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Abstract

A recently proposed scale invariant extension of the standard model is modified such that it
includes a Dark Matter candidate which can annihilate into gamma-rays. For that a non-zero
U(1)y hypercharge @ is assigned to the fermions in a QCD-like hidden sector. The Nambu-
Goldstone bosons, that arise due to dynamical chiral symmetry breaking in the hidden sector,
are cold Dark Matter candidates, and the extension allows them to annihilate into two photons,
producing a v-ray line spectrum. We find that the y-ray line energy must be between 0.7 TeV and
0.9 TeV with the velocity-averaged annihilation cross section 10730 ~ 10726 cm?/s for Q = 1/3.
With a non-zero hypercharge @, the hidden sector is no longer completely dark and can be directly

probed by collider experiments.
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I. INTRODUCTION

With the discovery of the Higgs particle [1, 2] the standard model (SM) is now complete.
However, the SM must be extended since it does not contain a Dark Matter (DM) candidate
and since finite neutrino masses must also be included. From a pure theoretical point of
view there exist also severe conceptual problems and one of them is that the SM cannot
explain the origin of its energy scale. Theoretically, we can imagine a world without any
energy scale, but in the real world of elementary particles scale invariance is broken. In the
SM the mass term of the Higgs field is the only term in the Lagrangian that violates (at tree
level) scale invariance. Although the SM does not explain the origin of its energy scale, the
measured mass my, of the Higgs particle seems to suggest how to go beyond the SM, because
this mass value together with the top quark mass implies that the SM remains perturbative
at least up to the Planck scale [3-5]; an ultraviolet (UV) completion of the SM is not needed.
Any extension which modifies the high energy behavior of the SM should therefore be well
motivated (see e.g. [0]), since it may require a UV completion at lower scales.

Introducing an explicit Higgs mass term in the SM does not only break classical scale
invariance, but it also leads to another severe issue known as the gauge hierarchy prob-
lem, namely the quadratic sensitivity of quantum corrections to high scales. It is therefore
tempting to start from classically scale invariant theories where the SM scale emerges from
dimensional transmutation. Various attempts to introduce an energy scale in this way exist
in the literature [7]-[34]. Scale invariance is broken at the quantum level even in perturba-
tion theory [35], but it has been argued that the protective features of conformal symmetry
are not completely destroyed [36]. Specifically logarithmic sensitivities would exist, while
quadratic divergencies would be absent.

We follow the idea that the energy scale in a classically scale invariant theory is generated
by DxSB in a QCD-like hidden sector, which is transmitted via a SM singlet messenger field
to the SM sector [37-40] '. So we assume that the fermions in the hidden sector are SM
singlet and allow the presence of fundamental scalar fields. In fact, the messenger is assumed
to be the simplest possibility, a real SM singlet scalar S. Note that this avoids the well known
phenomenological problems of technicolor models and the model looks very much like the
SM, since the hidden sector couples only via the Higgs portal.

The possibility that DM annihilates into v-ray lines has recently received much attention
and we want to discuss this possibility therefore in this paper. Specifically we consider a
simple extension of the above mentioned model, where we assign a U(1)y hypercharge @ to
the hidden sector fermions such that they are electrically charged with a charge (). Since
the coupling is vector-like, no breaking of U(1)y is caused by DxSB in the hidden sector. As
we will see, this non-zero charge makes it possible that DM particles, which are the pseudo
Nambu-Goldstone particles in this model, can be annihilated into two photons, producing
a v-ray line spectrum. Monochromatic ~-ray lines from DM annihilation exist in other DM
models, too [12, 43], and in fact experimental searches for y-ray lines have been undertaken
with Fermi LAT [15, 16] and HESS [17] for a wide range of high energies. We find that
the energy of the ~-ray line in our model lies between 0.7 TeV and 0.9 TeV. (We are not

1 See also [11].



aiming to explain the recent observations of the galactic keV X-ray [18, 19] here.) The
upper limits on the velocity-averaged annihilation cross section (vo) given by Fermi LAT
and HESS constrain the electric charge @ of the hidden fermions. We find that the (vo)
is 1073 ~ 107 cm?®/s for @ = 1/3, which can well satisfy the experimental constraints
of Fermi LAT and HESS. Since (vo) is proportional to Q*, our calculations can be simply
extended to the case of an arbitrary Q).

In this model not only DM particles but also hidden baryons are stable. For an arbitrary
() the electric charge of the hidden baryons are fractionally charged. Note that the consistent
range of the DM mass between 0.7 TeV and 0.9 TeV is independent of () and hence the scale
A of the hidden sector is roughly fixed (regardless of ()), which means that the mass of the
stable hidden baryons is ~ 3 TeV. Using the fact that the hidden sector is basically described
by a scaled-up QCD, we have found that the relic abundance of the hidden baryons €, gh?
in the Universe is at most 10~*, which is independent of (). This is sufficiently below the
upper bound given in [50] and the constraint in the ()-DM mass plane given in [51] is also
satisfied. Consequently there is practically no constraint (except for those from FermiLat
and HESS) on the fractionally charged hidden baryons.

Since the hidden sector (strictly speaking it is no longer a hidden sector, because the
fermions are electrically charged) can now communicate through gauge boson exchange
(photon and Z boson) with the SM sector, the hidden sector could be produced at the
ILC. We postpone these interesting processes for future studies, as our main priority in
this paper is to find a prescription to obtain gauge invariant amplitudes. This is because we
approximate the strongly coupled QCD-like sector by the Nambu-Jona-Lasinio model (NJL)
(52, 53] (see [54, 55] for reviews), which is defined with a finite cutoff A that violates gauge
invariance. To overcome this problem, we propose least subtraction procedure. In the NJL
model the cutoff A is a physical parameter and a finite A is essential to describe effectively
DxSB. We therefore stress that we keep the subtraction terms to the minimum necessary.

II. THE MODEL

We consider an extension of the model studied in [37-10] which consists of a hidden
QCD-like sector coupled via a real singlet scalar S to the SM. The fermion 1 in the hidden
sector belongs to the fundamental representation of the hidden gauge group SU(3)y. With
this setting DxSB in the hidden sector does not break the SM gauge symmetries, thereby
avoiding the FCNC problem. This is one of the main differences to technicolor model. If we
further assume that the Yukawa coupling 1S respects SU(N £)v flavor symmetry, there is
only one coupling constant y for the Yukawa coupling, so that in the hidden sector there are
only two independent parameters; the gauge coupling constant gy and the Yukawa coupling
Y.

In extending the model we impose that neither the SM gauge symmetry nor the SU(Ny)y
flavor symmetry is broken in the hidden sector. If we further impose that the matter content
remains unchanged, then there is a unique possibility for the extension that the hidden
(Dirac) fermion carries a common U(1)y charge @ *. This implies that the hidden sector

2 The new gauge coupling contributes only to ITyy of the gauge boson self-energy diagrams so that the
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Lagrangian of the extended model is written as
1 =/
L= =5 Tr F? + Tr §(in" 0 + 97" G+ ¢ Q" By = yS)0 (1)

where G, is the gauge field for the hidden QCD, and B is the U(1)y gauge field. The trace
is taken over the flavor as well as the color indices. The Lgy1g part of the total Lagrangian
L7 = Ly + Lsmrs, which contains the SM gauge and Yukawa interactions along with the
scalar potential

1 1
Vanas = Ag(HTH)? + Z)\SS“ — 5AJL,SS%HTH) , (2)

is unchanged *. H” = (H* , (h+iG)v/2) is the SM Higgs doublet field, with H* and G as
the would-be Nambu-Goldstone fields.

Here we follow [10] in which the NJL model is used to describe DxSB in the hidden sector,
restricting ourselves to N, = Ny = 3, because in this case the NJL model parameters, up-to
an overall scale, can be fixed from hadron physics [55, 56]. So at low energy we replace the
Lagrangian Ly by

Ly = Tr (iy"0, + ¢ Q" B, — yS) + 2G Tr ®'® + Gp (det ® + h.c.) , (3)
where
B, =cosbwA, —sinbwZ, , g =e/cosby , (4)
_ 1 _
Qi = (1 — )15 = 5/\?iTT YA (1 —5)0 (5)

and A\ are the Gell-Mann matrices with \° = \/m 1. The last term in (3), which ex-
hibits a six fermi interaction, is present due to chiral anomaly of the axial U(1)4. The
chiral symmetry U(3), x U(3)g is explicitly broken down to its diagonal subgroup U(3)y =
SU@3)r x U(1)y by the Yukawa coupling with the singlet S. To deal with the non-
renormalizable Lagrangian (3) we have used in [10] a self-consistent mean-field approx-
imation which has been intensely studied by Hatsuda and Kunihiro [55, 56] for hadron
physics. The effective Lagrangian Ly, has three dimensional parameters G, Gp and the
cutoff A, which have canonical dimensions of —2, —5 and 1, respectively. Since the original
Lagrangian Lz has only one independent scale, the parameters G, Gp and A are not inde-
pendent. We obtain the NJL parameters for the hidden QCD from the upscaling of actual
values of GG, Gp and the cutoff A from QCD hadron physics. That is, we assume that the
dimensionless combinations

GY?A =20, (-Gp)"PA =21, (6)

which are satisfied for hadrons, remain unchanged for a higher scale of A [10].

S, T,U parameters remain unchanged.
3 This classically scale invariant model is perturbatively renormalizable, and the Green’s functions are

infrared finite [57, 58].



In what follows we briefly outline the approximation method [55, 56]. One assumes that
the dynamics of the theory creates a chiral symmetry breaking condensate
1
—diag(o,0,0) , (7)

(O1i410) = — 15

which is treated as a classical field 0. The vacuum |0) is defined by the annihilation operator
of the constituent fermion v in the background of the mean fields. We restrict our discussion
(in a more complete treatment, one may add terms involving 7 or p mesons) to the mean
fields collected in

= (0](1 —95)A"|0) = 41(; (

where we denote the pseudo Nambu-Goldstone boson after spontaneous chiral symmetry

diag(o,0,0) +i(A*) ¢,) , (8)

breaking as ¢,. These dark pions are stable due to flavor symmetry and they serve as
good DM candidates. In the self-consistent mean field approximation one splits up the NJL
Lagrangian (3) into the sum

Ly, = Lo+ Ly,

where £; is normal ordered (i.e. (0[£;]0) = 0), and Ly contains at most fermion bilinears
which are not normal ordered. After some manipulations, one finds the following form for

ﬁo[ ]Z

- / Gh
=Ty (i0, + ¢'QB,) Y — (a +yS — sc2”

1 8
) Tedy — iTrdsow — 7 > Gata
a=1

8 o3 8
_3°, G <_Tm[,¢2¢ + ) GaaTreht) + ioTriyspt) + —— +55 (czﬁa) ) - (9)
a=1

8G ' 8G? 2G
Note that this Lagrangian no longer contains the four and six fermi interactions. At the
non-trivial lowest order only Ly is relevant for the calculation of the effective potential, the
DM mass mpy and the DM interactions. The mass spectrum for all the CP-even particles,
namely h,S and o can be obtained from the minimum of the effective potential, once the
free parameters of the model i.e. y, Ay, Ags, As are given. See Ref. [10] for more details
in the calculation of the effective potential. The dimensionless couplings y, Ay, Agg, As are
required to satisfy perturbativity and vacuum stability up the Planck scale. Once the global
minimum of the effective potential is obtained, the effective couplings between the bosons
and the DM properties are determined. The U(1)y coupling does not contribute to the
effective potential and the mass matrix for h, S, o in the lowest order.

As we have mentioned that the CP-odd pseudo Nambu-Goldstone bosons ¢, are the DM
candidates for our model, let us investigate their properties in more details. Like the CP-
even bosonized o field, the DM particles have no tree level kinetic term and their masses
are defined as the zero of the inverse propagator

o1 Gplo GDN d'k
e 8G3 / P2 M?)
Gplo)\* [ d'k Tr(k—p+M>v5<k+M>%
N (1‘ ez ) / i (k—ppf a0
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Figure 1. One-loop contributions of the heavy dark fermions to the DM mass.
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Figure 2. The left and middle diagrams are the s-channel DM annihilation diagrams. The right diagram
contributes to the DM scattering off the nucleon. The coupling marked with a dot is a one-loop three-point

vertex given in [40].

where M = o 4+ yS — Gpo?/8G? is the constituent hidden sector fermion mass when all the
CP-even scalar fields obtained their vacuum expectation values (VEV). The first two terms
in Eq. (10) stem from the tree level effective Lagrangian (9) while the heavy dark fermions
contribute to the one-loop radiative correction for the DM inverse propagator. The relevant
one-loop diagrams are given in Fig. 1. From Eq. (10) the DM mass and its wave function
renormalization constant can be calculated

dl,(p?
Dolmby) =0, 2= TP (11)
P p2=miyy
As y — 0, the chiral symmetry of the fermions should be restored and mpy — 0 #, hence
the size of the DM mass is controlled by the Yukawa coupling y. The additional U(1)y

coupling however does not contribute to the DM mass.

III. RELIC ABUNDANCE OF DM AND ITS DIRECT DETECTION

Before we start to compute the relic abundance Qh2, let us discuss the parameter space.
In our previous paper [10] the dimensionless coupling constants, y, As gs m, are constrained
by the vacuum stability and by the absence of the Landau pole. It turns out that with a
non-zero @) (at least for @ < 1/3) the allowed parameter space does not practically change.

4 In this case ¢ is a true Nambu-Goldstone boson.



Note that the annihilation processes of DM occur at the one-loop level through the one-loop
¢-¢-S amplitude and the one-loop ¢-¢-S-S amplitude (if mg < mpy). The ¢-¢-S amplitude
can be calculated from the one-loop diagram

B _Golo)\* [ Ak Te(f+ M)ys(k—p+ M)E+ 9 + M)s
Foos =ANey (1 RC2 ) /i(27r)4((k—p)2—M2)(k2—MQ)((k+p’)2—M2)
GD/ Ak Tr(f—y + M)k +p+ M)

AG? J i(2m)* ((k — p')? = M?)((k +p)*> — M?)’

+ Ny

(12)

which is crucial for determining the relic abundance and the direct detection cross section
of the DM. The momenta p,p’ represent the incoming momenta of the dark pions. The
one-loop effective couplings are represented as e in Fig. 2. These amplitudes are small for
small i as the amplitudes scale like A(¢p¢ — S) ~ y and A(¢pp — SS) ~ y? respectively. As
mentioned above, the size of the DM mass is controlled by y, i.e. a small y implies a small
DM mass and for a larger y = 0.2 the DM mass mpy; can become larger than the fermion
constituent mass M, which will develop imaginary parts in these one-loop amplitudes. In
[10] we forbad the occurrence of the imaginary parts, yielding an upper bound on y for a
given set of A\gpgs. As the parameter y is bounded from above, the ¢-¢-S-S amplitude
contributes negligibly to the relic abundance calculation and only the ¢-¢-S amplitudes are
important. However in this parameter space we have found that the only way to enhance
the annihilation rate of DM is via a resonance effect in the s-channel annihilation processes
shown in Fig. 2 (left and middle). That is, 2mpy ~ mg has to be satisfied. The direct
detection rate of DM is however strongly suppressed (< 107*® cm?) because it is a t-channel
process shown in Fig. 2 (right), constraining the parameter space into phenomenologically
unattractive corner.

In this paper we allow the occurrence of the imaginary parts in the one-loop diagrams,
as they are related to the real parts due to the dispersion relation, which has proven to be
successful in describing the QCD hadron physics (see [55] for instance). We set the upper
bound at mpym < 2M, which should be compared with m,, = 0.958 GeV and M, = 0.5 GeV
in the usual QCD physics, where M; is the constituent mass of the strange quark. In fact,
in the optimistic range y 2 0.4 with mg < mpu, the ¢-¢-S-S amplitude (which is generated
at one-loop as shown in Fig. 3 ~ 5) is no longer small and can become large enough to give a
correct relic abundance of DM. Therefore, we choose below the parameter space y 2 0.4 and
open the channel p¢p — SS. In this parameter region, the s-channel processes contributed by
¢-¢-S amplitudes are negligibly suppressed and can be ignored. The annihilation diagrams
in Fig. 3 ~ 5 for ¢ — SS yield

2
A(pp — SS) =2N.y? ) (41, +21..) |, (13)

GD GD<O'>
el ™ (1 TR

where [; represents the integral for the respective ith loop diagram in Fig. 3 ~ 5. We obtain
the DM annihilation cross section

2

m2 \ /2
(vo(66 — S5)) = —% | (g6 —> SS)P (1 _ms ) , (14)

32mmpyy Mpn
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Figure 3. The DM annihilation with ¢¢in) coupling (a)
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Figure 4. The DM annihilation (b)
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Figure 5. The DM annihilation (c).

where Z, is given in Eq. (11). We do not include the annihilation modes into vy,vZ, ZZ
as the annihilation cross section of these modes is proportional to o?Q* (see Eq. (19)) while
the DM annihilation cross section to S particles is dominated by y*. Unless the electric
charge () 2 1, the annihilation modes into vy,vZ, ZZ can be ignored in the relic abundance
calculation (see also the comment in the footnote on page 12). The annihilations into
these modes are calculated in the next section. We find, imposing the constraint on the
relic abundance Qh? = 0.1187+0.005(3¢) [59], that the spin independent annihilation cross
section is just below the XENON100 [60] and LUX [01] constraints and above the XENON1T
sensitivity [62]. This is shown in Fig. 6.
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Figure 6. Left:The spin-independent cross section off nucleon against mpys, where Qh? = 0.11874:0.005(30)
[59] is imposed. The XENON100 [60] and LUX [62] limits are ~ 1074 em? for mpy = 0.7 TeV, while the
XENONIT sensitivity is two orders of magnitudes higher than that of XENON100 [62]. Right: The mass

of the singlet S against mpy. If mpy < ms, then ogr < 10748 cm? [40] .

The DM mass mpy is constrained in the present model. The lower limit mpy = 0.7 TeV
comes from the fact that y has to be large enough so that the size of the annihilation
process ¢p¢ — SS yields a correct relic abundance of DM. If on the other hand y is too
large, the annihilation cross section into two singlet scalars becomes too large so that the
relic abundance falls below the observed value. The Yukawa coupling y is also constrained
from above to avoid the triviality bound, which gives the upper limit mpy < 0.9 TeV.

Note that because of the SU(3)y flavor symmetry and an accidental U(1),p (hidden
baryon number), not only the DM candidates, but also the lightest hidden baryons are stable.
In the case that N. = Ny = 3 in the hidden sector and () = 1/3 for the hidden fermions,
there is no stable hidden hadron with a fractional electric charge. The hidden mesons for our
model are neutral, while the charge of the hidden baryons formed by three hidden fermions
is one if ) = 1/3. There might be a tiny amount of relic stable hidden baryons and anti-
baryons in the universe, which if a large number of them are not annihilated, could spoil
the large scale structure formation. Let us roughly estimate fraction of this hidden baryon.
As the hidden sector is described by a scaled-up QCD, so that because the coupling G55
is dimensionless, the hidden meson-baryon coupling Gz is approximately the same as in
QCD, ie. Gypp ~ 13. Using this fact, we have estimated the relic abundance Qnh? of the
hidden baryons to be ~ 10=* for the hidden baryon mass of 3 TeV. Note that this result
is independent of (). Therefore, we may fairly ignore the stable charged hidden baryons in
discussing the relic abundance of DM.

IV. RESTORING GAUGE INVARIANCE

The cutoff A breaks gauge invariance explicitly and to restore gauge invariance we have to
subtract non-gauge invariant terms from the original amplitude. In renormalizable theories
there is no problem to define a finite renormalized gauge invariant amplitude, i.e. In the limit
of A — oo the gauge non-invariant terms are a finite number of local terms, which can be



cancelled by the corresponding local counter terms so that the subtracted amplitude is, up to
its normalization, independent of the regularization scheme (see for instance [63]). To achieve
such a uniqueness in cutoff theories, one needs an additional prescription. For instance, we
can define the real part of an amplitude using dispersion relation, as it was done in the
original paper by Nambu and Jona-Lasinio [53] (see also [55]). This procedure yields a gauge
invariant real part of the amplitude in one-loop, because the imaginary part of the amplitude
is gauge invariant in one-loop order. In this method, however, the one-loop tadpole diagram
cannot be reproduced from its imaginary part as the tadpole diagram does not contain any
imaginary part. Another way® is to utilize a gauge invariant regularization such as the
Pauli-Villars regularization [54, (5] which preserves gauge invariance by construction but
breaks chiral symmetry explicitly. The drawback is however, for a finite regulator mass,
it is not clear whether the breaking of chiral symmetry results from the regulator or from
non-perturbative effect. Moreover, the regulator fields are “ghost” fields, which are not
completely decoupled at a finite cutoff A.

We will propose another method, which we call “least subtraction procedure”. In the NJL
model as a cutoff theory the cutoff A is a physical parameter, and a finite A is essential
to describe effectively Dy SB. If we subtract too much from the amplitude to restore gauge
invariance, we may lose information on non-perturbative effects. Therefore, we stress that
we keep the subtraction terms to the minimum as necessary. The details of least subtraction
procedure is given in Appendix A, where we consider the photon self-energy, the S-v-v as
well as the ¢-¢-y-v vertex functions. The results are applied to the next section for the
calculation of the DM annihilation cross section into two ~’s.

V. MONOCHROMATIC y-RAY LINE FROM DM ANNIHILATION

The charge @ of the hidden fermion is a free parameter. It can be constrained from the
indirect detection of DM, e.g. the upper bound on o(¢¢p — ~7) for v-ray lines given in
[415-47]. The four-point ¢-¢-y-v coupling® is generated at one-loop as is shown in Fig. 3 ~ 5,
which predicts the DM annihilation into two monochromatic photons of energy mpy. Similar
processes have been calculated in a universal extra dimension model [13], for instance. In
Appendix A it is shown how to restore gauge invariance of the four-point amplitude, with
the result given in (A32). If we neglect the mass of Z against mpy, the four-point functions
AR (vZ) and Afl(ZZ) can be approximated by (A32) as well, with the replacement of e
by —e?ty and e*t},, respectively.

For p = p’ = (mpm,0) the photon momenta take the form k = (mpy, k) and &' =
(mpu, —k), with their polarization tensors €(k) = (0, €(k)) and e(k’) = (0, e(k’)) satisfying

O0=¢ck)-k=¢elk) K =ek) - p=clk) D (15)
O=¢lk') - k=elk) K =ek')-p=¢€lk')-p, (16)
5 (-function regularization was also used in [(4] to obtain a gauge invariant effective potential in the

presence of the electromagnetic field as an external field.
6 The U(1)y gauge invariance and the SU(3)r flavor symmetry together with the reality of ¢ forbid the

existence of the ¢p¢B,, coupling.
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Figure 7. Left: The Fermi Lat [16] (black) and HESS[15] (red) upper bounds on the velocity-averaged
DM annihilation cross section for monochromatic y-ray lines, where this graph is taken from [45]. Right:
the velocity-averaged DM annihilation cross section (vo)y4~z as a function of mpy with @ = 1/3, where
Qh? = 0.1187 £ 0.005(30) [59] is imposed. Since (vo),4z is proportional to @, our calculations can be

simply extended to the case of an arbitrary Q.

respectively. Therefore, only g, terms of the subtracted gauge invariant four-point function
I, () contributes:

Ty (7)) = g (AR + AF) = i%QQ G A(YY) (17)

where A% (defined in (A12)) is the contribution from Fig. 3, while A (defined in (A28))
is the contribution from Fig. 4 and 5. The other ones can be approximated as

ab
.
I(ab) ~ Z;QQ G A(YY) X —tw v Z . (18)
th Z Z

Then (the s-wave part of) the corresponding velocity-averaged annihilation cross sections
are given by

ab
a?Q 7?2 1/2
(0 )= g AV iy 170 09

(3/4)thy (1 — m3 /miy )2 Z Z

where Zy4 is the wave function renormalization constant which is given in [10]. The energy
E,, of y-ray line produced in the annihilation into vZ is mpum(1 — m%/4m3,,). In practice,
however, due to finite detector energy resolution this line cannot be distinguished from the
E. = mpy line. Therefore, we simply add both cross sections. So we compute (V0).41yz =
(vo(pp — 7)) + (vo(pp — vZ)) with Q) = 1/3 as a function of mpy for different values of
A, Ag and Ayg. As noticed in the previous section, we have not included the annihilation
modes into vy,vZ,ZZ in calculating the relic abundance. In this way we can obtain a
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separate information on the size of the annihilation cross section producing the line ~y-ray
spectrum of DM in this model .

As we see from Fig. 7 (left) strong constraints are given for mpy =~ 0.6 (0.5) TeV:
(VO ) ymirz S 3(7) x 1072 cm?®/s. Since our DM is heavier than 0.7 TeV (see Fig. 6), these
strong constraints do not apply. Above 0.7 TeV, the upper bound is about one order of
magnitude larger than that for mpy = 0.6 TeV, so that the constraints can well be satisfied
even for ) > 1/3, as we can see from Fig. 7 (right). An interesting feature of the present
model is that the ~-ray line energy is constrained between ~ 0.7 TeV and ~ 0.9 TeV, be-
cause the DM mass mpy is constrained as it is explained in the previous section. Another
feature of the model related to y-ray lines is that the production cross section of y-ray lines
is in the same order in 1/N expansion (i.e. in one-loop order) as the total annihilation cross
section of DM. That is, (vo) gy 7 ww.. ~ (V0)4q4~z in the present model. This is similar to
one of three exceptions, forbidden channels, considered in [66]. In the case of the forbidden
channels the tree-level processes are kinematically forbidden, which should be contrasted to
the present case in which the Nambu-Goldstone DM has no contact with the messenger field
S at the tree-level.

The differential y-ray flux is given by

dd AN dN7*
B, & <Uff>wd—EV + <W>vzm ~ (V0) gy vz 0(Ey — mpwm) - (20)
Prospects observing such line spectrum is discussed in detail in [13, 11]. Obviously, with an

increasing energy resolution the chance for the observation increases. Observations of y-ray
lines of energies between ~ 0.7 TeV and ~ 0.9 TeV TeV not only fix the charge of the hidden
sector fermion, but also yields a first experimental hint on the hidden sector.

VI. CONCLUSION

The Nambu-Goldstone theorem predicts in the presented model for the hidden sector,
where chiral symmetry is dynamically broken and hence a scale is created, the existence
of a DM candidate. This generated scale is transmitted to the SM sector via a real SM
singlet scalar S to trigger spontaneous breaking of electroweak gauge symmetry. With a
non-zero U(1)y hypercharge @ of the hidden sector fermion the hidden sector is no longer
dark, and new possibilities to test experimentally the hidden sector are open. We studied
in this paper the possibility of DM annihilation and found that this model allows DM to
annihilate into two photons, producing a -ray line spectrum. We found that the y-ray line
energy must be between 0.7 TeV and 0.9 TeV with the velocity-averaged annihilation cross
section 1073% ~ 10726 cm?/s for Q = 1/3, which satisfies easily the recent limits given by

Fermi LAT [15, 16] and HESS [17].

" The contribution can become important for(vo),1~z = (vo(dp — S9)) ~ 8 x 10727 cm?/s. But this
approximate inequality can not be satisfied for mpy; between 0.7 TeV and 0.9 TeV, if the HESS constraint
for mpy = 0.8 TeV, i.e. (00)yyi02z S 2 % 10727 em? /s, is satisfied for this range of mpy. If the HESS
constraint for mpy = 0.8 TeV does not apply and there is no cosmological constraint for this range of
mpwm, we should control the size of (v0),,4,z by varying @) when the approximate inequality above is

satisfied.
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With a non-zero ) the hidden sector is doubly connected with the SM sector. The
connection via photon and Z opens possibilities to probe the hidden sector at collider ex-
periments such as ete™ collision [67]. In the parameter range, where the annihilation of
DM into two singlets SS is dominant and a correct relic abundance of DM is obtained, the
constituent mass M of the fermion is comparable with mpy, i.e. 0.7TeV S M < 0.9TeV.
This is the energy region of hidden hadron physics and the scale of the hidden sector itself
is ~ 0.7TeV, compared to Aqcp =~ 1 GeV. The hidden strong interaction becomes therefore
perturbative at about one order of magnitude above this energy region, = 10 TeV, and the
hidden fermion becomes massless and could be produced directly to yield hidden sector jets
at collider experiments.
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Appendix A: Least Subtraction Procedure

Here we elucidate least subtraction procedure which can be applied to any cutoff theory
in principle to obtain gauge invariant amplitudes. The basic idea is to keep the subtraction
terms to the minimum necessary. This works as follows. Consider an unsubtracted amplitude

AM---ung (Aski.. kng,D1-- - Pny)s (A1)

with n, photons and n, scalars (scalars and axial scalars) ®. Expand the amplitude in the
external momenta k’s and p’s:

Aoy = STAD (A2)
m=0

where A,(fﬁ).,ung consists of m-th order monomials of the external momenta. In general,
Afg)...,mg = AM,_M”Q (A;0,---,0) is non-vanishing and we can subtract it because it is not
gauge invariant. We keep the tensor structure of A,(ﬁ)_,_ung as the tensor structure of the

counter terms for Am),,“ng (m > 0) until a new tensor structure for the counter terms is
required. We continue this until no more new tensor structure is needed. At each step we
stress the minimal number of the new tensor structures for the counter terms.

ePhoton self-energy
As an example we consider the one-loop photon self-energy. Using the usual technique,

8 We impose that the on-shell conditions (except for the self-energy) and the momentum conservation for

the external momenta are satisfied.
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introducing a Feynman parameter x for the denominator of the propagators, going to the
Euclidean momentum space, shifting the internal momentum appropriately, we obtain the
unsubtracted self-energy tensor

E*Q*N.N; /1 i [ 4N (1 — 2)a(guwk? — kuky) — Mg
0

W (As k) = i— A2 1 B2

™

—4(gu K* — kuk,)(1 — 2)z In (1+ A*/B?))] (A3)

with B? = M?— (1—xz)z k*. According to least subtraction procedure, we expand I1,,,(A; k)
in £ and find

2 QNCN
I, (A k) = [ CQ NNy (9 Ag(A; 2 + Kk A (A K)]

872
A k2N kA
L2\ . 1.2 2 L 2) _ _
GART) = A (N ) TR A ) = = 35 ~ G + 2y ~ 30(A2 + AP

k6A4 /{8/\4
140(A2 + M?)*  630(A2 + M?)>
which would vanish if the amplitude were gauge invariant. Further,
e2Q*’N.N e2Q*N.N
HESJ) =1, (A;0) = Zng,uwAg(A; 0) = —Znguy/\4/(A2 + M?) . (A5)

This defines the tensor structure for the counter terms, because this term is not gauge
invariant and has to be subtracted. Therefore, the subtracted amplitude is Af(A; k?) =
A, (A; k*) — G(A; k*). Obviously, in this example, all the non-gauge invariant terms can be
canceled by the counter terms of this tensor structure. That is, no more new tensor structure
is needed for the counter terms.

Since in this example we know the closed expression for the amplitude, it is not necessary
to implement least subtraction procedure. As we see from (A3), the A*g,, term is not gauge
invariant. This non-gauge invariant term, which is a photon mass function HQV(A; k), can
not be made gauge invariant by adding k,k, terms without introducing a singularity in k2.
Therefore, we have to subtract IT} (A; k) from the self-energy IT,,, (A; k), in accord with least
subtraction procedure as described above.

The gauge invariant term proportional oc A? in (A3) gives a wrong normalization so
that further counter terms are needed. Finally, we have the normalized subtracted gauge
invariant self-energy of the photon:

2M)2 1 2 2
Ron. oy €Q NNy ) 4N*(1 —2)z 2A?%/3
H(Aik) = =g (g k™ - k“k”)/o dm { ( A2+ B2 N M

vt (1= OS2 (1 0= )

o S5-v-v amplitude
The next example is the S(p)-vy(k)-y(k') three-point function. There are two diagrams at

14



Figure 8. S-y-v coupling

the one-loop level as shown in Fig. 8. Again using the usual technique, we obtain the
unsubtracted amplitude

2 2 1-x
PQYN.N; M
A/»‘V(A k kl) = 47T2 / / dy A2 + DQ)

1 —4zy)( g k- K — kK,
|:gw/ - ( ( MDZ ) y (A?)
where
D*=M?*—2xy k-K . (AS)

The last term in the square bracket has an imaginary part and gauge invariant. The first
g term in the square bracket is not gauge invariant. It is obvious that least subtraction
procedure implies a complete subtraction of this term. The subtracted amplitude is

2 2 4 / /
Rin. 1 1/ QyNNfM/ / (1 —4zy)( gu k- K — kK]
Auu(Aa ka k ) - 47’(’2 A2 + D2) D2 .

(A9)

o -¢-v-v amplitude
The next example is the ¢(p)-¢(p')-v(k)-v(k') four-point function. The diagrams at the
one-loop level are shown in Fig. 3~ 5 with the sum of the unsubtracted amplitudes:

A (N kK p, o) = AD (N kK p, ') + AD (A kK p,p') + A (N kK p, ) (A10)

The diagrams of Fig. 3, which give Afﬁ,) in (A10), are simpler to compute, because the
structure is the same as Fig. 8. Again using the usual technique, we obtain the unsubtracted
amplitude (with Ny = 3)

e2Q*N,.| [GpM
@Ak, K 9 > / d /
A )= [ 272 8G? ’
y 201 (1—A4dzy)( g k- K — kK] )
(AQ + D2)2 Guw D2 ’
where D? is given in (A8). The non-gauge invariant terms have the same structure as (A7).
Therefore, we subtract the non-gauge invariant g,, term:

Aﬁf“) = (g k- K — k& AR = A/(f) with the first g, term omitted. (A12)

v

(A11)
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The tensor structure of the other diagrams is more complicated. The amplitude has to
satisfy the Bose symmetry:

A (N K p,p') = Ay (A K yp,p') and A (As kK p,p') = A (A kK p p) (A13)
To proceed we introduce the Mandelstam variables:

S=p+p)=2mpy+2p-p=(k+k)?=2k-k, (A14)
T=p—kP=mby—2p-k,U=(@p—K)=miy—2p-k . (A15)

All the dot products of the momenta and m#,, can be expressed as a function of S, T and

U. The most general tensor structure, which is consistent with the Bose symmetry (A13)

o C
is”

b+c . / AN b . / / c . / /
AL:— )(A7 kvk apap) _AELJ(Aa k7k Ps D ) +./4£“2(A, kak ap7p)
[eQ°N. Gp(o)\’
i [ o ] (1 RpLL ) (g A, (A: S, T, U)
+ kuky, Api(N; S, T,U) + (pupy + p,p,,) Ap(A; S, T,U)
+ 0y Ap(N; S, T,U) + pup, Ay (A;S,U,T)

(ki + pukl) AR(A; S, T, U) + (K, + DKL) Ar(A; S, U T) }
(A16)

where the amplitudes A;’s have to satisfy
Ag,kk,p(A; S, T, U) = Ag7kk,p(A; S, U, T) . (A17)
Gauge invariance means that the following quantities vanish:

kVAMV(A; ka klapvp,) = k:lla gl(A) Sa T’ U) +pu gQ(A’ Sa T’ U) +p,/u, g3(A’ S) Ta U)’ (A18)
KA (A, K p,p') = Ky, GL(A S, T, U) + py Go(As S, T,U) +pj, G5(A; S, T, U), (A19)

where we impose the on-shell condition k* = k"* = 0, p? = p'*> = m?,; along with the four
momentum conservation p + p' = k + k’, and G;’s are defined as

Gi(A; S, T, U) = Gy (A; S, T, U)

_A(A:S,T,U) + % QAN S, T,U) + Ax(A: S, T, U) + Ax(A: S, U, T)
+ }l(T Y [A(A S, T U — A(A: S, U,T)] (A20)

:i(s —T+U)A(A; S, T,U) + gAk(A; S,T,U) + i(s +T —U)Ay(A; S, U, T), (A21)

9 Because of the on-shell gauge invariance, we have suppressed terms proportional to k, and k; in (A16).

16



G3(A; S, T,U) = Gy(A; S, T,U) = Go(A; S, U, T)
:i(s +T - U)A,(N; S, U, T) + gAk(A; S,U,T) + i(s —T+U)Ay (NS, T,U). (A22)

Gauge invariance requires that all G;’s should vanish identically. We have calculated them
for ASLJFC) = AL’L) + Aff,,) explicitly for a small external momenta ~ O(e) and find

A4

e:o:glzm, Go =0, (A23)
eﬁzglzwél—M[sm(TJrU)],gFWJ’%(T—U% (A24)
4 A4 2 2 2
O =saar gy (8257 + 2S(T +U) + 64 {47+ U) 4 TTUY]

Gy :280(A?;A: M2)4(T —~U)[16S +13(T + U)] , (A25)

6 A4

161 = 1753 +21685%(T 1 T2 1 2 T
<9 = h0s(A 1 M) [5175% + 2168S%(T + U) + 108 {337(T* + U?) + 586TU }
FTOUT U £ 15910 4 TUY)) a9
A 2 2 2
G ~336(A2 1 A7) (T —U) [116S* + 239S(T + U) + 17{7(T* + U?) + 10TU }] ,

A4
P16 = 21425 + 100585%(T 25°({9701(T? 4 U?) + 17284T
+ 155 {1399(T? + U®) + 3137(T*U + TU?)} + 3 {3993(T"* + U*)
+HILT8(T3U + TU®) + 110987202}
A4
= T —U)[15125° + 4 2(T
G2 1584(A2+M2)6( U)[ 5125° +4007S(T + U)

+155 {319(T7% + U?) + 512TU } + 630 {3(T° + U*) + 5(T°U + TU*)}] . (A27)

As we see from (A23) ~ (A27) that the non-gauge invariant function G; has the same
structure as G in (A4) for the photon self-energy. Therefore, we subtract this term from the
amplitude so that the function A, is replaced by

A=A, -Gy | (A28)

where A, and G; are defined in (A16) and (A20), respectively. At O(e?) G, becomes non-zero.
As we see from (A18) and (A19), this non-gauge invariant term requires an introduction of a
new tensor structure for counter terms. We see from (A23) ~ (A27) that G, is proportional
to (T'— U), so that we can rewrite it as

Go(A; S, T,U) = (T — U)Gy(A; S, T, U | (A29)
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which will be justified below to all orders in the expansion of £’s and p’s. Therefore, we can
cancel this non-gauge invariant term by adding counter terms such that A, and A, change
according to

A, = A=A, + 2G5, Ay — Al = Ay — 26, | (A30)
vyhere A, and A, are defined in (A16). Since A, has to satisfy the Bose symmetry (A17),
Go, too, has to satisfy the same symmetry. We have numerically checked that

Go(A; S, T, T) =0, Go(A; S, T,U) = —Go(A; S, U, T) (A31)
is satisfied within an accuracy that we can get, which implies that Q}(A; S, T,U) =

~

Ga(N; S, U T).

Finally, we have the gauge invariant ¢-¢-v-v four-point function:

e2QN, Gplo)\? "

53 } (1 ~ 807 ) {gw AJ(N;S,T,U)
+ kK, Ae(A; S, T,U) + (pupy + p,p,,) AF(A; S, T, U)
+ 1, AS(A; S, T, U) + pup,, AN (A; S, U, T)

+(kup), + puky) Ae(A; S, T,U) + (kupy + Pl k) Ar(A; S, UT)
(A32)

A (N K p,p) =AY (A5 b, K p o)+ {

where A%@ is given in (A12). Note that for the case T = U the function G, vanishes.
In this case, therefore, all the counter terms are proportional to the metric tensor. In the
center of mass system, 7" = U implies p = p’ = (mpy, 0), and only k and k" are independent
Lorentz vectors (p, = (k, + k,,)/2). In this system, the non-gauge invariant terms of A,
are proportional to g,,. No Lorentz transformation can produce non-gauge invariant terms
proportional to k,p, or p,p, from the g,, term. This is the reason why G, vanishes when
T = U, and therefore the assumption that this function takes the form Gy, = (T'— U )Qg is
justified to all orders in the expansion of k’'s and p's. The amplitude with p = p’ = (mpy, 0)
will be used for the annihilation of two DM’s into two photons in sect. V.

The tensor structure (A16) is the most general one. However, using the on-shell conditions
k+k = p+p' we can eliminate k and k', because k, and k;, terms do not contribute neither
to the physical amplitude nor to the on-shell gauge invariance conditions (A18) and (A19)
and hence can be suppressed as we have done in (A16). In this basis, Afff C)(A; k,k' p,p) of
(A16) becomes

, [e*Q?N, Gplo)\?
Aﬁbfc)(/\;k,k/,p,p)zl{ gﬁrz }(1— 8DC§2>>
X {g,w Ay(A; S, T,U) + (pupy + p,p,,) Ap(A; S, T, U)

000 Ay (A5 S, TU) 4+ ptl, Ay (A S,UT) . (A33)

where

A (NS, T, U) = Ay(A; S, T,U) + Ai(A; S, T,U) + Ap(A; S, T, U)
Ay (NS, T U) = Ay(A; S, T,U) + A (A; S, T, U) + 2A:(A; S, U, T) . (A35)
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Then the gauge invariance conditions (A18) and (A19) mean that

g~2(A; S7 T, U) = g~3<A; Sv U? T)

1 1 -
= Z<S —T+U)A,N ST, U) + Z<S +T —-U)Ay(A; S, U,T) (A36)
= Gi(A; S, T,U) + (T = U)Ga(A; S, T,U) (A37)
has to vanish, where G; and G, are defined in (A20) and (A29), respectively. From (A36)
and (A37) it is now obvious how to restore gauge invariance: From (A37) we see that

GQ(A; S,T,U) can be uniquely divided into the even and odd part under the interchange
T < U, because G; and Gy are even functions. The odd part can be canceled by

A, = A=A, +2G, , Ay — Al = Ay — 26, (A38)

as in the case of A, and A, (see (A30)). The even part can be canceled by the redefinition
of A, which is defined in (A28). The resulting gauge invariant subtracted amplitude is
identical with (A32) up to on-shell conditions.
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