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Abstract

■ In this study, we explore the possibility to predict the se-
mantic category of words from brain signals in a free word gen-
eration task. Participants produced single words from different
semantic categories in a modified semantic fluency task. A
Bayesian logistic regression classifier was trained to predict
the semantic category of words from single-trial MEG data.
Significant classification accuracies were achieved using sensor-
level MEG time series at the time interval of conceptual prep-
aration. Semantic category prediction was also possible using

source-reconstructed time series, based on minimum norm
estimates of cortical activity. Brain regions that contributed
most to classification on the source level were identified. These
were the left inferior frontal gyrus, left middle frontal gyrus,
and left posterior middle temporal gyrus. Additionally, the
temporal dynamics of brain activity underlying the semantic
preparation during word generation was explored. These
results provide important insights about central aspects of
language production. ■

INTRODUCTION

One of the basic properties of the conceptual system is its
categorical organization. The ability of the brain to build
categories and to generalize across objects with similar
sensory and functional properties enables us to recognize
and memorize new objects efficiently. Developmental
studies show that perceptual categorization develops dur-
ing the first months of life (Mandler, 2004), and multiple
neuroimaging studies have reported differential activation
for stimuli from different semantic domains (Mahon &
Caramazza, 2009; Gerlach, 2007; Martin & Chao, 2001;
Chao & Martin, 2000; Chao, Haxby, & Martin, 1999;
Caramazza & Shelton, 1998; Martin, Wiggs, Ungerleider,
& Haxby, 1996; Perani et al., 1995). More recent research
has demonstrated that the semantic category or entity of an
object can be successfully predicted fromneural activity pat-
terns when the object is presented visually (Murphy et al.,
2011; Reddy & Kanwisher, 2007; Haynes & Rees, 2006;
Kamitani & Tong, 2005; Cox & Savoy, 2003; Haxby et al.,
2001) or orthographically (Simanova, Hagoort, Oostenveld,
& vanGerven, 2014; Chan,Halgren,Marinkovic,&Cash, 2011;
Murphy et al., 2011; Shinkareva, Malave, Mason, Mitchell, &
Just, 2011; Simanova, van Gerven, Oostenveld, & Hagoort,
2010). It can be argued, however, that the use of visual
or orthographical stimuli in these tasks introduce con-
founding visual or phonological effects related to semantic

retrieval (Hwang, Palmer, Basho, Zadra, & Müller, 2009).
An additional concern, more specific to visual stimulus pre-
sentation, is that certain perceptual attributes that are dif-
ferent between categories can bias the decoding outcome
(Vindiola & Wolmetz, 2011; Simanova et al., 2010). It is
possible to minimize these confounds by using an internal-
ly guided word generation task, without presenting any pic-
tures or words to participants. Moreover, in this way central
aspects of the process of language production can be inves-
tigated, instead of the common focus on language compre-
hension in this type of studies.

Few studies have used word generation to explore
category-specific semantic representations. Vitali et al.
(2005) examined fMRI activity and connectivity between
cortical areas during silent production of tool and ani-
mal words. The authors report increased activation in the
left frontal, left temporal, and parietal regions for tool
compared with animal words. Another fMRI study (Hwang
et al., 2009) reported that conceptual processing in speech
preparation involves left lateral frontal cortex across dif-
ferent word categories. Category-specific activations were
distributed across sensorimotor and perceptual cortices,
according to semantic attributes of the word (Hwang
et al., 2009). However, because both these studies used
fMRI, it was not possible to explore the temporal dynamics
of the reported effects and to separate processes under-
lying different stages of speech production.

Recently, van de Nieuwenhuijzen et al. (2013) demon-
strated that categorical information can be decoded from
temporally precise whole-head high-density MEG signals.
In the experiment, participants viewed images of faces,
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objects, bodies and tools. Using source space signal time
courses, the authors reconstructed the dynamics of visual
category perception. In the present study, we set out to
explore the categorical differences during internally
guided word generation. Similar to the study by van de
Nieuwenhuijzen et al. (2013), we use MEG and apply
multivariate decoding to investigate category-specific
semantic effects.

We used a constrained verbal fluency paradigm. Partici-
pants were asked to produce single words of different
semantic categories (animals, nonliving objects, or coun-
tries). Participants were presented with a cue for the
semantic category and a cue for the initial letter. They
were asked to report with a button press if they had a
word in mind that matched the cue requirements. With
this, we achieved control over timing of responses and re-
duced the amount of speech-related artifacts. Following a
short maintenance period, participants produced the word
overtly, providing us with a measure of task performance.
We employedwhole-brainmultivariate analysis ofmagneto-
encephalographic recordings before speech production
to find the neurophysiological markers of semantic pro-
cessing. Three different approaches were used: classifica-
tion was performed on the signal time series at the sensor
level as well as on temporally and spatially decomposed
time series. The source-level time series analysis made it
possible to identify brain regions that contributed most to
category prediction. We discuss the results in the light of
the literature on the neurobiology of semantic memory
and single-word production.

METHODS

Participants

Eighteen healthy native Dutch-speaking participants took
part in the study (five men, age = 18–25 years, mean
age = 21 ± 2 years). Data from two more participants
were not included in the current study because of exces-
sive head movements. One more participant was exclud-
ed because the experimental session was interrupted. All
participants were right-handed and reported that they
did not suffer from any psychological or neurological

disorders. The study was approved by the local ethics
committee (Commissie Mensgebonden Onderzoek Regio
Arnhem-Nijmegen). All the participants gave written
informed consent before the experiment. Participants re-
ceived either monetary compensation or course credits
for their participation.

Experimental Design

Participants were asked to produce single words of differ-
ent semantic categories: animals, nonliving objects, and
countries (the latter was used as a filler category and is
not included in the presented MEG analysis). Participants
were presented with the semantic category cue and then
the initial letter cue. Subsequently, they were asked to
report with a button press if they had generated a word
that fulfills the requirements indicated by the cues and to
produce the word overtly after a short maintenance period.
The experiment was organized in short blocks, with the

target semantic category alternating between blocks. Each
block included 10 trials. At the beginning of each block,
the category title was displayed on the screen for 4 sec.
The experiment consisted of nine blocks per task category
(90 trials per category). The order of presented letters and
the order of blocks were alternated across participants. The
letters were selected according to their frequency in initial
position in Dutch nouns based on CELEX (Max Planck In-
stitute for Psycholinguistics, the Netherlands, 2001). For
example, letter S appeared more often than D, whereas
letters X, Y, and Q were not presented, because words
beginning with these letters are very infrequent in Dutch
language.
The time structure of a single trial is shown in Figure 1.

Each experimental trial started with a 1000-msec baseline
interval. Subsequently, a letter was displayed for 200 msec.
Participants were instructed to press a button to report
that they had a suitable word in mind. If no button press
was registered within the 3500 msec response interval,
the trial was terminated (no-response trial). If the partici-
pant pressed the button within this interval, the trial was
extended for an additional 1500 msec. Subsequently, an
icon depicting a microphone appeared on the screen.

Figure 1. The structure of
an experimental trial. The
experiment was organized in
short blocks, with the target
semantic category alternating
between blocks. Each block
included 10 trials. In the
beginning of the block, the
category title was presented,
followed by the letter cue.
Participants were instructed
to press a button if they had
a word in mind that fulfilled both cues. If the participant pressed the button within the responsive interval of 3500 msec, the trial was extended
for an additional 1500 msec. Subsequently, the participant was invited to vocalize the word. The next trial started in 2000 msec with a new letter cue
(see Experimental Design for more details).
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Now the participant was invited to vocalize the word. The
next trial started in 2000 msec. A fixation cross was pre-
sented on the screen before presentation of the cues. All
overt responses were registered with a microphone and
recorded to a hard drive.
The experiment lasted approximately 60 min and in-

cluded two breaks. Participants remained seated during
the breaks. After the experiment participants were asked
to fill in an evaluation form. They had to indicate task
difficulty, separately for each of the three categories on
a scale from 1 to 10 (1 = very easy; 10 = very difficult).
They also had to describe in writing the strategy they
used when performing the task.

Analysis of Task Performance

All recorded overt responses were annotated by a native
Dutch speaker. For each word the semantic category was
identified to check participantsʼ compliance with the
task. The most commonly produced words from all par-
ticipants are summarized in Table 1. For each trial, the RT
(time from the letter presentation to the button press)
was extracted. A two-way ANOVA with participant as a
random factor and category as a fixed factor was used
to test for the differences in RTs in different categories
across participants (IBM SPSS Statistics 19). A two-sample
paired t test was used to test for the difference in the
number of responses for two categories. The behavioral
measures were later correlated with MEG results (see
Analysis of Confounding Factors).

MEG Acquisition

MEG data were acquired with a 275-sensor axial gradiom-
eter system (CTF systems Inc., Port Coquitlam, Canada)
in a magnetically shielded room. Participants were seated
comfortably in a chair with their head inside the sensor
helmet. They were told not to move during the experi-
ment and to fixate their eyes on a back-projection screen
placed in front of them.
The participantʼs head position was determined using

coils positioned at the participantʼs nasion and in the left
and right ear canal. Continuous registration of head move-
ments relative to the original position was performed
during the experiment. Additionally, horizontal and vertical
EOGs as well as EMGs from two electrodes placed above
and below the participantʼs mouth were recorded. The
ongoing EOG, EMG, and MEG signals were digitized at
1200 Hz and stored for offline analysis. Overt responses
were recorded by a microphone mounted on the wall of
the experimental room.
In addition, a whole-brain high-resolution structural

T1-weightedMP-RAGE sequencewas used to image eachpar-
ticipantʼs anatomy (repetition time = 2300 msec, 192 slices
with voxel size of 1 mm3, field of view = 256°), accelerated
with GRAPPA parallel imaging.

MEG Preprocessing

All preprocessing and analysis steps were performed
using MATLAB R2011a (The MathWorks, Inc., Natick, MA)
and FieldTrip, an open source Matlab toolbox for the analy-
sis of neuroimaging data (Oostenveld, Fries, Maris, &
Schoffelen, 2011).

The data segments from −200 msec before letter pre-
sentation up to 1500 msec after the button press were
extracted. Segments containing system-related artifacts or
muscular activity were identified based on signal variance.
Identified segments were inspected visually and rejected
if contamination with artifacts was confirmed. The number
of rejected trials varied across participants from 9 to 76
(on average 15 ± 7% of the total number of trials). In
the remaining data, line noise (50 Hz and harmonics)
was removed using a discrete Fourier transform. The data
were subsequently resampled at 300 Hz and baseline
corrected to 200 msec of the baseline interval. Sub-
sequently, independent component analysis (ICA) was

Table 1. Twenty Most Commonly Produced Words from
Each Task Category

Animals Nonliving Objects

hond dog 16 jas coat 9

aap monkey 15 mes knife 9

vis fish 15 tafel table 9

uil owl 14 vork fork 7

egel hedgehog 12 bal ball 7

muis mouse 12 boek book 6

beer bear 11 pen pen 6

olifant elephant 11 sleutel key 5

paard horse 10 fiets bicycle 5

rat rat 10 nietmachine stapler 5

slang snake 10 plank shelf 5

vogel bird 10 zaag saw 5

kat cat 10 kast cupboard 5

neushoorn rhino 9 lamp lamp 5

giraffe giraffe 8 beker cup 4

arend eagle 8 lepel spoon 4

tijger tiger 7 afstandsbediening remote
control

4

kangeroe kangaroo 7 bank sofa 4

koe cow 7 deur door 4

ooievaar stork 7 kapstok coat-peg 4

Dutch words are given with English translation. Numbers indicate
the number of participants (out of 18) who mentioned the word upon
encountering the initial letter.

Simanova et al. 37



performed (Makeig, Bell, Jung, & Sejnowski, 1996). Com-
ponents explaining horizontal and vertical eye movements,
eye blinks, and ECGwere discarded based on visual inspec-
tion. Sensor-level time series were reconstructed from the
remaining components. At the same time, the remaining
components were stored for subsequent classification.

After preprocessing, all data segments were redefined
such that the zero time point corresponded to the but-
ton press. The time interval from −500 to 0 msec before
the button press was used for analysis. After exclusion of
contaminated and no-response trials, the number of re-
maining trials varied from 85 to 221 per participant (on
average 150 ± 38).

Minimum Norm Estimate Source Reconstruction

We used dynamic statistical parametric mapping to recon-
struct the sources of neuronal activity (Dale et al., 2000).
This minimum norm estimate method is favorable when
there are no a priori assumptions on the location and/or
number of current sources (Hämäläinen & Ilmoniemi,
1994). For each participant, a volume conductor model
of the head was created using a single-shell approxima-
tion based on an individual segmented structural image
(Nolte, 2003). The source space was defined as a triangu-
lated cortical mesh, consisting of ∼8000 approximately
equally sized triangles. Cortical mesh reconstruction was
performed with the Freesurfer image analysis suite (surfer.
nmr.mgh.harvard.edu/). The volume conductor model and
the cortical mesh, as well as the gradiometer positions for
individual participants, were used to create the forward
model. Finally, the inverse solution was computed, using
the minimum norm estimate of the cortical activity at the
selected time interval. The noise covariance matrix was esti-
mated at the time window from −100 to 0 msec preceding
the button press. The noise covariance-scaling factor was set
to 10−8. The source time series were then computed at the
time interval from−500 to 0 msec before the button press.

MEG Single-trial Analysis

The choice of the time window for MEG analysis was
based on the duration of the shortest trial (i.e., the mini-
mal amount of time required to perform the task). In all
participants, the minimal duration of trials was around
550 msec. Therefore, we chose the interval of 500 msec
before the button press for the analysis, assuming that the
process of conceptual preparation takes place within this
interval. We also took into account previous literature
on word production. On the basis of a meta-analysis of a
large number of picture naming studies, Indefrey and
Levelt concluded that conceptual preparation and lexical
selection occur approximately 600–350 msec before the
response in overt naming (Indefrey, 2011; Indefrey &
Levelt, 2004; see also Levelt et al., 1998). Although the
preparation stages in picture naming could be different
from the current task, we assume that the speed of con-

ceptual preparation and lexical selection lies approximately
within the range of 500 msec.
In the first analysis, single-trial classification of the MEG

data was performed at this time interval. A Bayesian logistic
regression classifier (Simanova et al., 2010; van Gerven,
Cseke, de Lange, & Heskes, 2010) was trained to identify
the semantic category (animals vs. nonliving objects) of
the to-be-produced word in each trial. The method is ex-
plained in detail in the Supplementary Text 1. A fivefold
cross-validation was performed in which the data set was
partitioned into five random subsets. Thus, after training
on 80% of the data, the classification algorithm was tested
separately on each trial within the remaining 20% of the
data. This process was repeated five times. Classification
accuracy (proportion of correctly classified trials) was com-
puted in each fold and then averaged to produce a single
accuracy estimate. The number of trials belonging to each
of the two categories was balanced before classification:
The number of trials in the minority class was estimated,
and the same number of trials was randomly selected from
the majority class. In all tests, before classification, the
signal over all trials was standardized to have zero mean
and a standard deviation of one.
All classification analyses were repeated with three dif-

ferent projections of the data: (i) the sensor-level time
series, (ii) the reconstructed source-level time series,
and (iii) the component time series produced by ICA
(see MEG Preprocessing). In all three types of classifica-
tion, single-trial time series, without averaging or collaps-
ing over time, were used as input to the classifier.
Classification accuracies obtained with these three data
projections were compared using one-way ANOVA.
The category “countries” served as a filler category in the

experiment and was not included in the current analysis.
We focused on the contrast between animals and nonliving
objects because differences in semantic processing of these
categories are well studied (Martin, 2007; Gerlach, Law, &
Paulson, 2002; Caramazza & Shelton, 1998), which allows
us to link our results to the existing literature.

Statistical Analysis of Classification Accuracies

Chance-level accuracy was 0.5 in all tests. Within partici-
pants, the significance of each classification outcome was
computed using a binomial test, which compares the per-
formance of the trained classifier with that of a baseline
classifier that assigns all trials to same class (Salzberg,
1997). Between participants, the resulting classification ac-
curacies from the group (18 participants) were compared
against the chance level of 0.5 using a right-handed t test.

Analysis of Confounding Factors

As is evident from the analysis of RTs, in some participants
the response in nonliving object trials took longer than in
animal trials. RT differences could bias the classification in
the interval before the button press, because short trials
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may contain distinctly different cognitive processes than
long trials. To explore the possible impact of this con-
founding measure on classification performance, we ana-
lyzed if the classifierʼs predictions depended on the trialsʼ
length. We computed the Pearson correlation between
the RTs in individual trials and classification outcome—
the probability that each trial belongs to the category
“animals.” p values were computed against the hypothesis
that there was a negative correlation between these mea-
sures (i.e., the classifier tends to predict the class “animals”
for shorter trials). This analysis was performed for each
participant based on the sensor-level classification results.
As described in the Experimental Design section, the

experiment consisted of short blocks, and the task
category alternated between blocks. It is therefore possible
that the block structure biased the classifierʼs performance.
One possibility is that the classifier predicted that trials
belong to the same block (based on correlations or drifts
in the signal), rather than same category. Another possibil-
ity is that the mental state induced by the target category
at the beginning of each block could be decoded during
the entire duration of the block, irrespectively of the word
production task. In both cases the classifier would be able
to decode the semantic category from the MEG signal
during the baseline period, before the letter presentation.
To address this possibility, we conducted classification
analysis at the baseline interval. For each participant, the
classification (same as the main procedure) was applied at
the sensor-level MEG data in an interval of 200 preceding
the presentation of the letter in each trial.

Feature Localization

To identify which data features were used in the Bayesian
logistic regression for predicting the semantic category,
the maps indicating the importance of data features were
extracted (Simanova et al., 2010; van Gerven et al., 2010).
The relative importance of data features is expressed in
terms of the variance of auxiliary variables in the Bayesian
logistic regression classifier (see Simanova et al., 2010, for
details). The importance weights associated with each data
feature were visualized as feature maps (Chan et al., 2011;
Simanova et al., 2010; van Gerven et al., 2009). We focus
on feature maps obtained for source-level classification.
In each participant, the importance weights for each loca-
tion were averaged across all time points of the analyzed
interval. Resulting values were mapped onto the cortical
surface of individual participants and then interpolated
to a three-dimensional grid. This grid was defined as an
individualized warp of a template grid, and therefore, the
resulting three-dimensional maps were directly interpret-
able in Montreal Neurological Institute (MNI) space. The
maps were then averaged across participants to produce
a group estimate of the spatial distribution of important
features. Labels identifying each brain region were extracted
using the Anatomical Automatic Labeling toolbox (Tzourio-
Mazoyer et al., 2002).

For the group-level analysis of the feature maps, we
thresholded individual maps at the 0.95 quantile of the dis-
tribution of importance weights. Subsequently, a group-
level binomial test was applied, under the .05 probability
of success at each location, to retain only those grid points
that survived statistical testing.

Analysis of Temporal Dynamics

We additionally repeated the classification analysis in the
source level on 100 msec time bins, covering the interval
from −500 msec to the button press. For each time bin,
the classification analysis (see “MEG Single-trial Analysis”)
as well as feature localization (see “Feature Localization”)
were performed. We report the averaged classification
accuracy across 18 participants and group-level feature
localization maps at each 100-msec time bin.

RESULTS

Task Performance

On average participants gave a response within the
3500-msec response interval in two-thirds of all trials
(58 ± 15 words for animals and 56 ± 12 words for ob-
jects). There was no significant difference in the number
of responses between categories. There was, however, a
difference in the RTs between two categories. Participants
tended to respond faster for animals (mean RT = 1630 ±
780 msec) than nonliving objects (1840 ± 780 msec), F =
11.3(1), p< .01. In the postexperimental evaluation, some
participants indicated that the category nonliving objects
was the most difficult. On the basis of the ratings from
all participants, however, the difference between catego-
ries in the task difficulty was not significant: Average rating
scores were 5.3 ± 2.5 for animals and 6.3 ± 1.8 for non-
living objects.

Inspection of the most commonly produced words
(Table 1) suggests that there was less agreement be-
tween participants in nonliving objects than in animals.
Altogether, the behavioral results indicate that the task
was not of equal difficulty among the categories.

After the experiment, participants were asked to report
what strategy they used to name objects. Most of the
participants indicated that they used visualization of cer-
tain subcategories when performing the task. For exam-
ple, to name an animal, they would think of a particular
animal group, for instance, farm animals or zoo animals.
For naming nonliving objects, the most common strategy
was to list common household objects by visualizing a
kitchen or a living room. For the category “countries,” all
participants reported that they imagined a map and “read”
names, following the geographical proximity of countries.
On the basis of these strategy reports, we decided not
to include the data from the latter category in the final
analysis, as mentioned above. Because of the differences
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in strategy, the outcome of countries–animals and
countries–objects comparisons would be very difficult to
interpret.

MEG Single-trial Analysis

Table 2 summarizes results of the single-trial classification
in the conceptual preparation interval. There were differ-
ences in the classification performance across participants;
whereas for some participants classification was at chance,
for others it was significantly above chance. The maximal
accuracy was 0.69 for the sensor space classification ( p <
10−6 in the within participantʼs binomial test), 0.67 for the

source space classification ( p < 10−5), and 0.70 for the
ICA-based classification ( p < 10−3). We observed that
ICA decomposition increased classification performance
slightly. One-way ANOVA showed a marginal difference in
the classification accuracies between ICA, sensor, and
source-based classification across participants (F = 2.85,
df = (2, 34), p = .07). None of the separate post hoc
comparisons was significant after Bonferroni correction.
Both sensor-based and ICA-based analyses did not allow

for comparing features across participants. The position
of MEG sensors relative to the brain is different in all
participants, preventing the comparison of individual
sensor-level feature maps. It is also difficult to match ICA
components from different participants, because the spatial
filters are determined individually. To circumvent these dif-
ficulties, we performed the classification analysis in source
space. The classifier performed slightly better at the source
than at the sensor level. By further warping individual fea-
ture maps to MNI space, we were able to compare them
across participants and localize brain regions that contrib-
uted to category discrimination at the group level.

Feature Localization Results

Single-trial analysis on the source level allowed for map-
ping classifier parameters to native brain space. Feature
maps from two participants with highest classification ac-
curacies in source space are shown in Figure 2, whereas

Table 2. Mean Accuracies When Performing Classification
Based on Sensor Space Data, Source Space Data and
ICA-decomposed Data

Mean
Accuracy SD p

No. of Significant
Participants

Sensor level 0.56 0.02 p < .01 7

Source level 0.58 0.01 p < 10e−4 10

ICA 0.61 0.01 p < 10e−6 11

The p values resulting from the group-level statistical analysis of classi-
fication accuracies are shown in the third column. The last column
shows the number of participants for whom the classification accuracies
were significantly higher than chance according to the within-subject
statistical analysis.

Figure 2. Histograms (A) and surface maps (B) of the feature importance in two participants (animals–objects classification based on the source
time series). Feature importance was quantified in terms of the variance of auxiliary variables in the Bayesian logistic regression classifier. The importance
weights for each location were averaged across all time points of the analyzed interval. Red line on A marks the 0.95 quantile of the distribution,
the threshold used for the group-level statistical analysis. Color bar under the histogram on A shows how the weights are scaled on B. Blue color
represents low importance, and red represents high importance. For this figure, we chose two participants with highest classification accuracies in
the source space. Feature maps from all 18 experimental participants are shown in Supplementary Figure 1.
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Figure 3 shows the outcome of the group-level statistical
analysis. That is, Figure 3 depicts the group-averaged map
masked at p < .05 (uncorrected). Several salient brain
regions can be identified in the averaged map. These are
the left middle frontal gyrus (peak location at [−40 44
32]), left posterior middle temporal gyrus ([−52 60 12]),
left inferior frontal gyrus ([−56 12 12]), regions in the right
parietal lobe ([40 −64 48] and [56 −36 48]), and right
precuneus ([20 −80 48]).
For the clusters located in left middle frontal, inferior

frontal, and posterior middle temporal gyrus, the group
level p values were lower than 10−2. However, none of
the clusters survived a more stringent multiple compar-
ison correction. Therefore, the maps in Figure 3, as well

as in Figure 4, are included for descriptive, not inferential
purposes.

Analysis of Confounding Factors

We tested if the classifierʼs prediction in single trials cor-
related with the RTs. We found a weak significant positive
correlation ( p < .05, not corrected for multiple tests)
in 5 of 18 participants (Participants 1, 3, 4, 14, and 16).
This result indicates that the classification in these par-
ticipants could be driven in part by timing differences
between conditions. Note, however, that only in three
of these participants the classification performance based

Figure 3. Averaged
importance map masked
with the results of the
group-level statistical analysis
( p < .05, uncorr., n = 18).

Figure 4. Results of the
analysis of temporal dynamics
within the conceptual
preparation interval. (A) The
temporal development of
the feature maps ( p < .05,
uncorr., n = 18). The maps
were constructed in the same
way as for Figure 3, based
on the source-level signal
in 100-msec bins. (B) The
averaged classification accuracy
across 18 participants at each
time bin. The group-level
accuracies in the last two bins
(from −200 to −100 msec
and from −100 msec to the
button press) were significantly
above chance level ( p < .001)
after Bonferoni correction for
the number of conducted tests.
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on the sensor-level signal time series was significantly
higher than chance level.

The classification analysis at the baseline interval
showed a significant outcome only in 1 of 18 participants
(Participant 18). For other participants, the accuracies were
close to chance level, and the average accuracy across the
group was 0.51 ± 0.01. Overall, based on this result, we
conclude that the block structure is not a major confound-
ing factor in the employed experimental design.

Analysis of Temporal Dynamics

Results of the analysis of temporal dynamics are presented
in Figure 4. Panel B shows the averaged classification accu-
racy across 18 participants at each time bin. The averaged
accuracies in the last two bins (from −200 to −100 msec
and from −100 msec to the button press) were signifi-
cantly above chance level, after Bonferoni correction of
the statistical threshold. Panel A shows the temporal devel-
opment of the feature maps. In the left hemisphere, the
location of the most important features for the classifier
changed from the pFC (left inferior frontal gyrus, left
middle frontal gyrus, left precentral gyrus) toward poste-
rior areas (left fusiform, left inferior temporal gyrus, left
inferior, and middle occipital gyri). In the right hemi-
sphere, important features shift from parietal cortex to
the inferior temporal and occipital locations by the end
of the measured interval.

DISCUSSION

Single-trial Classification Accuracies

In this study, we explored the possibility of predicting
the semantic category of internally generated words from
observed brain activity before word onset. The results
indicate that such prediction is feasible. Classification
accuracies in the time interval before speech production
were above chance in a majority of the participants. To
our knowledge, this is the first study demonstrating suc-
cessful semantic decoding in a word generation task. No-
tably, the range of decoding accuracies obtained in this
study is similar to results reported before for decoding
semantic information when people are reading or listening
to verbal stimuli. For instance, in the study of Simanova
et al. (2010), participants were presented with animal and
tool words, and the Bayesian logistic regression classifier
was trained to predict the wordʼs category from EEG
data. Classification in the auditory modality showed a mean
accuracy of 0.61 and classification in the orthographic
modality showed a mean accuracy of 0.56 (across 20 par-
ticipants). These numbers are very close to the present re-
sults, indicating that the present classification results are
close to what may be expected based on previous studies.

Previous studies have shown that the spatial filtering
methods, such as ICA, improve classification performance
on electrophysiological data (see, e.g., Farquhar & Hill,

2012; Lemm, Blankertz, Curio, & Müller, 2005). A recent
MEG study showed an improvement of the classification
accuracies in source space compared with sensor space
(van de Nieuwenhuijzen et al., 2013). Differences in results
between projections are because of changes in signal-to-
noise ratio; spatial or temporal filtering suppresses noise
from unrelated sources, which would lead to more robust
input to the classifier. Here, we observed a slight increase
in classification accuracy when applying the ICA decom-
position or source-level decomposition to the signal, rela-
tive to sensor-level results.

Feature Localization

Previous studies have shown that Bayesian logistic re-
gression is not only an effective classification technique,
but also a useful tool for studying cognitive processes
(Simanova et al., 2010; van Gerven et al., 2010). The fea-
ture maps produced by the classifier can be related to the
discriminability between experimental conditions. Here
we conducted a group-level statistical analysis of the
source-level feature maps to identify brain locations com-
monly involved in semantic preparation in the word gen-
eration task across all the experimental participants. The
effect was statistically significant only when uncorrected
for multiple comparisons; the group-level maps should
therefore be interpreted as descriptive, rather than in-
ferential. However, because the common structure in the
importance maps revealed by the group-level test agreed
with previous studies on semantic memory and categorical
contrasts (Simanova et al., 2014; Martin, 2007; Gerlach
et al., 2002; Caramazza & Shelton, 1998), here we briefly
discuss these localization results.
The task used in this study is very similar to verbal

fluency, which is widely used in neuropsychology to
evaluate language and executive control in patients.
Neurological observations and neuroimaging studies in-
dicate that the left frontal lobe region is particularly im-
portant for verbal fluency (e.g., Birn et al., 2010; Meinzer
et al., 2009; Costafreda et al., 2006; Hodges et al., 1999;
Thompson-Schill et al., 1998; Milner, 1964). At the same
time, it has been suggested that the network of active
brain regions is not identical for two commonly used
types of fluency tasks. A number of neuroimaging studies
reported that letter fluency (generation of words for a
letter cue) yields activation in the left inferior frontal
gyrus, whereas semantic fluency (generation of words
for a semantic category cue) yields greater activation in
the left middle frontal gyrus (Birn et al., 2010; Meinzer
et al., 2009; Perani et al., 2003). Both fluency tasks were
combined in the current study, and both frontal regions
emerged at the group-level analysis. The biggest cluster
with the high averaged importance values was found
in the left middle frontal gyrus and thus coincides with
the reported activations for semantic fluency.
A second prominent contribution of importance values

in posterior middle temporal gyrus during the conceptual
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preparation also agrees with previous studies (see, e.g.,
Simanova et al., 2014; Chao, Weisberg, & Martin, 2002;
Maess, Friederici, Damian, Meyer, & Levelt, 2002; Chao
et al., 1999; see also reviews by Martin, 2007; Martin &
Chao, 2001). Posterior middle temporal region plays a
central role in retrieval of semantic knowledge (Binder
& Desai, 2011; Binder, Desai, Graves, & Conant, 2009).
Previous studies using the same semantic contrast showed
that this region is involved in discrimination between
semantic categories independently of the sensory modality
used for stimulus presentation (Simanova et al., 2014;
Fairhall & Caramazza, 2013).
We also studied the temporal dynamics of the classifica-

tion accuracies and feature importance maps in the interval
of conceptual preparation (Figure 4). Results suggest a
gradual transition of the importance weights in the left
hemisphere from prefrontal to posterior cortex over the
course of 500 msec. This may indicate that semantic re-
trieval in speech production is initiated in pFC and poste-
rior areas come into play later. Classification accuracies
increased over the 500-msec interval, which suggests that
category-related information is accumulating in the signal
toward the end of conceptual preparation.
The reported results are very similar to our previous

findings on decoding of semantic information; yet, there
is an important difference. The current study investigates
word production in the absence of any perceptual cues.
With this, this study provides evidence that conceptual
processing in speech production and perception relies
on a common functional substrate. The source space
localization results replicate previous findings, suggesting
an important role of left inferior and middle frontal gyri
in conceptual preparation and word retrieval processes
(see review by Price, 2010). Extraction of conceptual
information is underlined by dynamic interplay between
these frontal regions and posterior temporal cortex (see
Hagoort, 2013; Binder & Desai, 2011; Price, 2010). Pres-
ent results suggest that, in case of internally guided word
production, the initial category-specific activity in frontal
cortex is followed by a build-up of categorical information
in temporal areas.

Limitations of the Present Study

An important downside of the volitional word generation
task compared with standard stimulus-driven experimental
paradigms is the impossibility to control beforehand the
characteristics of responses, such as word frequency, imag-
eability, length, syllable structure, et cetera. It is therefore
important to collect behavioral measures and take into
consideration possible unwanted differences between ex-
perimental conditions. In this study, differences in RTs
were revealed. The response for nonliving objects took
longer than for animals in many participants. The differ-
ence in timing could have had an impact on classification
accuracy. The conducted analysis of confounding factors
shows, however, that the classifierʼs predictions for single

trials did not necessarily correlate with RTs. This result pro-
vides further support for the validity of our findings.

Differences in employed recall strategy and task difficulty
between the categories may also act as confounding fac-
tors. The current results on localization of discriminating
features should therefore be interpreted with caution.

We believe that more research is needed on semantic
effects in internally generated word production, and pos-
sibly a more optimal experimental paradigm could be es-
tablished in the future. For instance, various studies have
recorded EEG during overt, not delayed, speech produc-
tion, and the methods of correction for speech-related
artifacts have improved in the last years (Aristei, Melinger,
& Abdel Rahman, 2011). Hence, taking into account the
present results, it might be possible to apply single-trial
classification techniques for semantic decoding from
EEG/MEG signal in overt word production.

To summarize, this study shows that semantic infor-
mation can be decoded from neuromagnetic recordings
during internally generated word production, in the ab-
sence of any perceptual cues. The results give an important
insight into the temporal dynamics of brain activity under-
lying volitional word generation and as such about central
aspects of language production.
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