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Ferroelastic switching of doped zirconia: Modeling and understanding from first principles
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The properties of materials at high temperatures are often determined by complex thermodynamic mechanisms.
One of the most prominent examples is the stabilization of tetragonal and cubic zirconia, which we investigate
using density functional theory. The results show that the minimum energy path for the tetragonal-to-cubic phase
transformation differs significantly from the paths discussed in the literature so far. This provides insight into
the properties of compositions codoped with yttria and titania, an approach that has recently been proposed for
the design of thermal barrier coatings.
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Zirconia-based materials offer many appealing properties,
including a low thermal conductivity and a high ionic con-
ductivity, as well as the potential for remarkable toughness.
Hence, they are employed in a wide variety of applications,
e.g., as catalyst supports, ionic conductors in sensors and
solid oxide fuel cells, and thermal barrier coatings (TBC) for
gas turbines in propulsion and power generation. In the latter
case, a 150–1000 μm thick zirconia-based coating is applied
to the turbine’s superalloy components to protect them from
the extreme temperatures generated during combustion. This
improves the durability of the components and also enables an
increase of the operation temperature and fuel efficiency [1].

Pure ZrO2 is not suitable for most applications because of
the monoclinic-tetragonal phase transition at approximately
1500 K, which involves a disruptive volume change (∼4%)
that degrades its mechanical integrity [1]. Thus, most ZrO2

materials are doped to control or suppress the transformation,
as it is the case for state-of-the-art TBCs based on single-
phase tetragonal zirconia stabilized with 8 ± 1 mol % YO1.5

(8YSZ). The remarkable durability of 8YSZ is ascribed to
its superior toughness [2] based on a ferroelastic domain
switching mechanism [1,3]. However, 8YSZ is metastable as a
single tetragonal phase and eventually decomposes into Y-rich
cubic and Y-lean tetragonal domains, the latter susceptible
to the disruptive monoclinic transformation [4]. Accordingly,
important goals in the development of advanced TBCs are
phase stability at the higher temperatures (>1400 K) and
improved toughness to mitigate a host of potential damage
mechanisms [1]. For this purpose, it is essential to understand
the fundamental origins of the mechanisms underlying the
stabilization and toughening of the tetragonal phase.

A common approach to stabilize the higher temperature
forms of ZrO2 involves doping with trivalent cations, most
commonly Y3+, with the concomitant introduction of charged
oxygen vacancies (F2+) [5,6]. For TBCs, the useful composi-
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tional range is very narrow (8 ± 1 mol % YO1.5): Underdoping
renders the structure transformable to monoclinic on cooling,
while overdoping reduces the tetragonality and hence the
potential for ferroelastic toughening [1,3]. Indeed, excess
doping eventually leads to stabilization of the cubic form with
a much lower toughness [2]. In contrast thereto, recent work
involving doping with Y3+ and Ti4+ has led to tetragonal alloys
with superior phase stability and improved toughness [3].
The present paper sheds light on the effects of doping on
the electronic and atomistic mechanisms underpinning the
tetragonal phase stability and the energetic barriers for domain
switching.

We performed density functional theory (DFT) calculations
of pure and doped zirconia with the full potential, numeric
atomic orbital code FHI-aims [7]. To correctly describe
the breakdown of short-range periodicity upon doping, the
calculations were performed for 2 × 2 × 2 supercells (96
atoms). Equilibrium configurations are determined by relaxing
both the atomic positions and the unit-cell shape; energetic
barriers and respective minimum energy paths (MEPs) are
computed by means of the climbing-image-nudged-elastic-
band (CI-NEB) method [8] and its generalization for solids
(CI-G-SSNEB) [9] that additionally accounts for unit-cell
degrees of freedom. The employed numerical settings [10]
ensure a numerical error smaller than 5 meV/atom for energy
differences.

Since electronic exchange and correlation effects play an
important role for the relative stability of different zirconia
polymorphs [6], it is important to validate our approach by
comparing calculations performed at different levels of theory.
For this purpose, we here discuss the influence of the exchange-
correlation functional on the fully optimized geometries and
total energy differences for monoclinic (baddeleyite structure,
P21/c), tetragonal (P42/nmc), and cubic (fluorite structure,
Fm3m) zirconia, as summarized in Table I. In spite of the fact
that all approaches yield the same qualitative trends, we find
that the various local (LDA [11]) and semilocal (PBEsol [12],
PBE [13], RPBE [14]) DFT exchange-correlation functionals
predict energy differences Em,t and Et,c that differ almost
by a factor of three. In particular, we find that the LDA
functional, which has been used extensively in studies of
ZrO2 [15,16], severely underestimates Em,t and Et,c, whereas
the PBEsol results lie closest to the outcome of higher level,
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TABLE I. Equilibrium zero Kelvin lattice constants ac and at ,
tetragonalities c/at , tetragonal displacements dz (cf. Fig. 1), and
energy differences per 12-atom cell Et,c = Ec − Et and Em,t = Et −
Em for fully optimized cubic (c), tetragonal (t), and monoclinic (m)
zirconia at different levels of theory.

ac (Å) at (Å) c/at dz (c) Et,c (eV) Em,t (eV)

LDA 5.030 5.036 1.016 0.043 0.195 0.169
PBEsol 5.068 5.076 1.022 0.049 0.281 0.279
HSE06 5.082 5.087 1.022 0.051 0.309 0.300
PBE 5.119 5.127 1.032 0.056 0.418 0.404
RPBE 5.151 5.161 1.043 0.065 0.569 0.491

computationally much more involved calculations with the
hybrid functional HSE06 [17]. Since PBEsol yields almost
the same geometries as HSE06, we limit ourselves to present
PBEsol calculations in what follows.

As shown in Fig. 1, the zirconium ions in tetragonal, pure
ZrO2 form a slightly elongated fcc crystal (c/at > 1) with
eight oxygen anions that are pairwise displaced (dz > 0) from
the tetrahedral site in an antiparallel fashion along the c axis. It
is important to realize that cubic zirconia (upper ball-and-stick
model in Fig. 2), which corresponds to the special case of
a tetragonal configuration with c/ac = 1 and dx,dy,dz = 0,
does not correspond to an energetic minimum, but to a
saddle point in the energetic landscape, as demonstrated be-
fore [15,16]. As the potential-energy curve in Fig. 2(a) shows,
the slightest perturbation leads to a spontaneous relaxation
into one of the minima, i.e., in one of the six (a pair for
each cartesian direction) symmetry-equivalent structures with
nonvanishing tetragonal displacements. The cubic structure
thus corresponds to the transition state along the minimum
energy path that connects the tetragonal structures in their
primitive unit cell [also see Fig. 1(a)].

The potential-energy curve shown in Fig. 2(a) has often
been used to rationalize the dynamics in tetragonal zirconia,
in particular the second order, tetragonal-to-cubic phase tran-
sition that occurs at high temperatures �2500 K (dynamical
stabilization) in pure ZrO2 [15,16]. At the LDA level of theory
used in these studies, the free energy surface becomes flat at
these temperatures, which implies that the oxygen atoms can
overcome the barrier Et,c and that the thermodynamic average
of dz becomes zero [15]. Similarly, various theoretical stud-
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FIG. 1. (Color online) (a) Primitive six-atom unit cell of tetrag-
onal ZrO2 with a tetragonal displacement dz. Displacements dx,dy

orthogonal to the c axis are impossible, since the periodic images of
the oxygen atoms (orange) are interlinked in this plane via the lattice
vectors. Such displacements become feasible in the 12-atom unit cell,
as shown in the ball-and-stick model (b).
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FIG. 2. (Color online) Calculated (DFT-PBEsol) MEPs (in eV
per 12-atom unit cell) between two symmetry-equivalent tetragonal
configurations in pure ZrO2. The black lines (©) denote CI-NEB
calculations performed in the tetragonal equilibrium lattice (cf.
Table I), whereas the red lines (�) denote CI-G-SSNEB calculations,
in which also the unit-cell shape is optimized along the path. Symbols
mark the “images” used in the actual calculations. Panel (a) shows the
MEP in the primitive tetragonal unit cell, panel (b) the MEP in non-
primitive supercells that allow for tetragonal displacements dx and
dy. The respective initial, intermediate (dz = 0), and final geometries
are shown, where blue arrows mark the tetragonal displacement in
the first oxygen layer.

ies [5,18] have inspected changes in this potential-energy curve
and in Et,c as a function of doping to explain the decrease in the
tetragonal-to-cubic phase transition temperature (∼1700 K in
8YSZ [1]) and the stabilization of cubic zirconia at high levels
of doping (>16 mol % YO1.5).

Compared to these earlier studies (cf. the LDA-based
model [5,15] described in the previous paragraph) our results
imply a significantly, even qualitatively, different dynamics
of pure and doped zirconia, since the higher value of Et,c

at the PBEsol level of theory cannot be easily overcome
at temperatures �3000 K: As the potential-energy surfaces
(PESs) in Figs. 3(a) and 3(a′) reveal, the actual MEP does not
go along the cubic (dx,dy,dz = 0) configuration if tetragonal
displacements dx and dy are allowed. Rather, a realignment of
the geometry along a different cartesian direction takes place.
Due to this realignment of the tetragonal displacement (and of
the tetragonality in the CI-G-SSNEB calculation), the dz = 0
configuration becomes a (local) minimum of the MEP and the
respective energy barrier Eb is halved with respect to Et,c [cf.
Fig. 2(b)]. In particular, this peculiar MEP provides critical
insight in the mechanism that governs ferroelastic switching,
i.e., the collective reorientation of both the anions and the
lattice vectors that hitherto lacked an atomistic description
and explanation [2].

We find direct evidence of these ferroelastic switches in
ab initio molecular dynamics (aiMD) calculations performed
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FIG. 3. (Color online) DFT-PBEsol potential-energy surfaces
(E − Et in eV per 12-atom ZrO2 unit cell, interpolated from an
equally spaced 17 × 17 grid) as a function of the (average) tetragonal
displacements dy, dz (〈dy〉,〈dz〉) for (a) pure Zr4O8 with dx = 0,
(b) VSZ (Zr32O63F2+), (c) 6YSZ (Y2Zr30O63), and (d) 3Ti6YSZ
(TiY2Zr29O63). In the doped cases (b)–(d), in which dz is no longer
equal for all oxygen atoms due to local relaxations, we show specific
two-dimensional cuts of the full PESs (see text). The green arrow
in panel (a) denotes the MEP shown in Fig. 2(a), whereas the dotted
orange lines hint at the MEPs shown in Figs. 2(b) and 5. The relaxation
of the lattice vectors was accounted for only in the plots (a′)–(d′).

for a 96-atom supercell: Thermal fluctuations are significant,
but we can track the time evolution of the average tetrag-
onal displacements 〈dx〉, 〈dy〉 and 〈dz〉 by backfolding the
geometries of the supercell to the primitive unit cell and
averaging over all oxygen atoms. Both in the tetragonal [cf.
Fig 4(a)] and in the cubic lattice [cf. Fig 4(d)], we find that
no ferroelastic switches take place on the inspected timescale
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FIG. 4. (Color online) Average (see text) tetragonal displace-
ments 〈dx〉 (black), 〈dy〉 (red), 〈dz〉 (blue) and respective radii
〈dr〉 = 〈√dx2 + dy2 + dz2〉 (orange) for pure tetragonal (a)–(c) and
cubic (d)–(f) zirconia (96-atom supercell) as a function of time at
different temperatures (aiMD in the canonical ensemble [19]).

at low temperatures (900 and 300 K), since 〈dx〉, 〈dy〉 and
〈dz〉 just oscillate around their respective equilibrium values.
At increased temperatures (1500 and 600 K), spontaneous
changes in the average tetragonal displacements occur, i.e.,
from 〈dz〉 to −〈dz〉 in Fig. 4(b) and from 〈dz〉 to 〈dy〉 in
Fig. 4(e). For even higher temperatures (2400 and 1200 K),
the oscillations grow so strong that the time averages of the
tetragonal displacements 〈dx〉, 〈dy〉 and 〈dz〉 vanish, as shown
in Figs. 4(c) and 4(f).

In all these cases (a)–(f), however, the respective radii
〈dr〉 = 〈

√
dx2 + dy2 + dz2〉, i.e., the distances from the high-

symmetry cubic configuration averaged over all oxygens,
are finite and the probability P (〈dr〉) that the cubic Fm3m
structure (〈dr〉 = 0) occurs is vanishingly small. This indicates
that the free energy surface F (〈dr〉) = −kBT ln (P (〈dr〉)) is
still very corrugated, since the cubic structure corresponds
to a local maximum of F (〈dr〉) at all temperatures be-
low the melting point. In spite of that, the spontaneous
realignment of the tetragonal displacements results in an
apparent cubic structure at high temperatures, since the
time average of 〈dx〉,〈dy〉,〈dz〉 vanishes [20]. Under these
thermodynamic conditions the system has no preferential
axis and hence exhibits cubic fluorite Fm3m symmetry on
average.

Due to the fact that earlier insightful studies of pure
zirconia by Finnis et al. relied on a LDA-based tight-binding
Hamiltonian [15], the relevance of the MEP discussed above
and the implications to the understanding of ferroelastic
switching could not be realized before. Similarly, studies of
doped zirconia [5,18,21,22] did not investigate the relevant
transition state associated to this MEP. We illustrate the
importance of these effects by comparing the PES and MEP
of (a) pure zirconia with those of (b) zirconia with a F2+
vacancy (VSZ) [5,23], (c) 6.25 mol % YO1.5 doped ZrO2

(6YSZ) and (d) 6.25 mol % YO1.5 plus 3.125 mol % TiO2

doped ZrO2 (3Ti6YSZ). By fully optimizing all possible
tetragonal and monoclinic defect configurations, we identified
various (nearly-)degenerate geometries. All associated MEPs
show the same qualitative features. Thus, in the following
we limit the discussion to the most stable geometry for each
compositions, i.e., the one with titanium in the first and yttria
in the second coordination shell of the vacancy, as found in
previous studies [18,21,22]. As a generalized coordinate for
plotting of the MEPs in Fig. 5, we use again 〈dz〉, i.e., the
tetragonal displacement averaged over all oxygen atoms, since
dz itself is no longer equal for all oxygen atoms due to the local
relaxations induced by the dopants. For the exact same reason,
no meaningful two-dimensional representation of the PES can
be plotted by using the same value of dx, dy and dz for all
oxygens. To still give qualitative insight on the topology of the
PES, we first determined the respective equilibrium geometries
r±dz at ±dz and then used r0 = r+dz + r−dz, �rz = r+dz −
r−dz and the respectively rotated �ry to map out the PES as
a function of the average tetragonal displacements 〈dy〉 and
〈dz〉 in Figs. 3(b)–3(d). For Figs. 3(a′)–3(d′), a relaxation of
the lattice vectors was performed at each point while keeping
the fractional coordinates fixed.

In the case of VSZ, the MEP in Fig. 5 shows that the
vacancy reduces 〈dz〉 (c/at = 1.017) and lowers Em,t and
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FIG. 5. (Color online) Computed (DFT-PBEsol) MEPs (eV per
12-atom ZrO2 unit-cell) as a function of the average tetragonal
displacement 〈dz〉 for (a) pure Zr4O8, (b) VSZ, (c) 6YSZ, and (d)
3Ti6YSZ. The left plot shows MEPs in the respective tetragonal
equilibrium lattices (CI-NEB), whereas the relaxation of the lattice
vectors was taken into account in the right plot (CI-G-SSNEB). Open
symbols mark the “images” of the NEB, full symbols denote the
transition states including their energy barriers Eb and dashed lines
denote Em,t .

Eb and thereby stabilizes the tetragonal (with respect to
the monoclinic) structure and reduces the energy barrier
to domain switching. Since the vacancy also reduces Et,c,
previous studies focusing on the erroneous MEP were able
to find a similar qualitative trend [5]. The topology of the
PES, however, remains unchanged by the F2+ center [cf.
Fig. 3(b)]. Conversely, the additional presence of yttria anions
in 6YSZ breaks the symmetry, as a result of which the
degeneracy of the ±〈dz〉 states is lifted. Also, the yttria
further lowers Em,t but hardly affects Eb and hence further
stabilizes the tetragonal structure (c/at = 1.014), but does
not affect the barrier for domain switching with respect to
VSZ. In 3Ti6YSZ, the additional titanium induces strong
local tetragonal displacements in its first coordination shell
dz > 0.06 that lead to an increase in c/at = 1.015. Since
similar relaxations occur in the monoclinic structure, Ti doping
hardly affects Em,t with respect to 6YSZ; the respective MEP
and the topology of the PES, however, change significantly:
The addition of titania increases the energetic difference
between the different switched configurations, since TiYSZ
strongly favors geometries with a large vacancy-titania dis-
tance (+〈dz〉), so that also the barrier for ferroelastic switches
increases dramatically to a value that is even higher than in
pure ZrO2 (cf. Fig. 5). Given that VSZ, 6YSZ, and 3Ti6YSZ
contain the same amount of vacancies, this reveals that the
dynamics of doped ZrO2 cannot be rationalized solely in terms
of oxygen vacancies as suggested by previous studies [5].

In summary, our calculations show that the minimum
energy path associated with the tetragonal-to-cubic phase
transformation in pure zirconia does not go across the
high-symmetry cubic configuration, but rather involves a
spontaneous and collective realignment of the tetragonal ge-
ometry along a different cartesian direction. In thermodynamic
average, this ferroelastic switching dynamics leads to an
apparent cubic Fm3m structure that is, however, never realized
as a stable or metastable structure in pure ZrO2. Recent
advancements in pulsed, high-intensity electron and light
sources [24,25] should enable an experimental examination
of our findings (and of the computed barriers), given that
the tetragonal displacements of the anions can be detected
by vibrational spectroscopy [26] or electron diffraction [27].
Similar mechanisms may also be active in other materials,
given that soft vibrational modes and tetragonal-cubic phase
transitions are not a unique feature of zirconia. Even more
importantly, the discussed dynamics supports the models that
ascribe the durability of TBCs to a remarkable toughening
mechanism based on ferroelastic switching: The reorientation
of tetragonal domains under the stress field of a crack yields
a residual stress field that shields the crack tip and increases
the work of fracture [2,3]. Our calculations show that doping
with YO1.5 stabilizes the tetragonal structure, but also lifts
the degeneracy between the various tetragonal orientations,
so that ferroelastic switches may become a viable mechanism
to absorb energy during crack propagation. Codoping with
titania induces strong local displacements that further increase
the energetic difference between differently oriented configu-
rations and that increase the energetic barrier for ferroelastic
switches, which in turn would translate into a beneficial
increment in fracture energy. These results are consistent with
the experimental finding that codoping of 8YSZ with titania
gives rise to an increase in toughness [1,3]. Accordingly,
our calculations provide insights in the underlying atomistic
mechanism that go well beyond the geometrical considerations
used in ferroelastic toughening models so far [2]. In particular,
we show that the energetics of domain switching can be
tailored by cation codoping and thus lay the foundation for
further research along these lines, e.g., in multiscale models.
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authors acknowledge funding from the DFG (CA 1088/1-1)
and the NSF through Grants DMR-1105672, DMR-1121053,
and DMR-0843934 within the UCSB-MPG Program for
International Exchange in Materials Science. The work
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Lipkin, C. A. Johnson, and C. G. Levi, J. Am. Cer. Soc. 96, 299
(2012).

144109-5

http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.63.094101
http://dx.doi.org/10.1103/PhysRevB.63.094101
http://dx.doi.org/10.1103/PhysRevB.63.094101
http://dx.doi.org/10.1103/PhysRevB.63.094101
http://dx.doi.org/10.1063/1.2124708
http://dx.doi.org/10.1063/1.2124708
http://dx.doi.org/10.1063/1.2124708
http://dx.doi.org/10.1063/1.2124708
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1016/j.ssi.2012.03.014
http://dx.doi.org/10.1016/j.ssi.2012.03.014
http://dx.doi.org/10.1016/j.ssi.2012.03.014
http://dx.doi.org/10.1016/j.ssi.2012.03.014
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1103/PhysRevB.59.797
http://dx.doi.org/10.1103/PhysRevB.59.797
http://dx.doi.org/10.1103/PhysRevB.59.797
http://dx.doi.org/10.1103/PhysRevB.59.797
http://dx.doi.org/10.1103/PhysRevB.64.174103
http://dx.doi.org/10.1103/PhysRevB.64.174103
http://dx.doi.org/10.1103/PhysRevB.64.174103
http://dx.doi.org/10.1103/PhysRevB.64.174103
http://dx.doi.org/10.1103/PhysRevB.64.224108
http://dx.doi.org/10.1103/PhysRevB.64.224108
http://dx.doi.org/10.1103/PhysRevB.64.224108
http://dx.doi.org/10.1103/PhysRevB.64.224108
http://dx.doi.org/10.1063/1.1927699
http://dx.doi.org/10.1063/1.1927699
http://dx.doi.org/10.1063/1.1927699
http://dx.doi.org/10.1063/1.1927699
http://dx.doi.org/10.1107/S0108767309053926
http://dx.doi.org/10.1107/S0108767309053926
http://dx.doi.org/10.1107/S0108767309053926
http://dx.doi.org/10.1107/S0108767309053926
http://dx.doi.org/10.1111/j.1551-2916.2011.04737.x
http://dx.doi.org/10.1111/j.1551-2916.2011.04737.x
http://dx.doi.org/10.1111/j.1551-2916.2011.04737.x
http://dx.doi.org/10.1111/j.1551-2916.2011.04737.x
http://dx.doi.org/10.1111/j.1551-2916.2012.05460.x
http://dx.doi.org/10.1111/j.1551-2916.2012.05460.x
http://dx.doi.org/10.1111/j.1551-2916.2012.05460.x
http://dx.doi.org/10.1111/j.1551-2916.2012.05460.x



