How turbulence regulates biodiversity in systems with cyclic competition
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Cyclic, non-hierarchical interactions among biological species represent a general mechanism by
which ecosystems are able to maintain high levels of biodiversity. However, species coexistence
is often possible only in spatially extended systems with a limited range of dispersal, whereas in
well-mixed environments models for cyclic competition often lead to a loss of biodiversity. Here
we consider the dispersal of biological species in a fluid environment, where mixing is achieved by
a combination of advection and diffusion. In particular, we perform a detailed numerical analysis
of a model composed of turbulent advection, diffusive transport, and cyclic interactions among
biological species in two spatial dimensions, and discuss the circumstances under which biodiversity
is maintained when external environmental conditions, such as resource supply, are uniform in space.
Cyclic interactions are represented by a model with three competitors, resembling the children’s
game of rock-paper-scissors, whereas the flow field is obtained from a direct numerical simulation
of two-dimensional turbulence with hyperviscosity. It is shown that the space-averaged dynamics
undergoes bifurcations as the relative strengths of advection and diffusion compared to biological
interactions are varied.

PACS numbers: 47.54.Fj, 87.23.Cc, 47.27.wj, 05.45.Xt

I. INTRODUCTION

Several studies have shown that biodiversity in spa-
tially extended population models can sometimes be
maintained even if only a single species is able to sur-
vive in the well-mixed system [IH8]. This is typically
the case if the interactions among individuals are suf-
ficiently local and the system does not display a clear
competition hierarchy as in the case of cyclic interac-
tions. Cyclic competitions have been frequently inves-
tigated in discrete lattice models with nearest-neighbor
interactions, where the dispersal of individuals is local
1 21 [, [7, OH17). To demonstrate the approach to the
well-mixed limit in these models one can either increase
the effective range of interactions towards the total do-
main size [2, [4] or explicitly consider individuals’ mobil-
ity by allowing random exchange events among adjacent
sites, which leads to diffusive transport in the continuum
limit [7, 12} 13| I6]. However, a significant part of life
on Earth is represented by microorganisms dwelling in
moving fluid environments, such as the Earth’s oceans,
where the dominant mechanism of transport is typically
attributed to fluid turbulence [I8-20]. The latter mech-
anism of microorganism’s transport was a source of in-
spiration for the work presented herein since, despite the
fact that cyclic interactions are used as a paradigm to
explain biodiversity, to our knowledge, only one previous
study has considered spatial games with cyclic dominance
in a fluid environment with mixing [6], and none was de-
voted to the study of cyclic competitions in a turbulent
flow so far. One of the most intriguing examples of biolog-
ical communities without a clear competition hierarchy

inhabiting turbulent aquatic environments is represented
by marine phytoplankton species that typically compete
for a limited number of natural resources [21], 22]. Apart
from marine ecosystems there also seems to be a growing
interest for biodiversity in the atmosphere, although it
remains an open question as to whether organisms found
in the atmosphere can be regarded as an active ecosystem
or not [23H25].

Fluid motion can have a profound effect on the time
evolution of passively advected biological populations or
chemical substances [3] 26H29]. In particular, stirring
by a fluid flow can lead to transitions between different
dynamical regimes of reactive systems, mathematically
described by the so-called reaction-diffusion-advection
(RDA) equations [30H33]. From an ecological point of
view, these transitions correspond to changes in rela-
tive species abundance and are therefore of crucial im-
portance for studies of biodiversity in moving fluid en-
vironments. Here we demonstrate that, upon changing
the relative strengths of advection and diffusion com-
pared to biological interactions, a spatially extended pop-
ulation model with cyclic dominance experiences dra-
matic changes in its spatio-temporal dynamics. Distinct
dynamical regimes of the system are manifested by a
rich variety of phenomena such as rotating spiral waves,
the emergence of periodic oscillations in relative species
abundance, and transitions into absorbing states where
only one species survives.

To shed some light on cyclic competitions in turbu-
lent flows we adopt a minimal biological model with
three competitors dominating each other in an analogous
fashion as in the children’s game of rock-paper-scissors,
where rock crushes scissors, scissors cut paper, and paper



covers rock. Known examples where cyclic dominance
has been identified in interactions between three com-
petitors include the mating strategies of lizards in the
inner Coast Range of California [34], competitions be-
tween mutant strains of yeast [35], and bacterial strains
of toxin-producing Escherichia coli [5, [36, B7]. In the
spatially extended population model, the biological reac-
tions are supplemented with diffusion terms and advec-
tion by a two-dimensional (2D) turbulent flow. Diffusion
can be used either to represent random Brownian mo-
tion of the advected species or as a parametrization for
turbulent transport below the model’s resolution, i.e. at
the scales where three-dimensional fluid motions become
important [I8], [38]. Diffusion, however small it may be,
plays in fact a crucial role in the population dynamics
of passively advected species because it enables parti-
cles in nearby fluid elements to come in contact and in-
teract [29, B9]. In cases where particle inertial effects
or microorganism motility are considered important, the
species may additionally come in contact due to an ef-
fective compressibility of the flow field [40H42]. In this
study, however, these effects are neglected and the tracer
velocity field is assumed to be incompressible.

It has been previously shown that cyclic interactions
in combination with diffusion lead to self-organization of
the three competitors into rotating spiral waves [7, [12].
Turbulent advection in 2D flows is, on the other hand,
known to produce sharp, patchy distributions of biologi-
cal tracers [38] [43H45]. Advective and diffusive transport
in systems with cyclic competition are therefore drawn
towards a complex interplay of diverse factors, exhibiting
elements of competition as well as of cooperation. On one
hand, these two processes work together to enhance the
overall mixing rate, while on the other hand, they rep-
resent two opposing mechanisms, favoring either sharp
gradients in the subpopulation densities or smooth den-
sity profiles propagating in the form of traveling waves.
Various relative strengths of turbulence compared to dif-
fusion can be also viewed—in a more loose sense—as dif-
ferent compromises between the random Brownian and
collective motions of individuals. Our model might there-
fore provide some general insight into situations where
the motions of individuals are adequately described by
a single, spatially correlated velocity field in the contin-
uum limit. Apart from plankton species in the ocean,
an interesting example belonging to this general class of
biological systems is represented by swimming bacteria
in dense suspensions [46] where the velocity correlation
length was shown to depend mainly on the bacterial con-
centration [47]. We also note that the applications of this
study concerning pattern formation in fluid flows are not
limited to biological systems since qualitatively similar
patterns to the ones observed in our model can also be
reproduced with the celebrated Belousov-Zhabotinsky re-
action [48H50].

In the ocean, advection is recognized as the domi-
nant source of transport, and the biological interactions
among planktonic organisms typically occur on similar

time scales as horizontal mixing [38] [43]. Nevertheless,
in order to obtain a thorough understanding of the var-
ious physical processes involved, and due to possible ap-
plications of our work outside the field of marine ecology,
we perform a comprehensive numerical analysis of our
model over a wide range of relative advection as well as
diffusion strengths compared to the biological interac-
tions. All the available simulation results are then used
to construct a rough non-equilibrium phase diagram of
the spatio-temporal dynamics.

The remainder of this article is structured as follows.
In Sec. [[]] we present a set of rate equations describ-
ing cyclic interspecies interactions and give details re-
garding our 2D turbulence simulation, before discussing
the full set of RDA equations used to model the dy-
namics of the spatially extended system. In Sec. [ITI]
we perform a detailed analysis of the numerical results.
The complex spatio-temporal patterns are first inspected
through snapshots of the solutions and by means of
space-time autocorrelation functions. Afterwards, adopt-
ing a recently introduced method developed in the con-
text of interacting particle systems [51], we show that
the most pronounced qualitative changes in the system’s
spatio-temporal dynamics correspond to bifurcations of
the space-averaged dynamics. The main conclusions are

given in Sec. [[V]

II. MODEL
A. Rate equations

We study a biological population comprised of three
species A, B, and C' that cyclically dominate each other.
In addition, the individuals from each subpopulation
are able to reproduce if an empty spot @ is available.
The complete model composed of selection and repro-
duction processes is described by the following reaction
scheme [12] [17]:

AB %5 Ag, Az 25 AA,
BC % Bg, Bz - BB, (1)
CA L Co, co % ce,

where o and p are the selection and reproduction rates,
respectively. If the size of each subpopulation is macro-
scopically large, such that the relative fluctuations arising
from stochastic effects are small, the system’s time evo-
lution may be treated as deterministic, and the discrete
distributions of individuals belonging to each species can
be replaced by the mean densities a, b, and ¢ of subpop-
ulations A, B, and C, respectively. In the well-mixed
limit, the mean population densities are governed by the



following set of rate equations:

Ora = pa(l — p) — oac,
Otb = ub(1 — p) — oba, (2)
Ope = pe(l — p) — ocb,

where p = a+b+c represents the total population density.

Equation is a special case of a three-species popula-
tion model first studied by May and Leonard [52]. For the
above system, May and Leonard reported four non-trivial
fixed points [52]: three single-species equilibrium points,
(1,0,0), (0,1,0), (0,0,1), and an unstable reactive fixed
point, ﬁ(l, 1,1), where all three subpopulations coex-
ist. The single-species fixed points correspond to absorb-
ing states that can never be left by the system’s dynamics
once they are reached. Solutions of Eq. starting in
the vicinity of the coexistence point form so-called het-
eroclinic orbits [62] [B3]: the trajectories (a(t), b(t), c(t))
spiral outwards from the coexistence point and come ever
closer to the single-species equilibrium points but never
converge to any of them. However, the time spent in the
vicinity of the single-species fixed points increases pro-
portionally with time. In consequence, one of the species
will sooner or later dominate the other two over times
which are much longer than any biological time scale of
interest, even though there can be no winner in the strict
limit t— oo. It should also be noted that any inclusion of
(demographic) noise in the deterministic model will
inevitably lead to the complete extinction of all but one
species in a finite time [54]. Reichenbach et al. [I12] have
investigated system further and showed that all so-
lutions of Eq. decay onto a 2D invariant manifold (a
subspace left invariant by the system’s time evolution),
which contains all four non-trivial fixed points. The in-
variant manifold together with an example of a phase
space trajectory starting in the vicinity of the reactive
fixed point is shown in Fig.

B. Turbulence model

The turbulent velocity field is obtained from solutions
of the incompressible, 2D Navier-Stokes equations with
hyperviscosity and large-scale, random forcing. Real
flows in nature are always, at least to some extent, three-
dimensional. However, the particular type of flow was
primarily chosen to fit the needs of a model for the stir-
ring of microorganisms by large-scale geophysical flows.
These flows are strongly anisotropic due to geometri-
cal constraints (large horizontal scale compared to the
fluid’s depth) and body forces acting on the fluid (Cori-
olis force, density stratification), and may be treated as
2D in the first approximation [55 56]. Fluid turbulence
constrained to two spatial dimensions is characterized by
many unique features such as an inverse cascade of ki-
netic energy to large scales, a cascade of enstrophy to
small scales, and strong, long-lived vortices comparable
to the size of the energy injection scale [57H59]. With the

FIG. 1. (Color online) Evolution of subpopulation densities
(a,b,c) on the invariant manifold for equal selection and re-
production rates (u = o). The red (gray) curve shows a
trajectory starting in the vicinity of the reactive fixed point.

random forcing being concentrated at large scales, the
flow field obtained from our simulations is smooth and
limited to the direct 2D turbulence enstrophy cascade.
Given the typical forcing scales in the ocean (~ 50 km)
[3], large-scale forcing constraints the simulation domain
size within the ocean mesoscale range, where horizontal
advection is aptly described by the (standard) 2D Navier-
Stokes equations [38]. We also note that similar modeling
approaches have been used in many previous studies of
population dynamics over large horizontal scales in the
ocean [3, 28, 38, 43145).

In two dimensions the Navier-Stokes equations are
most conveniently solved by integrating the vorticity
equation [59)

Ow+v-Vw=D+E, (3)

where v = (vg,v,) is the 2D velocity field, w = J,vy
— Oy is the (scalar) vorticity, D represents dissipation
terms, and £ is the external forcing. For the dissipation,
we use a sum of hyperviscosity and linear friction given
by D = v A3w — aw. The viscous term of the Navier-
Stokes equations is frequently replaced by higher powers
of the Laplacian in turbulence simulations because it is
possible to achieve higher effective Reynolds numbers at
a given spatial resolution in this way [60} 61]. The second
source of dissipation—the linear drag term—provides a
large-scale energy sink, necessary to reach a statistically
steady state in 2D turbulence simulations due to the flow
of energy to large scales [58] [59].

Equation is solved with a pseudospectral method
on a doubly-periodic square domain at resolution 7682 us-
ing the exponential time differencing fourth-order Runge-
Kutta scheme [62] for the time integration. The random
forcing is applied in spectral space by adapting a gen-
eral forcing scheme for three-dimensional turbulence, in-
troduced by Alvelius [63], to the 2D case. The forcing



power spectrum is restricted to a narrow range of wave
numbers with a peak at kf = 27/¢¢, where It is a char-
acteristic forcing length scale. Following the approach of
Ref. [63], the time and length units of the simulation are
fixed by the choice ¢ = 1 and P = 1, where P is the
average external power input.

In the chosen units, the simulation domain edge length,
hyperviscosity, and drag coefficient were set to L = 5,
v =3x 107!, and a = 0.13, respectively. Starting from
an initial zero vorticity, Eq. was integrated until a
statistically steady state, characterized by a steady value
of the total kinetic energy, was reached. The generated
vorticity profile (Fig. was then used as the initial
condition for vorticity in the simulations of cyclic compe-
titions in a turbulent flow (see Sec.[[LC]). To confirm that
our numerical solution is consistent with well-known re-
sults from the literature, we computed the kinetic energy
spectrum E(k) and the longitudinal velocity correlation
function f(r) = (vi(x',t)v;(x' + ré;, 1))/ (v?) (Fig. ,
where the brackets (---) denote a space-time average, the
index 4 represents the x or y direction, and €; is the unit
vector. We found f(r) to be a non-negative, monoton-
ically decreasing function with a correlation length (the
length ¢, at which f(¢.) = exp(—1)) close to the forcing
length scale. The estimated turbulence energy spectrum
has a slope close to —3 on the logarithmic graph, in the
wave number range between the energy injection scale
and hyperviscous dissipation scale. These results are in
good agreement with theoretical predictions [57] 58] and
other numerical simulations [60, [64].

C. The spatially extended population model

In the spatially extended model, we combine the dif-
ferential equations for species competition and the
turbulence model into a set of RDA equations for the
subpopulation densities a(r,t), b(r,t), c(r,t) :

Oia + v -Va = pa(l — p) —oac + DAa,
b+ v - Vb= pb(l — p) — oba + DAD, (4)
Oc+ v - Ve = pc(l — p) —ocb + DAc,

where D is the diffusion constant and the flow field v(r, t)
is determined at each time instant from Eq. .

The corresponding discretized version of system as
well as the continuous model have been extensively stud-
ied by Reichenbach et al. [7, [12] [65] for the case with no
fluid flow. The authors of Refs. [7, 12, 65] have shown
that mobile individuals exhibiting cyclic dominance are
able to coexist up to some critical value of species mo-
bility (characterized by an effective diffusion constant
in the continuum limit). Within the coexistence phase
the fields a(r,t), b(r,t), and c(r,t) self-organize—in two
dimensions—into rotating spiral waves. As the species
mobility increases, the spirals’ wavelength grows propor-
tionally to v/D until the patterns outgrow the system
size. The state in which spirals are absent corresponds

(a)

y/L

(b)

f)

r/L

FIG. 2. (Color online) Results of the 2D turbulence simu-
lation. (a) Snapshot of the vorticity field in a statistically
steady turbulent state. (b) Longitudinal velocity correlation
function. The inset shows the turbulence energy spectrum.

to the well-mixed system where only one subpopula-
tion survives. Taking into account the main features of
the reaction-diffusion part of Eq. , the natural time
and length scale of the spatially extended model appear
to be the spirals’ rotation period Ty (u, o) and the linear
size of the simulation domain L. We shall make use of
these units in the following analysis of our numerical re-
sults. It is also worth emphasizing that Ty is uniquely
determined by p and o alone [12], even though rotating
spirals can only emerge in the presence of diffusion.

For a given type of 2D flow and for a fixed ratio o/pu,
the solutions of Eq. are characterized by two dimen-
sionless parameters, which can be constructed by assign-
ing a characteristic time scale to each of the three physi-
cal phenomena (reactions, diffusion, and advection) and
comparing these scales to each other. Here, we choose to
analyze our results in terms of the parameters

Da=1¢/7 and K4 =714/7, (5)
where 7, 74, and 7 are a characteristic reaction, diffu-
sion, and flow time scale, respectively. The ratio Da is
known in literature as the Damkdohler number [29]. We
adopt a common definition for the flow time scale given



by 7t = {¢/u, where u is the root-mean-square veloc-
ity of the flow [29, @4]. For 7., we use the definition
7 = Tp because this appears to be the slowest reaction
time scale of Eq. , and it is reasonable to expect that
the reactions will balance turbulent advection only when
the slowest reaction time scale is able to keep up with
the flow. We estimated the spirals’ rotation period from
simulation runs performed with v(r,t) = 0 and found
Ty =~ 61.5/p for = o, which is in good agreement with
Reichenbach et al. [I2]. The diffusion time scale 74 is
defined by the ratio L2/D in order to make K4 indepen-
dent of any parameters of the flow. Hence, Kq gives the
inverse of the diffusion constant in units of L?/Tp.

Equation is solved on a doubly-periodic square
domain using a second-order operator splitting (Strang
splitting) approach [66] which treats separately the re-
action and advection-diffusion part of Eq. . The
advection-diffusion terms are integrated with a hybrid
method, introduced by Spiegelman and Katz [67], which
combines the semi-Lagrangian scheme for advection with
the Crank-Nicolson algorithm for the diffusion equation.
In the semi-Lagrangian method, we use a second-order
midpoint iteration technique for finding the departure
point of each fluid parcel at previous time step [68],
together with bicubic interpolation for approximating
the values of the advected fields at departure points.
The bicubic interpolation is constructed from a series of
one-dimensional cubic spline interpolations with fourth-
order central difference estimates of the derivatives at
the interpolating nodes. To reduce spurious oscillations,
which typically arise from standard high-order interpo-
lations near sharp gradients of the concentration fields,
a monotonicity-preserving modification of the deriva-
tives is used for each one-dimensional cubic interpolation
[69]. The reaction terms are integrated independently of
the advection-diffusion part with a second-order Runge-
Kutta scheme. In order to make our numerical method
consistent with the externally supplied time-dependent
flow field v(r,t), the same spatial resolution as in the 2D
turbulence simulation (7682 grid points) is used to solve
Eq. .

In all simulations, we use initial conditions of the form

(@* + 68a, b + 08, ™ + 6&c), (6)

where (a*,b*,c*) = 3JJ‘FO_(l,Ll) is the reactive fixed
point of Eq. , {&s} are randomly distributed numbers
between —1 and 1, and ¢ is the amplitude of fluctuations
around the reactive fixed point. The random numbers
are generated independently for each point on the com-
putational grid so that no spatial correlations are present
in the initial conditions. We also avoid using the same
flow time evolution for all simulation runs by initializ-
ing the random turbulence forcing term differently for
each run. It is important to note that various initial
conditions and flow realizations should be considered for
studies of ecosystem stability because any particular so-
lution of Eq. might show stability properties that—on
a given time scale—significantly differ from the statistical

average over many realizations.

III. RESULTS

To investigate the characteristics of our spatially ex-
tended population model we performed over 250 simula-
tion runs for the system . In most cases, the equa-
tions were integrated over a time 7' ~ 237;.. In order to
determine the circumstances under which the spatial de-
grees of freedom facilitate a significant improvement of
ecosystem stability, it is sufficient to consider time scales
which are only about an order of magnitude larger than
Ty, since the heteroclinic orbits of the well-mixed system
typically require less than 7, to reach the boundaries
of the phase space. In the following, we refer to the time
scales which are only about an order, or perhaps a few
orders, of magnitude larger than 7, as to the biological
or ecological time scales of interest. Moreover, the term
“long-time regime” should be in the following understood
only in the context of such time scales.

In our simulations, the amplitude of fluctuations
around the reactive fixed point in the initial conditions
was set to § = 2.5 x 1073, and we have always used equal
selection and reproduction rates (¢ = o). Reichenbach
et al. [I2] have shown that different choices of the ratio
o/ do not qualitatively change the system’s dynamics in
the limit Da— oco. It seems reasonable to expect this to
be true in general for all Damkohler numbers, although
we have not explicitly considered various choices of o/
in our simulations. Different values of Da for fixed Ky
were in the simulations achieved by rescaling the entire
right-hand side of Eq. while keeping the parameters
of the flow unchanged. The same effect could have been
alternatively achieved by varying the magnitude of the
flow field while keeping the parameters of the reaction-
diffusion part fixed.

Different aspects of the solutions are presented in two
subsections. In Sec.[[ITA]we describe the spatio-temporal
dynamics for those choices of Da and K4 that give rise
to a heterogeneous spatial structure (i.e. the system is
able to maintain a state of biodiversity). In the follow-
ing, we call the latter range of values for Da and K4 the
species coexistence region. A more formal definition of
this term is given later in Sec. [[ITB] where we discuss
the transitions between different dynamical regimes and
present a rough non-equilibrium phase diagram of the
spatio-temporal dynamics.

A. System’s spatio-temporal evolution

The spatial structure of solutions can be qualitatively
explored through snapshots of the subpopulation densi-
ties a(r,t), b(r,t), and c(r,t). Figure [3| shows a selec-
tion of long-time snapshots of the solutions. In the long-
time regime, the three species occupy separate parts of
the (periodic) domain, forming various types of patterns



which give qualitative insight into the underlying char-
acter of spatial transport. In the top row of Fig. [3] we
show solutions obtained in the absence of fluid flow in or-
der to draw a clear picture of the differences between the
full set of RDA equations and the reaction-diffusion dy-
namics with v(r,t) = 0. The patterns resulting from the
interplay between reactions, diffusion, and turbulent ad-
vection are in general much different from those induced
by diffusive transport alone because the chosen flow field
is correlated on the largest scale resolved by the simula-
tions. For moderately large Damkohler numbers (Fig.
second row), one can observe a collection of irregular spi-
ral shapes which are rendered unstable by the stretching
and folding of material lines in 2D turbulence (see also
Supplemental Material [70], Movie 1). In other words,
these spirals have a finite lifetime. However, new spi-
rals are spontaneously formed at a similar rate as the
old ones are being destroyed. For Damkohler numbers
around Da ~ 1 (Fig. 3] third row), the reaction-diffusion
dynamics and turbulent advection are found to be in
an approximate dynamic balance (Supplemental Mate-
rial [70], Movie 2). This statement will be clarified later
when we examine the time autocorrelation functions. As
the Damkéhler number is decreased even further (Fig.
bottom row), fluid mixing significantly increases the ef-
fective range of species’ interactions, leading to collective
oscillations in relative species abundance on the largest
scales (Supplemental Material [70], Movie 3). This phe-
nomenon will be discussed in more detail later on.

The influence of turbulent transport on the system’s
dynamics is strongest for low Da and high K4. In this
regime, the subpopulation densities are expected to be-
have effectively as passive (weakly diffusive) tracers on
the time scale of the flow 7¢, adapting a structure similar
to that of the vorticity field [29]. Figure El compares a
solution of Eq. @ for Da = 0.18 and K4 = 1.6 x 10*
with the instantaneous vorticity field and confirms this
prediction. However, on the time scale of the reaction
7, the concentration fields are highly sensitive to fluid
mixing and develop large oscillations in relative species
abundance as already mentioned above.

The most intriguing questions regarding the system’s
time evolution are those related to the long-time mainte-
nance of biodiversity. In the species coexistence region,
the total space-averaged density p always reaches a nearly
steady value close to 0.9. On the contrary, the space-
averaged subpopulation densities @, b, and ¢ never settle
to a steady value, but rather oscillate around their space-
time average; approximately 1/3 of the total density. The
time evolution observed for low Damkohler numbers de-
serves some special attention. In this regime, the space-
averaged concentrations display surprisingly regular peri-
odic oscillations, and the three subpopulations cyclically
dominate the total biomass of the system (Fig. . A
large global concentration of one of the subpopulations
does not necessarily lead to a loss of biodiversity because
an abundant species represents a convenient “spreading
medium” for its superior competitor that can easily out-

Ky = 1.6 x 10* Ky =5.4x10° Ky =1.8x 10°

FIG. 3. (Color online) Snapshots of the concentration fields
a, b, and c for dlfferent Damkdohler numbers Da and ratios of
the diffusion to reaction time scale K4. Each subpopulation
density is represented by its own color channel (gray tone)—
red (medium gray) for a, green (light gray) for b, and blue
(dark gray) for c.

Da — oo (v=0)

Da=0.92 Da=24

Da =0.29

(a) b)

FIG. 4. (Color online) Adaptation of spatial patterns to the
vorticity field structure in the regime of long reaction-diffusion
time scales compared to the characteristic flow time scale. (a)
Snapshot of the subpopulation densities a, b, and c. Different
colors (gray tones) should be interpreted in the same way as
in Fig. |3 (b) The vorticity field of 2D turbulence. Only 1/4
of the whole domain is shown in (a) and (b). Both snapshots
are taken at the same time of the simulation run.

perform the first species and become abundant itself be-
fore it is in turn replaced by the third species, and so
on. However, when the relative strength of mixing is in-
creased further, the amplitudes of oscillations approach
the lower bound of the total space-averaged concentra-
tion p, so that the probability of extinction increases,



until species coexistence becomes almost impossible.

Average density

Average density

0 2 4
/7, t/

6 8 10 12

FIG. 5. (Color online) Transition to low Damkdhler num-
bers where space-averaged concentrations display large peri-
odic oscillations. The solid red (medium gray), dashed green
(light gray), and dotted blue (dark gray) lines display the
space-averaged subpopulation densities. The dashed black
lines show the total space-averaged density. The diffusion to
reaction time scale ratio K4 was set to Kq = 8.1 x 10% in all
cases.

Collective oscillations in cyclic competitions with fluid
mixing have also been reported by Kérolyi et al. [6]. The
model studied in Ref. [6] was composed of cyclic inter-
actions between three species and an analytically pre-
scribed unidirectional shear flow with a changing direc-
tion. Like in our turbulence model, large-scale correla-
tions were present in the velocity field used in Ref. [6].
Interestingly, transitions to states with global oscillations
have also been observed in studies of cyclic competitions
on regular small-world networks, where a given portion of
randomly chosen nearest-neighbor links is replaced with
long-range links [71},[72]. In view of these previous works,
our results provide further evidence that the collective
oscillations are a robust phenomenon, unaffected by the
details of cyclic interactions, as long as there exists a
mechanism capable of mediating interactions among spa-
tially separated parts of the system. For sufficiently small
velocity field correlation lengths in statistically station-
ary and homogeneous flows, however, it should be pos-
sible to approximate advection with an effective diffu-
sion, thereby eliminating the possibility of collective os-
cillations. Instead, the effect of advection in this case
would be to increase the size of spiral patterns observed
in the absence of fluid flow. This phenomenon was re-
cently demonstrated in experiments by von Kameke et
al. [50] with the pattern-forming Belousov-Zhabotinsky
reaction in a quasi-2D turbulent flow.

To gain a more quantitative understanding of the sys-
tem’s spatio-temporal dynamics, we computed the nor-

malized space-time autocorrelation functions

Cs(|r = ', t,t) =5 (s(r,t)s(x',t'))
- #(s(nt))(s(r/,t/)), (7)

where s € {a,b,c}, 0% = (s(r,t)?) — (s(r,t))?, and the
brackets (- - -) should be in principle understood as en-
semble averages over all possible realizations of the flow
and over all initial conditions. When the probability that
one (or two) of the species will go extinct becomes small
on any biologically reasonable time scale, the autocor-
relations in the system’s long-time regime may be ap-
proximated with finite-time averages. Under such cir-
cumstances, the temporal part of Cys(|r — r'|,¢,t) in
the long-time regime depends only on |t — /|. For large
Damkéhler numbers, the solutions of Eq. strongly de-
pend on initial conditions which raises a concern regard-
ing the validity of approximating Eq. @ with a time
average. Nevertheless, we found that various initial con-
ditions in the form of expression @ give very similar
estimates for Cs;(|r —1/|,¢,t’), even in the high Da limit.
Since the ecosystem model is homogeneous, the auto-
correlations may also be evaluated with the help of space
averages. However, space averages alone generally do
not give sufficiently accurate results due to the presence
of various finite-size effects in the solutions of Eq. .

Spatial autocorrelation functions Cgs(Jr — r'|) =
Cys(Jr — 1’|, t,t) for different choices of Da are shown in
Fig.[6] The functions Cy,(|r —1'|) were calculated from a
space average and an additional time average over time
T =~ 1371, once the total population density had reached
a steady value. In this way, we were able to obtain well-
behaved estimates of Cy,(|r — r’|) with a monotonically
decreasing correlation length £ (the length £ at which
Css(€) = exp(—1)) as a function of Da and Ky. The cor-
relation length falls with Da (K4) because an increase of
Da (K4) generally corresponds to a reduced total mixing
rate. It has been previously shown that £ scales with the
square root of the diffusion constant in the absence of
fluid flow [I2]. Our results suggest that the scaling rela-
tion &€ ~ VD ~ 1/y/Kq remains valid in general for any
choice of Da.

The time autocorrelations Css(|t — ¢'|) = Css(0,¢, )
were initially obtained from a time average over time
T ~ 117y, taken at a fixed point inside the simulation do-
main, once the total density had reached a steady value.
By examining the initial estimates, we realized that the
chosen averaging time was too short to give satisfactory
results. Therefore, we picked three points from different
regions of the parameter space, and improved our esti-
mates of Cys(|t — t'|)—for those three particular choices
of control parameters—by taking an additional average
over 15 realizations of the model. The final results for
Css(Jt — t'|) are shown in Fig. The estimated time
autocorrelations are not as well-behaved as their cor-
responding spatial part, but we are still confident that
the results in Fig. [7] are sufficiently accurate to correctly
predict the gross features of the time autocorrelations.
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FIG. 6. (Color online) Spatial autocorrelation functions for
different Damkéhler numbers Da. The correlations Coq (1) are
shown for Da = 4.7 (solid red line), Da = 0.92 (dashed green
line), and Da = 0.29 (dotted blue line). The diffusion to reac-
tion time scale ratio K4 was kept fixed at Kq = 8.1 % 10% in all
cases. For higher values of Da, the autocorrelations suddenly
develop a local minimum which emerges due to the presence
of rotating spiral patterns. The inset shows the correlation
lengths as functions of 1/Kq4 for Da = 4.7 (red triangles),
Da = 0.92 (green squares), and Da = 0.29 (blue crosses).
The dashed lines on the logarithmic graph have a slope of 1/2
which means that all correlation lengths scale as £ ~ 1/v/Kaq,
albeit with a different proportionality factor for each Da.

Namely, Cs; (|t — ¢'|) display damped oscillations, except
for values of Da around Da ~ 1. In the low Da regime,
the oscillations in Cys(|t — t'|) arise from the collective
oscillations in relative species abundance, whereas in the
high Da regime, the oscillations result from the (unsta-
ble) rotating spiral patterns. For intermediate values of
Da around Da = 1, the time autocorrelations quickly de-
cay towards zero without any clear signs of (damped) os-
cillations. This result justifies the use of the spirals’ rota-
tion period Tj for the definition of the reaction time scale
7y because the reactions appear to be approximately in
balance with turbulent advection when Da ~ 1 (i.e. when
TO ~ Tf).

B. Global attractors and ecosystem stability

The qualitative changes in the system’s spatio-
temporal dynamics with respect to the control param-
eters seem very pronounced, suggesting that the model’s
parameter space can be divided into different dynamical
regimes. To develop our idea further, we follow the ap-
proach of Rulands et al. [51] and analyze the attractors of
the global (space-averaged) dynamics. Adopting the ter-
minology of Ref. [51], we call the attractors of the space-
averaged dynamics global attractors. To avoid confusion,
we note that the same phrase is also used in a similar con-
text in mathematical literature but its specific meaning
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FIG. 7. (Color online) Time autocorrelation functions for

different Damkohler numbers Da. Estimates of Caq(t) were
obtained for Da = 0.29 (dotted blue line), Da = 0.92 (dashed
green line), and Da = 4.7 (solid red line). The diffusion to
reaction time scale ratio Kq was set to Kgq = 3.2 x 10% in all
cases.

there is different. Due to the inherent presence of flow-
induced statistical fluctuations, the global attractors cor-
respond to maxima of the probability density to find the
system in a specific global state (@, b,¢) rather than to
isolated orbits or points, for example. In this framework,
the transitions between different dynamical regimes are
to be interpreted as bifurcations of the global dynamics
and should not be confused with non-equilibrium phase
transitions. Moreover, the observed qualitative changes
in the dynamics arise essentially from finite-size effects
due to variations of the physical length scales compared
to the domain size. Evidently, the global attractors do
not give any information regarding the small-scale vari-
ability of the subpopulation densities. However, the di-
mensional reduction of the problem considerably simpli-
fies the search for bifurcations in the parameter space,
while at the same time it still gives valuable insight into
the nature of biological interactions on the largest scales.

Figure[§ shows three global phase portraits of the solu-
tions, corresponding to three different types of global at-
tractors observed in our simulations. The attractors can
be readily identified as a “limit cycle” (Fig. , a “fixed
point” (Fig. B(b)), and a heteroclinic orbit (Fig. [8(c)).
The solutions starting in the vicinity of the reactive fixed
point of Eq. converge (in a statistical sense) to a limit
cycle or to the fixed point attractor if turbulent mixing is
not too strong so that biodiversity can be maintained on
the time scales of interest. It is worth emphasizing that
the fixed point global attractor does not coincide with
the reactive fixed point of the rate equations. Instead,
it is shifted along the symmetry axis @ = b = ¢ towards
a higher density p =~ 0.9 as compared to the well-mixed
limit where p = 3/4 in the reactive fixed point. The
limit cycle global attractors correspond to oscillations in
relative species abundance observed for low Da. In the
context of dynamical systems theory, the collective oscil-
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Da =0.47 Da=0.29 Da ~ 0.15

FIG. 9. (Color online) Approach to the absorbing state with a decreasing Damkohler number Da at a fixed diffusion to reaction
time scale ratio Kq = 8.1 x 103. Each subpopulation density is represented by its own color channel (gray tone) as described
in Fig. As illustrated above, a relative increase of turbulent advection enhances the dispersal of species, and increases the
average size of spatial patterns, until the biodiversity is lost. For Kq = 8.1 x 103, we were able to observe the first extinction

events around Da =~ 0.15.

lations are quite a remarkable property, considering the
fact that the well-mixed system is characterized by
heteroclinic orbits rather than by limit cycles. Neglecting
the mathematical details regarding the true asymptotic
nature of solutions corresponding to heteroclinic orbits,
we may say that the heteroclinic orbits correspond to ex-
tinctions of all but one species. In the spatially extended
model , the system tends to get trapped into one of the
absorbing states when the average size of spatial patterns
approaches the domain size (Fig. E[) The size of spatial
patterns is, in turn, controlled by Da and K. Therefore,
species coexistence depends essentially on the choice of
Da and Kjy.

7w|

FIG. 8. (Color online) Global phase portraits of the dy-
namics for different Damkohler numbers Da and ratios of
the diffusion to reaction time scale Kq. The trajectories
of the space-averaged solutions are shown for Da = 0.21,
Kq = 8.1 x 10® (a), Da = 0.71, Kq = 8.1 x 10 (b), and
Da = 0.29, Kq = 5.4 x 10? (c).

A common feature shared by all global attractors of
the spatially extended model is their confinement to a
quasi-2D geometry within the three-dimensional global
phase space. In Fig. we show the projections of long-
time solutions for various Da and K4 onto the global

phase space and compare the obtained result with the
invariant manifold of Eq. . It is shown that the global
dynamics can be effectively reduced to a quasi-2D sur-
face within the global phase space which does not corre-
spond to the invariant manifold of Eq. . The quasi-
2D surface spanned by the solutions of Eq. has a very
mild curvature at the intersection with the symmetry axis
around p ~ 0.9, and becomes slightly more curved close
to the boundaries of the phase space where it touches
the single-species equilibrium points. For most values of
Da and K4 considered in our simulations, even the solu-
tions that correspond to transitions into absorbing states
lie on this surface rather than on the invariant manifold
of the well-mixed system. A significant departure of the
phase portraits from the global surface of solutions was
observed only for K4 ~ 10, and it should be probably
required that K4 ~ 1 in order to completely neglect the
spatial degrees of freedom.

1

FIG. 10. (Color online) The invariant manifold of Eq. (2)
(black dots) compared to the solutions of Eq. @ projected
onto the global phase space (green/gray dots). The dashed
arrow denotes the unit vector along the symmetry axis.

Let us now try to analyze the transition into the col-
lective oscillations regime in more detail. Due to the



inherent presence of noise in the system, it is necessary
to use a statistical approach to distinguish between the
fixed point and limit cycle global attractor. In order to
distinguish a limit cycle from small fluctuations around
the symmetry axis which correspond to the fixed point
attractor, the global trajectories have to be well sepa-
rated from the symmetry axis @ = b = ¢ To introduce a
measure for the mean separation of trajectories from the
symmetry axis, we can make use of the Lyapunov func-
tion of the global concentrations £ = (abe)/(a+b+7¢)3,
which can be regarded as a radial coordinate, measur-
ing the distance of a point from the boundaries of the
global phase space [51) 53]. Using the Lyapunov func-
tion, an effective radius of a limit cycle as measured from
the symmetry axis can be defined as R = 1 — £L/Lax,
where L,,x = 1/27. Hence, to distinguish a fixed point
from a limit cycle in a statistical sense, we should at
least require that R/,/x 2 1 in the collective oscilla-
tions regime, where y = (R?) — (R)2. The dependence
of the rescaled radius R/,/X on Da is shown in Fig.
The abrupt jump around Da. ~ 0.4 reflects the underly-
ing bifurcation of the global dynamics. We do not rule
out a possible weak dependence of the transition also on
K4, but the available simulation data are insufficient to
clearly confirm or neglect a possible dependence on Kj.
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FIG. 11. (Color online) Dependence of the rescaled radius
R/\/x on the Damkéhler number Da for different diffusion to
reaction time scale ratios Kq. Estimates of R/,/X are shown
for Kq = 8.1 x 10® (red crosses), Kq = 1.8 x 10® (green
squares), and K4 = 5.4 x 10? (blue circles). The inset shows
the measurements of R with the error bars representing the
magnitude of statistical fluctuations /X.

To quantitatively describe the transitions into absorb-
ing states, one can consider the extinction probability
P« that two species have gone extinct after time T [7].
For the sake of simplicity, and for consistency with previ-
ous works [7, [51] performed for the discretized version of
model in the absence of fluid flow, let us first dis-
cuss the limiting case Da — oo. To begin with, the
meaning of the extinction probability in deterministic
reaction-diffusion models requires some special attention.
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The randomness in discrete models originates from the
stochastic nature of biological interactions, whereas in
models described by partial differential equations (PDESs)
the “randommness” can be achieved by considering vari-
ous initial conditions. These two formulations might at a
first glance appear as completely unrelated, however, our
approach illustrates that the results of the PDE model
are equivalent to the ones produced from discrete lattice
simulations with a large number of particles [7], [12], pro-
vided that the initial conditions match the solutions of
the discrete lattice model at early stages of the system’s
time evolution. In our case, this means that the initial
conditions for the PDE model should be generated as
random, J-correlated in space perturbations around the
reactive fixed point of Eq. . In Fig. we show the
dependence of Pyt on Ky in the limit Da — co. Since
the spatial patterns of the reaction-diffusion system re-
main unchanged for all times after an initial transient of
a typical duration T ~ 107,, we consider a waiting time
T =~ 9.87;, and each estimate for P, is obtained from
an average over 100 initial conditions. The critical value
Kq4,c = 35 %5, below which species coexistence becomes
almost impossible, is in good agreement with the result
from Reichenbach et al. [7] obtained from discrete lattice
simulations (written in terms of Ky, the estimate from
Ref. [7] reads Kq. = 36 £4).

0.75
ﬂf? 0.5
0.25
0 L
10 100 1000
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FIG. 12. (Color online) Extinction probability Pexs calculated
in the absence of fluid flow as a function of the diffusion to
reaction time scale ratio Kq. The values K4, and K3 on the
graph denote the points above which the extinction probabil-
ity drops below Pext & 1 and Pext &~ 1/2, respectively.

A large number of simulations are required for an accu-
rate estimate of the threshold Ky . because the survivals
of all three competitors are statistically very rare near
Kq,c. If one only requires rough estimates of the transi-
tion points into the absorbing states, a better alternative
is to consider a threshold K for which P =~ 1/2 (see
Fig. . Indeed, rough estimates of K; can be obtained
even if only a single simulation run is performed for each
choice of the control parameters because the point K]
should be in any case bounded from above by the values



of K4 for which Pyt ~ 0, and from below by those values
for which P,y ~ 1. Therefore, in order to spend our com-
putational resources wisely, we have not explicitly con-
sidered the extinction probabilities for the more general
case of a non-zero fluid velocity since it is already possi-
ble to make qualitative conclusions regarding ecosystem
stability from a very limited number of simulation runs,
performed for various choices of Da and K4. For the rea-
sons explained above, we use the threshold Puy &~ 1/2
as a more formal definition of the boundary between the
species coexistence region and the extinction region. It
should be emphasized that in the presence of random
fluctuations, such as the ones arising from a turbulent
flow, the ecosystem can never remain stable in the strict
limit T — oo because there always exists a possibility
that the random disturbances will drive the system into
one of its absorbing states. The global attractors from
the species coexistence region are therefore in a strict
mathematical sense only long-lived transients. However,
for sufficiently large K4 and Da the extinction probabil-
ity becomes very small on the biological time scales of
interest, and the states corresponding to these parame-
ters may be for practical purposes regarded as states of
species coexistence [73].

To determine the relative extent of the species coexis-
tence region in the parameter space, we performed sev-
eral simulations for various Da and K4. In each of these
simulations we integrated Eq. for at least T =~ 237;.
Figure [13| finally summarizes the main global dynamical
features of our spatially extended ecosystem with a non-
equilibrium phase diagram. Based on how the species ex-
tinction events and their survivals are distributed across
the parameter space, it is possible to sketch a rough de-
pendence of the Puy &~ 1/2 extinction probability thresh-
old on Da and K4. Below the transition into the collec-
tive oscillations regime around Da,., the turbulent flow
becomes increasingly capable of synchronizing the local
subpopulation density oscillations among distant parts of
the domain, which in turn greatly reduces the extent of
the species coexistence region with respect to Kq. For
high Da, our results seem to be consistent with the limit-
ing value K, estimated from the simulations performed
in the absence of fluid flow.

IV. CONCLUSIONS

We studied the population dynamics of three cycli-
cally competing species in a two-dimensional turbulent
flow forced at large scales. The presented results of
our numerical simulations give new insight into how tur-
bulent transport affects ecosystem structure in biologi-
cal communities without a clear competition hierarchy.
More specifically, we performed simulations over a broad
range of relative advection and diffusion strengths com-
pared to the biological reactions, and studied how differ-
ent choices of ecosystem parameters affect the system’s
spatio-temporal dynamics and species’ biodiversity. For
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FIG. 13. (Color online) Non-equilibrium phase diagram of

the spatio-temporal dynamics. The black crosses show the
simulation runs where biodiversity was lost before T =~ 237,
and the brown triangles show the survivals of all three species.
The (medium) gray shading indicates the region of extinction
where transitions into absorbing states become more proba-
ble than long-lived states of biodiversity. The horizontal and
vertical dashed lines show the thresholds K] and Da., respec-
tively (see text for further details). Above the phase diagram
we show three long-time snapshots of the solutions from dif-
ferent parts of the species coexistence region.

short reaction time scales 7, compared to the characteris-
tic flow time scale 7¢, corresponding to large Damkohler
numbers Da = 7¢/7,, the subpopulations self-organize
into rotating spiral waves. This phenomenon is con-
sistent with previous studies of cyclic competitions in
reaction-diffusion systems, with the exception that the
spiral patterns become unstable when subjected to per-
turbations induced by a turbulent flow. For Damkohler
numbers around Da = 1, with 7, defined as the spirals’
rotation period measured in the absence of fluid flow, the
reaction-diffusion dynamics and turbulent advection are
found to be in an approximate dynamic balance. This
is most clearly seen by inspecting the species (Eulerian)
time autocorrelation functions, which do not show any
clear signs of periodic oscillations for Da =~ 1. When
the Damkohler number is decreased even further, a sharp
transition to a state with collective oscillations in relative
species abundance is observed at a certain threshold value
of Da. The observed phenomenon suggests that turbu-
lence might play an important role in the structuring of
marine phytoplankton communities, which are typically
composed of only a few dominant species while the re-
maining ones represent only a small fraction of the total
biomass [74]. This type of interpretations are also sup-
ported by some recent numerical experiments presented

in Ref. [75].

To further investigate the transitions between the qual-
itatively different dynamical regimes observed in our sim-



ulations, we studied the attractors of the global (space-
averaged) dynamics and identified three different types
attractors, corresponding to maxima of the probability
density to find the system in a specific global (space-
averaged) state. The three different types of global at-
tractors have been identified as a fixed point, limit cycles,
and heteroclinic orbits. The transitions between these
attractors should be interpreted as bifurcations of the
global dynamics. The fixed point attractor corresponds
to states of species coexistence observed for Damkohler
numbers of order unity and above, whereas the limit
cycles correspond to collective oscillations observed for
low Da. The heteroclinic orbits indicate transitions to
homogeneous states, where the system’s biodiversity is
lost. The probability that two of the species will go ex-
tinct depends essentially on the choice of ecosystem pa-
rameters. Outside the regime of collective oscillations,
the extinction probability depends most strongly on the
relative strength of diffusion compared to the reactions.
However, as the Damkohler number drops below a cer-
tain threshold, turbulence becomes increasingly capable
of synchronizing oscillations among distant parts of the
domain, which greatly reduces the acceptable range of
relative diffusion strengths that still allow for species co-
existence.

In all of our simulations, we used the same type of tur-
bulent flow. Further studies could investigate the effects
of different types of flows on cyclic interactions, and iden-
tify which system properties are more general and which
ones depend on the details of the turbulence model. In
particular, it would be interesting to consider the de-
pendence of solutions on the correlation length of the
flow, since it would seem reasonable to expect that the
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turbulent flow becomes incapable of producing collective
oscillations in relative species abundance when the cor-
relation length is much smaller than the domain size.
To shed some light on these speculations, we performed
a couple of trial simulations at ¢ = L/10. There, we
were still able to observe the collective oscillations but
their amplitude for the same choice of Da was somewhat
smaller.

Finally, it should also be noted that, even though the
main motivation for this work comes from the field of
theoretical population biology, the presented results are
also relevant in other fields where RDA systems of a sim-
ilar type as the one studied here can be found. In par-
ticular, pattern-forming reactions in fluid flows have also
been realized in experiments with the chemical Belousov-
Zhabotinsky reaction [32] [49] [50].

See Ref. [76] for information regarding the project’s
source code.
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