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Abstract. The solution of time-dependent PDE-constrained optimization problems is a chal-
lenging task in numerical analysis and applied mathematics. All-at-once discretizations and corre-
sponding solvers provide efficient methods to robustly solve the arising discretized equations. One of
the drawbacks of this approach is the high storage demand for the vectors representing the discrete
space-time cylinder. Here we introduce a low-rank in time technique that exploits the low-rank nature
of the solution. The theoretical foundations for this approach originate in the numerical treatment
of matrix equations and can be carried over to PDE-constrained optimization. We illustrate how
three different problems can be rewritten and used within a low-rank Krylov subspace solver with
appropriate preconditioning.
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1. Introduction. Many complex phenomena in the natural, engineering, and
life sciences are modeled using partial differential equations (PDEs). To obtain
optimal configurations of these equations one typically formulates this as a PDE-
constrained optimization problem of the form

minJ (y, u)

subject to

L(y, u) = 0

with J (y, u) the functional of interest and L(y, u) representing the differential oper-
ator. Problems of this type have been carefully analyzed in the past (see [49, 84] and
the references therein).

Recently with the advancement of algorithms and technology, research has focused
on the efficient numerical solution of these problems. In this paper we focus on the
efficient solution of the discretized first order conditions in a space-time framework.
The KKT conditions when considered in an all-at-once approach, i.e., simultaneous
discretization in space and time, are typically of vast dimensionality. Matrix-free
approaches have recently been developed to guarantee the (nearly) optimal conver-
gence of iterative Krylov subspace solvers. The focus for both steady [68, 73] and
transient problems [61, 81] has been on the development of efficient preconditioning
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B2 MARTIN STOLL AND TOBIAS BREITEN

strategies for the linear system that typically are of structured form (see [16, 27] for
introductions to the numerical solution of saddle point systems).

One of the obstacles using a space-time discretization is the storage requirement
for the large vectors needed to represent the solution at all times. Approaches such
as checkpointing [38] or multiple shooting [42] are possible methods to solve these
problems. Here we want to introduce an alternative to these schemes that can for
certain problems provide an efficient representation with a minimal amount of storage.
We are basing our methodology on recent developments within the solution of large
and sparse matrix equations; see, e.g., [4, 13, 25, 28, 36, 50, 51, 54, 70, 74, 77, 85]
and references therein. One classical representative in this category is the Lyapunov
equation

AX +XAT = −C̃C̃T ,

where we are interested in approximating the matrix-valued unknown X. Solving this
system is equivalent to solving the linear system

(I ⊗A+A⊗ I)x = c̃,

where x and c̃ are related to X and C̃C̃T, respectively. For details on the relevance
of this equation within control theory, see [3, 44, 52]. In [15, 56, 64, 65, 70] the
authors have introduced low-rank iterative schemes that approximate intermediate
iterates Xk in a low-rank fashion that is maintained until convergence. We can exploit
these technologies for problems coming from PDE-constrained optimization. It is not
expected that these techniques outperform optimal solvers with only a few time-steps.
The more crucial component is that they enable computations with many time-steps
that would otherwise not be possible.

The paper is structured as follows. In section 2 we introduce the heat equation
as our model problem and discuss its discretization. Section 3 illustrates how this
problem can be reformulated using Kronecker technology and how we need to adapt
a standard Krylov-subspace solver to be able to solve this problem efficiently. As we
need a preconditioner for fast convergence we next discuss possible preconditioners in
section 3. We provide some theoretical results in section 4. Section 5 is devoted to
illustrating that our methodology can be carried over to other state equations such
as Stokes equations and the convection-diffusion equation. Finally, in section 6 we
illustrate the competitiveness of our approach.

2. A PDE-constrained optimization model problem. We start the deriva-
tion of the low-rank in time method by considering an often used model problem in
PDE-constrained optimization (see [47, 49, 84]) that nevertheless reflects the crucial
structure exhibited by many problems of similar type. Our goal is the minimization
of a misfit functional that aims at bringing the state y as close as possible to a desired
or observed state yobs while using a control u, i.e.,

(2.1) min
y,u

1

2
‖y − yobs‖2L2(Ω1)

+
β

2
‖u‖2L2(Ω2)

,

subject to a partial differential equation that connects both state and control, referred
to as the state equation. We start by considering the heat equation with a distributed
control term,
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A LOW-RANK IN TIME APPROACH B3

yt −∇2y = u in Ω,(2.2)

y = f on ∂Ω,

or equipped with Neumann-boundary control,

yt −∇2y = f in Ω,(2.3)

∂y

∂n
= u on ∂Ω.

For a more detailed discussion on the well-posedness, existence of solutions, etc.,
we refer the interested reader to [47, 49, 84]. Classically these problems are solved
using a Lagrangian to incorporate the constraints and then consider the first order
optimality conditions or KKT conditions [49, 58, 84]. This can be done either by
forming a discrete Lagrangian and then performing the optimization procedure or by
first considering an infinite-dimensional Lagrangian for whose first order conditions
we employ a suitable discretization. Here we perform the first approach, although
much of what we state in this paper is valid for both cases. Our goal is to build a
discrete Lagrangian using an all-at-once approach [61, 81, 40] using a discrete problem
within the space-time cylinder Ω× [0, T ]. Using the trapezoidal rule in time and finite
elements in space leads to the discrete objective function

(2.4) J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u

with M1 = blkdiag(12M1,M1, . . . ,M1,
1
2M1),M2 = blkdiag(12M2,M2, . . . ,M2,

1
2M2)

being space-time matrices where M1 is the mass matrix associated with the domain
Ω1 and M2 is the corresponding mass matrix for Ω2. The vectors y = [yT1 . . . yTnt

]T

and u = [uT
1 . . . uT

nt
]T are of vast dimensionality and represent a collection of spatial

vectors for all time-steps collected into one single vector.
The all-at-once discretization of the state equation using finite elements in space

and an implicit Euler scheme in time is given by

(2.5) Ky − τNu = d,

where

K =

⎡
⎢⎢⎢⎣

L
−M L

. . .
. . .

−M L

⎤
⎥⎥⎥⎦, N =

⎡
⎢⎢⎢⎣
N

N
. . .

N

⎤
⎥⎥⎥⎦, d =

⎡
⎢⎢⎢⎣
M1y0 + f

f
...
f

⎤
⎥⎥⎥⎦.

Here, M is the mass matrix for the domain Ω, the matrix L is defined as L = M+τK,
the matrix N represents the control term either via a distributed control (square
matrix) or via the contributions of a boundary control problem (rectangular matrix),
and the right-hand-side d consists of a contribution from the initial condition y0 and
a vector f representing forcing terms and contributions of boundary conditions. The
first order conditions using a Lagrangian formulation with Lagrange multiplier p leads
to the following system:

(2.6)

⎡
⎣ τM1 0 −KT

0 βτM2 τN T

−K τN 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ y
u
p

⎤
⎦ =

⎡
⎣ τM1yobs

0
d

⎤
⎦.D
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B4 MARTIN STOLL AND TOBIAS BREITEN

Systems of this form have previously been studied in [81, 61, 82, 57]. As these systems
are of vast dimensionality it is crucial to find appropriate preconditioners together
with Krylov subspace solvers to efficiently obtain an approximation to the solution.
The vast dimensionality of system matrices does not allow the use of direct solvers
[26, 23] but we can employ Krylov subspace solvers in a matrix-free way by never
forming the matrix A and only implicitly performing the matrix vector product. The
main bottleneck of this approach is the storage requirement for the space-time vectors
which can be reduced by working on the Schur-complement if it exists of the matrix
A or removing the control from the system matrix [76, 45]. Other approaches that
can be employed are checkpointing schemes [38] or multiple shooting approaches [42].
In the following we want to present an alternative that uses the underlying tensor
structure of the first order conditions.

3. A Kronecker view. We noticed earlier that the linear system in (2.6) is of
vast dimensionality and that we need only very few matrices to efficiently perform the
matrix vector multiplication with A, and we can approach this in a matrix-free form
by never formingA. Nevertheless, the vectors y, u, and p themselves are enormous and
every storage reduction would help to improve the performance of an optimization
scheme. The goal now is to employ the structure of the linear system to reduce
the storage requirement for the iterative method. Our approach is based on recent
developments for matrix equations [10, 54, 36]. Using the definition of the Kronecker
product

W ⊗ V =

⎡
⎢⎣w11V . . . w1mV

...
. . .

...
wn1V . . . wnmV

⎤
⎥⎦

we note that (2.6) can also be written as⎡
⎣ D1 ⊗ τM1 0 − (

Int ⊗ L+ CT ⊗M
)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int ⊗ L+ C ⊗M) D3 ⊗ τN 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ y
u
p

⎤
⎦(3.1)

=

⎡
⎣D1 ⊗ τM1yobs

0
d

⎤
⎦,

where D1 = D2 = diag
(
1
2 , 1, . . . , 1,

1
2

)
and D3 = Int . Additionally, the matrix C ∈

R
nt,nt is given by

C =

⎡
⎢⎢⎢⎣

0
−1 0

. . .
. . .

−1 0

⎤
⎥⎥⎥⎦

and represents the implicit Euler scheme. It is of course possible to use a different
discretization in time. So far we have simply reformulated the previously given system.
But our goal was to derive a scheme that allows for a reduction in storage requirement
for the vectors y, u, and p. For this we remind the reader of the definition of the vec
operator via
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A LOW-RANK IN TIME APPROACH B5

vec (W ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

w11

...
wn1

...
wnm

⎤
⎥⎥⎥⎥⎥⎥⎦

as well as the relation (
WT ⊗ V

)
vec (Y ) = vec (V YW ).

Now employing this and using the notation

Y = [ y1, y2, . . . , ynt ], U = [ u1, u2, . . . , unt ], P = [ p1, p2, . . . , pnt ]

we get that⎡
⎣ D1 ⊗ τM1 0 − (

Int ⊗ L+ CT ⊗M
)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int ⊗ L+ C ⊗M) D3 ⊗ τN 0

⎤
⎦
⎡
⎣vec (Y )
vec (U)
vec (P )

⎤
⎦(3.2)

= vec

⎛
⎜⎝
⎡
⎢⎣ τM1Y DT

1 − LPITnt
−MPC

τβM2UDT
2 + τNTPDT

3

−LY ITnt
−MYCT + τNUDT

3

⎤
⎥⎦
⎞
⎟⎠.

So far nothing is gained from rewriting the problem in this form. As was previously
done in [10] we assume for now that if Y, U, and P can be represented by a low-
rank approximation, any iterative Krylov subspace solver can be implemented using
a low-rank version of (3.2). We denote the low-rank representations by

Y = WY V
T
Y with WY ∈ R

n1,k1 , VY ∈ R
nt,k1 ,(3.3)

U = WUV
T
U with WU ∈ R

n2,k2 , VU ∈ R
nt,k2 ,(3.4)

P = WPV
T
P with WP ∈ R

n1,k3 , VP ∈ R
nt,k3 ,(3.5)

with k1,2,3 being small in comparison to nt, and we rewrite (3.2) accordingly to get

(3.6)

⎡
⎢⎣ τM1WY V

T
Y DT

1 − LWPV
T
P ITnt

−MWPV
T
P C

τβM2WUV
T
U DT

2 + τNTWPV
T
P DT

3

−LWY V
T
Y ITnt

−MWY V
T
Y CT + τNWUV

T
U DT

3

⎤
⎥⎦,

where we skipped the vec operator and instead used matrix-valued unknowns. Note
that we can write the block-rows of (3.6) as

(3.7)

(first block-row)
[
τM1WY −LWP −MWP

]⎡⎢⎣V T
Y DT

1

V T
P ITnt

V T
P C

⎤
⎥⎦,

(second block-row)
[
τβM2WU τNTWP

] [ V T
U DT

2

V T
P DT

3

]
,

(third block-row)
[−LWY −MWY τNWU

]⎡⎢⎣ V T
Y ITnt

V T
Y CT

V T
U DT

3

⎤
⎥⎦.D
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B6 MARTIN STOLL AND TOBIAS BREITEN

We obtain a significant storage reduction if we can base our approximation of the
solution using the low-rank factors (3.7). It is easily seen that due to the low-rank
nature of the factors we have to perform fewer multiplications with the submatrices
by also maintaining smaller storage requirements. As the usage of a direct solver is
out of the question we here rely on a preconditioned Krylov subspace solver, namely,
MINRES introduced in [59] as the underlying matrix is symmetric and indefinite.
Before explaining all the intricacies of the method we state the resulting algorithm
and carefully explain the necessary details afterward. Algorithm 1 shows a low-rank
implementation of the classical preconditioned MINRES method as presented in [59].
Note that due to the truncation to low-rank the application of the preconditioner is
not identical for every step of the iteration and the use of a flexible solver needs to
be investigated in the future. Here we use a rather small truncation tolerance to try
to maintain a very accurate representation of what the full-rank representation would
look like.

It is hard to hide the fact that the low-rank version presented here seems much
messier than its vector-based relative. This is due to the fact that we want to maintain
the structure of the saddle point system, which is reflected in low-rank representations
associated with the state (all matrices with indices 11 and 12), the control (all matrices
with indices 21 and 22), and the Lagrange multiplier (all matrices with indices 31 and
32). Please keep in mind that

vec

⎛
⎜⎝
⎡
⎢⎣Z11Z

T
12

Z21Z
T
22

Z31Z
T
32

⎤
⎥⎦
⎞
⎟⎠ = z

corresponds to the associated vector z from a vector-based version of MINRES.
For Algorithm 1 to be accessible to the reader, we need to dissect its different

parts. Starting with the inner products of the classical MINRES method we see that
we can efficiently evaluate the inner product

(
z(j), v(j)

)
. In more detail, we use

vec

⎛
⎜⎝
⎡
⎢⎣Z

(j)
11 (Z

(j)
12 )T

Z
(j)
21 (Z

(j)
22 )T

Z
(j)
31 (Z32)

T

⎤
⎥⎦
⎞
⎟⎠ = z(j) and vec

⎛
⎜⎝
⎡
⎢⎣V

(j)
11 (V

(j)
12 )T

V
(j)
21 (V

(j)
22 )T

V
(j)
31 (V32)

T

⎤
⎥⎦
⎞
⎟⎠ = v(j)

and the relation for the trace

trace
(
ATB

)
= vec (A)T vec (B)

to compute the inner product
(
z(j), v(j)

)
(for convenience ignoring the index j) via(

z(j), v(j)
)
= trace

((
Z11Z

T
12

)T (
V11V

T
12

))
+trace

((
Z21Z

T
22

)T (
V21V

T
22

))
(3.8)

+ trace
((

Z31Z
T
32

)T (
V31V

T
32

))
,

where z(j) and v(j) are the vectorization of the stacked V and Z matrices. Note that
so far we have rewritten the vector problem in matrix form, but the interested reader
might have noted that the matrices formed as part of (3.8) are of the full dimension-
ality n× nt in the case of a distributed control problem. Due to the properties of the
trace operator we are in luck as

trace
((

Z11Z
T
12

)T (
V11V

T
12

))
= trace

(
ZT
11V11V

T
12Z12

)
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A LOW-RANK IN TIME APPROACH B7

Algorithm 1: Low-rank MINRES.

Zero-Initiliazation of V
(0)
11 , . . . , W

(0)
11 , . . . , and W

(1)
11 , . . . .

Choose U
(0)
11 , U

(0)
12 , U

(0)
21 , U

(0)
22 , U

(0)
31 , U

(0)
32

Set V11, V12, . . . to normalized residual
while residual norm > tolerance do

Z
(j)
11 = Z

(j)
11 /γj , Z

(j)
21 = Z

(j)
21 /γj , Z

(j)
31 = Z

(j)
31 /γj ,

[F11, F12, F21, F22, F31, F32] = Amult(Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

δj = traceproduct(F11, F12, F21, F22, F31, F32, Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

V
(j+1)
11 =

{
F11 − δj

γj
V

(j)
11 − γj

γj−1
V

(j−1)
11

}
, V

(j+1)
12 =

{
F12 V (j)

12 V (j−1)
12

}

V
(j+1)
21 =

{
F21 − δj

γj
V

(j)
21 − γj

γj−1
V

(j−1)
21

}
, V

(j+1)
22 =

{
F22 V

(j)
22 V

(j−1)
22

}

V
(j+1)
31 =

{
F31 − δj

γj
V

(j)
31 − γj

γj−1
V

(j−1)
31

}
, V

(j+1)
32 =

{
F32 V

(j)
32 V

(j−1)
32

}
{
Z

(j+1)
11 , Z

(j+1)
12 , Z

(j+1)
21 , Z

(j+1)
22 , Z

(j+1)
31 , Z

(j+1)
32

}
=

Aprec(V
(j+1)
11 , V

(j+1)
12 , V

(j+1)
21 , V

(j+1)
22 , V

(j+1)
31 , V

(j+1)
32 )

γj+1 =

√
tracepoduct(Z

(j+1)
11 , . . . , V

(j+1)
11 , . . .)

α0 = cjδj − cj−1sjγj

α1 =
√

α2
0 + γ2

j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0

α1

sj+1 =
γj+1

α1

W
(j+1)
11 =

{
Z

(j)
11 −α3W

(j−1)
11 −α2W

(j)
11

}
, W

(j+1)
12 =

{
Z

(j)
12 W

(j−1)
12 W

(j)
12

}

W
(j+1)
21 =

{
Z

(j)
21 −α3W

(j−1)
21 −α2W

(j)
21

}
, W

(j+1)
22 =

{
Z

(j)
22 W

(j−1)
22 W

(j)
22

}

W
(j+1)
31 =

{
Z(j)

31 −α3W
(j−1)
31 −α2W

(j)
31

}
, W

(j+1)
32 =

{
Z(j)

32 W (j−1)
32 W (j)

32

}

if Convergence criterion fulfilled then
Compute approximate solution
stop

end if
end while

allows us to to compute the trace of small matrices rather than of the ones from
the full temporal/spatial discretization. We denote the reformulation of the trace in
Algorithm 1 by the term tracepoduct.

We have now defined the matrix vector multiplication denoted by Amult in Al-
gorithm 1 and shown in detail in Algorithm 2 as well as the efficient computation of
the inner products within the low-rank MINRES algorithm. We have not yet defined
the brackets {} . The brackets U := {U1 V1 W1} and {U2 V2 W2} can be under-
stood as a concatenation and truncation by the way of an abstract function trunc that
takes as inputs the matrices [U1 V1 W1] and [U2 V2 W2] and gives back low-rank
approximations to these matrices, i.e., Z̃1 ≈ [U1 V1 W1] and Z̃2 ≈ [U2 V2 W2].
We now briefly discuss how the trunc function could be designed.

We want to perform the truncation of two matrices V and U that represent
the low-rank representation of Z = V UT . As discussed in [54] we can perform
skinny QR factorizations of both matrices, i.e., V = QvRv and U = QuRu. We
then note that Z = QvRvR

T
uQ

T
u . A singular value decomposition [32] of the matrix
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B8 MARTIN STOLL AND TOBIAS BREITEN

Algorithm 2: Matrix multiplication: Amult.

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 =
[
τM1W11 −LW31 −MW31

]
Z21 =

[
τβM2W21 τNW31

]
Z31 =

[ −LW11 −MW31 τNW21

]
Z12 =

[
D1W12 IntW32 CTW32

]
Z22 =

[
D2W22 D3W32

]
Z32 =

[
IntW12 CW12 D3W22

]

RvR
T
u = BΣCT provides the means to reduce the rank by dropping small (depend-

ing on some tolerance) singular values. Using MATLAB notation we get a low-rank

approximation via the truncated expression B(:, 1 : k)Σ(1 : k, 1 : k)C(:, 1 : k)
T
. This

leads to the overall low-rank approximation Vnew = QvB(:, 1 : k) and Unew = QvC(:
, 1 : k)Σ(1 : k, 1 : k), which in turn gives Z ≈ VnewU

T
new. We have implemented

this approach in MATLAB but noted that the computation of the skinny QR fac-
torization was rather slow. Alternatively, we exploited the MATLAB function svds

to directly compute a truncated singular value decomposition of V UT by passing a
function handle that allowed the implicit application of the Z = V UT without ever
forming this matrix. This approach proved advantageous in terms of the time needed
for the truncation. Note that alternative ways to compute the truncated SVD are of
course possible [48, 6, 79].

Before discussing the possible preconditioners, employed via the Aprec function
in Algorithm 1, we state that the vector update formulas given in Algorithm 1 are
straightforward versions of vector versions of MINRES.

We additionally want to briefly comment on some of the alternative approaches
to the presented methodology. One can of course reduce the dimensionality by elimi-
nating the control when possible and obtain a system that is still vast and can be cast
using our low-rank methodology. The use of reduced Hessian approaches typically
leads to a symmetric positive-definite system for which cg would be applicable. But
these formulations usually involve the inverse of the discretized PDE and this means
that in order to simply apply the system matrix to a vector one has to very accu-
rately solve for the PDE, as otherwise the matrix vector product does not represent
the original KKT system. We refer to [39] for more details. Many algorithms employ
the checkpointing technique [38], where only snapshots in time are stored. This is of-
ten done when the KKT system is treated in a block-Gauss–Seidel fashion, i.e., solving
adjoint PDE, gradient equation, and forward PDE in an alternating manner. For such
an iteration convergence might be slow or without proper scaling the method might
not converge at all. The multiple shooting approach presented in [42] is in spirit very
similar to the full-rank system we introduced here. Heinkenschloss [42] introduced an
augmented Lagrangian formulation that leads to a large-scale linear system than can
be reordered to obtain a system similar to (2.6). Our approach implicitly picks the
“correct” number of vectors needed to accurately represent the solution in time. On
the other hand we are currently limited to a formulation that can be written in the
tensor form shown above. This is not true for the full-space approach and techniques
based on the checkpointing methodology.

While the storage requirements can be reduced dramatically we still need to pre-
condition the linear systems as we still have to deal with possibly very large matrices
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A LOW-RANK IN TIME APPROACH B9

from the discretization in space. We show in the next section that we can use many
of the techniques from the full-order space-time system for the low-rank scheme.

Preconditioning for low-rank MINRES. The study of preconditioners for
the optimal control subject to parabolic PDEs has recently seen developments that
were aimed at providing robust performance with respect to the many system pa-
rameters such as mesh-size or regularization parameters (see [73, 61, 60, 53]). More
results can be found in [40, 17] and for multigrid techniques we recommend [18] and
the references therein. We start our derivation of suitable preconditioners based on
an approach presented by Pearson and colleagues [61, 63], where we start with a
block-diagonal preconditioner

(3.9) P =

⎡
⎣A0

A1

Ŝ

⎤
⎦.

Here A0 ≈ τM1 and A1 ≈ τβM2 are approximations to the upper left block of A
and Ŝ is an approximation to the Schur-complement

S = τ−1KM−1
1 KT +

τ

β
NM−1

2 N T.

One approximation that has proved to be very effective [61, 63] is of the form

Ŝ = τ−1
(
K + M̂

)
M−1

1

(
K + M̂

)T

,

where in the case of a distributed control problem the matrix M̂ is given by

M̂ =
τ√
β
blkdiag(M, . . . ,M).

Note that for for simplicity we assumed D1 = D2 = D3 = Int during the Schur-
complement approximation. It is of course possible to obtain robust approximations
for other choices, but they would make the presentation of the Schur-complement
approximation less accessible (see [61] for details using different Ds). This approach
will be the basis for the derivation of efficient preconditioners for the low-rank version
of MINRES. For this we need the preconditioner P to maintain the low-rank structure
as described in (3.7). Due to the nature of the upper left block of A given by[

D1 ⊗ τM1 0
0 D2 ⊗ βτM2

]

we see that an efficient preconditioner given, for example, by[
D1 ⊗ τM̂1 0

0 D2 ⊗ βτM̂2

]
,

where the mass matrices are approximated by the Chebyshev semi-iteration [86], will
naturally maintain the desired structure. But what can be said about the Schur-
complement S of the above system? Starting from the previously used approximation

Ŝ = τ−1
(
Int ⊗ L̂+ C ⊗M

)
M−1

1

(
Int ⊗ L̂+ C ⊗M

)T

,
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B10 MARTIN STOLL AND TOBIAS BREITEN

where L̂ = ((1 + τ√
β
)M1 + τK), we see that there already exists an inherent tensor

structure within this approximation. In [81] the authors observe that such a system
can be easily solved as the matrix (Int ⊗ L̂ + C ⊗M) is of block-triangular nature.
This means one can sequentially pass through the vectors associated with each grid-
point in time. For our purpose the block-triangular nature will not be sufficient to
guarantee the low-rank preserving nature of our algorithm. In simple terms, a low-
rank factorization in time does not allow for a temporal decoupling of the time-steps
as the vectors for each time-step are not readily identified. In mathematical terms we
can see that it is not possible to explicitly write down the inverse of (Int ⊗ L̂+C⊗M).
Our starting point is a Block–Jacobi version of the Schur-complement approximation.
This procedure is motivated by the fact that we can simply write(

Int ⊗ L̂
)−1

=
(
Int ⊗ L̂−1

)
.

The last expression assures us that this preconditioner applied to any vector v =
vec

(
RST

)
can be written as

vec
(
L̂−1RST Int

)
.

We can now simply use the Schur-complement approximation

Ŝ = τ−1
(
Int ⊗ L̂

)
M1

(
Int ⊗ L̂

)T

or when using Ŝ = τ−1(Int ⊗ L̂ + C ⊗M) M1(Int ⊗ L̂ + C ⊗M)T approximate the
inverse of (Int ⊗ L̂+C⊗M) by a small, fixed number of steps of a stationary iteration
with the block-diagonal preconditioner (Int ⊗ L̂).

Another possibility is to employ a matrix equation approach to approximately
solve for the Schur-complement system with Ŝ, where we use that (Int ⊗ L̂+C ⊗M)
is the Kronecker representation of the generalized Sylvester operator

S(X) = L̂X +MXCT .

As mentioned in the beginning, there exist several low-rank methods such as the ADI
iteration (see, e.g., [14]) and projection-based methods (see, e.g., [74]) that allow us
to approximately solve linear matrix equations of this type. For our purposes, we use
the method ikpik, which is an inexact version of the method kpik developed in [74].
We employ this method with a small and fixed number of steps to approximately solve
the two matrix equations (Int ⊗ L+ Ĉ ⊗M) and its transpose found in

Ŝ = τ−1
(
Int ⊗ L+ Ĉ ⊗M

)
M−1

1

(
Int ⊗ L+ Ĉ ⊗M

)T

.

Note that due to the nature of the problem we have rewritten Ŝ using

Ĉ =

⎡
⎢⎢⎢⎢⎣
1 + τ√

β

−1 1 + τ√
β

. . .
. . .

−1 1 + τ√
β

⎤
⎥⎥⎥⎥⎦.D
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A LOW-RANK IN TIME APPROACH B11

This was done as ikpik needs to work with the inverse of Ĉ and in the old formulation
C could not be inverted. As this method is designed for the classical Sylvester equation
we transform the two systems during the preconditioning to become

(Int ⊗M)
−1

(
Int ⊗ L+ Ĉ ⊗M

)
=

(
Int ⊗M−1L+ Ĉ ⊗ I

)
and similarly for the transpose equation. The inexactness in ikpik [77] allows us to
approximately solve the systems for the two matrices M−1L and Ĉ. Note that in our
case the matrix Ĉ is trivial to solve for and we employ algebraic multigrid combined
with a few steps of a stationary iteration [19] for the solution with M−1L. Note
that this approach is not yet ideal as one should use methods design for generalized
Sylvester equations. However, due to the limitation of the scope of this paper, here we
refrain from these latter ideas and instead propose them as possible topics of future
research.

These preconditioners are then embedded into Algorithm 1 via the precondition-
ing function outlined in Algorithm 3.

As was noted in [80], a time-periodic control problem where y(0, .) = y(T, .)
results in the matrix C having circulant structure and we can then make use of the
Fourier transform to transform the Schur-complement system to a system with only
block-diagonal matrices that are now of complex nature, which simplifies the Sylvester
equation.

Similar matrix structures are obtained in [1] for the simultaneous discretization
in space and time. Preconditioning results using tensor structures are found in [2, 24].

Algorithm 3: Preconditioner application: Aprec.

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Solve τMZ11 = W11

Solve D1Z12 = W12
Solve τβMZ21 = W21

Solve D2MZ22 = W22

Compute Z31 and Z32 as the low rank solution of Ŝ with right-hand side defined
by W31 and W32.

We have now obtained an overall low-rank algorithm for the computation of low-
rank in time solutions to the PDE-constrained optimization problems. We want to
comment on some of the algorithms properties before moving on to the existence of
low-rank solutions in the next section. The computational cost of the algorithm is
again dominated by the matrix vector product and the application of the precondi-
tioner. Both of these are needed in any other iterative solver and the dimensionality
of the low-rank factors determines how expensive the matrix vector products are. The
cost of the preconditioner is here dominated by how efficiently we can solve the Schur-
complement system. The stationary iteration suffers from the fact that the matrix
structure does not result in parameter independent convergence. The solver based on
standard Sylvester equations ikpik typically shows much more parameter independent
convergence behavior. We refer to section 6 for the numerical results. Nevertheless,
more research is needed to employ solvers for generalized Sylvester equations. Addi-
tionally, the algorithm has to compute the truncation of the resulting matrices. This
step is not free and one should use the full-space method for a small set of time-steps.
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B12 MARTIN STOLL AND TOBIAS BREITEN

Nevertheless, the computation via a truncated SVD proved to be typically quite fast
as we only needed to multiply with the large and skinny low-rank factor matrices.

4. Existence result of low-rank solutions. The previously derived low-rank
method of course is competitive only if the solution to the optimal control problem
exhibits a fast singular value decay, allowing us to replace it by a low-rank approx-
imation. It thus remains to show that this is indeed a reasonable assumption for
problems of the form (2.6). For this reason, in this section we establish a direct
connection between (2.6) and the more prominent Sylvester equation

(4.1) AX +XB = C̃,

where A ∈ R
n×n, B ∈ R

m×m, and C̃ ∈ R
n×m. For the case that C̃ is of low-rank,

i.e., C̃ = WC̃VC̃T , WC̃ ∈ R
n×k, VC̃ ∈ R

m×k, and k � n,m, it is well-known
(see, e.g., [36, 35, 55]) that there exist approximations Xr = WXV T

X ≈ X with
WX ∈ R

n×r, VX ∈ R
m×r, and r � n,m. Moreover, recently there has been an in-

creased interest in numerical methods that, rather than computing the true solution
and computing an approximation afterward, solely work on low-rank factors and iter-
atively construct approximations Xr converging to the true solution X, making these
approaches feasible for dimensions n,m ∼ 106. Popular methods are projection-based
methods (see [9, 30, 75]), ADI-based methods (see [8, 14, 12, 78]), and multigrid
methods (see [37]).

Let us now consider the second block-row of (2.6), for which we obtain that

(D2 ⊗ βτM2)u+
(
D3 ⊗ τNT

)
p = 0.

Solving this equation for u and inserting the result into the third block-row of (2.6)
gives

− (Int ⊗ L+ C ⊗M) y − 1

β
(D3 ⊗ τN)

(
D−1

2 ⊗M−1
2

) (
D3 ⊗NT

)
p = d,

which, due to the properties of the Kronecker product and the definition of D3, can
be simplified to

− (Int ⊗ L+ C ⊗M) y − τ

β

(
D−1

2 ⊗NM−1
2 NT

)
p = d.

Together with the first blow-rock, we thus can reformulate (2.6) in matrix
notation as

τM1Y D1 − LP −MPC= τM1YobsD1,

−LY −MYCT − τ

β
NM−1

2 NTPD−1
2 = D.

So far, we have only eliminated the second block-row and rewritten the problem
in its matrix form. For the connection to (4.1), we have to make some additional
assumptions on our initial setup (2.1). Typically, in real-life applications we can only
observe a small portion ỹ of the state rather than the full y. In other words, the
mass matrix M1 in this case can be replaced by a low-rank matrix C̃obsC̃

T
obs = M1,

with C̃obs ∈ R
n1×� determining the observable parts of y. Note that in the context of

classical control theory, C̃obs simply denotes the measurable output quantity of interest
within the state-space representation of a linear dynamical system; see [3, 44, 52].
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A LOW-RANK IN TIME APPROACH B13

Similarly, in the case of boundary control, the rectangular matrix N ∈ R
n1×m usually

contains significantly fewer columns than rows. In summary, this means that we are
often interested in the solution

[
Y P

]
of the linear matrix equation

L
[
Y P

] [ 0 −I
−I 0

]
+M

[
Y P

] [ 0 −CT

−C 0

]
+ C̃obsC̃

T
obs

[
Y P

] [τD1 0
0 0

]

+NM−1
2 NT

[
Y P

] [0 0
0 − τ

βD
−1
2

]
=

[
τM1YobsD1

D

]
.

(4.2)

Pre- and postmultiplying the previous equation by M−1 and [ 0
−I

−I
0 ] leads to a gen-

eralized Sylvester equation of the form

AX + XB +Q1XR1 +Q2XR2 = E1FT
2 ,

where

A = M−1L, B =

[
CT 0
0 C

]
, Q1 = M−1C̃obsC̃

T
obs,

R1 =

[
0 −τD1

0 0

]
, Q2 = M−1NM−1

2 NT , R2 =

[
0 0

− τ
βD

−1
2 0

]
,

E1 =
[
M1WYobs

WD

]
, F1 =

[
D1VYobs

0
0 VD

]
.

Note that we assumed Yobs = WYobs
V T
Yobs

and YD = WDV T
D to be the low-rank

representations for the right-hand side.
In what follows, we proceed as in [10, 22] and use the Sherman–Morrison–Woodbury

formula [32] to simplify the previous equation. Since Q1 = U1VT
1 and Q2 = U2VT

2 , for
the Kronecker structured linear system, we subsequently obtain(I ⊗ A+ BT ⊗ I +RT

1 ⊗Q1 +RT
2 ⊗Q2

)
vec (X ) = vec

(E1FT
1

)
,

which can be rewritten as⎛
⎜⎜⎜⎝I ⊗ A+ BT ⊗ I︸ ︷︷ ︸

Ã

+
[I ⊗ U1 I ⊗ U2

]︸ ︷︷ ︸
Ũ

[RT
1 ⊗ VT

1

RT
2 ⊗ VT

2

]
︸ ︷︷ ︸

Ṽ T

⎞
⎟⎟⎟⎠ vec (X ) = vec

(E1FT
1

)
.

According to the Sherman–Morrison–Woodbury formula, we alternatively get

Ã vec (X ) = vec
(E1FT

1

)− Ũ (I + Ṽ T Ã−1Ũ)−1Ṽ T Ã−1 vec
(E1FT

1

)︸ ︷︷ ︸
vec(Y)

.

Since we have

Ũ vec (Y) = Ũ vec

([Y1

Y2

])

=
[I ⊗ U1 I ⊗ U2

]
vec

([Y1

Y2

])
= vec (U1Y1) + vec (U2Y1)
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B14 MARTIN STOLL AND TOBIAS BREITEN

we can conclude that

Ũ vec (Y) =: vec
(E2FT

2

)
with E2 ∈ R

n1×(l+m), F2 ∈ R
2nt×(l+m). In particular, this implies

Ã vec (X ) = vec
(E1FT

1

)− vec
(E2FT

2

)
or, in other words, X can also be derived as the solution to a regular Sylvester equation
of the form

AX + XB =
[E1 −E2

] [FT
1

FT
2

]
.

We have now established that the PDE-constrained optimization problem can be
written in form of a classical Sylvester equation for which we can use the existence
results for a low-rank solution introduced in [36]. Note that we do not claim to actually
proceed this way in order to compute the solution matrix X . Obviously, determining
the intermediate solution vec (Y) would be a challenge on its own. The previous
steps rather should be understood as a theoretical evidence for the assumption that
X indeed exhibits a very strong singular value decay. Keep in mind that we had to
assume that the desired state Yobs as well as D are of low-rank and that l,m � n1,
which is a reasonable assumption for realistic control problems.

A special case. One might argue that for the distributed control case, i.e., N
begin square together with an (almost) entirely observable state, i.e., C̃obsC̃

T
obs = M1,

the previous low-rank assumptions no longer hold true. Consequently, applying the
Sherman–Morrison–Woodbury formula will not simplify (4.2) and we thus will have
to deal with a linear matrix equation of the form

(4.3)

4∑
i=1

AiXBi = E1FT
1 ,

where we cannot benefit from additional structure in Ai and Bi. Still, as has already
been (numerically) observed and partially discussed in [10, 11, 22] for the special
Lyapunov type case, i.e., Bi = AT

i , the solution matrix X still seems to exhibit
similar low-rank properties.

Although the most general case certainly is an interesting topic of future research,
we want to conclude by pointing out that for the special case M2 = M1 = N = M
we immediately get an analogous (in fact even stronger) low-rank existence result for
(4.2). This is due to the fact that here (4.2) is equivalent to the Sylvester equation

L
[
Y P

] [ 0 −I
−I 0

]
+M

[
Y P

] [τD1 −CT

−C − τ
βD

−1
2

]
=

[
τMYobsD1

D

]

for which we again can apply the low-rank existence results from [36].

5. Other state equations.

Stokes equation. In addition to the heat equation as a test problem we here also
consider the Stokes equation. The discretization of the Stokes control problem can
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A LOW-RANK IN TIME APPROACH B15

be performed similarly to the case for the heat equation and we refer the interested
reader to [27]. The Stokes equations are given by

yt − ν
y +∇p = u in [0, T ]× Ω,(5.1)

−∇ · y = 0 in [0, T ]× Ω,(5.2)

y(t, .) = g(t) on ∂Ω, t ∈ [0, T ],(5.3)

y(0, .) = y0 in Ω,(5.4)

and the functional we are interested in is defined as

(5.5) J(y, u) =
1

2

∫ T

0

∫
Ω1

(y − ȳ)2 dxdt+
β

2

∫ T

0

∫
Ω2

u2dxdt.

Our goal is to build a discrete Lagrangian using an all-at-once approach [82], where we
set up a discrete problem within the space-time cylinder. Using the trapezoidal rule
and Q2/Q1 finite elements in space leads to the following discrete objective function:

(5.6) J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u

with

M1 = blkdiag

(
1

2
M1, 0,M1, 0, . . . ,M1, 0,

1

2
M1, 0

)
,

M2 = blkdiag

(
1

2
M2,M2, . . . ,M2,

1

2
M2

)
,

where we reuse the notation for the heat equation. Note that for the Stokes case the
vectors yi are split into a velocity v part with d = 2, 3 components and pressure part
p, i.e.,

yi =

[
yvi
ypi

]
.

The all-at-once discretization of the state equation using finite elements in space
and an implicit Euler scheme in time is given by

(5.7) Ky − τNu = d,

where

K =

⎡
⎢⎢⎢⎣

L
−M L

. . .
. . .

−M L

⎤
⎥⎥⎥⎦, N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N 0
0 0 0
0 N 0

0
. . .

0 N
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ly0 + f
0
f
...
f
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here,

L =

[
L BT

B 0
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B16 MARTIN STOLL AND TOBIAS BREITEN

represents an instance of a time-dependent Stokes problem with B the discrete di-
vergence, M is the mass matrix for the domain Ω, the matrix L is defined as L =
τ−1M +K, the matrix N is a rectangular matrix that can be written as

D3 ⊗Ns with Ns =

[
N
0

]

which represents the distributed control term control term where N = M , the matrix

M =

[
τ−1M 0

0 0

]

is associated with the discretization in time via the implicit Euler scheme, and the
right-hand side d consists of a contribution from the initial condition y0 and a vector
f representing forcing terms and contributions of boundary conditions. Note that all
matrices here correspond to the ones introduced for the heat equation but equipped
with a block form corresponding to the components for the velocity yv and pressure
yp. The first order conditions using a Lagrangian with Lagrange multiplier p lead to
the system

(5.8)

⎡
⎣ τM1 0 −KT

0 βτM2 N T

−K N 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ y
u
p

⎤
⎦ =

⎡
⎣ τM1yobs

0
d

⎤
⎦,

where again we can switch to a Kronecker structure defined by

(5.9)

⎡
⎣ D1 ⊗ τM 0 − (

Int ⊗ L+ CT ⊗M)
0 D2 ⊗ βτM2 D3 ⊗N T

s

− (Int ⊗ L+ C ⊗M) D3 ⊗Ns 0

⎤
⎦.

We can now in a similar way as earlier use the low-rank MINRES method. Again,
here we apply a block-diagonal preconditioner of the form

(5.10) P =

⎡
⎣D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ

⎤
⎦.

Here M̂ = blkdiag (M̂1, γI) with γ = βτhd (see [82] for details). Here d is the
dimension of the problem (d = 2, 3) and h the mesh parameter. The matrices M1

and M2 are approximated via a Chebyshev semi-iteration [33, 34, 86], or in the case
of lumped mass matrices we trivially have M̂1,2 = M1,2. The approximation of the
Schur-complement is much more tricky in this case as for the indefinite M1 the
Schur-complement is not well-defined. Thus, we again use the approximation M̂ =
blkdiag (M̂1, γI) to form an approximate Schur-complement

S = τ−1KM̂−1
1 KT + τ−1β−1NM−1

2 N T

with M̂1 a block-diagonal involving M̂. We in turn approximate this via

Ŝ = τ−1
(
K + M̂

)
M−1

1

(
K + M̂

)T

,
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A LOW-RANK IN TIME APPROACH B17

where M̂ = blkdiag( 1√
β
M1, 0, . . . ,

1√
β
M1, 0) for the distributed control case. As in

section 3 we note that the matrix(
K + M̂

)
=

(
Int ⊗ L̃+ C ⊗M

)
with L̃ = [ (τ

−1+β−1/2)M1+K
B

BT

0 ]. We now proceed in the following way. A stationary
iteration scheme with a fixed number of steps is used to approximately solve (Int ⊗
L̃ + C ⊗ M) with preconditioner (Int ⊗ L̃) and within this preconditioner systems
with L̃ are approximately solved using another Uzawa scheme with a fixed but small
number of iterations. For this inner Uzawa iteration the inverse of the preconditioner
is given by[ [(

τ−1 + β−1/2
)
M1 +K

]−1

MG
0

0
(
τ−1 + β−1/2

)
[Kp]

−1
MG + [Mp]

−1
MG

]
,

where the [. . .]−1
MG indicates the use of a geometric [41, 87] or algebraic multigrid

method [69, 29]. Preconditioners of this type are of so-called Cahouet–Chabard form
[21] and the derivation can be done using a least squares commutator approach [27, 82].

Again, for more robustness, more sophisticated Sylvester solvers should be used
in the future to guarantee robustness with respect to the system parameters.

Convection-diffusion equation. Before coming to the numerical results we
quickly want to introduce the last state equation considered here. The PDE constraint
is now given by the convection-diffusion equation

yt − ε
y + w · ∇y = u in Ω,(5.11)

y(:, x) = f on ∂Ω,(5.12)

y(0, :) = y0(5.13)

as the constraint to the following objective function:

(5.14) J(y, u) =
1

2

∫ T

0

∫
Ω1

(y − ȳ)
2
dxdt+

β

2

∫ T

0

∫
Ω2

u2dxdt.

Note that the parameter ε is crucial to the convection-diffusion equation as a decrease
in its value is adding more hyperbolicity to the PDE where the wind w is predefined.
Such optimization problems have recently been discussed in [67, 43, 62] and for brevity
we do not discuss the possible pitfalls regarding the discretization. Here we focus on a
discretize-then-optimize scheme using a streamline upwind Galerkin (SUPG) approach
introduced in [20]. Note that other schemes, such as discontinuous Galerkin methods
[83] or local projection stabilization [62], are typically more suitable discretizations
for the optimal control setup as they often provide the commutation between opti-
mize first or discretize first for the first order conditions. Nevertheless, our approach
will also work for these discretizations. Once again we employ a trapezoidal rule in
connection with finite elements and now additionally use a SUPG stabilization. The
discretized objective function and state equation are given by

J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u,

which is the same as for the heat equation case. For the all-at-once discretization of
the convection-diffusion equation we get the same structure as before,

(5.15) Ky − τNu = d,
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B18 MARTIN STOLL AND TOBIAS BREITEN

with

K =

⎡
⎢⎢⎢⎣

Ls

−Ms Ls

. . .
. . .

−Ms Ls

⎤
⎥⎥⎥⎦, N =

⎡
⎢⎢⎢⎣
Ms

Ms

. . .

Ms

⎤
⎥⎥⎥⎦, d =

⎡
⎢⎢⎢⎣
M1y0 + f

f
...
f

⎤
⎥⎥⎥⎦.

Note that due to the SUPG test functions used we now have Ms, which is obtained
entrywise from evaluating the integrals

(Ms)ij =

∫
Ω

φiφj + δ

∫
Ω

φi (w · ∇φj),

where φ are the finite element test functions and δ is a parameter coming from the
use of SUPG [20, 27]. We then have Ls = Ms + τKs, where Ks is the standard
nonsymmetric matrix representing the SUPG discretization of the convection-diffusion
equation. We can now see that this again is of the desired Kronecker form⎡

⎣ D1 ⊗ τM1 0 − (Int ⊗ Ls + C ⊗Ms)
T

0 D2 ⊗ βτM2 D3 ⊗ τMT
s

− (Int ⊗ Ls + C ⊗Ms) D3 ⊗ τMs 0

⎤
⎦
⎡
⎣ y
u
p

⎤
⎦(5.16)

=

⎡
⎣D1 ⊗ τM1yobs

0
d

⎤
⎦.

Again, we employ the low-rank version of MINRES to solve this system. Note that for
nonsymmetric formulations such as the one obtained from an optimize-then-discretize
strategy we can also use low-rank versions of nonsymmetric Krylov solvers such as
Gmres [72] or Bicg [31]. A preconditioner is of the form

(5.17) P =

⎡
⎣D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ

⎤
⎦,

where the two blocks involving mass matrices are as before and the Schur-complement
of A

S = (Int ⊗ Ls + C ⊗Ms) (D
−1
1 ⊗ τ−1M−1

1 ) (Int ⊗ Ls + C ⊗Ms)
T

(5.18)

+ (D3 ⊗ τMs)
(
D−1

2 ⊗ β−1τ−1M−1
2

) (
D3 ⊗ τMT

s

)
.

As before with the heat and Stokes problem the aim for an efficient approximation
of S is by not dropping terms but rather to create an approximation that matches
both terms in S. In a similar way to the technique introduced in [63] for the steady
case can now be extended by introducing a term D̂ ⊗ M̂ so that(

D̂ ⊗ M̂
)
(D−1

1 ⊗ τ−1M−1
1 )

(
D̂ ⊗ M̂

)T

≈ (D3 ⊗ τMs)
(
D−1

2 ⊗ β−1τ−1M−1
2

) (
D3 ⊗ τMT

s

)
.

If we now assume D1 = D2 = D3 = Int one can obtain

(5.19) Ŝ =
(
Int ⊗ L̂s + C ⊗Ms

)
(D−1

1 ⊗ τ−1M−1
1 )

(
Int ⊗ L̂s + C ⊗Ms

)T

,
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A LOW-RANK IN TIME APPROACH B19

where

L̂s =

(
1 +

1√
β

)
Ms + τKs.

Note that it is of course possible to construct such an approximation without assuming
D1 = D2 = D3 = Int . We can now proceed with a stationary iteration for the
two Sylvester equations in Ŝ, or if we want to employ ikpik again we rewrite the
approximation as

(5.20) Ŝ =
(
Int ⊗ Ls + Ĉ ⊗Ms

)
(D−1

1 ⊗ τ−1M−1
1 )

(
Int ⊗ Ls + Ĉ ⊗Ms

)T

with

Ĉ =

⎡
⎢⎢⎢⎢⎣

1 + τ√
β

−1 1 + τ√
β

. . .
. . .

−1 1 + τ√
β

⎤
⎥⎥⎥⎥⎦.

Now when solving with Ŝ we can approximately solve both (Int ⊗Ls + Ĉ ⊗Ms) and
its transpose using ikpik, where we use an algebraic multigrid for the approximate
solution with the stiffness matrix Ls. These preconditioners need to be adapted when
other discretizations are used, but we expect our results to carry over to these cases
as well.

6. Numerical results. We are now going to present results for the low-rank
in time solution of certain PDE-constrained optimization problems. The results pre-
sented in this section are based on an implementation of the above described algo-
rithms within MATLAB, whereas we perform the discretization of the PDE-operators
within the deal.II [7] framework using Q1 finite elements for the heat equation and
the convection-diffusion equation. The Stokes equation is discretized with Q2 ele-
ments for the velocity and Q1 elements for the pressure component. For the algebraic
multigrid approximation, we used HSL MI 20 [19]. For some preconditioner we used
backslash within MATLAB for the innermost solution within the preconditioner. Our
implementation of MINRES is based on a vector version presented in [27] and was
stopped with a tolerance of 10−4 or 10−6 for the relative pseudoresidual. Please note
that we ideally should couple the stopping criterion for the iterative solver to the
discretization error. We also give results for the stationary iteration and ikpik used
for the approximation within the preconditioner. Our experiments are performed for
a final time T = 1 with a varying number of time-steps. As the domain Ω we consider
the unit cube, but other domains are of course possible. We specify the boundary
conditions for each problem separately. Throughout the results section we fixed the
truncation at 10−8, for which we observed good results. Additionally, we also per-
formed not-listed experiments with a tolerance of 10−10 for which we also observed
fast convergence. Larger tolerances should be combined with a deeper analysis of the
algorithms and a combination with flexible outer solvers. All results are performed on
a standard Ubuntu desktop Linux machine with Intel Xeon CPU W3503 @ 2.40GHz
and 6GB of RAM.
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(a) Desired state ȳ10—full rank
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Fig. 1. Desired state in full-rank and low-rank form.

Table 1

Results for full-rank MINRES versus low-rank (LR) MINRES with stationary iteration precon-
ditioner for 20 or 100 time-steps and a variety of different meshes. Both iteration numbers and
computing times in seconds are listed. DoF = degrees of freedom. OoM indicates out of memory in
MATLAB. Results are shown for β = 10−4.

DoF FR (20) LR (20) FR (100) LR (100)
# it(t) # it(t) # it(t) # it(t)

289 17(0.2) 15(5.6) 31(1.1) 19(7.6)
1089 19(0.7) 17(8.9) 33(5.56) 21(11.9)
4225 19(3.5) 17(19.7) 35(26.6) 23(26.3)

16641 21(17.5) 19(72.1) 35(125.8) 23(97.6)
66049 23(81.8) 19(324.8) OoM 25(427.4)

6.1. The heat equation.

Distributed control. As the first example shown in this section we use the heat
equation with a distributed control term. We choose the boundary conditions for this
problem to be of zero Dirichlet type. We first show how well the desired state

yobs = −64 exp
(
−
(
(x0 − 0.5t)

2
+ (x1 − 0.5t)

2
))

is approximated in low-rank form. Figure 1 illustrates this for grid point 10 in time
where the right-hand side vec−1 (τM1yobs) = B11B

T
12 is approximated by low-rank

factors of rank 2.
Table 1 shows first results for the comparison of the full-rank MINRES versus

the low-rank version. We want to point out that here we use the backslash operator
in MATLAB to evaluate the matrix L within the preconditioner, but this can easily
be replaced by a multigrid approximation and in fact is done later. For the full-rank
version, we only used a block-diagonal approximation for the matrix K and hence the
robustness with respect to changes in the number of time-steps is not given. This
would typically be the case and our results using deal.II and C++ in [81, 61] show
robustness with respect to the number of time-steps. Nevertheless, every increase in
the number of time-steps also results in an increase in the matrix size and so one would
expect when the number of time-steps is increased fivefold that the same happens for
the time needed to solve the linear system. Going back to the results in Table 1, where
both the timings and iteration numbers are shown for a variety of mesh-sizes and two
different orders of grid points in time, both methods perform mesh-independent and
we can see that the low-rank method shows almost no increase when the number of
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A LOW-RANK IN TIME APPROACH B21

Table 2

Results for full-rank MINRES versus low-rank MINRES with both the stationary iteration (SI)
and ikpik for a fixed mesh with 16, 641 unknowns in space. We show varying time-steps and addi-
tionally the rank of the state/control/adjoint state. Both iteration numbers and computing times in
seconds are listed. Results are shown for β = 10−4.

DoF 20 100 200 400 600
16641 # it(t) # it(t) # it(t) # it(t) # it(t)

LR(SI) 19(108.2) 21(307.8) 25(432.7) 43(671.9) 61(937.3)
LR(ikpik ) 19(115.1) 19(288.9) 19(296.8) 21(335.3) 21(357.1)
Rank (SI) 8/10/10 10/11/11 12/13/13 11/14/14 14/15/15
FR 21(18.3) 35(124.0) 63(434.3) OoM OoM

time-steps is drastically increased. Note also the degrees of freedom given here are only
for the spatial discretization. The overall dimension of the linear system is then given
by 3nnt, where n represents the spatial degrees of freedom. We see that the iteration
times for the full rank solver go up, and using the nonoptimal preconditioners we
additionally see that the times increase more than just by a factor of five. We also see
that due to the cost of performing a low-rank truncation the full-rank method always
outperforms the low-rank scheme for a small number of time-steps. Nevertheless, the
low-rank method can easily solve problems that are no longer tractable for full-rank
methods.

Next we compare how both the full-rank and the low-rank method perform when
the number of time-steps is further increased. We therefore consider a fixed mesh for
a varying time-discretization. Table 2 shows the results for both the full-rank and
the low-rank method. We additionally show the rank of the three components of the
state, control, and adjoint state. We started computing the truncation process using a
maximum size of the truncated SVD of 20, which was sufficient for all discretizations
in time using a truncation tolerance of 10−8. In order to keep the iteration numbers
from growing too much with an increase in the number of time-steps we increased the
number of stationary iterations for the preconditioner from two to three for the last
two columns in Table 2. Additionally, we show the results for the Schur-complement
approximation when ikpik is employed. For this we employ ikpik with a fixed number
of steps. We used four steps for the results shown in Table 2. For the evaluation of the
inverse of the stiffness matrix within ikpik we used a five steps of a stationary iteration
with one cycle of an algebraic multigrid as a preconditioner. The algebraic multigrid
is also used within the stationary iteration approximation to the Sylvester equation.
We see again that the full-rank method exceeds the memory limit in MATLAB. It can
also be seen that the increase in rank and computing time is typically moderate. Note
that the system dimension considering a full-rank solution is ranging from 998, 460 to
29, 953, 800 unknowns.

In order to illustrate the distribution of the singular values we show in Figure 2
how the relative value of the singular values behaves throughout the iteration. Shown
are the scaled singular values (σj/σ1) of the approximation to the state for the prob-
lem with 4225 unknowns and 100 grid points in time. In Table 3 we illustrate the
performance of our scheme when different values for the regularization parameter are
considered. So far the preconditioners introduced based on the stationary iteration
have used a direct solver for the solution of the systems with

L̂ =

((
1 +

τ√
β

)
M1 + τK

)
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Fig. 2. Singular values of the approximate solution during the iteration before truncation.

Table 3

Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on
three different meshes. Both iteration numbers and computing times in seconds are listed. The
results shown use the ikpik approximation of the Sylvester-type operators.

DoF 1089 (100) 4225 (100) 16641 (100) 16641 (100)
β # it(t) # it(t) # it(t) ‖y − ȳ‖ / ‖ȳ‖

10−4 17(25.8) 19(80.1) 19(311.9) 0.3979
10−6 17(23.8) 17(64.7) 19(267.5) 0.2019
10−8 15(20.3) 17(56.7) 19(227.2) 0.0809

both in the full-rank method and the low-rank one. We now illustrate that we can
easily approximate this matrix using an algebraic multigrid technique by also showing
that our preconditioner performs robustly with respect to the regularization parameter
β. We here compute the truncated singular value decomposition up to order 20 and
then cut off corresponding to the truncation tolerance. We additionally increased
the number of stationary iteration steps for the matrix (Int ⊗ L̂ + C ⊗ M) with
preconditioner (Int ⊗ L̂) to 4.

Boundary control. In the following we demonstrate that our approach also
works for the case of a boundary control problem. The desired state is shown in
Figure 3(a) and the computed state needed to approximate this in Figure 3(b). In
Table 4 we show results for the low-rank MINRES approximation for a variety of
mesh-parameters and regularization parameters. Details on the preconditioners used
can be found in [61]. As in the last example for the distributed control case we
choose four Uzawa iterations and a tolerance of 10−4 for the iterative solver. Here we
evaluate L̂ again using the backslash operator in MATLAB but the use of AMG is
straightforward. We do not employ ikpik as its use for this setup needs to be further
investigated.

6.2. Stokes equation. The configuration for the Stokes equation is taken from
[82] and originally appeared in [46]. The spatial domain is the unit cube Ω = [0, 1]d

with a time domain [0, 1]. The target flow is the solution for an unsteady Stokes
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(a) Desired state at grid point 65 in time.
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(b) Computed state at grid point 65 in time for β =
10−6.

Fig. 3. Desired state and computed state for a boundary control problem.

Table 4

Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on
three different meshes for a boundary control example. Both iteration numbers and computing times
in seconds are listed.

DoF 289 (100) 4225 (100) 16641 (100)
β # it(t) # it(t) # it(t)

10−2 49(137.3) 61(236.18) 79(802.7)
10−4 67(179.8) 99(406.6) 151(1510.6)
10−6 63(169.2) 95(380.4) 147(1448.6)

Table 5

Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on
three different meshes for a Stokes control example. Both iteration numbers and computing times
in seconds are listed.

DoF 578+81 (100) 2178+289 (100) 8450+1089 (100)
β # it(t) # it(t) # it(t)

10−1 11(224.4) 12(624.8) 14(3601.9)
10−5 15(290.2) 15(737.6) 17(4091.5)

equation with Dirichlet boundary conditions, i.e., y = (1, 0) when the second spatial
component x2 = 1 and y = (0, 0) on the remaining boundary for the two-dimensional
case. For the control problem we now consider the following time-dependent boundary
conditions. For the top-boundary where x2 = 1 we get y = (1+ 1

2 cos(4πt−π), 0) and
zero elsewhere in two space dimensions and we set viscosity to 1/100. Figure 4(a)
depicts the desired state and the corresponding computed pressure is shown in Figure
4(b). For the results shown in Table 5 we note that we needed to set the number of
stationary iteration steps for the outer iteration to 30 and for the inner one for the
small saddle point system to 5. We believe that the outer iteration can be replaced
by a robust Sylvester solver.

Apart from the approximation of the Neumann–Laplacian on the pressure space
whose inverse was evaluated using an algebraic multigrid scheme, we simply used
the backslash operator to evaluate the remaining components. A further increase in
computational efficiency can be gained when these are replaced by multigrid approx-
imations.

6.3. Convection-diffusion equation. The configuration for the convection-
diffusion equation is taken from [27] and is typically referred to as the double glazing
problem. The spatial domain is the unit cube Ω = [−1, 1]2 with a time domain [0, 1].
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(a) Desired state at grid point 10 in
time.
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Fig. 4. Desired state and computed pressure for the Stokes flow problem.
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Fig. 5. Computed state for β = 10−6 at grid point 10 in time.

The wind w is given by

w =
(
2y(1− x2),−2x(1− y2)

)
.

Here we set the parameter to ε to 1/200 and the boundary condition is a Dirichlet
zero condition with the exception of y = 1 when x2 = 1. The desired state is set to
zero throughout the domain [62]. In Figure 5 we show the computed state for grid
point 10 in time. Due to the nonsymmetric nature of the PDE operator we have not
employed the recommended multigrid technique [66] and simply used the backslash
operator here. The results shown in Table 6 indicate a robust performance of the
low-rank MINRES method. We here set the number of stationary iterations to 15.
We additionally show iteration numbers for the use of ikpik with the use of a direct
solver and a fixed number of ikpik steps. The tolerance for MINRES is set to 10−6.

Additionally, we show in Table 7 the numerical ranks that we obtain for the
computed state. We hereby change the parameter ε in order to make the problem
more hyperbolic. The tolerance for the low-rank truncation is chosen to be 10−8.
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Table 6

Results for low-rank MINRES with 100 or 200 time-steps and a varying regularization parameter
on a variety of meshes for a convection-diffusion control example. Both iteration numbers and
computing times in seconds are listed. The tolerance for convergence is 1e− 6.

DoF 1089 (100) 4225 (100) 16641 (100) 4225 (200) 16641 (200)
β # it(t) # it(t) # it(t) # it(t) # it(t)

SI 10−8 4(17.36) 6(66.1) 6(291.1) 6(68.8) 6(277.6)
ikpik 10−8 4(8.5) 6(35.6) 6(151.0) 6(36.7) 6(161.4)
SI 10−6 10(40.4) 10(109.7) 14(639.5) 12(128.1) 14(646.3)
ikpik 10−6 10(22.3) 10(72.3) 14(520.3) 12(98.7) 14(568.6)

Table 7

Results for low-rank MINRES with 100 time-steps and a fixed mesh with 4225 DoFs. We here
show the ranks of the low-rank factors with respect to a varying ε within the convection-diffusion
equation. The tolerance for convergence is 1e− 6.

DoF 1/50 1/500 1/5000 1/50000

ȳ1 (trunctol = 1e− 8) 9/7/7 7/6/6 7/5/5 7/5/5
ȳ2 (trunctol = 1e− 8) 30/35/35 29/49/49 29/50/50 29/50/50
ȳ2 (trunctol = 1e− 5) 4/3/3 3/4/4 3/4/4 3/4/4

We show ranks for both the zero desired state ȳ1 and a different desired state with a
higher frequency ȳ2. We note that the control and adjoint states both need more terms
for the low-rank representation when the desired state is nontrivial. The maximum
number of vectors stored was limited to 50, which was not sufficient for small values
of ε. This does not indicate that the method fails in this case but rather that it is
crucial to investigate the relation between the discretization error, the algebraic error,
and the truncation error. The truncation tolerance of 10−8 could have simply been
too tight for the level of discretization. Hence, we additionally show the results for
the truncation level 10−5, which in this case is smaller than h2.

7. Outlook. We believe that the research presented here opens some interest-
ing angles that should be studied in the future. The incorporation of additional
constraints such as control and state constraints is typically very important for real-
world scenarios. We plan to investigate a technique introduced in [45] where the state
and adjoint state are computed first and hence is amenable to low-rank techniques,
and then the constrained control is computed. It is further desired to investigate more
complicated discretizations in time. Of particular interest, we want to study back-
ward differentiation formulas [5] as these can be easily incorporated simply modifying
the C matrix in (3.1). We further plan to incorporate more sophisticated generalized
Sylvester equation solvers for (Int ⊗ L+ C ⊗M), which we believe allows for more
robustness with respect to the system parameters and should be combined with a
flexible outer method [71]. It is further crucial to investigate how the low-rank tech-
niques can be extended to incorporate nonlinearities of both the objective function
and the PDE constraint such as [17].

8. Conclusions. In this paper we proposed the use of a low-rank methodology
for the solution to PDE-constrained optimization problems. In particular we intro-
duced a low-rank in time approach that allows us to significantly reduce the storage
requirements in time for a one-shot solution of the optimal control problem. We were
also able to rewrite the problem in such a way that we can obtain low-rank existence
results from classical Sylvester equation theory. We additionally discussed a stationary
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iteration as a preconditioner for the Schur-complement approximation within the over-
all block-diagonal preconditioner. We further illustrated that this technique can be
used for many well-known PDEs. Our numerical results illustrated that even with the
rather crude Schur-complement approximation a rather robust performance could be
obtained. The low-rank method presented enabled computations that are no longer
possible to perform with the full-rank approach, which we see as a crucial feature of
our methodology.
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