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Abstract

A spacetime condensation phenomenon underlies the emergence of a macroscopic universe in

causal dynamical triangulations, where the time extension of the condensate is strictly smaller

than the total time. It has been known for some time that the volumes of spatial slices in the

bulk of the macroscopic universe follow a time evolution which resembles that of a sphere, and

their effective dynamics is well described by a minisuperspace reduction of the general relativistic

action. More recently, it has been suggested that the same minusuperspace model can also

provide an understanding of the condensation phenomenon itself, thus explaining the presence

of an extended droplet of spacetime connected to a stalk of minimal spatial extension. We show

here that a minisuperspace model based on the general relativistic action fails in that respect for

the (2+1)-dimensional case, while a successful condensation is obtained from a minisuperspace

model of Hořava-Lifshitz gravity.
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1 Introduction

Defining a theory of quantum gravity is a notoriously difficult problem, which has given rise to

many different ideas and approaches. Within this context, the Causal Dynamical Triangulations

(CDT) program [1] stands out as an approach capable of producing many fully nonperturbative

and background independent results. Its central proposals are to seek a non-perturbative defini-

tion of the theory through the path integral, to define this via a piecewise-flat discretisation, to

vary the connectivity between the simplex “building blocks” (rather than varying the geometrical

properties of these blocks), and finally, to impose a “causal” restriction on the set of configura-

tions to be summed over. The addition of this restriction finally produced a model from which

strong evidence for the recovery of a well-behaved extended spacetime could be derived in 3+1

D via computer simulations, and other promising results.

The causal restriction requires a preferred foliation (or “time-slicing”) at the discrete level,1

violating the symmetries of GR. The initial hope was that the desired symmetry would re-emerge

if and when an appropriate continuum limit could be taken, and this has not yet been ruled out.

One possibility is that, equipped with the correct limiting procedure, CDT will provide a lattice

implementation of the asymptotic safety scenario [3, 4, 5, 6, 7]. More recently, strong connections

have been found [8, 9] to Hořava-Lifshitz (HL) gravity [10, 11], which explicitly breaks foliation-

independence, raising the possibility that this theory is the more natural continuum limit of CDT.

The possibility of finding multiple, physically different, continuum limits also remains open [12].

In the simulations, three phases were found in the (3+1)-dimensional CDT phase diagram,

only one of which gave rise to anything resembling an extended spacetime [13, 14]. In one of

the phases, sometimes refered to as the “A” phase, spatial volume is essentially spread randomly

over all times in the simulation. In the “B” phase all spatial volume is concentrated at one

value of time, leaving minimal volume on all other slices. In the well-behaved “C” phase, the

vast majority of the simplices are to be found in a “droplet” with non-trivial time extension, but

outside of this contiguous region the spatial volume is near-minimal. This spatially trivial region

is referred to as the “stalk”. For the droplet region, computational results for spatial volume as a

function of time (the “volume profile”) can be compared to minisuperspace models derived from

GR, with good results for both expectation values and fluctuations [14].

Bogacz, Burda and Waclaw [15] took this analysis one step further by studying a discrete path

integral for the minisuperspace model. They noted that this model is similar to the well-studied

1Although see [2] for evidence that the desirable properties of the model can be preserved without obviously

invoking a foliation, but rather enforcing a more local version of causality.
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“balls in boxes” statistical models, which exhibit the same kind of “condensation” behaviour

observed in the CDT simulations.2 They found that this simple model not only explains the

volume profile of the droplet in phase C, but also the presence of a stalk, and the other two

phases. Furthermore the model possesses a phase diagram qualitatively matching the explored

region of the CDT phase diagram, and suggesting possible new phases. This could be interpreted

as further evidence for a connection between standard GR and CDT theory, but it would be

interesting to explore this question further. For example, it is of interest to ask whether the same

connections hold between GR-inspired minisuperspace models and CDTs in 2+1 dimensions, and

if not, to ask what kind of theory might reproduce the qualities of the phases seen there.

It is often convenient and interesting to consider lower-dimensional models, and quantum

gravity in 2+1 dimensions has been a very active field of research over the years [18]. The same

idea applies to CDT, which becomes so simple that it can be solved analytically in 1+1 dimensions

[19]. In comparison with this even lower-dimensional case, CDT theory in 2+1 dimensions has

seen relatively few advances on the analytical front (e.g. [20, 21]), but it has proved to be a

fruitful testbed for many ideas at the numerical level [22, 23, 24, 25, 26, 27, 28, 2], where it

has been found that the 2+1D model possesses phases similar to phases A and C of the 3+1D

model. In particular, both the 1+1 [29] and (2+1)-dimensional case [24, 25, 27] have been useful

in establishing tighter links to HL gravity.3 Below, we add to these studies by showing that the

analysis of Bogacz et al. can only be extended to the 2+1D case if the minisuperspace model

employed is derived not from GR, but from HL gravity.

In Sec. 2 we present results from our numerical simulations of (2+1)-dimensional CDT. These

are not the first simulations of this sort to have been carried out, but we review the more re-

cent data here because they are obtained for a larger system size than previous simulations, and

because the details of the results will be essential to the subsequent discussion. In Sec. 3 we

review the balls-in-boxes models and their relation to CDT. Besides recalling known facts, we

also make some key observations concerning the absence of a Hamiltonian constraint in CDT,

and show that the droplet condensation of (2+1)-dimensional CDT cannot be explained by the

corresponding minisuperspace model based on general relativity. In Sec. 4 we introduce a min-

isuperspace reduction of a Hořava-Lifshitz gravity model in 2+1 dimensions, which we propose

as an effective model for CDT. We study the minimisation of the action and show that a droplet

condensation wins over a completely constant or a purely oscillatory solution. Lastly, we compare

the predictions of our model with the CDT data in Sec. 5, where we also discuss the continuum

limit, and conclude in Sec. 6 with a discussion of open questions.

2Connections in quantum gravity between condensation phenomena and the recovery of extended spacetimes

have also been investigated from the perspective of group field theory [16, 17].
3Obviously the connections are to its lower-dimensional versions, which have been studied for example in [10,

30, 31].
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2 Spatial volume dynamics in (2+1)-dimensional CDT

To obtain a non-perturbative evaluation of a path integral in quantum field theory, it is standard

to replace continuum spacetime with a fixed lattice. This allows computer simulations to estimate

quantities of interest, besides providing an approximate definition of an object that otherwise has

no meaning. Recovering the continuum theory is a delicate process that relies on the theory of

critical phenomena and the renormalisation group.

The CDT approach follows these QFT techniques as closely as possible, but to deal with a

theory of dynamical geometry, with no background spacetime fixed a priori, the fixed lattice is

replaced with an ensemble of random triangulations. More specifically, each of these triangula-

tions is a simplicial manifold, i.e. a collection of d-dimensional flat simplices (the generalisation

of triangles and tetrahedra) glued along their (d− 1)-dimensional faces and such that the neigh-

bourhood of any vertex is homeomorphic to a d-dimensional ball. A dynamical triangulation is

one in which all the simplices are taken to be equilateral, with edge length a. In the simulations

we usually work in the canonical ensemble of triangulations with a fixed number of d-simplices

Nd, which we will denote T . The triangulations in this ensemble are obtained by “gluing” the

Nd simplices in all possible ways allowed by the simplicial manifold condition.

In older models of dynamical triangulations, where only the spacetime topology is fixed,

the path integral is dominated by badly behaved configurations that do not resemble extended

spacetimes. In CDT models a further restriction is imposed on the ensemble: only triangulations

with a global time foliation, with respect to which no spatial topology change occurs, are allowed.

For more details on the geometrical meaning of this restriction and on its implementation see

[32].

The dynamics of the model is defined by the Euclideanised path integral, or partition function,

which in the grand canonical ensemble is given by

Zgc =
∑

Nd

∑

T

1
C(T ) e

−S(T ) , (2.1)

where S(T ) is the bare action, and C(T ) is the order of the automorphism group of T , a symmetry

factor naturally appearing when summing over unlabelled triangulations. A simple choice for the

bare action is the Einstein-Hilbert action adapted to a simplicial manifold, known as the Regge

action. When all edge-lengths are equal, the Regge action reduces to the convenient form

S(T ) = κdNd − κd−2Nd−2 , (2.2)

where κd and κd−2 are two coupling constants depending on the cosmological and Newton’s con-

stant appearing in the Regge action, and Nd−2 is the number of (d− 2)-dimensional subsimplices

(also called bones or hinges). In general we will use Nn to denote the number of n-dimensional

simplices (n = 0, 1, . . . d). Because of the foliation in CDTs, it is possible to differentiate between

spacelike and timelike edges4, and as a consequence we can count them separately as N s
1 and

4We are using here a Lorentzian language even though we have already carried out a Wick rotation and our
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N t
1 respectively. Similarly N s

2 is the number of triangles lying entirely within one slice of the

foliation, N t
2 is the number of those having one vertex on an adjacent slice, and so on. Finally we

will write N(m,d+1−m) for the number of d-dimensional simplices having m vertices on one slice

and the remaining ones on an adjacent slice. Despite the length of this list, due to topological

relations [32] (2.2) is the most general linear action that we can write with such variables for

d = 3, which is the case we are interested in.

In our simulations we will use these topological constraints to trade the variable N1 for N0,

which is easier to keep track of, and replace (2.2) for d = 3 by

S(T ) = κ3N3 − κ0N0 . (2.3)

Furthermore, as we mentioned, in the computer simulations we work at fixed volume, and hence

we replace (2.1) by

Zc(N3) =
∑

T

1
C(TN ) e

κ0N0 , (2.4)

where we have made use of the simple form of the action (2.3). Note that the partition function

Zc is the discrete Laplace transform of Zgc with respect to Nd. The expectation value of an

observable A can be calculated from

〈A〉N3 =
1

Zc(N3)

∑

T

1
C(T ) e

κ0N0A(T ) , (2.5)

which is related to the expectation value as a function of κ3 via

〈A〉 = 1

Zgc

∑

N3

e−κ3N3Zc(N3) 〈A〉N3 . (2.6)

2.1 The simulations

Simulations were performed using the Markov-chain Monte-Carlo technique. An adaptation of

some previously existing code for the Monte Carlo simulations (used in [22]) was used for this

purpose. The code generates a finite set of sample configurations {T1, ...,TM} according to the

probability distribution P(T ) = 1
Z e

−S(T ). We approximate the expectation value of an observable

by its arithmetic mean across these samples:

〈O〉 ≈ 1

M

M
∑

j=1

O(Tj). (2.7)

As usual in 2+1D CDT simulations, the spacetime topology was fixed to S2×S1, i.e. spherical

spatial sections and cyclical time.5 Values of N3 up to a maximum of 200k (meaning 2×105) were

studied, although some errors for the larger values of N3 are greater since less configurations could

signature is Euclidean; due to the preferred foliation, we can still identify the “spacelike” edges as the ones lying

entirely within one slice of the foliation.
5Simulations with different boundary conditions in the time direction have been performed by Cooperman and

Miller in [26] and their results give us confidence that the results presented here are not affected by our choice.
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be generated to be averaged over, within practical time constraints. All simulations were carried

out with coupling constant κ0 = 5, in the phase analogous to phase C in 3+1D, where previous

evidence points to the emergence of well-behaved geometry. The total number of time-steps was

set to T = 96.

2.2 The volume data

The observable we study here is the volume of the spatial slices, which in the (2+1)-dimensional

CDT model corresponds to the number of spatial triangles N2(i) as a function of discrete time

i. Because the triangulation is connected we always have N2(i) > 0. Furthermore, because we

restrict to simplicial manifolds, the smallest triangulation of a two sphere has four triangles,

giving

N2(i) ≥ nǫ = 4 . (2.8)

Another possible observable is the volume of the spatial slices at half-integer values of time,

which amounts to a weighted sum of the number of (3,1) and of (2,2) tetrahedra between slices i

and i + 1. We expect that in the phase of extended geometry (where N(3,1) ∼ 2N(2,2)) any such

differences in definitions of volume as a function of time should be irrelevant in the continuum

limit. Note that a triangle is always shared by two tetrahedra, so that, for the number N
(s)
2 of

spatial triangles, we have

N
(s)
2 =

T
∑

i=1

N2(i) =
1

2
N(3,1) , (2.9)

which in the extended phase we expect to be roughly one third of the total volume N3. For the

value of κ0 we used, the distribution of N
(s)
2 is very peaked (for N3 =100k the relative standard

deviation is only 0.2%, see Fig. 1), and we find that N(2,2) is just slightly smaller than a third of

the total volume.

In Fig. 2 we show the volume profile N2(i) from a snapshot of a MC simulation. One no-

tices immediately a phenomenon of spontaneous (translational) symmetry breaking: the MC

configuration shows a condensation of the volume around a specific time. Averaging over MC

configurations, the translational symmetry gets restored, but in this way we loose information

about the typical configuration that dominates in the partition function. Therefore, before being

able to do any meaningful analysis we have to find the center of volume tCV (j) for each MC

configuration j, and we have to shift time so that t′CV (j) = T/2 for every configuration in the

new time variable. We performed this operation following the method given in [34, 35]. Once the

data are centered in this way, it makes sense to study the average of N2(i). A plot of 〈N2(i)〉,
together with fluctuations, is displayed in Fig. 3.

The latter is the observable which is central to this work. The volume profile has a charac-

teristic extended part (typically referred to as the blob or droplet), and a long flat tail (referred

to as the stalk). Within the latter, the spatial volume is very close to its kinematical minimum,
1
m

∑i∈stalk
i=1...m〈N2(i)〉 ≡ ns ∼ 10, and it is independent of the total volume. Most of the total volume
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Figure 1: The distribution of the total number of spatial triangles N
(s)
2 (grouped in bins of size 10), for

N3=100k. The expectation value is 〈N (s)
2 〉 = 35026, with standard deviation σ = 85.

is therefore concentrated in the blob. We will discuss in the following sections how to explain this

condensation phenomenon, and which function best describes the volume profile.

2.3 The continuum limit

We conclude this section by discussing how the continuum limit a → 0 is investigated on the

basis of the simulation data. All observables and couplings in the simulations are given as di-

mensionless numbers. Length dimensions are introduced by multiplying the quantity of interest

by the appropriate power of the cutoff a. For example, we can write τ = aαT for the time inter-

val, where we have introduced a parameter α > 0 to scale the timelike edges with respect to the

spacelike ones. Next, we can write V2 =
√
3
4 a

2N2 for the volume of a slice (the numerical prefactor

being the area of an equilateral triangle of unit side), V3 = v(3,1)(α)a
3N(3,1)+ v(2,2)(α)a

3N(2,2) for

the total volume, etc. Here, v(3,1)(α) and v(2,2)(α) stand for the volume of the (3, 1) and (2, 2)

simplices with spatial edges of length one, and time edges of length α (they both coincide with

the equilateral tetrahedron for α = 1, with volume v3 = 1/6
√
2, see [1]).

In particular, by keeping V3 ∼ a3N3 fixed, we have the fundamental scaling relation a ∼ N
1/3
3 .

Therefore we construct the continuum limit by rescaling all quantities by the appropriate power

of N
1/3
3 , according to their dimension, and taking a larger and larger volume. Without any fine

tuning of the dimensionless couplings, all the couplings having positive (negative) length dimen-

sion will go to zero (infinity) as a→ 0. This is for example the case for Newton’s constant, which

has the dimension of length in 2+1D and thus is expected to go to zero in the naive continuum
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Figure 2: The spatial area N2(i) as a function of time, from a single configuration taken at random in

the data set of MC simulations for N3=100k.

limit (in four spacetime dimensions, where Newton’s constant has dimension of length to the

second power, this has been observed in [34]). A finite coupling in the continuum could hopefully

be attained by fine tuning the bare coupling to a second order phase transition.6 However, some

dynamically generated quantities, for example the width or amplitude of the droplet, might show

scaling with N3, naturally leading to finite dimensionful quantities in the limit in which the cutoff

is removed. This is precisely what Fig. 4 shows. Here we have plotted 〈N2(i)〉1/2/〈Ñ (s)
2 〉1/3 as a

function of i/〈Ñ (s)
2 〉1/3, for different data sets corresponding to different total volumes. Following

an analogue of the procedure used in [33], we used

〈Ñ (s)
2 〉 = 〈N (s)

2 〉 − nsT , (2.10)

instead of 〈N (s)
2 〉 (or N3, which as we saw, is proportional to it) in the rescaling because we know

that the volume in the stalk does not scale. The plot clearly shows that the superposition is

extremely good inside the droplet, while in the stalk the rescaled volume goes to zero for growing

N3. Another dynamical quantity that goes to zero in the continuum is the size of the fluctuations

around the average, which we expect to be controlled by Newton’s constant.

6This is the general picture relating continuum quantum field theory (with propagating degrees of freedom) and

lattice field theory, via the fine tuning of the latter to a second-order phase transition lying in the universality class

of some fixed point of the renormalisation group. In the case of gravity this would lead to either the realisation

of an asymptotic safety scenario [3, 4, 5, 6, 7], or the existence of a Lifshitz critical point [10, 11] (or perhaps

some novel scenario made possible by non-standard features of the gravitational path integral). The difference is in

general between trivial and nontrivial fixed points (although an interacting Lifshitz critical point is also possible),

and it could in principle be discerned by studying the critical properties associated to a phase transition. In this

respect, it is very encouraging that a second-order phase transition has been identified in CDT [36, 37].
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Figure 3: The mean spatial area as a function of discrete time, for N3=100k. The blue dots represent

the mean area 〈N2(i)〉 of the volume data at time i, while the blue line is just an interpolation curve. The

dashed red lines are interpolating curves for 〈N2(i)〉 ± σ/2, where σ =
√

〈(N2(i))2〉 − 〈N2(i)〉2.

3 Balls-in-boxes models

The statistical models known as balls-in-boxes (or zero-range process in the nonequilibrium ver-

sion) are an interesting and versatile class of models which have been extensively studied in the

statistical mechanics literature (see for example [38]). They have also been used as mean field

models of (non-causal) dynamical triangulations [39, 40, 41]. More recently, they have been stud-

ied in [15] as effective models for the spatial volume dynamics of CDT in 3+1 dimensions. We

briefly review in this section some of their relevant properties, and their connection to CDT.

A balls-in-boxes (BIB) model is defined as a one-dimensional lattice with T sites (boxes)

to each of which is associated an integer number mi ≥ mmin > 0 (the number of balls in box

i ∈ {1, 2, ..., T}). The total number of balls is fixed to be M . The canonical partition function of

the statistical model is given as

ZBIB(T,M) =
M
∑

m1=mmin

...
M
∑

mT=mmin

δM,
∑

i mi

T
∏

i=1

g(mi,mi+1)

=
∑

{mj}
e−S[{mj}]δM,

∑
i mi

,

(3.1)

with mT+1 = m1. The last expression highlights the interpretation of such models as discretised
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Figure 4: The square root of the mean spatial area as a function of discrete time (shifted so that the peak

is at the origin). Both the mean area and the time variable are rescaled with the appropriate power of the

average total volume Ñ
(s)
2 = N

(s)
2 − nsT , in order to display scaling.

one-dimensional path integrals, subjected to the constraint

T
∑

i=1

mi =M . (3.2)

The weight function g(m,n) (or the action S[{mi}]) defines the particular model. In the standard

BIB models there is no nearest-neighbour interaction, meaning that g(mi,mi+1) = g(mi); the

model above is a generalisation studied in [42, 43]. For the effective description of the spatial

volume dynamics in CDT, we will see that the action depends on the dimension of the CDT

model.

Often, in particular for an analytical approach, it is useful to work in the grand canonical

ensemble, for which the partition function reads

ZBIB−gc(T, z) =
∑

M

ZBIB(T,M) zM

= Tr T̂ T ,

(3.3)

where we introduced the transfer matrix

T̂m,n = z(m+n)/2g(m,n) . (3.4)

In the light of this relation, g(m,n) is sometimes referred to as reduced transfer matrix.

The interesting feature of these models, at least in this context, is that they can exhibit a con-

densation phenomenon. In the original BIB models, with g(mi,mi+1) = g(mi), this means that
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for certain values of the parameters the model enters into a phase dominated by configurations

completely localised at one (random) site. The mechanism behind such condensation remains

similar in the more general models, but the nearest-neighbour interaction allows the condensate

to spread over a region whose width scales with a power of the total volume M . It is this type of

condensation which sets the basis for an explanation of the droplet configuration in CDT based

on the much simpler BIB models.

3.1 (1+1)-dimensional CDT

The (1+1)-dimensional model of CDT [19] is precisely of the form (3.1), with mi = li giving the

length of the spatial slice. In this case,

g(li, li+1) =
(li + li+1)!

li! li+1!
, (3.5)

counts exactly the number of triangulations of a strip with boundary lengths li and li+1, with

open boundary conditions.7

Using Stirling’s formula one finds that, for large li and li+1, and small (li+1 − li)/(li + li+1),

g(li, li+1) ∼ 2li+li+1e
− (li+1−li)

2

li+li+1 , (3.6)

where in the exponent we recognise a discrete version of the typical kinetic term that arises in

minisuperspace models of general relativity (or as we will see, Hořava-Lifshitz gravity).

The model is exactly solvable [19, 44], and it has recently been linked to (1+1)-dimensional

HL gravity [29]. The latter reduces to a one-dimensional action for the length L(t) of the slices

[29], which in proper-time gauge reads

S(1+1)−HL =

∫ τ
2

− τ
2

dt
L̇2(t)

4L(t)
, (3.7)

and whose Lagrangian can be interpreted as the continuum limit of the exponent in (3.6).

It is well known (see for example [45] and references therein) that in a path integral quantisa-

tion of gravity in the proper-time gauge we loose the Hamiltonian constraint, unless we integrate

over the total proper time. Such integration is not performed in CDT when computing finite

time propagators (by the definition of such observables), or when doing simulations with periodic

boundary conditions in time, for obvious practical reasons. But by no means should one conclude

from this alone that CDT is not actually recovering GR: in principle, nothing forbids us from

doing the integral over time at a later stage. Indeed, in 1+1 dimensions this integral can be

carried out exactly, leading to a solution of the Wheeler-DeWitt equation [19]. What we want

to stress here is that in order to make contact between continuum models and CDT results with

fixed total time, one should not try to impose the Hamiltonian constraint in the former. Bearing

7It basically counts the number of ways we can place li+1 balls in li+1 boxes. Therefore the (1+1)-dimensional

model of CDT is a BIB model whose reduced transfer matrix is defined by an auxiliary BIB model.
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this in mind, we can try to see what a semiclassical analysis of (3.7) tells us. Solving the equations

of motion under the constraint V2 =
∫

τ
2

− τ
2
dtL(t), we find

L(t) =







A cos2
(

Aπt
2V2

)

, for t ∈ [−V2
A ,+

V2
A ] ,

0 , for t ∈ [− τ
2 ,−V2

A ) ∪ (+V2
A ,+

τ
2 ] ,

(3.8)

of course under the condition that V2/A ≤ τ/2. Evaluating the action (3.7) on such solution, we

find S(1+1)−HL = A2π2/(16V2), which is always positive, unless A = 0, corresponding to the trivial

solution. However, that trivial solution violates the total volume constraint, and A will thus take

its minimal possible value A = 2V2/τ , such that the period of the cos2 function coincides with

the total time τ . It is important to note that this corresponds to a local minimum of the action,

not to a global minimum. The latter is clearly attained at the constant solution L(t) = V2/τ ,

which gives a vanishing action and therefore dominates in the path integral.

The result we just obtained is in complete agreement with the analytical results [19] that give

〈L(t)〉 ∝ 1/
√
Λ (Λ being the cosmological constant in the grand canonical ensemble). Also MC

snapshots from numerical simulations [46] show no sign of translational symmetry breaking.8

3.2 The effective model for (3+1)-dimensional CDT

In [15], Bogacz et al. studied a BIB model, which is basically a discretised version of the min-

isuperspace model corresponding to (3+1)-dimensional general relativity. It was found that this

very simple model can account for many of the observed features of CDT in four dimensions,

including its rich phase diagram. In particular, a droplet phase was found, which has remarkable

similarities to the extended phase of CDT (of course, the comparison is limited to the behaviour

of the spatial volume against time).

The model is defined by the following reduced transfer matrix,

g(mi,mi+1) = exp

(

−c1
2(mi+1 −mi)

2

mi +mi+1
− c2

m
1/3
i +m

1/3
i+1

2

)

. (3.9)

In the continuum this corresponds to the following action for the volume V3(t) of the 3-dimensional

spatial slices,

S(3+1)−mini =
1

2G

∫ τ
2

− τ
2

dt

(

c1
V̇ 2
3 (t)

V3(t)
+ c2V

1/3
3 (t)

)

, (3.10)

which is precisely of the type obtained from a minisuperspace reduction of general relativity

(where c1 = 1/N , and c2 = 9(2π2)2/3N , N being the lapse function). This is the action that

was conjectured from the very beginning by Ambjørn et al. as an effective description for the

extended part of the universe (or blob) in their simulations [47, 33], a conjecture which was further

corroborated over the years [48, 34, 49]. The novelty in [15] was the suggestion that the same

effective action can explain much more than just the dynamics inside the blob.

8One should however remember that in 1+1 dimensions
√

〈L2〉 − 〈L〉2 ∝ 1/
√
Λ, i.e. fluctuations have the same

magnitude as the average configuration, thus hiding any possible classical behaviour of the latter.
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One important difference between the usual minisuperspace model of general relativity and

the BIB model, is that in the latter there is no analogue of the lapse to be integrated in the

partition function and neither there is a summation/integration over T . As a consequence, there

is no Hamiltonian constraint to be imposed in the semiclassical analysis. Above, we emphasised

that the same situation should be expected in CDT, where the distance between one spatial slice

and the next is constant (i.e. the lapse is constant) and the total time extension of the universe

is fixed in all simulations to date. This is also supported by the strong evidence from numerical

simulations that the BIB model is a good effective description for CDT.

The equations of motion derived by varying (3.10) with respect to V3(t) are

c1





(

V̇3
V3

)2

− 2
V̈3
V3



+
c2
3

1

V
2/3
3

− Λ = 0 , (3.11)

where the cosmological constant Λ is introduced as a Lagrange multiplier, to be fixed by imposing

the volume constraint. If we were to impose also the Hamiltonian constraint H ≡ c1V̇
2
3 (t)/V3(t)−

c2V
1/3
3 (t)+ΛV3(t) = 0, the combined system of equations would reduce to a first order differential

equation (by deriving the Hamiltonian constraint with respect to time, and eliminating V̈3(t)

between the two equations). As such, its solutions would have only one free integration constant,

which could be fixed for example by demanding that the maximum of V3(t) be at t = 0. The

solution would then be the “cos3” solution discussed by Ambjørn et al. in [48, 34]. However,

without the Hamiltonian constraint the equation remains second-order, and thus there is one

more free parameter.

Bogacz et al. fix the free parameter by minimisation of the on-shell action, as we have

done above for the (1+1)-dimensional case. Using V4 =
∫

τ
2

− τ
2
dtV3(t) for the total volume in

the continuum, they obtain the following expression for the dominant contribution to the path

integral,

V̄3(t) =







3ωV4
4 cos3(ωt) , for t ∈ [− π

2ω ,+
π
2ω ] ,

0 , for t ∈ [− τ
2 ,− π

2ω ) ∪ (+ π
2ω ,+

τ
2 ] ,

(3.12)

with

ω =

√
2

3V
1/4
4

(

c2
c1

)3/8

. (3.13)

Notice that V3(t) = 0 obviously minimises the action (3.10) for positive c1 and c2. However, alone

it would fail to satisfy the volume constraint, and therefore a balance between the zero and the

“cos3” solutions wins the energy balance, resulting in a condensation. Interestingly, (3.12) and

(3.13) correspond to the solution obtained by imposing also the Hamiltonian constraint, but in

our opinion this is a mere coincidence.

The result is very interesting because it shows how the reduced model in 3+1 dimensions not

only reproduces the extended part of the universe, but also its stalk, and it gives a prediction for

their relative time extension.

It is also important to notice that GR would fix the ratio c2/c1, thus leaving us with no

parameters for a fit to the CDT simulations. Since the width of the universe (for fixed V4) depends
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on the bare coupling κ0 [34], this is a strong indication that the effective action describing the

volume dynamics is in general different form what would be expected from GR. We will now

argue that such conclusion is even stronger in 2+1 dimensions.

3.3 The GR-inspired effective model for (2+1)-dimensional CDT

In 2+1 dimensions, the classical minisuperspace action derived from GR in the proper-time gauge

is exactly of the same form as (3.7), but with the length L(t) replaced by the volume (or area) of

the spatial slices V2(t). As in that case, in the presence of a volume constraint V3 =
∫

dtV2(t) this

gives as a solution of the equations of motion a classical volume profile V2(t) ∼ cos2(ωt) which

is compatible with the one observed in CDT, and as such it has been suggested as an effective

action for CDT [22, 23] (see also [26] for a more detailed discussion in this (2+1)-dimensional

context).

In the light of the recent results on BIB models for CDT, the similarity of the minisuperspace

GR action to (3.7) immediately raises the question of how the BIB models could ever explain

the important differences between (1+1) and (2+1)-dimensional CDT. If the (1+1)-dimensional

case is exactly a BIB model, and the (3+1)-dimensional case is well described (in its spatial

volume dynamics) by a BIB model, should we not also expect a good approximation for the

(2+1)-dimensional model?

Of course an important difference between 1+1 and 2+1 dimensions is in the scaling of di-

mensionful quantities. Most importantly, Newton’s constant is dimensionless in 1+1 dimensions,

while it has dimension of length in 2+1D. As a consequence, in the (naive, not fine-tuned) con-

tinuum limit, Newton’s constant (and with it the fluctuations around the average volume of the

slices) scales to zero in the latter case, while it stays constant in the former. In 1+1 dimensions,

as there are no other scales besides the cosmological one, the size of the fluctuations in the con-

tinuum limit is as large as the expectation value, thus blurring any classical behaviour. On the

contrary, in 2+1 dimensions the fluctuations go to zero and the classical (mean field) behaviour

should dominate.

However, regardless of how the fluctuations behave, it turns out that the GR-inspired action

fails in reproducing the CDT results in an important way. Repeating the analysis of Bogacz

et al. for 2+1 dimensions we simply have to set c2 = 0 in the previous subsection (or just

recall what we have said about the (1+1)d case). From (3.13) we then find that ω = 0, and

the width of the droplet diverges. Being more careful, (3.13) does not hold in this case, as it

would violate the condition π/ω < τ which is to be assumed in (3.12). But we have already

explained what happens in the (1+1)-dimensional case. Going to 2+1 dimensions we simply

have to replace V2 → V3 and L(t) → V2(t). The droplet solution which minimises the action is

obtained for ω = π/τ . However, it is easily checked that in such a case the action is strictly

positive, while for V2(t) = V3/τ the action vanishes. We conclude that a BIB model inspired by

(2+1)-dimensional GR would predict a constant average profile for the two-dimensional volumes.

This is also supported by the numerical simulation of [15], as for c2 = 0 and c1 > 0 the model

defined by (3.9) lies in the correlated fluid phase, not the droplet phase.
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We are left with the challenge of explaining the droplet condensation of 2+1D CDT as a BIB-

type condensation. This also provides us with extraordinary opportunity to test corrections to

the GR effective action. In higher dimensions, such corrections are expected to be subdominant

with respect to the the linear spatial curvature term coming from GR (the one multiplied by

c2 in (3.10)). In 2+1D we have a lucky situation, because this curvature term is topological (it

just gives the Euler character of the spatial manifold), and hence drops out of the story, making

higher order corrections relevant.

4 A minisuperspace model of Hořava-Lifshitz gravity in 2+1 di-

mensions

We seek here a continuous effective description of the CDT model, at least for the dynamics of the

spatial volume, in the spirit discussed in the previous section. To that end we could start directly

with an ansatz for a minisuperspace action. However, this would leave us with no guidance and

too much freedom. Instead, we start by postulating a full (i.e. not minisuperspace) action, based

on general principles and expectations.

Motivated by the evidence accumulated in recent years [8, 24, 9, 27, 29], we conjecture that

the full CDT model falls into a Hořava-Lifshitz (HL) type of universality class [10, 11], i.e. that a

preferred foliation survives in the continuum limit9. In other words we begin by constructing an

action in terms of geometric invariants respecting all the symmetries compatible with a preferred

foliation. These include in particular spatial diffeomorphisms, which we expect not to be broken in

CDT. In HL gravity time reparametrisation is also a postulated symmetry, whose implementation

requires the introduction of a lapse function, and therefore it leads to a Hamiltonian constraint.

As we discussed previously, in our opinion there is currently no reason why such a constraint

should be required in interpreting the continuum limit of CDT data: the discrete model clearly

has a constant lapse, and since no integration is performed over the proper time, no Hamiltonian

constraint is enforced. Of course nothing would forbid one to do such an integration at a later

stage, but as here we want to make contact with the available data, in what follows we will set

N to a constant, and we will not impose any Hamiltonian constraint.10

The action that we consider as an ansatz in this section is a particular case of the projectable

version of Hořava-Lifshitz gravity. The latter is characterised by a spatially constant lapse func-

9At least in a naive continuum limit. We cannot exclude a priori that with some ad hoc (and nontrivial) fine

tuning of the bare couplings, a continuum limit with enlarged symmetry might be achieved (on the contrary, we

believe this to be a reasonable possibility). On the other hand, a modification of CDT has been introduced in [2],

where the foliation structure at the discrete level is relaxed to some extent. The large scale results appear to be

very similar to the standard CDT results, and we take this as evidence of universality, with a foliation emerging in

the continuum limit.
10Note that in any case HL gravity generally contains an additional scalar degree of freedom as compared to

general relativity, so the non-imposition of the Hamiltonian constraint should not alter the counting of degrees of

freedom.
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tion, N = N(t), and its most generic z = 2 action in 2 + 1 dimensions reads

S(2+1)−HL =
1

16πG

∫

dt d2xN
√
g
{

σ(λK2 −KijK
ij)− 2Λ + bR− γ R2

}

, (4.1)

where g is the determinant of the spatial metric, R its Ricci scalar, Kij the extrinsic curvature

of the leaves of the foliation, and K its trace. The parameter σ = ±1 is introduced for the

sake of generality. G is Newton’s constant, and Λ is the cosmological constant, while λ, b and

γ characterise the deviation from full diffeomorphism invariance (for λ = b = 1 and γ = 0 the

Lagrangian reduces to R− 2Λ, where R is the Ricci tensor of the whole spacetime in Euclidean

(σ = 1) or Lorentzian (σ = −1) signature). In HL gravity the exponent z refers to the number

of spatial derivatives appearing in the inverse propagator of the free theory, and it is known that

z ≥ d in d + 1 dimensions is needed for renormalisability. In CDT however a renormalisation

group analysis has only just begun [12, 50], and we are currently not in a position to say anything

about the presence of a z = 2 Lifshitz point in (2+1)-dimensional CDT. Therefore, our point

of view on (4.1) is that of effective field theory: given the symmetries we have assumed, (4.1)

contains the leading terms in an expansion of the effective potential in operators of increasing

dimension.

Next, we consider a mini-superspace reduction of (4.1) for constant N , in which we restrict

also to vanishing shift vector (otherwise implicitly contained in the extrinsic curvature tensor),

and where for the spatial metric we take

gij = φ2 ĝij , (4.2)

ĝij being the standard metric on the unit sphere. The function φ = φ(t) is a time-dependent scale

factor, determining the area of a spatial slice:

V2(t) =

∫

d2x
√
g = 4πφ2(t) . (4.3)

Substituting (4.2) in (4.1), we find the mini-superspace action

S̄(2+1)−mini =
N

2G

∫ τ
2

− τ
2

dt

{

σ(2λ− 1)

N2
φ̇2 − Λφ2 + b− 2γ

φ2

}

=
N

2G

∫ τ
2

− τ
2

dt

{

σ(2λ− 1)

4πN2

V̇2
2

V2
− Λ

4π
V2 + b− 8πγ

V2

}

,

(4.4)

where we assume periodic boundary conditions with period τ . The kinetic term is positive definite

for σ(2λ − 1) > 0, which we will assume from this point onwards. On the other hand, because

we want oscillating (i.e. periodic) real solutions, we are forced to take the cosmological and the

R2 terms with an opposite sign with respect to the kinetic term (Λ > 0 and γ > 0), effectively

leading to an action with Lorentzian signature, S̄(2+1)−mini =
∫

dt[Lkin − Lpot] (but if gravitons

were present, and if the R term was not topological, we would not be able to interpret it in such a

way). As a consequence the action would seem to be unbounded from below. However, the point

of view we adopt here, in the spirit of the CDT simulations, is that of fixing the total volume
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of spacetime, and thus viewing the cosmological constant as a Lagrange multiplier. That is, we

impose the constraint

4πN

∫ τ
2

− τ
2

dt φ2(t) = V3 , (4.5)

by adding to the action (4.4) the term Λ
8πGV3 and treating Λ as a Lagrange multiplier. The

equation of motion for φ is unaffected by such term, while variation with respect to Λ imposes

the constraint (4.5). Concerning the R2 term, we can avoid its unboundedness by imposing the

kinematic constraint

φ(t) ≥ ǫ , ∀t . (4.6)

In this way we also mimic the analogous constraint that is imposed in CDT simulations.

We emphasise that the action (4.4), except for the irrelevant topological term, reduces for

γ = 0 to the same form as (3.7) (plus Lagrange multiplier), as we have discussed in Sec. 3.3. The

term proportional to γ is thus the next order correction that we were looking for.

The continuum model defines an associated BIB model with reduced transfer matrix

g(mi,mi+1) = exp

(

−b1
2(mi+1 −mi)

2

mi +mi+1
+ b2

2

mi +mi+1

)

. (4.7)

We will come back to the relation between continuous and discrete variables in the next section.

Here, we will proceed instead with the analysis in the continuum, seeking the configuration that

minimises the action, thus dominating the partition function.

Before proceeding further, it is convenient to define

ω2 = σ
N2Λ

2λ− 1
, ξ = σ

2N2γ

2λ− 1
, b′ = σ

N2b

2λ− 1
, κ2 = σ

NG

2λ− 1
, (4.8)

in terms of which (4.4) reads

S̄(2+1)−mini =
1

2κ2

∫ τ
2

− τ
2

dt

{

φ̇2 − ω2φ2 + b′ − ξ

φ2

}

, (4.9)

whose associated equation of motion is

φ̈+ ω2φ− ξ

φ3
= 0 , (4.10)

The latter is a particular case of the Pinney-Ermakov equation [51], and it is exactly solvable and

known to lead to periodic solutions with the period τ0 = π
ω , independent of ξ and thus identical
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to the harmonic oscillator case.11 Its solution can be written as [55]

φ0(t) =
1

ωA

√

(ω2A4 − ξ) cos2(ωt+ ψ) + ξ , (4.11)

where A and ψ are integration constants. By a shift of the time variable we can set ψ = 0, so

that t = 0 corresponds to the maximum of the curve, while A is fixed by initial conditions, in

particular φ(0) = A. Finally, the constraint (4.5) will effectively fix ω as a function of V3, A and

ξ. The solution so obtained defines a universe whose spatial slices never reach zero if ξ > 0. As

a consequence the conical singularity found in [24] is avoided, the singularity becomes a throat,

or bounce, and the S1×S2 topology can be preserved. Furthermore, we notice that the constant

solution φ(t) = ξ1/4/
√
ω ≡ φ̄0 is a special case of (4.11) with A = ξ1/4/

√
ω, and that φ̄0 > 0 is

only possible for ξ > 0.

It is tempting to interpret the existence of the bounce and of the constant solution as indica-

tions that in the CDT model ξ > 0. This could help reproduce the droplet phase along the lines

of [15], and it could also improve it by simultaneously taking into account the non-zero spatial

extension of the configurations in the stalk. However, the constant solution to (4.10) cannot be

joined to the oscillating one unless A = ξ1/4/
√
ω, leading to a completely constant solution. We

will now argue that, nonetheless, a careful analysis of the minimisation of the action reveals that

we can combine an oscillating solution with a constant configuration. This configuration is not a

solution to the equations of motion, but it gives an absolute (rather than local) minimum of the

action.

Let us begin by looking for a local minimum of the action, i.e. for a solution of (4.10), and

then proceed to evaluate the action on this configuration of φ(t). The action to be used in this

context is

S(2+1)−mini =
1

2κ2

∫ τ
2

− τ
2

dt

{

φ̇2 − ξ

φ2

}

, (4.12)

where with respect to (4.9) we have set b′ = 0 (the topological term only adds an irrelevant

constant to the action), and we have removed the ω2φ2 term as this is part of the volume

constraint, which vanishes on shell. For the solution, as we said, we have two options: either it is

purely oscillatory as in (4.11), with period π
ω = τ

n for some positive integer n, or it is a constant

one φ(t) = ξ1/4/
√
ω. In the first instance we find

S(2+1)−mini[φ0(t)] =
nπ

4κ2

(

nπA2

τ
− 4
√

ξ +
τξ

n πA2

)

. (4.13)

11 Interestingly, if we interpret (4.9) as in Lorentzian signature (σ = −1 and λ < 1/2), then the associated

quantum Hamiltonian is

Ĥ = −1

2

d2

dφ2
+

1

2
ω2φ2 +

1

2

ξ

φ2
,

which is known as the isotonic oscillator [52] or the one-dimensional Calogero Hamiltonian [53], and which was also

found in generalised models of CDT in 1+1 dimensions [54]. This Hamiltonian can be exactly diagonalised, and

one can then compute partition function and correlators. However, if we want to make contact with the Euclidean

model, we need to analytically continue ω → i ω and ξ → −ξ. The sign of ξ is not necessarily a problem, as for

|ξ| < 1/4 “fall to the center” is avoided [53]. The minus sign for ω2 indicates instead an unstable potential, but as

we have already stressed, such a potential can only be used together with the constraint deriving from variation of

the Lagrange multiplier ω2. It will, hopefully, be useful to exploit this fact in future work.
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However, we still have to enforce the volume constraint (4.5), which fixes A = A(n, V3/N, τ, ξ),

leading to

S(2+1)−mini[φ0(t)] =
nπ

8κ2

(

nV3
Nτ2

− 8
√

ξ

)

. (4.14)

Clearly the action is minimised by n = 1, and for
√
ξ < V3

8Nτ2
it is positive.

In the case of constant profile, the volume constraint fixes ω = 4πNτ
√
ξ/V3 and we find

S(2+1)−mini[φ̄0] = −2πNτ2ξ

κ2V3
, (4.15)

which is always negative. More importantly S(2+1)−mini[φ̄0] ≤ S(2+1)−mini[φ0(t);n = 1], with the

equality holding only for
√
ξ = V3

4Nτ2
, when φ0(t) = φ̄0.

Thus we have found that the constant solution is favoured over the oscillating one. This

might have been expected from (4.12), where the φ̇2 term is always positive, unless φ is constant,

while the remaining term is always negative for ξ > 0. By this argument we see that, given

(4.6), if it wasn’t for the volume constraint the action (4.12) would be minimised by φ(t) = ǫ.

The volume constraint thus prevents the action from becoming smaller (of the order of −1/ǫ2)

than (4.15) when evaluated at a local minimum. Up to here the situation is then very similar

to what we discussed for γ = 0. However, because γ 6= 0 strongly favours small φ(t), it is in

this case possible that the absolute minimum of the action is reached at a configuration that, not

being globally a solution of the equations of motion, consists of a condensed part plus a stalk of

minimal extension. The junction between the two parts should be smooth, otherwise we would

get a large kinetic term. We therefore expect a time varying droplet smoothly connected to a

constant stalk. The time varying part should contribute minimally to the action, therefore it

should be a solution of (4.10), while for the constant part this is not needed. We will therefore

assume that the minimising configuration is a combination of an oscillating solution (4.11) with

a constant configuration, the latter necessarily not solving the equations of motion, i.e.

φ̄(t) =







1
ωA

√

(ω2A4 − ξ) cos2(ωt) + ξ , for t ∈ [− π
2ω ,+

π
2ω ] ,√

ξ
ωA , for t ∈ [− τ

2 ,− π
2ω ) ∪ (+ π

2ω ,+
τ
2 ] ,

(4.16)

with A4 > ξ/ω2 and τ > π/ω.

We should first of all impose the volume constraint. Plugging (4.16) into (4.5) we find

V3 = 4πN

(

π(ξ +A4ω2)

2A2ω3
+

ξ

A2ω2

(

τ − π

ω

)

)

. (4.17)

The equation to be solved is cubic in ω, making the analysis very cumbersome, therefore it is

convenient to solve it in an expansion in ξ, or more precisely ξ/(A2ω2). Assuming the latter to

be small implies that most of the volume is given by the droplet, with only minimal contribution

from the stalk. At leading order we get

V3 = 2π2N
A2

ω
, (4.18)
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which is trivially solved for

ω(A) = 2π2N
A2

V3
. (4.19)

Now we can plug (4.16), with ω given by (4.19), into (4.12), to find

S(2+1)−mini[φ̄(t)] =
1

κ2

(

−2π4N2τ

V 2
3

A6 +
3π3N

2V3
A4 − π

√

ξ +
V3ξ

8πN

1

A4

)

. (4.20)

Viewed as a function of A we see that it is unbounded from below, S(2+1)−mini[φ̄(t)] ∝ −A6,

and thus minimisation favours large A, eventually corresponding to a delta function profile for

A→ ∞. However, this is a degeneracy we had foreseen from the unboundedness of the action for

ξ > 0. The aforementioned cure is to impose (4.6), which for (4.16) (using (4.19)) means

A3 ≤ V3
√
ξ

2π2Nǫ
≡ A3

ǫ . (4.21)

With this we obtain

S(2+1)−mini[φ̄(t);A = Aǫ] =
1

κ2

(

− ξτ

2ǫ2
+

3

4

(

πV3ξ
2

2Nǫ4

)
1
3

− π
√

ξ +
1

2

(

π5Nǫ4ξ

4V3

)
1
3

)

. (4.22)

We find that (4.22) is smaller than (4.15) for ǫ2 ≪ V3/τ , and hence for large volume and small ǫ

the droplet configuration (4.16) dominates.12

Defining

ω̄ ≡ ω(Aǫ) =

(

2π2Nξ

V3ǫ2

)
1
3

, (4.23)

we can rewrite the configuration that minimises the action as

φ̄(t) =







√

(

V3ω̄
2π2N

− ǫ2
)

cos2 (ω̄t) + ǫ2 , for t ∈ [− π
2ω̄ ,+

π
2ω̄ ] ,

ǫ , for t ∈ [− τ
2 ,− π

2ω̄ ) ∪ (+ π
2ω̄ ,+

τ
2 ] .

(4.24)

In the limit ξ → 0 with the ratio ξ/ǫ2 = σ2 fixed, we recover a “cos2” configuration,

φ̄2(t) →







V3ω̄
2π2N

cos2 (ω̄t) , for t ∈ [− π
2ω̄ ,+

π
2ω̄ ] ,

0 , for t ∈ [− τ
2 ,− π

2ω̄ ) ∪ (+ π
2ω̄ ,+

τ
2 ] ,

(4.25)

while preserving the condition π/ω̄ < τ . We should notice however that this is not a 3-sphere

yet. Introducing the following notation,

V3 = 2π2s r3 , s =
N

σ
(4.26)

and using it in (4.25), we arrive at φ̄2(t) = r2 cos2(Nt
rs ), for the extended part of the universe.

Changing time variable to ψ = Nt
rs , we obtain the following line element for the spacetime metric

ds2 = r2(s2dψ2 + cos2(ψ)dΩ2) , (4.27)

12Under the same conditions, our assumption that most of the volume is given by the droplet is valid, and this

proves the consistency of our analysis. Similarly, τ > π/ω reduces to τ > (πV3

2ξ
)1/3ǫ2/3, which is again satisfied for

small enough ǫ.
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where dΩ2 is the standard line element on the 2-sphere. We recognise in (4.27) the line element

of the stretched/squashed 3-sphere discussed in [24]. The latter has conical singularities for s 6= 1

at ψ = ±π/2, while as we noticed before, for ξ 6= 0 such singularity is lifted in (4.24).

Due to the approximation used in obtaining (4.19), the configuration (4.24) violates (4.17) by

terms of order ǫ2. In fact (4.19) was obtained from an expansion in ξ/(A2ω2), which by (4.21)

is turned precisely into ǫ2. Improving the expansion amounts to replacing everywhere in (4.24)

V3 → Ṽ3, with Ṽ3 such that (4.17) is satisfied. We find

Ṽ3 = V3 − 4πNǫ2τ +O(ǫ8/3) , (4.28)

or, keeping ξ/ǫ2 = σ2 fixed,

Ṽ3 = V3 − 4πNǫ2τ +
(

2π2
)

2
3

(

V3
σ2

)
1
3

ǫ2 +O(ǫ4) . (4.29)

In this way, we find a τ -dependence in ω. This is described by ǫ2τ corrections to (4.19), and

hence constant ω is a good approximation for small ǫ and values of τ that are not too large. In

any case, our CDT simulations have been carried out at a single value of T , so we cannot use

them to test the τ -dependence of ω in detail. However, some results on the T -dependence of the

simulations have been discussed elsewhere in the literature, and we can compare them to some

qualitative features of our analysis. Simulations at different values of T have been presented in

[26], and from their analysis it can be read off that the width of the droplet is roughly insensitive

to T as long as T stays larger than the width of the droplet (i.e. larger than αN
1/3
3 for some critical

α). In [22] it was also reported that below a certain critical value of T a uniform distribution

of spatial volumes was observed. Such observations are consistent with our results, because if τ

becomes sufficiently smaller than V
1/3
3 then the second term in (4.22) will become the dominant

contribution, making the action positive, and thus larger than (4.15). This happens roughly at

the same value for which the condition π/ω̄ < τ breaks down (in this case, again the contest is

between (4.11) and φ̄0, and we have already shown that the latter wins), so we can write

τ− ≃
(

πV3ǫ
2

2Nξ

)
1
3

, (4.30)

for the critical value of τ below which (in the leading order solution (4.19)) the constant solution

becomes the dominant configuration. We have also checked numerically that solving the full

constraint (4.17) for different values of the parameters, the picture is fully consistent with the

approximate solution above.

From our analysis, because of the quadratic dependence on τ in (4.15), versus the linear

one in (4.22), we can also predict that for τ larger than some critical value τ+, the constant

solution will dominate again. However, there is a limit to how large τ can become, since for

τ > τmax ≡ V3/(4πNǫ
2) the kinematical constraint φ(t) > ǫ becomes incompatible with the

volume constraint. Coincidentally, τmax is also the value at which the leading term in (4.22)

becomes equal to (4.15). For small ǫ, the second term in (4.22) dominates over the last two, and

since it is positive, we can deduce that τ+ < τmax.
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To summarise, we conclude that for τ− < τ < τ+ the partition function for the minisuperspace

model defined by the action (4.12), together with the volume constraint (4.5) and the kinematical

constraint (4.6), is dominated by the configuration (4.24), where V3 → Ṽ3.

5 Comparison between the HL-minisuperspace model and CDT

In the previous section, we have shown that the minisuperspace model inspired by HL gravity

is successful in qualitatively reproducing the droplet condensation of (2+1)-dimensional CDT,

thus solving the problem that we encountered when attempting the same analysis with its GR

counterpart (γ = 0). It should be stressed that in achieving this result, an important role was

played by the presence of the constraint (4.6). As mentioned, this is reminiscent of the constraint

typically imposed on the CDT configurations, and so it fits nicely into the comparison. However,

in CDT the constraint has always been viewed up to now as a discretisation artifact, a view

supported by the fact that the extension of the universe within the stalk goes to zero in the

continuum limit (see Fig. 4). Therefore one might be suspicious that we are attributing too much

importance to a “lattice artifact”. However, the two statements (that ǫ > 0 plays an important

role, and that ǫ → 0 in the continuum) are perfectly consistent with each other, as we will now

explain.

As we discussed in Sec. 2, without any fine tuning, quantities of positive length dimension

tend to go to zero with the cutoff. The obvious exception is the total volume, which we are

increasing by hand. This is equivalent to fine tuning the cosmological constant to its critical

value. Simulations show that the shape of the droplet scales with the volume (Fig. 4); in other

words we naturally have a continuum limit with fixed A and ω. However, Fig. 4 shows also

that the total time extension and the spatial extension of the stalk both go to zero. In other

words, τ and ǫ go to zero. This is exactly what dimensional analysis leads us to expect: τ and

ǫ have both dimension of length, so without any fine tuning they naturally scale like the cutoff

a. The important point is that the same fact holds true also for ξ, which has dimensions of

(length)2. This being so, we expect that in the continuum limit the ratio σ2 = ξ/ǫ2 stays roughly

constant (in fact we have that Aǫω̄/π = σ/π is the ratio between the amplitude and the width

of the droplet, which Fig. 4 shows to be a constant), and as a consequence we should obtain the

configuration (4.25) as a final result, while if started with ξ = ǫ = 0 from the beginning this

would not be possible.

It is therefore interesting to ask if we can fine tune the model in order to keep all the dimen-

sionful couplings in (4.24) finite. Concerning τ , we can trivially avoid its shrinking, as a scaling of

T can be introduced by hand, just as is done for the total volume. We could re-do the simulation

for various values of N3 with a constant ratio T/N
1/3
3 . We expect that this will not change any

features of the results, except preserving the ratio between the time extensions of stalk and blob.

We could also scale nǫ ∼ βN
2/3
3 in (2.8) in order to have a finite ǫ in the continuum limit

(keeping β ≪ 1 so that the stalk remains smaller than the blob)13. In contrast, we do not have

13To be precise, the spatial volume within the stalk is slightly larger than the minimal allowed value (while
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direct control over ξ,14 so we do not know whether scaling nǫ would be sufficient in order to keep

a finite ξ as well. In the positive case, by repeating a plot like Fig. 4 we should see a superposition

of data both for the blob and for the stalk, and we would interpret ξ as being associated with the

kinematical constraint N2(i) ≥ nǫ. In the negative case, in the same type of plot we should lose

the superposition even in the blob, and we would conclude that ξ is an independent and intrinsic

feature of the model, which needs to be tuned separately. We hope to be able to perform such

test in the near future.

We conclude our work by performing a quantitative comparison between our theoretical model

and the CDT data. To that end we need to rewrite (4.24) in discrete variables. A careful

presentation of such ideas can be found in [26], which we will follow with a few variations. First

of all, we define Ñ3 as the discrete volume being held fixed, which in principle is N3, but as we

saw (Fig. 1), to a good approximations can also be taken to be 〈N (s)
2 〉 =∑i〈N2(i)〉 = 1

2 〈N(3,1)〉.
Then we take the relations

V3 = v3 a
3 Ñ3 , (5.1)

N t = α

(

V3

Ñ3

) 1
3

i , (5.2)

and
∫

dtN V2(t) = v3 a
3
∑

i

〈N2(i)〉 , (5.3)

from which, stripping off integral and sum in the latter, we obtain

〈N2(i)〉 =
dtN

v3 a3
V2(t) = α

(

Ñ3

V3

) 2
3

V2

(

α

N

(

V3

Ñ3

)
1
3

i

)

. (5.4)

Using (4.24) in (4.3), with the substitutions in (4.23) and (4.29), we obtain

〈N2(i)〉 =











(

2
π
ρ2Ñ

2/3
3
χ − ns

)

cos2
(

i

ρ χÑ
1/3
3

)

+ ns , for i ∈ [−π
2ρχÑ

1/3
3 ,+π

2ρχÑ
1/3
3 ] ,

ns , else ,

(5.5)

where we have identified

ns =
4πǫ2Nτ

v3a3T
= 4πǫ2α

(

Ñ3

V3

)
2
3

, (5.6)

and we have defined

χ =
s2/3

α(2π2)1/3
, ρ =

(

Ṽ3
V3

)
1
3

. (5.7)

The latter are two independent parameters, in particular ρ depends explicitly on ǫ (see (4.29)).

However, we expect ρ→ 1 in the continuum limit.

nǫ = 4, we have ns ∼ 10). This is of course expected: a distribution of numbers greater or equal to nǫ cannot

average to nǫ unless they are all precisely equal to it. However, since the difference between nǫ and ns does not

scale with the total volume, we expect to be able to control ns by varying nǫ.
14See [25] for simulations of a CDT model with a discrete version of the spatial R2 term in the action.
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Figure 5: Plots of 〈N2(i)〉 together with the results of fits based on (5.5).

For ns = 0 (i.e. ǫ = 0, hence ρ = 1), (5.5) is exactly the same type of function used in [26]15

(and is the analogue of the function used in 3+1 dimensions in [48, 34]). The explicit presence

of ns 6= 0, and hence also the presence of ρ, in our function is thus the main practical difference

for fitting purposes.16 However, given the smallness of ns/Ñ
2/3
3 , we do not expect significant

differences between our fit and previous ones.

A comparison between fits and data is shown in Fig. 5, and the numerical values for the fits

are given Table 1. The fitting parameters turn out to be only mildly dependent of the system

size. In the last column of the table we give values for s in the hypothesis that α = 1. We obtain

in general s < 1, meaning that we have a squashed sphere, which is consistent with inspection of

the volume profiles (in particular the rescaled ones in Fig. 4). In the last row of the table we give

the results of linear extrapolations on the fitting parameters. These, however, should be taken

with a grain of salt, as we are fitting only four points, and moreover, with the exception of ρ, the

linear fit fares very poorly. The relevant message from such extrapolations is that we find that ρ

is approaching unity as N3 grows.

We notice that the fit for the 200k data is not very good near the peak, however, the data

themselves are not particularly good (there is clearly one point stemming out of the group), which

we attribute to the poorer statistics at this system size. It should be mentioned that to the best

15Their s̃0 corresponding to our χ for fitting purposes, although their definition and interpretation is slightly

different.
16As a matter of fact, the stalk is taken into consideration by Cooperman and Miller in [26],. However, they

insisted on a purely ns = 0 ansatz for the blob, but ns 6= 0 for the stalk. As a consequence, they have to join the

two functions at |i| < π
2
s0Ñ

1/3
3 , leading to a discontinuity in the first derivative of the profile function.
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N3 Ñ3 = 〈N (s)
2 〉 ns ρ χ s

50k 17548 10.60 0.9809 0.3239 0.8191

100k 35026 10.57 0.9903 0.3233 0.8168

140k 49010 10.55 0.9930 0.3206 0.8066

200k 69983 10.40 0.9949 0.3190 0.8004

∞ ∞ 10.43 0.9997 0.3186 0.7989

Table 1: Fitting parameters for Fig. 5. In the actual fit we have only three parameters, ns, χ and

ρÑ
1/3
3 . We use the values of Ñ3 = 〈N (s)

2 〉 to extract ρ, and we assume α = 1 to extract s. The

last row is a linear extrapolation for the fitting parameters versus 1/Ñ3.

of our knowledge, this is the largest system size ever reported for (2+1)-dimensional CDT ([22]

reached 64k at most, and [26] reached 102k), and so we hope that we shall be forgiven for not

pushing the simulations even further.

It should also be mentioned that in [26] Cooperman and Miller noticed that fits perform better

for certain values of T , and so it is possible that the 200k simulations happen to have an unlucky

ratio between blob width and total time extension T .

Lastly, we point out that in [15], Bogacz et al. found that a better quantitative agreement with

direct Monte Carlo simulations of the BIB model is obtained by including the effect of quadratic

fluctuations (i.e. computing the one-loop effective action) before minimising over A. This might

also be relevant for CDT. We will return to this question in future work.

6 Conclusions

We have argued that in order to explain the spacetime condensation phenomenon of CDT pre-

sented in Sec. 2, a minisuperspace model based on GR is not sufficient. By finding and studying

a minisuperspace model inspired by HL gravity, we have shown that a semiclassical analysis leads

to a condensation compatible with the one observed in CDT. In doing that we have shown that

higher order terms in the spatial curvature are necessary both in reproducing the droplet phase

and in curing the conical singularities we encountered in [24]. An important role was also played

by the constraint φ(t) ≥ ǫ > 0, which mimics the similar constraint imposed on the triangulations.

In the continuum we can have ξ ∼ ǫ2 → 0, but at finite cutoff the effective action should be of

the HL-type in order to obtain a droplet.

One might wonder whether or not the action we have proposed is unique. We do not make

any claim of uniqueness of the action (in fact we do not expect it to be the end of the story), and

higher order terms in the curvature might be necessary in order to explain small effects that are

visible only at larger system size. Such terms would probably not affect the large scale properties

discussed here, and thus adding them would be likely to yield a large class of actions that lead to
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condensation.17 However, the important point is that none of them would be a discretisation of

the (minisuperspace) GR action. Furthermore, given that in this case we have no reasons based

on symmetry to enforce special relations between spatial curvature terms and time-derivative

terms,18 we conclude that possible effective actions of this type all correspond to some version of

(discretised, minisuperspace) HL gravity.

There are reasons to suspect that HL-type corrections to the effective action might be present

also in 3+1 dimensions. Besides the similarities between HL gravity and CDT already pointed

out in the literature [8, 9], we stress here the importance that the higher curvature term had in

our analysis in order to remove the conical singularities of the stretched/squashed sphere. As

such singularities are also found in 3+1 dimensions, it is plausible to expect that they should

be cured by higher order terms in the effective action, and because the stretching/squashing

naturally introduces an anisotropy in the continuum, it is reasonable to expect that such higher

order terms must also be of an anisotropic nature.

Many questions remain open, some of which we briefly discuss here. We plan to return to

them in a more detailed study.

First of all, the analysis presented here is of semiclassical (or mean field) type, i.e. we simply

looked for a minimisation of the action. This approximation should be put under scrutiny,

comparing it to fully nonperturbative results obtained by direct numerical simulations of the

associated BIB model, as well as by studying the effects of fluctuations. Direct simulations of the

BIB model would also allow us to explore other phases of the model, and possibly make contact

with the results of [25] on the extended phase diagram.

It is also important to perform more CDT simulations in 2+1 dimensions, for several reasons.

One reason is to test the possibility of scaling nǫ (and T ) in order to obtain a continuum limit

with finite ξ and ǫ, as discussed in Sec. 5. Another reason would be to check how all the effective

couplings depend upon the (inverse) bare Newton’s coupling κ0. It is known (e.g. [34]) that

the period and amplitude of the blob change with κ0. As Newton’s constant G plays no role

in the classical solution (in the absence of matter), such phenomena remain unexplained in our

treatment, indicating that a simple identification of κ0 with the inverse effective Newton’s constant

might be too naive.19 A detailed study of the κ0 dependence of the shape of the CDT droplet

would also allow us to set up a renormalisation group analysis along the lines of [12]. Lastly, it

would be very interesting to attempt to extract the effective action directly from the CDT data,

as attempted in [56, 49] in 3+1 dimensions.

As a last remark, we have stressed above that a Hamiltonian constraint should not be imposed

when studying the effective dynamics for the available CDT data. In principle, the Hamiltonian

constraint should become enforced only once we integrate over the full time extension τ , from

17We emphasise once more that in the present case the effect of an R2 term was important only because in 2+1

dimensions the linear R term is of topological nature.
18In fact, there is presently not much support for the presence of higher-order time derivatives in the effective

action [49].
19This is actually not a surprise, and a more careful identification was suggested in [34] for the higher-dimensional

case.
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minus to plus infinity. However, we should point out a potential obstruction on this route:

according to our analysis, τ is bounded to a finite interval τ ∈ [τ−, τ+], outside of which we leave

the droplet phase. It is not clear to us whether the Hamiltonian constraint could be recovered in

the presence of such a bound, and we hope that this will be clarified in the near future.
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