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Abstract — In this contribution, we show a method for the boundary feedback stabilization
of the Stokes problem around a stationary trajectory. We derive a formal low-rank algorithm
for solving the stabilization problem in operator notation. The appearing operator equations
are formulated in terms of stationary partial differential equations (PDEs) instead of using
their finite dimensional representations in terms of matrices. A Galerkin method, satisfying
the divergence constraint pointwise locally is especially appealing since it represents appro-
priately the action of the Helmholtz projection.

The main advantages of the composite technique are the efficient assembly of element
matrices, the reduction of computational costs using static condensation, and the diagonal
mass matrix. The non-conforming character of the composite element guarantees a better
sparsity pattern, compared to conforming elements, due to the lower number of couplings
between basis functions corresponding to neighboring cells. We also achieve the pointwise
mass conservation on sub-triangles of each element.

Keywords: non-conforming finite elements, Stokes equations, feedback stabilization

∗Research Group Computational Methods in Systems and Control Theory(CSC), Max
Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1,
39106 Magdeburg, Germany

†Research Group Mathematics in Industry and Technology (MiIT), Chemnitz University
of Technology, Reichenhainer Str. 39/41, 09126 Chemnitz, Germany

‡Institute for Analysis und Numerics, Otto-von-Guericke-University of Magdeburg,
Postfach 4120, 39016 Magdeburg, Germany

Bereitgestellt von | Max-Planck-Gesellschaft - WIB6417
Angemeldet

Heruntergeladen am | 07.04.15 15:07



192 P. Benner et al.

1. Introduction

Feedback stabilization can be seen as the task of making a given work-
ing trajectory, for example from anopen-loopcontroller [10], more robust
with respect to disturbances. We want to apply alinear quadratic regulator
(LQR) approach to stabilize this open-loop trajectory [17]. Raymond [19]
deduces boundary feedback stabilization of 2D incompressible flow prob-
lems and extends this approach to finite dimensional controllers in [20].
Bänsch/Benner investigate several ideas for the numerical realization in [2],
where they apply standard Taylor–Hood finite elements [11]. This type of
discretization naturally leads to a discrete differential algebraic system of
equations of differentiation index 2 [22]. The differential algebraic charac-
ter of the equations causes several technical difficulties in the regulator ap-
proach. Most of these have been solved by the approach given in [4], which
is following ideas from [9]. Still, when solving the appearing linear systems
approximately, i.e., by an iterative linear solver, one can not guarantee the
validity of the divergence freeness condition.

This paper is devoted to two major subjects. On the one hand, we want
to show how the numerical methods for the feedback computation can be
reformulated independently of the actual spatial discretization. On the other
hand, we present a new type of finite element that overcomes the difficulties
regarding the algebraic constraints by guaranteeing the divergence freeness
of the discrete solutions computed in each step of our algorithm.

To be independent of the numerical discretization, we first formulate
the problem as anordinary differential equation(ODE) defined in aHilbert
spaceand apply theNewton-ADIprocess [3] to compute the optimal control
to the resulting operator equations in a formal way. We identify the main
steps of the algorithm, i.e., the shifted linear operator equations in terms of
stationary linear PDEs containing an additional reaction term resulting from
the shift. These PDEs can be solved by any spatial discretization method.
One efficient realization of the solver for the PDEs is given by the use of
our quadrilateral finite elements.

An advantage of the usage of quadrilateral finite elements is that, in or-
der to decompose a two-dimensional domain into simple cells, one needs
approximately half the number of quadrilateral cells compared to triangu-
lar cells. In the three-dimensional case at least about 5 times more tetra-
hedra compared to hexahedra are required for decomposing a domain. On
the other hand, the reference transformation for quadrilateral or hexahedral
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Non-conforming composite quadrilateral FE 193

elements is more complicated than for triangular or tetrahedral elements
where it is simply an affine mapping. For an affine mapping the Jacobian is
constant and has to be computed only once for all integration points when
assembling the local element matrices.

Therefore, we work as a compromise withcomposite quadrilateral el-
ementswhere the reference transformation is continuous and piecewise
affine. This is realized by subdividing each quadrilateral mesh cell into 4
son-trianglesand getting profit from the affine mapping between each son-
triangle of the original cell and its corresponding son-triangle of the ref-
erence cell. One can regard this approach also as a blocking of 4 triangu-
lar finite elements to one quadrilateral element. The advantage is that one
can eliminate all interior degrees of freedom of the quadrilateral cells by
means of the well-known static condensation technique which leads to a
much smaller linear system that has to be solved.

Our motivation for using non-conforming instead of conforming finite
elements is the following:

• it allows us to use the low order element pair of Crouzeix–Raviart
(see [7] and [6, pp. 107-109]) on the son-triangles which is inf-sup
stable and has low computational costs;

• it guarantees pointwise mass-conservation within the son-triangles;

• the basis functions for the velocity areL2-orthogonal which leads to
a diagonal mass matrix;

• after eliminating the interior degrees of freedom of the quadrilateral
elements, the remaining basis functions have a much smaller number
of couplings compared to the conforming case.

The remaining paper is structured as follows. In Section 2, we give a
brief overview of the LQR idea in the operator setting and identify all PDEs
we have to solve to compute the optimal control. Afterwards, we introduce
our new composite non-conforming quadrilateral elements in Section 3. We
show numerical results in Section 4 and conclude the paper at the end.

Finally, before getting to the main part of the paper, we fix some no-
tation. LetΩ ⊂ R

2 be a bounded domain inR2 with boundaryΓ := ∂Ω.
We denote the outer unit normal vector onΓ by n and use the standard
Sobolev spacesWk,p(G), Hk(G) =Wk,2(G), Hk

0(G), andLp(G) =W0,p(G)
for a measurable one- or two-dimensional setG⊂ Ω with its measure|G|,
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194 P. Benner et al.

where 16 p 6 ∞. The norms, semi-norms in the scalar and vector-valued
versions inWk,p(G) are denoted by‖ · ‖k,p,G and| · |k,p,G, respectively. The
L2 inner product onG is denoted by(· , ·)G. The broken norms and inner
products defined over some partitionsTh are indicated by the additional sub-
scripth. To simplify the notation, we will dropG if G= Ω andp if p= 2.
L (X,Y) stands for the set of linear operatorsA : X → Y between Hilbert
spacesX, Y. The adjoint operator ofA will be denoted byA∗ whereasX′

stands for the dual space ofX.

2. Feedback stabilization of Stokes flow

In this section, we consider the feedback stabilization of flow problems by
means of boundary control. Though Stokes flow is stable, feedback canbe
used in order to achieve steady state faster than in the uncontrolled situa-
tion. Moreover, external disturbances can be attenuated. In this paper, we
consider the Stokes flow as the first simple candidate for a non-stationary
incompressible flow problem. This will be a prime step on the way to the
treatment of non-self-adjoint and non-linear incompressible Navier–Stokes
equations.

2.1. Non-stationary Stokes problem

Let Ω be a two-dimensional domain with the boundaryΓ = ΓD ∪Γn con-
sisting of the Dirichlet partΓD and thedo-nothingpart Γn. The Dirichlet
partΓD = Γc∪Γd is further decomposed into the control partΓc and the re-
maining Dirichlet partΓd. We consider the following non-stationary Stokes
problem:

Find a velocity fieldv(t) : Ω → R
2 and a pressure fieldp(t) : Ω → R

such that for allt ∈ (0,∞) it holds

∂
∂ t

v(t)−ν∆v(t)+∇p(t) = f in Ω (2.1a)

divv(t) = 0 in Ω (2.1b)

v(t) = 0 onΓc (2.1c)

v(t) = g on Γd (2.1d)

−ν∇v(t) ·n+ p(t)n= 0 onΓn (2.1e)

v(0) = v0 in Ω . (2.1f)
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Non-conforming composite quadrilateral FE 195

Here,ν > 0 denotes the constant dynamic viscosity,∆, ∇, as well as div ,
represent the usual differential operators with respect to the space variable
x; f denotes an external force influencing the system,g some given Dirichlet
data,n the unit outer normal vector onΓ, andv0 the initial velocity. Based
on the ideas of Raymond [19, 20], we want to apply a feedback boundary
stabilization technique. The arising linear-quadratic control problem will be
presented in the next subsection.

2.2. Riccati-based boundary feedback stabilization

Let (w,χ) denote the velocity and pressure solution of the stationary Stokes
equations

−ν∆w+∇χ = f in Ω (2.2a)

divw= 0 in Ω (2.2b)

w= 0 onΓc (2.2c)

w= g on Γd (2.2d)

−ν∇w·n+χn= 0 onΓn (2.2e)

with some special properties we want to achieve. Such properties could be,
for example, that(w,χ) solves a possibly constrained open loop (boundary)
control problem. That means,w(x) is a stationary solution of (2.1), see [19].
Our aim is to stabilize the solution(w,χ) by means of a feedback control
driven by a time dependent control vectoru(t) = (uk(t)) ∈ R

Nc. The vector

u(t) determines the velocity at the control boundaryΓc =
⋃Nc

k=1 Γ(k)
c in the

way that the componentuk(t) is responsible for the Dirichlet data on the

part Γ(k)
c . To be more specific, we introduce a boundary control operator

bc : RNc → (H1(Γ))2 which assigns the control vectoru(t) to some Dirichlet
data onΓc defined as

(
bcu(t)

)
(x) =

Nc

∑
k=1

uk(t)ξ (k)(x) ∀x∈ Γ . (2.3)

Here,ξ (k) ∈ (H1(Γ))2 with ξ (k)|Γ\Γ(k)
c
= 0 denotes the prescribed shape func-

tion associated with the control boundary partΓ(k)
c for all k= 1, . . . ,Nc.

Using the splitting

(v, p) = (w+ ṽ,χ + p̃)
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196 P. Benner et al.

we define(ṽ, p̃) as the perturbation in the solution(v, p) of (2.1) with respect
to the desired solution(w,χ) of (2.2). Then, the control problem for(ṽ, p̃)
reads:

For t ∈ (0,∞), find a velocity field ˜v(t) : Ω → R
2 and a pressure field

p̃(t) : Ω → R such that for allt ∈ (0,∞) it holds

∂
∂ t

ṽ(t)−ν∆ṽ(t)+∇p̃(t) = 0 in Ω (2.4a)

div ṽ(t) = 0 in Ω (2.4b)

ṽ(t) = bcu(t) on Γc (2.4c)

ṽ(t) = 0 onΓd (2.4d)

−ν∇ṽ(t) ·n+ p̃(t)n= 0 onΓn (2.4e)

ṽ(0) = ṽ0 in Ω . (2.4f)

The boundary controlbcu from (2.3) describes the influence of the feedback
via boundary stabilization. The feedback stabilization computed via (2.4)
then forces the instationary solution(v, p) of (2.1) to the stationary solution
(w,χ) of (2.2) by means of the modified boundary conditionv(t) = bcu(t)
on Γc for anyt ∈ (0,∞).

Raymond [19] determines a linear feedback law to stabilize (2.4). Based
on his ideas, B̈ansch/Benner show in [2] initial steps for the numerical re-
alization. Benner et al. use a mixed finite element method [11] to show
first numerical realizations based on a matrix approximation of (2.4) in [4].
Thereby, it is shown that one can use the projection idea presented in [9]to
have a matrix approximation of theLerayprojection.

In the following, we combine the matrix based approach in [4] with
the operator formulation in [19, 20] in a formal way, using some notations
of [21] and avoid the weak formulation of operators inL2(Ω).

From now on we skip the arguments(t,x) where they are obvious. Fur-
thermore, we use the following spaces

V0
n (Ω) = {v∈ (L2(Ω))2 : divv= 0 in Ω, v·n= 0 onΓ}

V1
0 (Ω) = {v∈ (H1(Ω))2 : divv= 0 in Ω, v= 0 onΓD}.

Let P : (L2(Ω))2 →V0
n (Ω) denote the so calledLerayor Helmholtzprojec-

tor and letA be the Stokes operator defined as

A ṽ(t) = νP∆ṽ(t) ∀ ṽ(t) ∈ (H2(Ω))2∩V1
0 (Ω).
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Non-conforming composite quadrilateral FE 197

Recasting the influence of the Dirichlet controlbcu(t) as the action of a con-
trol operatorB : RNc → V0

n (Ω), (2.4a)–(2.4b) can be reformulated (using
the property ˜v= P ṽ for the solution ˜v) in the spirit of [19] as

P
∂
∂ t

ṽ(t) = A P ṽ(t)+Bu(t). (2.5)

The computed controlu(t) ∈ R
Nc can be used independently of the approx-

imation we applied for the underlying PDE. Note, however, that we may
introduce a certain suboptimality when applying the control computed with
respect to one approximation, to a much finer approximation, or even the
original system.

We introduce the observation variable

y(t) = C P ṽ(t) (2.6)

where the output operatorC maps the velocity field onto our observation
spaceRNobs and can be chosen in different ways, which is explained for
our model problem in Subsection 4.1. The linear-quadratic regulator (LQR)
problem reads as follows:

Minimize the cost functional

J (y,u) =
1
2

∫ ∞

0
‖y(t)‖2+‖u(t)‖2dt (2.7a)

subject to

P
∂
∂ t

ṽ(t) = A P ṽ(t)+Bu(t) (2.7b)

y(t) = C P ṽ(t). (2.7c)

It is known (e.g., [14,16]) that the optimal controlt 7→ û(t)∈R
Nc that solves

the LQR problem (2.7) can be represented as

û=−K ṽ

with the feedback operator

K : V0
n (Ω)→ R

Nc, K = B∗X̂
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198 P. Benner et al.

whereX̂ = X̂ ∗ ∈ L (V0
n (Ω),V0

n (Ω)) is the unique stabilizing weak solu-
tion of the Riccati operator equation

0= C ∗C +A ∗X +X A −X BB∗X =: R(X ). (2.8)

A common way to solve the non-linear operator equation (2.8) is a Newton-
type iteration as described in [1,13]. Using theKleinmanreformulation [12],
it turns out that we have to determineX (m+1) from the equation

(A (m))∗X (m+1)+X (m+1)A (m) =−W (m)(W (m))∗ (2.9)

whereA (m) = A −BB∗X (m) and W (m) =
[
C ∗, (B∗X (m))∗

]
in each

Newton stepm. Thereby,W (m) is the operator column matrix [21] defined
as

W (m) : RNobs×R
Nc →V0

n (Ω)′×V0
n (Ω)′.

A solution strategy for the matrix version of equation (2.9) is thelow-rank
ADI iteration [3, 15], where low-rank factors of the solution are computed.
The operator version of the low-rank ADI iteration is presented in [21].
Combing this with the Newton iteration, we end up with theOperator
Newton-ADI iterationpresented in formal operator notation in Algorithm
2.1 to determine the desired feedback operatorK . In practice, we need
finite dimensional approximations of the infinite dimensional operators. A
common way is to use a finite element method to explicitly create the ma-
trix representations for a fixed finite element basis. The main difficulty is to
fulfill the algebraic constraints given by equation (2.1b), which means the
finite element space has to fulfill this property by default or we need a nu-
merical realization of theLerayprojector. As mentioned before, Benner et
al. show in [4] a realization using mixed finite elements, likeTaylor–Hood
elements [11]. Here, we consider a possibly matrix free approach, where the
crucial steps of Algorithm 2.1 are handled asblack-box-functions, solving
the underlying generalized Stokes problems with the algebraic constraints.
In the next subsection, we give a brief overview about the requiredblack-
box-functionsin Algorithm 2.1. The convergence of the ADI iteration de-
pends on the shift parameters{µi}

nADI
i=1 . In the numerical experiments we

apply the heuristicPenzlshifts [18].
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Algorithm 2.1 Operator Newton-ADI method

Input: shift parameters{µ1, . . . ,µnADI } with µi ∈ C
−

Output: feedback operatorK
1: K (0) = 0
2: m= 1
3: while not convergeddo
4: W (m) =

[
C ∗, (K (m−1))∗

]

5: GetV1 by solving

(A ∗+µ1I )PV1 = W (m)

6: K
(m)

1 =−2Re(µ1) ·B∗V1V ∗
1

7: i = 2
8: while not convergeddo
9: GetṼ by solving (via Sherman–Morrison–Woodburry formula)

(A ∗− (K (m−1))∗B∗+µiI )PṼ = PVi−1

10: Vi = Vi−1− (µi + µ̄i−1)Ṽ

11: K
(m)

i = K
(m)

i−1 −2Re(µi)B∗ViV ∗
i

12: i = i+1

13: end while
14: K (m) = K

(m)
i

15: m= m+1

16: end while
17: K = K m
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2.3. Practical realization of main steps in Algorithm 2.1

The main computational steps in Algorithm 2.1 are the lines 5 and 9. In line
5, we have to solve forV1 in the equation

(A ∗+µ1I )PV1 = W (m).

Therefore, one mainblack-box-functionis to solve thegeneralizedstation-
ary Stokes problem

−ν∆v−µ1v+∇p= fW (m) in Ω (2.10a)

divv= 0 in Ω (2.10b)

v= 0 onΓD (2.10c)

−ν∇v·n+ pn= 0 onΓn (2.10d)

for severals right hand sidesfW (m) depending on the realization ofW (m).
This means every column inW (m) creates a different functionfW (m) and we
arrange all solutionsv again in columns of the operatorV1. In line 9 there is
an additional term(K (m−1))∗B∗PṼ of two low-rank operators resulting
from the formulation of the low-rank ADI. To avoid this term in (2.10),
we use, analogous to the matrix version [4, Subsection 3.1], theSherman–
Morrison–Woodburryformula [8] and solve the operator equation

(A ∗+µiI )PṼ =
[
PVi−1, (K (m−1))∗

]

which means we have to solve the PDE (2.10) for the right hand sidesfV
depending onPVi−1 and fK ∗ depending on(K (m−1))∗. We, thus, get dif-
ferent solutions from the different right hand sides which form the columns
of the operatorṼ . Additionally, we need the computation of the action of
the operatorsB∗ andK ∗ asblack-box-functions. In practice, we have to
approximate the solution of (2.10) by means of discrete solution. We apply
a finite element discretization which we explain in detail in Subsection 3.3.

3. Non-conforming composite quadrilateral finite elements

First, we introduce some notation concerning the used space grids. We
denote byTh an admissible approximate decomposition ofΩ into shape-
regular quadrilaterals (with straight edges), where the curved boundary
part is polygonally approximated. The mesh-size parameterh is given by
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h := max{hK : K ∈ Th}, wherehK denotes the diameter of the cellK ∈ Th.
From a given meshThℓ at grid levelℓ we create the next finer mesh at
grid level ℓ+ 1 by subdividing each quadrilateral mesh cellK ∈ Thℓ into
4 quadrilaterals, where the midpoints of opposite edges ofK are connected.
For mesh cellsK ∈ Thℓ having an edgeE located at a curved boundary part
of the domain, the midpoint ofE is shifted ontoΓ before being used as a
new vertex in the new meshThℓ+1. Thus, a domainΩ with curved boundary
parts is approximated on each grid level by a polygonally bounded domain
Ωh :=

⋃
K∈Th

K. However, for the presentation of our theoretical basics, we
will always assume thatΩ = Ωh.

In Subsection 3.1, we describe the decomposition of the reference ele-
ment into son-triangles and the global space of non-conforming composite
quadrilateral finite elements in Subsection 3.2.

3.1. Composite quadrilateral reference element

Let K̂ = (−1,1)2 denote the reference cell and̂T its decomposition into
(open)son-triangleŝTi , i.e.,

T̂ = {T̂1, . . . , T̂4}, K̂ =
4⋃

i=1

T̂ i

such that all son-triangles have a common vertex at ˆx= 0 (see Fig. 1). The
concept of composite elements consisting of triangular son-cellsTi,K for
all i = 1, . . . ,4 exploits the fact that one can profit from a continuous and
piecewise affine reference transformationFK : K̂ → K such that

Ti,K = FK |T̂i
(T̂i), FK |T̂i

∈
[
P1(T̂i)

]2
∀i = 1, . . . ,4 (3.1)

where the son-triangleTi,K ⊂ K has the verticesai , ai+1, anda0 using the
convention thata0 denote the barycenter anda1, . . . ,a4 the vertices ofK,
respectively, witha5 := a1. The advantage is that the Jacobian of the restric-
tion FK |T̂i

is constant which simplifies the generation of the element matrices
since many terms can be pre-computed in advance on the reference element.

In order to define finite element spaces and basis functions on the refer-
ence element̂K and the original elementK, we have to introduce some more
notation about the decomposition of̂K and K. The decomposition of the
original cellK into son-triangles will be denoted byT K = {T1,K , . . . ,T4,K}.
We defineÊ as the set of all edges of the son-triangles ofK̂. Furthermore,
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FK

0 x1

x2

a0

a1

a2

a3

a4

â0

0

â1 â2

â3â4

x̂1

x̂2

1

1

T̂1

T̂2

T̂3

T̂4

T1,K

T2,K

T3,K

T4,K

K

K̂

Figure 1. The composite cellK = FK(K̂), whereFK |T̂i
∈
[
P1(T̂i)

]2.

we denote byÊ int ⊂ Ê the subset of all edges in the interior ofK̂ and by
Ê bnd the subset of all edges on the boundary∂ K̂. To an edgêE ∈ Ê , we
assign a unit normal vector ˆnÊ on Ê with an arbitrary, but fixed orientation.
For a given possibly discontinuous functionϕ̂ : K̂ →R

n, we define for each
interior edgeÊ ∈ Ê int the jump [[ϕ̂]]Ê as the function

[[ϕ̂]]Ê(x̂) := lim
τ→+0

ϕ̂(x̂+τ n̂Ê)− lim
τ→+0

ϕ̂(x̂−τ n̂Ê) ∀ x̂∈ Ê.

In the following, let〈·, ·〉Ê denote the inner product inL2(Ê). Now, the local
non-conforming composite polynomial space onK̂ can be described as

P
nc
1 (K̂) :=

{
v̂∈ L2(K̂) : v̂|T̂ ∈ P1(T̂) ∀ T̂ ∈ T̂ ,

〈
[[v̂]]Ê,1

〉
Ê = 0 ∀Ê ∈ Ê int

}
.

(3.2)

To ensure the existence of traces of a function on the edgesÊ ∈ Ê , we
introduce the broken Sobolev space

H1
b(T̂ ) :=

{
v̂∈ L2(K̂) : v̂|T̂ ∈ H1(T̂) ∀ T̂ ∈ T̂

}
.

The degrees of freedom of the non-conforming compositeP1-element
are associated with the edges of the son-triangles. Therefore, we number the
edges inÊ (see Fig. 2) with the convention that

Ê bnd= {Ê1, . . . , Ê4}, Ê int = {Ê5, . . . , Ê8}
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Ê1

Ê2

Ê3

Ê4

Ê5 Ê6

Ê7Ê8

Figure 2. Numbering of the edges of the son-triangles on the reference element and local
degrees of freedom (marked by•) of the compositePnc

1 (K̂)-element.

and assign to each son-edgeÊi the nodal functional

N̂i : H1
b(T̂ )→ R, N̂i(v̂) = |Êi |

−1〈v̂,1〉Êi
, i = 1, . . . ,8

where|Êi | denotes the length of the edgêEi . These nodal functionals are
unisolvent with respect to the polynomial spaceP

nc
1 (K̂) and define uniquely

the reference basis functionsϕ̂i ∈ P
nc
1 (K̂) by means of the conditions

N̂j(ϕ̂i) = δi j , i, j = 1, . . . ,8 (3.3)

whereδi j denotes the Kronecker delta. In order to show the approximation
properties of the discrete velocity space on the reference element we intro-
duce the velocity interpolation operatorÎv : H1(K̂)→ P

nc
1 (K̂) as

Îvû(x̂) :=
8

∑
i=1

N̂i(û)ϕ̂i(x̂) ∀ û∈ H1(K̂).

Applying the Bramble–Hilbert lemma [5] on each son-triangleT̂ ∈ T̂ , we
can show the estimate

‖û− Îvû‖1,T̂ 6C|û|2,T̂ ∀ T̂ ∈ T̂ , û∈ H2(K̂) (3.4)

which is the basis to prove optimal approximation properties on the original
meshTh. For a vector-valued function ˆv∈ (H1(K̂))2, the operator̂Iv is ap-
plied to each component of ˆv.
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3.2. Global finite element spaces for velocity and pressure

In this section, we describe the construction of the global finite element
spacesVh andQh for approximating velocity and pressure, respectively. We
start with the definition ofVh which is based on the piecewise affine ref-
erence transformationsFK : K̂ → K and the previously defined polynomial
spacePnc

1 (K̂) on the reference element. In order to keep the consistency error
of the global non-conforming discretization within the right asymptotic or-
der, we have to ensure for each discrete functionvh ∈Vh that the jumps ofvh

across the edges of the son-triangles of all quadrilateral cells are zeroin the
integral mean value. Therefore, we need some notation on edges and jumps
analogously to the previous section for the reference element. For a given
quadrilateral cellK ∈ Th, the symbolE (K) denotes the set of all boundary
edges of the quadrilateral cellK which are the images of the edgesÊ ∈ Ê bnd

via the mappingFK : K̂ → K. Furthermore, letEh denote the set of all edges
in the union of theE (K) over all cellsK ∈ Th andE int

h , E bnd
h the subsets of

the edgesE ∈ Eh in the interior and on the boundary of the domainΩ. The
setE bnd

h is split as

E bnd
h = E D

h ∪E N
h

where E D
h denotes the set of boundary edges with prescribed Dirichlet

boundary conditions, whileE N
h denotes the set where ‘do-nothing’ bound-

ary conditions are imposed. To each edgeE ∈ Eh, we assign a unit vector
nE normal toE which is assumed to point outwards with respect toΩ if
E ∈ E bnd

h . For a given edgeE ∈ Eh and a possibly discontinuous function
ϕ : Ω → R, which is continuous on each sub-triangle of the cellsK ∈ Th,
we define for allx∈ E the jump[[ϕ ]]E as the function

[[ϕ ]]E(x) :=





lim
τ→+0

ϕ(x+τnE)− lim
τ→+0

ϕ(x−τnE), E ∈ E int
h

lim
τ→+0

ϕ(x−τnE), E ∈ E bnd
h .

Now, we are in the position to define the scalar discrete velocity spaceSh. It
can be described via the piecewise affine reference mappingsFK : K̂ → K as
follows:

Sh :=
{

ϕ ∈ L2(Ω) : ϕ |K ◦FK ∈ P
nc
1 (K̂) ∀ K ∈ Th,

〈[[ϕ ]]E,1〉E = 0 ∀ E ∈ E int
h

}
.
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For the test functions in the discrete problem, we need also the subspace
S0

h ⊂ Sh with discretely homogeneous Dirichlet boundary conditions, i.e.,

S0
h :=

{
ϕ ∈ Sh : 〈[[ϕ ]]E,1〉E = 0 ∀ E ∈ E D

h

}
.

The associated vector-valued discrete velocity spaces areVh := (Sh)
2 and

V0
h := (S0

h)
2. The jump conditions in the definition ofSh are realized by the

following choice of the global basis functions. One subset of basis functions
is associated with the set of the interior edges and the set of the non-Dirichlet
boundary edges. Therefore, we number these edges as

E int
h ∪E N

h = {E1, . . . ,ENEDG}.

For each edgeE j ∈ E int
h ∪E N

h , we define an associated scalar basis function
ϕ j by its restriction to an arbitrary elementK ∈ Th:

ϕ j |K(x) :=

{
ϕ̂i(F

−1
K (x)), E j ∈ E (K), E j = FK(Êi),

0, E j 6∈ E (K),
x∈ K.

Due to the Kronecker-delta property (3.3) of the reference basis functions
ϕ̂i , we get the jump-property

〈
[[ϕ j ]]E,1

〉
E = 0 for all edgesE ∈ E int

h ∪E D
h

which impliesϕ j ∈ Sh. The remaining basis functions ofSh are so-called
non-conforming bubble functionssince their support is just one cell. For
each cellK ∈Th, there are four of such bubble functionsϕb

K,i defined for all
x∈ Ω as:

ϕb
K,i(x) :=

{
ϕ̂4+i(F

−1
K (x)), x∈ K,

0, x 6∈ K,
∀i = 1, . . . ,4.

The scalar velocity space in the case of homogeneous Dirichlet boundary
conditions can be represented by means of its basis functions as

S0
h = span

{
ϕ j , j = 1, . . . ,NEDG, ϕb

K,i , K ∈ Th, i = 1, . . . ,4
}
.

Remark 3.1. It is easy to verify that for each son-trianglêTm, m =
1, . . . ,4, of K̂ it holds

(ϕ̂ j , ϕ̂i)T̂m
= 0, i, j ∈ {1, . . . ,8}, i 6= j.

Since the reference mappingFK : K̂ →K is affine on eacĥTm, we get that the
local basis functionŝϕi ◦F−1

K are orthogonal inL2(K). This implies that the
above constructed global basis functions ofSh andVh are orthogonal with
respect to the inner products inL2(Ω) and(L2(Ω))2, respectively.
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In the following, we will describe the discrete pressure spaceQh. Since
this space consists of piecewise constant functions, it is not necessaryto
define it via the reference mapping. We start with the definition of the local
composite pressure space for an arbitrary quadrilateral cellK ∈ Th which is
given as

P
dc
0 (K) := {q∈ L2(K) : q|Ti,K ∈ P0(Ti,K), i = 1, . . . ,4} (3.5)

where theTi,K := FK(T̂i) denote the son-triangles ofK. The natural basis
functions ofPdc

0 (K) are the characteristic functionsχi,K , i = 1, . . . ,4, which
are defined to be 1 on the associated son-triangleTi,K and 0 on the remain-
ing part of the cellK. Using the local composite spacesPdc

0 (K), the global
pressure spaceQh can be described as

Qh : =
{

q∈ L2(Ω) : q|K ∈ P
dc
0 (K), K ∈ Th

}

= span{χi,K , i = 1, . . . ,4, K ∈ Th} .
(3.6)

3.3. Discretization of the generalized Stokes problem

In this subsection, we treat the discretization of the following weak formu-
lation of the generalized Stokes problem (2.10), which is the key ingredient
in performing the main steps in Algorithm 2.1:

Find (v, p) ∈ (vb+V)×Q such that

ν(∇v,∇ϕ)−µ(v,ϕ)− (p,divϕ) = ( f ,ϕ) ∀ϕ ∈V (3.7)

(divv,q) = 0 ∀q∈ Q. (3.8)

Hereµ 6 0 denotes a given constant (shift parameter from Algorithm 2.1),
the spacesQ andV are defined byQ := L2(Ω),

V := {ϕ ∈ (H1(Ω))2 : ϕ |ΓD = 0}

wherevb ∈ (H1(Ω))2 is an extension toΩ of the given Dirichlet boundary
data, andf ∈ (L2(Ω))2 a given body force. The namegeneralizedStokes
problem comes from the presence of the term with the factorµ which arises
from our approach to compute the feedback control. This extra term does
not cause any problems in theory and practice.

In the non-conforming case, the first derivatives of the discrete velocity
function exist only locally on the son-triangles of the quadrilateral mesh
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cells. Therefore, we introduce the following discrete bilinear forms

ah(v,ϕ) := ∑
K∈Th

4

∑
i=1

{
ν(∇v,∇ϕ)Ti,K −µ(v,ϕ)Ti,K

}

bh(v,q) :=− ∑
K∈Th

4

∑
i=1

(divv,q)Ti,K

for all v,ϕ ∈ Vh andq ∈ Qh. Let vbh ∈ Vh be a discrete function which in-
terpolates the Dirichlet data with optimal order. The discrete generalized
Stokes problem reads as follows:

Find (vh, ph) ∈ (vbh+V0
h )×Qh such that

ah(vh,ϕh)+bh(ϕh, ph) = ( f ,ϕh) ∀ϕh ∈V0
h

bh(vh,qh) = 0 ∀qh ∈ Qh.
(3.9)

Since this discrete problem is equivalent to the standard discretization using
the non-conforming Crouzeix–Raviart element pair on the triangular mesh
consisting of all the son-triangles, we know that this problem admits a stable
unique solution which is accurate of optimal order, see [7]. In Section 4, we
will confirm this accuracy by means of a numerical test example.

3.4. Static condensation

Static condensation is an old principle in finite element technology and
means that one eliminates all ‘interior’ degrees of freedom in each cell
K ∈ Th for which the support of the associated basis function is contained
in K̄. The idea behind this approach is that, on each cellK, the values of
the solution components related to these interior degrees of freedom can be
locally expressed by means of the values of the remainingnon-interiorde-
grees of freedom associated withK. In the following, we will describe this
technique in more detail for the generalized Stokes problem (3.9).

For a fixed cellK ∈ Th, let EK
i := FK(Êi), i = 1, . . . ,8, denote the edges

of all son-triangles ofK andϕK
i := ϕ̂i ◦F−1

K the associated scalar basis func-
tions for the discrete velocityvh on K. The corresponding vector-valued
basis functionsϕK

j
: K → R

2, j = 1, . . . ,16, are defined as

ϕK
2i−1

:=

(
ϕK

i
0

)
, ϕK

2i
:=

(
0

ϕK
i

)
, i = 1, . . . ,8. (3.10)
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An arbitrary discrete velocity functionvh ∈Vh restricted toK can be repre-
sented as

vh|K(x) =
16

∑
j=1

vK
j ϕK

j
(x) ∀x∈ K

where the degrees of freedomvK
j are given by

vK
2i−1 := |EK,i |

−1〈vh,1|K ,1〉EK,i
, vK

2i := |EK,i |
−1〈vh,2|K ,1〉EK,i

(3.11)

for all i = 1, . . . ,8. Due to Remark 3.1, we get anL2-orthogonal decomposi-
tion of an arbitraryvh ∈Vh into aninterior partvint

h (which can be condensed)
and aremainingpartvr

h as follows

vh(x) = vint
h (x)+vr

h(x) ∀x∈ Ω

where for allx∈ K it holds together with (3.11)

vint
h |K(x) =

16

∑
j=9

vK
j ϕK

j
(x), vr

h|K(x) =
8

∑
j=1

vK
j ϕK

j
(x). (3.12)

Similarly, we can define anL2-orthogonal decomposition of an arbitrary
discrete pressure functionph ∈ Vh into an interior part pint

h (which can be
condensed) and aremainingpart pr

h as follows

ph(x) = pint
h (x)+ pr

h(x) ∀ x∈ Ω

where for allx∈ K it holds

pint
h |K(x) =

4

∑
j=2

pK
j ψK

j (x), pr
h|K(x) = pK

1 := |K|−1(ph,1)K . (3.13)

Here,|K| denotes the area of the cellK and the local basis functionsψK
j ∈

P
dc
0 (K)∩ L2

0(K) with L2
0(K) := {q ∈ L2(K) : (q,1)K = 0} are defined as

the following linear combinations of the characteristic functionsχi,K from
Subsection 3.2:

ψK
j (x) := χ j,K(x)−

|Tj,K |

|T1,K |
χ1,K(x), j = 2, . . . ,4, x∈ K. (3.14)

Now, we can eliminate, on each cellK ∈ Th, the interior partsvint
h and

pint
h in dependence of theremainingpartsvr

h andpr
h. To this end, we simply
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choose in (3.9)K-local test functions and get the following local generalized
Stokes problem:

For givenvr
h|K and pr

h|K , find vint
h |K and pint

h |K described in (3.12) and
(3.13) such that

ah

(
vint

h |K +vr
h|K , ϕK

j

)
+bh

(
ϕK

j
, pint

h |K +pr
h|K

)
=
(

f ,ϕK
j

)
, j = 9, . . . ,16

bh
(
vint

h |K +vr
h|K ,ψ

K
j

)
= 0, j = 2, . . . ,4.

(3.15)

It is simple to show that the two subspaces of theinterior velocity and pres-
sure functions are inf–sup-stable uniformly with respect toh. Therefore, the
K-local problem (3.15) admits a unique and stable solution for each given
pair (vr

h, p
r
h) and each cellK ∈ Th. These local problems are equivalent to

a linear 11×11-system which can be solved directly by means of an opti-
mized linear algebra subroutine. In the implementation of the static conden-
sation, one solves on each mesh cellK simultaneously the corresponding
local system for all possible pairs of basis functions for(vr

h|K , p
r
h|K) and

stores the solutions. Thus, one has an efficient cell-wise matrix representa-
tion of the following solution operators

vint
h = Sv(v

r
h, p

r
h, f ), pint

h = Sp(v
r
h, p

r
h, f )

which assign to an arbitrary pair(vr
h, p

r
h)∈ (vbh+Vr

h)×Qr
h the corresponding

interior parts(vint
h , pint

h ), where theremainingspacesVr
h andQr

h are given by

Vr
h := span

{(
ϕ j

0

)
,

(
0
ϕ j

)
, j = 1, . . . ,NEDG

}

and

Qr
h :=

{
q∈ L2(Ω) : q|K = const ∀K ∈ Th

}
.

Using the solution operatorsSv andSp, the remaininggeneralized Stokes
system reads:

Find (vr
h, p

r
h) ∈ (vbh+Vr

h)×Qr
h such that

ah(Sv(v
r
h, p

r
h, f )+vr

h, ϕh)+bh(ϕh, Sp(v
r
h, p

r
h, f )+ pr

h) = ( f ,ϕh)

∀ ϕh ∈Vr
h

bh(Sv(v
r
h, p

r
h, f )+vr

h,qh) = 0

∀ qh ∈ Qr
h .
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Figure 3. The coarse mesh for the feedback control flow problem withL = 1.7, H = 1,

Nc = 2, I (1)c = [7/12,8/12] andI (2)c = [11/12,1]. The straight-lined control boundary parts
are marked withΓc.

The corresponding sparse linear system can be assembled efficiently and
has a dimension of

Nr = dim(Vr
h)+dim(Qr

h) = 2NEDG+NEL

whereNEL denotes the number of quadrilateral cells in the meshTh. This
dimension is about 3 times smaller than the dimension of the original sys-
tem (3.9).

4. Numerical results

We have implemented a finite element package for quadrilaterals and pro-
grams for theoperator Newton-ADI methodin MATLAB. The resulting al-
gebraic linear systems have been solved using the sparse direct solver pro-
vided by MATLAB. For the 2D-case, the computational efficiency of this
solver is comparable to that of modern multigrid solvers.
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4.1. Grid and data

In the following, we describe the problem data and the grid used for our
test example of a channel flow around an obstacle. In this two dimensional
example, the domainΩ = Ωr \Ωe is defined by a rectangular channelΩr =
(0,L)×(0,H) and a mostly elliptic-shaped obstacleΩe as depicted in Fig. 3.

The boundaryΓe of the obstacleΩe consists ofNc straight linesΓ(k)
c forming

the control boundaryΓc =
⋃Nc

k=1 Γ(k)
c and the remaining wall partΓw ∩Γe

which has the elliptic-shaped parametrization

γ(s) =
[
xe0

1
xe0

2

]
+

[
r1cos

(
2π(−s0−s)

)

r2sin
(
2π(−s0−s)

)
]

∀s∈ (0,1]\
Nc⋃

k=1

I (k)c

whereI (k)c denote the parameter intervals of the control partsΓ(k)
c defined

below. Furthermore,(xe0
1 ,xe0

2 ) = (1,1/2) denotes the center of the ellipse,
s0 = 5/24, andr1 = 1/10, r2 = 1/6 are the semi-axes of the ellipse. The

parametrization of the control partΓ(k)
c , k= 1, . . . ,Nc, is defined as

γ(s) = γ
(
s(k)a

) s(k)b −s

s(k)b −s(k)a

+ γ
(
s(k)b

) s−s(k)a

s(k)b −s(k)a

∀s∈ I (k)c = [s(k)a ,s(k)b ].

On each partΓ(k)
c of the control boundaryΓc, we prescribe at each time

t ∈ (0,∞) a parabolic inflow profile of the velocity in normal direction toΓ(k)
c

with the maximum valueuk(t) ∈ R (see Fig. 4). The caseuk(t) < 0 means
that we prescribe an outflow done by exhausting fluid out of the model.

Once the control vectoru(t) ∈ R
Nc is given for some timet ∈ (0,T),

we know all Dirichlet boundary data for the velocity at this time on the
control boundaryΓc. In order to define the remaining boundary conditions
we decompose the whole boundaryΓ = ∂Ω into

Γ = ΓD ∪Γout, ΓD := Γin ∪Γw ∪Γc

whereΓD denotes the Dirichlet-part and

Γin := {(x1,x2) ∈ Γ : x1 = 0}, Γout := {(x1,x2) ∈ Γ : x1 = L}

Γw := Γ\
(
Γin ∪Γout∪Γc

)
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Figure 4. The parabolic inflow profile at the control boundary partΓ(1)
c .

the inflow-, outflow- and wall-part of the boundary (see Fig. 3). On the
outflow-partΓout, we impose the so-calleddo-nothingboundary condition

−ν∇v(x, t) ·n(x)+ p(t,x)n(x) = 0 ∀ (t,x) ∈ (0,∞)×Γout (4.1)

wheren denotes the outer unit normal vector onΓout. On the Dirichlet part
ΓD we prescribe

v(t,x) =





gin(x), (t,x) ∈ (0,∞)×Γin

0, (t,x) ∈ (0,∞)×Γw

gc(t,x), (t,x) ∈ (0,∞)×Γc.

(4.2)

The aim of our feedback control is to adjust the control vectoru(t) ∈ R
Nc

such that the resulting horizontal component of the velocityv(t,x) is min-

imized at the observation pointsx = x(m)
obs, m= 1, . . . ,Nobs, located on the

outflow boundaryΓout (see Fig. 3) withNobs= 3.
In the following, we choose the channel geometry withL = 1.7, H = 1

and setNc = 2, I (1)c = [7/12,8/12], andI (2)c = [11/12,1] (see Fig. 3). In our
computational tests, the coarse mesh at grid levelℓ= 1 consists ofNEL = 36
cells,NVT = 52 vertices, andNall

EDG= 88 edges. The number of edges located
at the Dirichlet boundaryΓD at grid levelℓ= 1 isND = 29 (see Fig. 3). The
refined mesh at grid levelℓ= 4 is depicted in Fig. 5.

4.2. Convergence study for non-conforming composite element

In this subsection, we study theexperimental order of convergence(EOC)
for our composite element pair. We consider the generalized Stokes problem

Bereitgestellt von | Max-Planck-Gesellschaft - WIB6417
Angemeldet

Heruntergeladen am | 07.04.15 15:07



Non-conforming composite quadrilateral FE 213

Figure 5. Refined mesh at level 4.

with ν = 1.0 andµ = 0.5 on a sequence of uniformly refined meshes starting
from the level-1-mesh shown in Fig. 3. In order to be able to measure the
actual error, we prescribe the exact velocity and pressure solution as

(
v1(x1,x2)
v2(x1,x2)

)
=




cos
( π

2L
x1

)
sin(πx2)

−
1

2L
sin

( π
2L

x1

)
cos(πx2)




p(x1,x2) =−ν
π
2L

sin
( π

2L
x1

)
sin(πx2)

and choose the right-hand sidef and the Dirichlet boundary conditions ac-
cording to this solution.

In Table 1 we present, for different grid levels, the total numbers of the
degrees of freedom for the velocity, pressure, and condensed spaces, respec-
tively. We see that the reduction factor in the dimension of the condensed
space compared to the usual velocity and pressure space is about 3.

The error of the discrete velocityvh measured in theL2-norm as well as
in the H1-semi-norm and the error of the pressure approximationph mea-
sured in theL2-norm are shown in Table 2. The achieved convergence rates
are of optimal order.

In Table 3, we present the errors in the vertical velocity componentvh,2

evaluated at the observation pointsx(1)obs= (L,1/6) andx(2)obs= (L,2/3). We

see that the computed errorsei := |v2(x
(i)
obs)−v2,h(x

(i)
obs)|, i = 1,2, are of sec-
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Table 1.
Degrees of freedom for the velocity, pressure, and condensed space.

Level velocity pressure velocity & pressure condensed

1 464 144 608 212
2 1792 576 2368 784
3 7040 2304 9344 3008
4 27904 9216 37120 11776
5 111104 36864 147968 46592

Table 2.
Errors of velocity and pressure for the composite element pairP

nc
1 /Pdc

0 .

Level ‖v−vh‖0 EOC |v−vh|1 EOC ‖p− ph‖0 EOC

1 3.773e−2 — 4.307e−1 — 2.435e−1 —
2 1.096e−2 1.783 2.232e−1 0.948 9.278e−2 1.392
3 2.866e−3 1.935 1.128e−1 0.984 3.909e−2 1.247
4 7.252e−4 1.982 5.659e−2 0.996 1.839e−2 1.088
5 1.819e−5 1.995 2.832e−2 0.999 9.039e−3 1.025

ond order for sufficiently fine meshes. Note that the observation points have
been chosen such that they do not coincide with any mesh point.

4.3. Feedback stabilization

In this subsection, we apply Algorithm 2.1. Therefore, we use the above
described grid at refinement level 2, chose the observation points as

x(1)obs= (1.7,0.9), x(2)obs= (1.7,0.8), x(3)obs= (1.7,0.75)

and compute the feedback operator for the Stokes equation withν = 0.1 via
Algorithm 2.1. To show the influence of the feedback operator, we solve a
discretized version of equation (2.7b) in MATLAB by assembling the matri-
ces explicitly, using an initial non-steady-state condition, and compute a for-
ward simulation of the resulting differential algebraic system with (closed-
loop) and without (open-loop) the influence of the feedback. Because the
Stokes equations are asymptotically stable, the compute feedback does not
influence the evolution of the output, measured via the first summand‖y‖2

in (2.7a), too much. To show the effect of feedback stabilization, we add
two regularization parameters in the cost functional (2.7a) to penalize the
output withλ and the control costs with 1/ρ. This means we computed the
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Table 3.
Errors at observation points for the vertical velocity component.

Level e1 EOC e2 EOC

1 6.861e−1 — 1.042e−2 —
2 3.675e−3 0.901 5.481e−4 4.250
3 1.842e−4 4.318 8.768e−5 2.644
4 4.288e−5 2.103 2.800e−5 1.647
5 1.121e−5 1.935 6.240e−6 2.166
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Figure 6. Evolution of output for different regularization parameters.

feedback for the adapted cost functional

J (y,u) =
1
2

∫ ∞

0
λ ‖y‖2+

1
ρ
‖u‖2dt.

In Fig. 6 we compare the evolution of the output for different settings
of (λ ,ρ). It shows that the trajectories of theopen-loopsimulation (without
any feedback), forλ = ρ = 1, and for penalize the control costs are nearly
the same. This means the controller notices that not doing anything is good
enough to minimize the cost functional, especially if a large controller in-
fluence is penalized.

But if we setρ = 1 and increaseλ , we see that the controller forces the
output faster to zero.

Of course, this behavior involves higher control costs. To show this, we
compare the evolution of the optimal control in Fig. 7 measured via the sec-
ond summand‖u‖2 in (2.7a). We plotted the evolution for the same regular-
ization parameter settings as above. The expected behavior can be observed.
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Figure 7. Evolution of control for different regularization parameters.

Table 4.
Newton-ADI convergence results for refinement level 2.

matrix-version operator-version
λ ρ ∅nADI nNewton errorNewton ∅nADI nNewton errorNewton

100 100 17.0 3 2.76·10−13 17.0 3 2.78·10−13

100 10−2 17.0 2 1.49·10−6 17.0 2 1.49·10−6

100 10−4 17.0 2 1.99·10−6 17.0 2 1.99·10−6

102 100 17.2 5 1.01·10−8 17.2 5 1.01·10−8

104 100 20.8 11 1.64·10−5 20.9 11 1.64·10−5

If we penalized the control costs, the controller becomes inactive quite fast,
because the system is going to zero fast enough without any control. Butif
we force the system to endeavor a zero output faster, by increasingλ , we
need significant higher control costs at the beginning.

These results will become more interesting if we consider unstable
Navier–Stokes flows in the future. Additionally, we want to implement the
feedback in a closed-loop simulation of the flow to see the stabilizing influ-
ence of the optimal control within a visualized simulation.

In the second part of this subsection we want to compare the conver-
gence results of the operator Newton-ADI method with the matrix version
presented in [4]. We assembled all matrices for the forward simulation ex-
plicitly. Now, we use these matrices to run the matrix based version of Al-
gorithm 2.1 presented as Algorithm 2 in [4]. In both methods, we use the
heuristicPenzlshifts and a stopping criteria of tolADI = 2.5 · 10−7 for the
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ADI iteration and tolNewton= 2.5 ·10−5 for the Newton iteration. The stop-
ping criteria refer to the relative change of the computed feedback.

Table 4 shows that both methods converge within the same number of
steps and achieve nearly the same relative error. Furthermore, we see the
influence of the regularization parameters described above. If we penalize
the output costs withρ, the algorithm converges faster, because it knows that
it does not need any control as described above. Otherwise, if we penalize
the output withλ , the computation of the feedback needs more iterations to
be the optimal for the chosen cost functional.

Summarizing, we see that computing the optimal control is useful in
combination with the correct cost functional. We also could verify the ma-
trix free approach to compute the optimal control for this kind of problems
independent of the numerical discretization. This means we can use special
discretizations, to avoid the drawbacks of standard mixed finite elements.

5. Conclusions and outlook

The proposed non-conforming composite element provides a good compro-
mise of the advantages of quadrilateral and triangular elements. The numer-
ical experiments show that the expected asymptotic orders of convergence
are observed already for moderately sized meshes. The element is espe-
cially well suited for solving the linear quadratic regulator problem for the
Stokes flow by the (operator) Newton-ADI method. This is due to both the
preservation of the divergence constraint on the discrete level and theL2-
orthogonality of the corresponding basis functions. The latter does not only
increase the efficiency due to the diagonal structure of the resulting mass
matrix, but also eliminates some term in the weak form of the equations that
need extra treatment when standard finite elements are used.

Our approach allows a natural extension to the case of the Navier–Stokes
equations and time-dependent working trajectory which will be the subjects
of forthcoming research.
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