.

Since this discrete problem is equivalent to the standard discretization using
the non-conforming Crouzeix—Raviart element pair on the triangular mesh
consisting of all the son-triangles, we know that this problem admits a stable
unique solution which is accurate of optimal order, see [7]. In Sectiore4, w
will confirm this accuracy by means of a numerical test example.

3.4. Static condensation

Static condensation is an old principle in finite element technology and
means that one eliminates all ‘interior’ degrees of freedom in each cell
K € % for which the support of the associated basis function is contained
in K. The idea behind this approach is that, on eachkelhe values of
the solution components related to these interior degrees of freedom can be
locally expressed by means of the values of the remainowginterior de-
grees of freedom associated with In the following, we will describe this
technique in more detail for the generalized Stokes problem (3.9).

For a fixed celK € %, letEX := ¢ (E),i = 1,...,8, denote the edges
of all son-triangles oK and$ := @i o F ! the associated scalar basis func-
tions for the discrete velocity, on K. The corresponding vector-valued
basis functionsp:? 'K = R?, j=1,...,16, are defined as

P = (¢ci)K> gk (¢?K> . i=1,...8 (3.10)
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An arbitrary discrete velocity functiow, € V;, restricted toK can be repre-
sented as

Vhk (X) Z Kx) vxeK

where the degrees of freedoxfl are given by

VK 1= |Exi| ¢ De .o Vo= Bl (Wn2lk,Dg,,  (3.11)

foralli=1,...,8. Due to Remark 3.1, we get ar-orthogonal decomposi-
tion of an arbitrary, € V4, into aninterior partvi™ (which can be condensed)
and aremainingpartvj, as follows

Vh(X) = I(X) +Vh(X)  ¥xeQ

where for allx € K it holds together with (3.11)

Vil (%) ng"qb , Vhlk(¥) Z (3.12)

Similarly, we can define ab?-orthogonal decomposition of an arbitrary
discrete pressure functigo, € V;, into aninterior part p'nt (which can be
condensed) andr@mainingpart pj, as follows

Pr(X) = P (X) + Ph(X)  VXEQ

where for allx € K it holds

Pk (X ;p, Wr (x PRIk (X) = P} == K[ (pn, Dk (3.13)

PIS(K) NL3(K) with L3(K) := {q € L%(K) : (g,1)x = O} are defined as
the following linear combinations of the characteristic functigng from
Subsection 3.2:

T .
LAUJK(X) = XLK(X) - ‘Tj_ ’Xl,K(X)a I= 27"'747 xeK. (314)

~ Now, we can eliminate, on each c#lle %, theinterior partsv"r?t and
pi™ in dependence of themainingpartsv, and pf,. To this end, we simply
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choose in (3.9K-local test functions and get the following local generalized
Stokes problem:

For givenvi, |k and pf|k, find vi"'|x and pi™|x described in (3.12) and
(3.13) such that

an (Vi +Vhlk, %) +bn (5 P + Ph k)
br (Vi [k + Vhlk, @) =0, ]

) i—9. .16

(3.15)

It is simple to show that the two subspaces ofititerior velocity and pres-
sure functions are inf—sup-stable uniformly with respedt tdherefore, the
K-local problem (3.15) admits a unique and stable solution for each given
pair (vi,, p;,) and each celK € %,. These local problems are equivalent to

a linear 11x 11-system which can be solved directly by means of an opti-
mized linear algebra subroutine. In the implementation of the static conden-
sation, one solves on each mesh éelsimultaneously the corresponding
local system for all possible pairs of basis functions (g« , pj,|x) and
stores the solutions. Thus, one has an efficient cell-wise matrix repaesen
tion of the following solution operators

vt =S,V phf), P = Sp(vh, Pl T)

which assign to an arbitrary pawy, pf,) € (Von+Vy) x Qf, the corresponding
interior parts(vi™, pi™), where theemainingspace®}l andQy}, are given by

e () (). - ..o

Q= 1{qeL¥Q): gk =const VK € F}.

and

Using the solution operatolS, and S, the remaininggeneralized Stokes
system reads:
Find (v, pf,) € (Von+V;) x Q}, such that

ah(S/(vltl’prhv f)+v{’1a ¢h)+bh (¢h> S)(VFlvpll:l’ )+ph) (f ¢h)
\V/ ¢h € Vh

bn (Su(Vh, Ph, T) +Vh,0n) =0
Vaohe Q.
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Figure 3. The coarse mesh for the feedback control flow problem Wwith 1.7, H = 1,
Ne =2, Iél) =[7/12,8/12] andléz) = [11/12,1]. The straight-lined control boundary parts
are marked with .

The corresponding sparse linear system can be assembled efficietitly an
has a dimension of

N" = dim(V}) + dim(Qf) = 2Nepg + Ne

whereNg_ denotes the number of quadrilateral cells in the méghThis
dimension is about 3 times smaller than the dimension of the original sys-
tem (3.9).

4. Numerical results

We have implemented a finite element package for quadrilaterals and pro-
grams for theoperator Newton-ADI method MATLAB. The resulting al-
gebraic linear systems have been solved using the sparse direct golver p
vided by MATLAB. For the 2D-case, the computational efficiency of this
solver is comparable to that of modern multigrid solvers.
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4.1. Grid and data

In the following, we describe the problem data and the grid used for our
test example of a channel flow around an obstacle. In this two dimensional
example, the domai = Q; \ Qe is defined by a rectangular chanig®l =

(0,L) x (0,H) and a mostly elliptic-shaped obsta€le as depicted in Fig. 3.
The boundary ¢ of the obstacl€. consists of\; straight Iinesrék) forming

the control boundary ¢ = UE;l I’ék) and the remaining wall paft, NIl
which has the elliptic-shaped parametrization

B X0 ricos(2m(—sp—9) )
v(s) = [X];‘O} + [risin((Zﬂ(—So—S))) vec (0 \kL—JlIék)

wherelc(k) denote the parameter intervals of the control pﬁ&é defined
below. Furthermore(x®,x3°) = (1,1/2) denotes the center of the ellipse,
S = 5/24, andr; = 1/10,r, = 1/6 are the semi-axes of the ellipse. The

parametrization of the control pa'rﬁk), k=1,...,N, is defined as

(k) (k)
Ky S —S Ky S—Sa k K (K
V(S):V(Sé)) (k) (k)+y(sg)) (K (k) VSelé>:[sé>,sf))].
S — S S — S

On each part'ék) of the control boundary ., we prescribe at each time

t € (0,0) a parabolic inflow profile of the velocity in normal directionrtg’

with the maximum value(t) € R (see Fig.4). The casg(t) < 0 means

that we prescribe an outflow done by exhausting fluid out of the model.
Once the control vectau(t) € R is given for some timé < (0,T),

we know all Dirichlet boundary data for the velocity at this time on the

control boundary c. In order to define the remaining boundary conditions

we decompose the whole boundary= 0Q into

r:rDUrout, rD = r|nUrWurc
wherel p denotes the Dirichlet-part and
Fin:={(x,%2) €M x1 =0}, Tou:={(X1,%) el xg=L}

Fwi=T\(FinUloutUlc)
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y(7/1
r

y(8/12)
Figure 4. The parabolic inflow profile at the control boundary p’aéjt).

the inflow-, outflow- and wall-part of the boundary (see Fig.3). On the
outflow-partl oy, We impose the so-calledb-nothingboundary condition

—vOv(x,t) -n(x) + p(t,x)n(x) = 0 V(t,x) € (0,00) x Tyt (4.1)

wheren denotes the outer unit normal vector bg,. On the Dirichlet part
I'p we prescribe

gin(X), (t,X) S (0,00) X [in
v(t,x) =< 0, (t,x) € (0,00) x Iy, (4.2)
Oc(t,x), (t,x) € (0,00) x Ic.

The aim of our feedback control is to adjust the control veatoy € RN
such that the resulting horizontal component of the velogtyx) is min-
imized at the observation points= xggi m=1,...,Nops located on the
outflow boundary o (see Fig. 3) witiNgps = 3.

In the following, we choose the channel geometry vitas 1.7,H =1
and set\; = 2, 11V = [7/12,8/12), and1? = [11/12,1] (see Fig. 3). In our
computational tests, the coarse mesh at grid lével consists oNg = 36
cells,Nyt = 52 vertices, andi2l, . = 88 edges. The number of edges located
at the Dirichlet boundary/p at grid levell = 1 isNp = 29 (see Fig. 3). The
refined mesh at grid levél= 4 is depicted in Fig. 5.

4.2. Convergence study for non-conforming composite element

In this subsection, we study tlexperimental order of convergen¢EOC)
for our composite element pair. We consider the generalized Stokesmproble



Figure 5. Refined mesh at level 4.

with v =1.0 andu = 0.5 on a sequence of uniformly refined meshes starting
from the level-1-mesh shown in Fig. 3. In order to be able to measure the
actual error, we prescribe the exact velocity and pressure solution as

T .
<V1(X1,Xz)> - cos(im) sin(7xz)
Vo(xi,%)) | 1. /T
o Sin ( oL x1> COoS(T1X2)
m_. /T .
p(X1,X2) = —vism(ixl) sin(1xg)

and choose the right-hand sideand the Dirichlet boundary conditions ac-
cording to this solution.

In Table 1 we present, for different grid levels, the total numbers of the
degrees of freedom for the velocity, pressure, and condenseéesspaspec-
tively. We see that the reduction factor in the dimension of the condensed
space compared to the usual velocity and pressure space is about 3.

The error of the discrete velocity, measured in the2-norm as well as
in the H'-semi-norm and the error of the pressure approximagipmea-
sured in the_2-norm are shown in Table 2. The achieved convergence rates
are of optimal order.

In Table 3, we present the errors in the vertical velocity compownent

evaluated at the observation poimﬁ%)s: (L,1/6) andxgzb)sz (L,2/3). We
see that the computed err@s= ]vz(xggs) — v27h(xgk))s)], i =1,2, are of sec-
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Table 1.
Degrees of freedom for the velocity, pressure, and condensed.spa

Level velocity pressure velocity & pressure condensed

1 464 144 608 212

2 1792 576 2368 784
3 7040 2304 9344 3008
4 27904 9216 37120 11776
5 111104 36864 147968 46592

Table 2.
Errors of velocity and pressure for the composite elemenﬂRQ&'yﬂP’gc.

Level [v—vplo EOC |v—vys EOC |[p—pnlo EOC

3.773e-2 — 4.307e-1 — 2.435e-1 —

1.096e-2 1.783 2.232e1 0.948 9.278e2 1.392
2.866e-3 1.935 1.128el1 0.984 3.909e2 1.247
7.252e-4 1982 5.659e2 0.996 1.839e2 1.088
1.819e-5 1995 2.832e2 0.999 9.039e3 1.025

GO WN PR

ond order for sufficiently fine meshes. Note that the observation poiaés ha
been chosen such that they do not coincide with any mesh point.

4.3. Feedback stabilization

In this subsection, we apply Algorithm 2.1. Therefore, we use the above
described grid at refinement level 2, chose the observation points as

Xops= (17,09), Xgpi=(17,08), xgi=(17,0.75)

and compute the feedback operator for the Stokes equatiorvwitB.1 via
Algorithm 2.1. To show the influence of the feedback operator, we solve a
discretized version of equation (2.7b) in MATLAB by assembling the matri-
ces explicitly, using an initial non-steady-state condition, and compute a for-
ward simulation of the resulting differential algebraic system wilbged-
loop) and without ppen-loof) the influence of the feedback. Because the
Stokes equations are asymptotically stable, the compute feedback does not
influence the evolution of the output, measured via the first sumrinftd

in (2.7a), too much. To show the effect of feedback stabilization, we add
two regularization parameters in the cost functional (2.7a) to penalize the
output withA and the control costs with/p. This means we computed the
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Table 3.
Errors at observation points for the vertical velocity component.
Level e EOC & EOC
1 6.861e-1 — 1.042e-2 —
2 3.675e-3 0.901 5.481e4 4.250
3 1.842e-4 4.318 8.768e5 2.644
4 4.288e-5 2.103 2.800e5 1.647
5 1.121e5 1.935 6.240e6 2.166
—— open-loop ——A=10%p=10"2 —e—A=10%p=10°
o A=10°p =10 A=10%p=10"" —+Xx=10*p=10°
107| T T T T T T T T T T
1072
>\' —
& 1077
10713
eps
]0—I7

time

Figure 6. Evolution of output for different regularization parameters.

feedback for the adapted cost functional

1/ 1
== [ Alyl?+ = ||lul>dt
o= [ Al i

In Fig. 6 we compare the evolution of the output for different settings
of (A, p). It shows that the trajectories of t@en-loopsimulation (without
any feedback), foA = p = 1, and for penalize the control costs are nearly
the same. This means the controller notices that not doing anything is good
enough to minimize the cost functional, especially if a large controller in-
fluence is penalized.

But if we setp = 1 and increas@, we see that the controller forces the
output faster to zero.

Of course, this behavior involves higher control costs. To show this, we
compare the evolution of the optimal control in Fig. 7 measured via the sec-
ond summand|ul|? in (2.7a). We plotted the evolution for the same regular-
ization parameter settings as above. The expected behavior can besdbser
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Figure 7. Evolution of control for different regularization parameters.

Table 4.
Newton-ADI convergence results for refinement level 2.
matrix-version operator-version

A p DNapi Nnewton  ©IMOMNewton DNapi Nnewton  ©IMMOlNewton
100 10° 17.0 3 276-10°13 17.0 3 278.10°13
10° 102 17.0 2 149.10°6 17.0 2 149.10°6
10° 104 17.0 2 199.10°6 17.0 2 199.10°°
12 10° 17.2 5 101-10°8 17.2 5 101-10°8
104 10° 20.8 11 164-10°5 20.9 11 164-10°°

If we penalized the control costs, the controller becomes inactive quite fas
because the system is going to zero fast enough without any contrdf. But
we force the system to endeavor a zero output faster, by increasiweg
need significant higher control costs at the beginning.

These results will become more interesting if we consider unstable
Navier—Stokes flows in the future. Additionally, we want to implement the
feedback in a closed-loop simulation of the flow to see the stabilizing influ-
ence of the optimal control within a visualized simulation.

In the second part of this subsection we want to compare the conver-
gence results of the operator Newton-ADI method with the matrix version
presented in [4]. We assembled all matrices for the forward simulation ex-
plicitly. Now, we use these matrices to run the matrix based version of Al-
gorithm 2.1 presented as Algorithm 2 in [4]. In both methods, we use the
heuristicPenzlshifts and a stopping criteria of jg§) = 2.5- 107 for the
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ADI iteration and tolewton= 2.5- 10> for the Newton iteration. The stop-
ping criteria refer to the relative change of the computed feedback.

Table 4 shows that both methods converge within the same number of
steps and achieve nearly the same relative error. Furthermore, weesee th
influence of the regularization parameters described above. If wdizena
the output costs wit, the algorithm converges faster, because it knows that
it does not need any control as described above. Otherwise, if vadipen
the output withA, the computation of the feedback needs more iterations to
be the optimal for the chosen cost functional.

Summarizing, we see that computing the optimal control is useful in
combination with the correct cost functional. We also could verify the ma-
trix free approach to compute the optimal control for this kind of problems
independent of the numerical discretization. This means we can uselspecia
discretizations, to avoid the drawbacks of standard mixed finite elements.

5. Conclusions and outlook

The proposed non-conforming composite element provides a good compro
mise of the advantages of quadrilateral and triangular elements. The numer-
ical experiments show that the expected asymptotic orders of convergenc
are observed already for moderately sized meshes. The element is espe-
cially well suited for solving the linear quadratic regulator problem for the
Stokes flow by the (operator) Newton-ADI method. This is due to both the
preservation of the divergence constraint on the discrete level aricfthe
orthogonality of the corresponding basis functions. The latter doesyt o
increase the efficiency due to the diagonal structure of the resulting mass
matrix, but also eliminates some term in the weak form of the equations that
need extra treatment when standard finite elements are used.

Our approach allows a natural extension to the case of the Navier—Stokes
equations and time-dependent working trajectory which will be the subjects
of forthcoming research.
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