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ABSTRACT: Complex I (CI; NADH dehydrogenase) deficiency causes
mitochondrial diseases, including Leigh syndrome. A variety of clinical
symptoms of CI deficiency are known, including neurodegeneration. Here,
we report an integrative study combining liquid chromatography—mass
spectrometry (LC—MS)-based metabolome and proteome profiling in CI
deficient HeLa cells. We report a rapid LC—MS-based method for the
relative quantification of targeted metabolome profiling with an additional
layer of confidence by applying multiple reaction monitoring (MRM) ion
ratios for further identity confirmation and robustness. The proteome was
analyzed by label-free quantification (LFQ). More than 6000 protein groups
were identified. Pathway and network analyses revealed that the respiratory
chain was highly deregulated, with metabolites such as FMN, FAD, NAD",
and ADP, direct players of the OXPHOS system, and metabolites of the
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TCA cycle decreased up to 100-fold. Synthesis of functional iron—sulfur clusters, which are of central importance for the electron
transfer chain, and degradation products like bilirubin were also significantly reduced. Glutathione metabolism on the pathway
level, as well as individual metabolite components such as NADPH, glutathione (GSH), and oxidized glutathione (GSSG), was
downregulated. Overall, metabolome and proteome profiles in CI deficient cells correlated well, supporting our integrated

approach.
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B INTRODUCTION

Complex I (NADH dehydrogenase, CI) is part of the
mitochondrial oxidative phosphorylation (OXPHOS) system
and plays critical roles in transferring electrons and pumping
protons to maintain the electrochemical gradient across the inner
mitochondrial membrane. This gradient is used by the
mitochondrial ATPase to synthesize ATP, the main source of
ATP under aerobic conditions in eukaryotes. The cause of CI
deficiency can originate from both mitochondrial or nuclear
DNA mutation, as both genomes contribute subunits to CI. CI
deficiency is the most frequent mitochondrial disorder,
characterized by clinical and genetic heterogeneity,' and includes
Leber’s hereditary optic neuropathy (LHON), mitochondrial
encephalomyopathy, lactic acidosis, and stroke-like episodes
(MELAS), myoclonic epilepsy with ragged red fibers (MERRF),
and Leigh syndrome (LS).

Rotenone is frequently used to study CI dysfunction.””” It is a
specific inhibitor® that binds to the ubiquinone binding site of
CL>'" thus preventing electron transfer via FMN (flavin
mononucleotide) to coenzyme Q10. The repercussion of this
is the interruption of the entire oxidative phosphorylation chain,
simulating the features of CI deficiency.

Metabolome profiling is a complex task because of huge
structural diversities, variations of size, and polarities of
metabolites. No single analytical method is capable of
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comprehensive metabolic profiling'' and hence different column
and buffer settings for an optimal LC separation of metabolites
are needed. A targeted LC—MS approach,12 the high-quality
analysis of a subset of predefined metabolites with known
chemical structures, is thus the ideal method. Once established,
the target-based approach is advantageous because of its fast and
reliable measurement of the selected analytes in complex
samples. MRM has been commonly used for the analysis of
small molecules and peptides,'> but the identification of
metabolites based on one MRM is still error-prone. Previous
studies'*™'® have used only one transition for metabolite
identification. To increase the confidence of metabolite
identification, some investigators already use three transi-

The metabolic and proteomic states can reveal information on
the genetic, physiological, or functional status of the system.
Combining proteome and metabolome approaches can be very
useful to obtain deeper and better insight into living systems.

Here, we investigated CI deficiency introduced by rotenone
and analyzed the interplay of proteins and metabolites under
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well-defined conditions. As an additional layer of confidence in
metabolite identification, we employ metabolite-specific tran-
sition ratios, MRM ion ratios. This concept was first described in
the context of small molecules as the branching ratio, where each
time a small molecule was fragmented and multiple product ions
were detected the ratio of these ions to one another was
consistent.”>

In this study, we quantitatively profiled the entire proteome
and selected metabolites to obtain a holistic view of induced CI
deficiency. For quantitative proteome profiling, we used a
shotgun LC—MS/MS approach and applied a label-free
quantification method*® to compare CI deficiency to controls
in biological triplicates. The combination of three MRMs and
their MRM ion ratios results in an enhanced method for the
reliable, rapid, and quantitative profiling of metabolites. We
detected molecular changes in CI deficient cells by quantitatively
analyzing shotgun proteomics and targeted metabolomics data,
applying bioinformatics network approaches, and we identified
several biological pathways and hub proteins that are
dysregulated in rotenone-treated HeLa cells.

B MATERIALS AND METHODS

Metabolite Tuning and LC—MS/MS Optimization for MRM
lon Ratios

The target metabolites were selected to cover most of the
important metabolic pathways in mammals: 273 metabolites in
total. Pure metabolites were dissolved to a final concentration of
1 uM in MeOH and 0.1% formic acid, and 10 mM ammonium
hydroxide was added and injected by a syringe (7 #L/min) into
the triple quadrupole hybrid ion trap mass spectrometer (QTrap
6500, ABSciex, Toronto, Canada). Precursor ions were
fragmented in positive and negative electrospray ionization
(ESI) modes, and the seven most intense fragment peaks in each
polarity were chosen and optimized for the following parameters:
declustering potential (DP) for precursor ions, collision energy
(CE), and collision cell exit potential (CXP) for fragment ions.
Transitions were monitored and acquired at unit resolution
(peak width at 50% was 0.7 + 0.1 Da tolerance) in quadrupole
Q1 and Q3. In order to identify the transitions with the highest
ion counts and an optimal LC separation of the metabolites, we
ran all metabolites on an online-coupled LC—MS/MS system:
1290 Infinity UHPLC (Agilent, Santa Clara, CA, USA), QTrap
6500 (ABSciex, Toronto, Canada). The following columns were
used for LC separation of metabolites: a Reprosil-PUR C18-AQ
(1.9 um, 120 A, 150 X 2 mm ID; Dr. Maisch; Ammerbuch,
Germany) column and a zicHILIC (3.5 ym, 100 A, 150 X 2.1 mm
ID; di2chrom; Marl, Germany) column at a controlled
temperature of 30 °C. All LC running conditions are described
in Supporting Information Table S1 and the LC Conditions for
Metabolomics section. Data acquisition was performed with an
ion spray voltage of 5.5 kV in positive mode and 4.5 kV in
negative mode of the ESI source, N2 as the collision gas was set
to high, curtain gas was set to 30 psi, ion source gas 1 and 2 were
set to S0 and 70 psi, respectively, and an interface heater
temperature of 350 °C was used, which was operated with AB
Sciex Analyst 1.6.1 software with components for 6500 series
instruments.

The LC method with the best metabolite separation and the
three metabolite transitions with the highest ion count (peak
area) were picked for the final LC—MRM method. In order to
calculate MRM ion ratios, the most intense peak was set to 1, and
the two smaller peaks were divided by the most intense peak (all

MRM ion ratios are available in Supporting Information Table
S2). Three replicates for each metabolite were used to calculate
the final MRM ion ratios, which are used as reference values. The
presence of 2peaks was compared to databases such as Metlin®*
and HMDB? in order to confirm fragment masses. All evaluated
metabolites can be found in Supporting Information Table S2.
For a few metabolites, we lacked the substance for tuning and
therefore solely relied on our own MS/MS spectra from
biological samples matching database spectra (the three most
intense transitions were taken), or we used only transitions from
available database resources, as indicated in Supporting
Information Table S2. Therefore, instrument settings for these
nontuned metabolites could not be optimized.

Cell Culture

HeLa (human cervical cancer) cells were cultivated in DMEM
(Invitrogen, Carlsbad, CA, USA) containing 4.5 g/L glucose
supplemented with 10% FBS and 1% penicillin—streptomycin—
neomycin antibiotic mixture (Invitrogen, Carlsbad, CA, USA) at
37 °C in a humidified atmosphere of 5% CO,. The cells were
grown in 300 cm® polystyrene flasks to approximately 90%
confluence. Fifty milliliters of fresh media supplemented with 1
UM rotenone or DMSO as control was added, and after 38 h of
incubation, cells were sampled for proteome and metabolome
analyses. The experiment was done in biological triplicates for
rotenone-treated and controls.

Measurement of Complex | Enzyme Activity, Cell Viability,
and Apoptosis

In order to inhibit complex I enzyme activity efficiently as well as
to keep the cells proliferating and to prevent apoptosis, we
evaluated the optimal concentration of the CI inhibitor rotenone.
Complex I enzyme activity was measured according to ref 26.
Cell viability was determined by trypan blue staining. To test for
apoptosis, we checked for DNA laddering on a 1.5% agarose gel.

Cell Harvesting for Metabolomics

The growth medium was removed, and cells were rapidly rinsed
by gently dispensing S mL of ice-cold 1X PBS onto the cell’s
surface. Then, 1 mL of ice-cold water was added into the flask,
which was then flash frozen in liquid nitrogen. The time frame
between medium removal and flash freezing was 1 min. Cells
were detached with a cell scraper and transferred into a 15 mL
tube. All cell suspensions were lysed by two rapid freeze—thaw
cycles in liquid nitrogen, followed by 30 s of sonication on ice.”’

Metabolite Extraction

The final ratio of solvents used in the biphasic methanol/
chloroform/water extraction method was 2.0:2.0:1.8.>° Eight
milliliters per gram of cold methanol (—20 °C) and 4 mL/g
chloroform (type II carcinogen) were added to the homogenates
and vortexed. Samples were always kept on ice, mixed for 10 min
at 4 °C, and centrifuged for 5 min at 2000g at 4 °C to remove
debris and precipitated protein. The pellet can be used to isolate
DNA or proteins to serve as a normalization tool for the amount
of sample deployed. The supernatant was transferred to a new
tube, and 4 mL/g chloroform and 4 mL/g water were added.
Samples were vortexed for 60 s, kept on ice for 10 min for phase
separation, and centrifuged for 10 min at 2000g at 4 °C. The
resulting upper polar and lower nonpolar fractions were
separately transferred and combined (tests have shown that
most of the metabolites, at least to some extent, are present in
both fractions; data not shown) in three clean tubes containing
the internal standard chloramphenicol, dedicated for subsequent
analysis by using MeOH, ACN, and H,O as alternative solvents
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for LC—MS runs. Samples were lyophilized in the centrifugal
concentrator.

Metabolite Sample Preparation for LC—MS/MS Analysis

The residuals were suspended in 35 yL of ACN with 0.1% FA
and 35 pL of MeOH with 0.1% FA for analysis by HILIC and in
20 puL of H,O with 0.1% FA for RPLC and were then centrifuged
at 17 500g for S min at 4 °C. Samples can be further cleaned to
avoid column clogging, if necessary (iso-disc filters PTFE 13 mm
X 0.2 mm, Supelco, Bellafonte, PA, USA). The supernatants were
transferred to microvolume inserts, and S 4L per run was injected
for LC—MS/MS analysis.

Rotenone- and mock-treated HeLa cells were run as biological
triplicates. A total of 10 different run conditions (including
polarity switch) were necessary to analyze all metabolites. A
biological triplicate can be run automatically in 1 day. The
scheduled MRM algorithm, monitoring transitions only 300 s
around the expected RT, was used to decrease the number of
concurrent MRMs monitored at any time point.

LC Conditions for Metabolomics

The chromatographic separations were performed on RP and
zicHILIC stationary phases. A 1290 series UHPLC (Agilent,
Santa Clara, CA, USA) with four different buffer conditions was
used: (Al) 10 mM ammonium acetate in LC—MS grade H,O
(adjusted with FA to pH 3.5), (A2) 10 mM ammonium acetate in
LC—MS grade H,0 (adjusted with ammonium hydroxide to pH
7.5), (B1) LC—MS grade ACN with 0.1% FA, and (B2) LC—MS
grade MeOH with 0.1% FA. Gradients and flow conditions are
described in Supporting Information Table S1. The columns
have to be equilibrated with a blank run in the corresponding
buffer system; in the case of MeOH-based methods, three blank
runs were necessary for equilibrating.

Evaluation of the MRM Method and Data Analysis

Relative quantification was performed using MultiQuant
software v.2.1.1 (AB Sciex, Foster City, CA, USA). Integration
settings were a Gaussian smooth width of 2 points and a peak
splitting factor of 2. Peak integrations were reviewed manually,
and result tables were exported as Excel files. The most important
feature used to correctly identify analytes was the ratio between
the transitions, which had to match to MRM ion ratios of the
corresponding tuned metabolites. The transition with the largest
peak area was set to 1; transitions with smaller areas were divided
by the largest. A shift of +10% of the peak area was allowed for
MRM ion ratios compared to the tuned value of the largest peak.
All three transitions had to co-occur at the expected retention
time and feature the same peak shape. Peak areas in blank runs
had to be at least <90% smaller compared to that in the biological
sample. The S/N ratio had to be above 10, at least for one
transition. Transitions with a S/N ratio below 10 were used only
for identification and not for quantification.

The significance of concentration differences in metabolite
levels between controls and treated samples was evaluated using
a two-tailed Student’s t-test with a significance threshold of p <
0.0S. The average ratio from all MRMs of one metabolite was
used to calculate the log, fold change between treated and mock-
treated samples. GraphPad Prism 5.03 was used for graphing,
curve smoothing, and data organization.”” The heat map was
generated with R, which is available online at http://www.r-
project.org/ (Vanderbilt University, Nashville, TN, USA). MS?
spectra of IMP were searched against the MassBank database.*

Cell Harvesting and Sample Preparation for Proteomics

HeLa cells were harvested, lysed, and reduced in buffer
containing 4% SDS, 0.1 M DTT, 0.1 M Tris, pH 8. A BC assay
(Sigma-Aldrich) was performed to determine the protein
concentration. Lysates (each containing 1 mg of protein) were
sonicated on ice for 15 s and boiled at 95 °C for 5 min. Lysates
were alkylated with a final concentration of 5.5 mM
chloroacetamide for 30 min. Samples were precipitated with
acetone overnight at —20 °C. Precipitates were lyophilized and
dissolved in 8 M urea and 10 mM Tris, pH 8. Lys-C digestion
(0.8 pg/sample) was performed for 4 h at room temperature
followed by a trypsin digestion (2 ug/sample) in 2 M urea
overnight at 37 °C.>' Peptides were purified with C18 columns
and further separated using strong anion exchange chromatog-
raphy (3M Purification, CT, USA) according to ref 32. Each
sample was fractionated into six samples according to pH (11, 8,
6, S, 4, and 3) and subsequently purified and concentrated with
C18 StageTips. Each sample fraction was dissolved in 3 uL of 5%
ACN and 2% FA and analyzed by liquid chromatography online-
coupled to a nanoHPLC—MS/MS system.

LC—MS Settings for Proteomics

LC—MS/MS was carried out by nanoflow reverse-phase liquid
chromatography (Dionex Ultimate 3000, Thermo Scientific)
coupled online to a Q-Exactive Plus Orbitrap mass spectrometer
(Thermo Scientific). Briefly, LC separation was performed using
a PicoFrit analytical column (75 pgm ID X 25 cm long, 15 ym Tip
ID (New Objectives, Woburn, MA, USA)) in-house packed with
3 um C18 resin (Reprosil-AQ_Pur, Dr. Maisch, Germany).
Peptides were eluted using a gradient from 3.8 to 98% solvent B
over 192 min at a flow rate of 266 nL/min (solvent A: 0.1%
formic acid in water; solvent B: 80% acetonitrile and 0.08%
formic acid). Three kilovolts was applied for nanoelectrospray
generation. A cycle of one full FT scan mass spectrum (300—
1700 m/z, resolution of 35 000 at m/z 200) was followed by 12
data-dependent MS/MS scans with a normalized collision
energy of 25 eV. Target ions already selected for MS/MS were
dynamically excluded for 10 s.

Label-Free Proteomics Data Analysis

Raw MS data were processed with MaxQuant software (version
1.5.0.0)* and searched against the human proteome database
UniProtKB with 81 194 entries, released 2012-02. A false
discovery rate (FDR) of 0.01 for proteins and peptides and a
minimum peptide length of 7 amino acids were required. A
maximum of two missed cleavages was allowed for the tryptic
digest. Cysteine carbamidomethylation was set as fixed
modification, whereas N-terminal protein acetylation and
methionine oxidation were set as variable modifications. The
software MaxLFQ, a generic method for label-free quantifica-
tion>® that is integrated into MaxQuant, was used for relative
quantification. Additionally, the match between runs feature was
implemented to increase the number of peptides that can be used
for quantification. The correlation analysis of biological replicates
and the calculation of significantly different proteins were done
with Perseus software (version 1.5.0.8). LFQ_ intensities
(originating of at least two different peptides per protein
group) were log-transformed, and only protein groups with
values in every replicate were used for further data evaluation. In
order to identify significantly different regulated proteins in
control versus rotenone treatment, we applied a t-test with a
permutation-based FDR. Two-hundred fifty permutations were
performed; the FDR cutoft value was set to 0.05. The MaxQuant
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Figure 1. Dynamic range of six amino acids featuring three specific MRMs and their MRM ion ratios in logarithmic-scaled graphs. Data are the mean +
SD; n = 3. The MRM ion ratios within the linear range (between dotted lines) are shown in brackets (transition—CV%): (A) L-leucine (86/44—5.06%;
86/43—16.02%), (B) L-isoleucine (86/69—2.96%; 86/56—4.35%), (C) L-valine (72/55—3.05%; 72/57—3.3%), (D) L-phenylalanine (120/77—7.68%;
120/103—7.05%), (E) L-tryptophan (188/146—3.6%; 188/118—3.25%), and (F) L-methionine (104/56—1.81%; 104/133—11.75%). The linear range

of MRM ion ratios is highlighted with dotted lines.

processed output file can be found in Supporting Information
Table S3.

Pathway and Network Analysis

Pathway and network analyses are novel methods to understand
the complex data sets derived from deep omics studies. Pathway
analysis was carried out by Gene Set Enrichment Analysis
(GSEA) v2.0.14, with standard settings and a minimum size of 5
sets,>* to address the question which pathways are altered upon
rotenone treatment on a global scale. All mean values of the 3423
protein group ratios, as listed in Supporting Information Table

S4, were used as input for GSEA analysis. Both the p-value and
FDR g-value had to be <0.05 to be regarded as significant.

To identify the main hub proteins in CI deficient cells, we used
only significantly regulated (Supporting Information Table SS)
as well as more than 2-fold regulated proteins (Supporting
Information Table S4) to generate interaction networks using
STRING 9.1 (Search Tool for the Retrieval of Interacting
Genes),* applying a medium confidence score of 0.4. GO
biological processes were selected within the network to visualize
pathway affiliations. These interaction networks were extracted,
further analyzed, and evaluated using the Cytoscape v3.1.1%°
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plugin network analyzer.>” Network analyzer was used to identify
the hub proteins carrying the highest closeness centrality (CC)
and betweenness centrality (BC) as key topological parameters.

B RESULTS AND DISCUSSION

CI deficiency is the most common mitochondrial disease in
humans.**** Here, we report a proteome and metabolome
profiling study to shed light on molecular changes in CI deficient
HeLa cells. For metabolome profiling, we adopted a strategy used
in targeted MRM-based proteomics, which is not yet widespread
in metabolomics: the use of multiple fragment masses and their
ion ratios as an additional quality criterion for metabolite
identification and relative quantification. After tuning and
optimizing MS parameters for each of the 273 pure metabolites
(except for acylcarnitines), we selected the three best transition’s
after LC separation on different columns. Besides the coelution
of MRMs, we calculated their MRM ion ratios as a second layer of
confirmation. Identification and relative quantification of
metabolites from biological samples was approved if both criteria
matched the tuned values. For proteomics profiling, we used a
shotgun approach with relative label-free quantification. The
proteome profiling results will be discussed together with the
metabolome outcome for a holistic view of CI deficiency.

Evaluation of MRMs and MRM lon Ratios

The mammalian metabolome consists of several thousand
different metabolites,** which are chemically very diverse, and
the abundances are spread over a wide range of magnitudes.
Thus, profiling an entire metabolome remains a major challenge.
Monitoring one MRM over the entire time range usually results
in several peaks. Knowledge of the expected retention time (tg) is
essential for correct peak selection. However, especially in
complex samples, two or more peaks close to the expected
retention time are frequently detected. The correct peak often
cannot be readily assigned, which can result in misidentification
and incorrect quantification. One can calculate a relative
retention time based on internal standards, but if two metabolites
are indistinguishable based on MRMs and retention time, then
only an MRM ion ratio alteration would identify this
discordance.

To test the accuracy and dynamic range of our approach, an
amino acid mixture consisting of pure Leu, Ile, Val, Phe, Trp, and
Met was examined in technical triplicates. The concentrations
ranged from 100 pM to 3 mM. The verification of linearity was
determined by the limit of detection (LOD), the variation
coefficient (CV%) of the technical triplicates, the MRM ion
ratios, and Mandel’s fitting test performed at 95% confidence
level. The linear range of the amino acid set was determined to be
below 15% CV (for MRMs and MRM ion ratios) of blank-
corrected triplicates. With these criteria, the dynamic range spans
about 3 to 4 orders of magnitude (Figure 1).

We next asked whether MRM ion ratios are robust indicators
for metabolite identification and monitored several metabolites
over a time range of 6 months in biological samples of different
origin (cell culture, brain, liver, fat) and species (human, rat,
mouse), as indicated in Table 1. MRM ion ratios not matching
tuned reference values (Supporting Information Table S2) have
to be removed to avoid false metabolite identification. Thus,
MRMs together with their MRM ion ratios present an
unmatched identification mark for metabolites. Pure metabolites
(Figure 1), or with a biological matrix (Table 1), did not show
any differences in their MRM ion ratios, indicating the
robustness of this approach.

Table 1. Determination of the Variation of the MRM Ion
Ratios of Various Sources Measured over 6 Months®

(1) MRMion CV  (2) MRMion CV

ratio (%) ratio (%)
L-arginine (n = 6) 1/0.35 S.1 1/0.31 1.1
L-glutathione (red.) (n=5) 1/0.35 9.6 1/0.31 10.6
creatinine (n = 5) 1/0.27 4.7 1/0.03 26.9
trimethylamine-N-oxide 1/0.66 4.7 1/0.12 8.9

(n=6)
NAD (1 = 6) 1/0.53 52 1/026 9.7
FAD (n = 6) 1/0.48 33 1/0.39 3.1
sp%lingos)me-l-phosphate 1/0.10 13.7 1/0.09 18.5
n=26

“MRM values are according to Supporting Information Table S2.

Together, these results clearly show the accuracy and
reproducibility of MRM ion ratios and can therefore be used
for metabolite identification and relative quantification in
complex mixtures.

Identifying Inosine 5’-Monophosphate by Applying MRM
lon Ratios

Inosine S’-monophosphate (IMP) is the ribonucleotide of
hypoxanthine and is the first compound formed during purine
synthesis. IMP has the monoisotopic precursor molecular weight
of 348.05 Da. The scheduled LC—MS/MS run for IMP detects
two peaks at the proposed t;, each showing all three MRMs
(Figure 2).

There are no obvious criteria that assign the correct peak to
IMP. Indeed, the 17-fold more intense peak shown on the right
side is likely to be selected as the IMP-specific peak (Figure 2A).
However, zooming into the left peak shows (Figure 2B) that the
MRM ion ratios are clearly distinguishable from those of the peak
on the right side. Comparing these MRM ion ratios with
predetermined values shown in Supporting Information Table
S2 allows one to unambiguously determine the peak on the left as
the genuine signal for IMP. This was further confirmed by MS*
spectra (Figure 2C—E).

Complex | Enzyme Activity, Cell Viability, and Apoptosis
Upon Treatment of Rotenone

Most cancer cell lines feature alterations in their karyotype and
switch their energy metabolism from a low rate of glycolysis
followed by cellular respiration to a high rate of glycolysis
followed by lactic acid fermentation, known as the Warburg
effect. Thus, cancer cell lines are convenient, but they are not the
optimal choice for studying the respiratory chain. Besides these
limitations, our HeLa cells showed high cellular respiration
(Supporting Information Figure S1A), comparable to that of
other noncancerous tissues, like renal tissue.®*!

We examined the efficiency of several rotenone concen-
trations, ranging from 10 nM to 1 uM, to inhibit CI enzyme
activity. CI enzyme activity of HeLa cells was entirely inhibited at
a concentration of 1 M rotenone (Supporting Information
Figure S1A). At the same time, the cell viability was over 90%
(Supporting Information Figure S1B), and no apoptosis-specific
DNA laddering was detected (Supporting Information Figure
S1C).

Metabolome Profile of Rotenone-Treated Hela Cells

We applied the MRM ion ratio strategy to identify differences in
metabolite abundance in CI deficient HeLa cells using rotenone,
a potent inhibitor of NADH dehydrogenase. After 38 h of
incubation with 1 M rotenone, 143 out of 273 metabolites were
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Figure 2. An example of correct peak identification based on MRM ion ratios. Inosine $’-monophosphate (IMP) with a monoisotopic precursor
molecular weight of 348.05 Da was monitored by the following three MRM transitions in positive ionization mode: 137, 119, and 110 Da. (A)
Iustration of IMP-specific MRM:s only in a time frame of the expected t;. Both peaks feature all three MRMs and could be identified as correct; the
mean area of the right peak is 17 times larger than that of the left peak. (B) Only MRM ion ratios identify the peak on the left side as truly being IMP
(zoomed y axis), matching the tuned IMP ratios of 1/0.13/0.12. The peak on the right side has different MRM ion ratios, 1/0.28/0.02, and hence does
not match IMP. Dotted lines at minutes 2.52 and 2.92 mark the time points where MS? spectra were taken. (C) MS? spectrum to verify that the left peak
is IMP; (D) the peak on the right side could not be assigned to any metabolite. (E) Tuned IMP spectra as a reference; all MS? spectra were taken with a
CE of 73 V. Fragment masses shown in red are identical to tuned IMP; missing fragment masses are shown in blue.

detected with at least 2 transitions and 3 measured values per
condition (Supporting Information Table S6). Metabolites
featuring different MRM ion ratios (+10%), compared to the
ratios obtained during MRM ion ratio determination using
individual standards (Supporting Information Table S2), were
excluded. Metabolites with significantly (t-test; p < 0.0S)
different concentrations between control cells and rotenone-
treated cells and at least a 2-fold change are shown in Figure 3.

We found that the abundance of 23 of the 143 detected
metabolites significantly changed in response to rotenone
treatment. Three metabolites were upregulated (>2.6-fold) and
20 metabolites downregulated (<0.45-fold) in rotenone-treated
samples. Interpretation of altered metabolite ratios is, in general,
challenging, as many compounds co-occur in different pathways.

We were able to identify important metabolites of the
oxidative phosphorylation system as being significantly regulated
upon rotenone treatment, such as flavin adenine dinucleotide
(FAD), a condensation product of flavin mononucleotide
(FMN), and adenosine diphosphate (ADP), which were both
downregulated (Figure 3 and Supporting Information Table S6).
FMN functions as an electron acceptor during the oxidation of
NADH to NAD" in CI of the respiratory chain. Rotenone blocks
the ubiquinone-binding site. Consequently, the electron transfer
via FMN to coenzyme Q10 is prevented, and the entire oxidative
phosphorylation chain is interrupted, explaining the observed
downregulation of FMN upon rotenone treatment (Figure 3).
FAD is a prosthetic group in the enzyme complex succinate
dehydrogenase (complex II) that oxidizes succinate to fumarate
within the tricarboxylic acid cycle (TCA). The electron carrier
nicotinamide adenine dinucleotide phosphate (NADP*) is

rotenone versus control
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Figure 3. Metabolic profile of significantly regulated metabolites in
rotenone-treated versus control cells. Only significantly (p < 0.05) and
>2-fold changed metabolites are shown; **, p-value < 0.01.

downregulated in the oxidized (NADP*) as well as in the
reduced (NADPH) form (Figure 3). NADPH provides the
reducing equivalents for biosynthetic reactions and participates
in the oxidation—reduction involved in protection from reactive
oxygen species (ROS).
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Nicotinamide adenine dinucleotide (NAD*) is used in
glycolysis and the TCA cycle and was significantly down-
regulated in rotenone-treated cells (Figure 3). NADH serves as
an electron carrier by being alternately oxidized (NAD") and
reduced (NADH), and the reducing potential stored in NADH
can be converted to ATP through the electron transport chain.
The final end product, the chemical energy transporter
adenosine triphosphate (ATP) of the OXPHOS system, was
not detectable, but adenosine diphosphate (ADP) was
significantly downregulated (Figure 3).

Bilirubin, a degradation product of heme, which is the central
part in Fe—S clusters, was significantly downregulated as well.

CDP-choline has been shown to restore the activity of
mitochondrial ATPase and membrane Na*/K* ATPase and has a
neuroprotective effect under hypoxic and ischemic conditions, at
least in neurodegeneration models.** Such a mechanism could
explain the observed 7-fold elevated level of CDP-choline in our
rotenone-treated samples. This result is further supported by the
findings from our proteome profile, which detected a 4-fold
upregulation of choline-phosphate cytidylyltransferase A
(PCYT1A), which catalyzes the synthesis of CDP-choline:
cytidine triphosphate + phosphorylcholine — pyrophosphate +
CDP-choline.

Most of the metabolites were highly regulated, but not
significantly, due to a high metabolic flux and the low number of
replicates. Nevertheless, the TCA cycle showed dramatically
reduced metabolite levels, which was the lowest for citric acid,
with a more than 100-fold decrease, and cis-aconitic acid, with a
6-fold reduction, virtually shutting down the TCA cycle
(Supporting Information Table S6).

All QTrap wiff files can be downloaded via http://www.
peptideatlas.org/PASS/PASS00543. A MultiQuant processed
list of all detected metabolite ratios can be found in Supporting
Information Table S6.

Proteome Profile of Rotenone-Treated Hela Cells

The same cell culture conditions as those described for
metabolome profiling were used to determine changes in the
proteome upon CI inhibition. For proteome profiling, we
additionally fractionated the samples using strong anion
exchange chromatography of tryptic peptides prior to online
coupled LC—MS/MS separation of peptides. Thus, six samples
(3 biological replicates) were analyzed in a total of 42 LC—MS/
MS runs. We identified more than 1.5 X 10° MS? spectra,
belonging to 6075 protein groups in total. For further data
analyses, we used protein groups with LFQ _intensities in each
replicate. This criterion resulted in a final protein group list with
3424 entries. Raw data can be downloaded via: http://www.
peptideatlas.org/PASS/PASS00543. MaxQuant processed out-
put files can be found in Supporting Information Table S3.

The reproducibility of the biological replicates was tested by
Pearson correlation and visualized in a multiscatter plot
(Supporting Information Figure S2A,B). The Pearson correla-
tion was consistently >0.93, indicating a robust quality of the
replicates.

To identify significantly altered protein groups, the distribu-
tion between the sample cohorts was visualized in a volcano plot
(Figure 4). Forty six protein groups were found to be
significantly regulated (26 up; 20 down) in rotenone-treated
cells (Supporting Information Table SS).

Pathway Analysis of Cl Deficient Cells

First, we aimed to identify regulated pathways on a global scale in
CI deficient HeLa cells. Therefore, we applied GSEA, a

45

35
b

- log,, (p-value)
25

15
.

0.5

2 45 4 05 0 05 1 15 2 25 3 35
Difference of log, group means (control - rotenone)

Figure 4. Volcano plot showing proteome data and the mean difference
of LFQ intensities between controls and rotenone-treated cells versus
statistical significance (—log, of the p-value). The line shows where the
threshold was set by applying a FDR of 0.05, resulting in 46 significantly
regulated protein groups.

computational method that determines whether an a priori
defined set of genes shows statistically significant, concordant
differences between two biological states.

We showed that OXPHOS-related metabolites were down-
regulated; in contrast, corresponding proteins were dysregulated.
The ATP synthase H* transporting subunits, for example, were
upregulated. This can be explained by the reverse direction of the
ATPase, where protons are purgped into the mitochondrial
interspace by hydrolyzing ATP.*** An electrochemical gradient
is essential for several biological functions. Another 14
respiratory chain subunits were upregulated, and 28 were
downregulated (Supporting Information Figure S3). An
explanation for the dysregulation could be the fact that the
subunits for the ATPase are encoded by two different genomes.
Furthermore, the assembly and oligomerization of the multi-
subunit containing enzyme ATPase happens in several steps,*
and intermediate complexes for H' transport might be
differentially regulated. These results attest to the complex
regulation of this system, where compensatory effects and
regulatory feedback loops play a role.

In contrast, a study analyzing the gene expression using a low
dose of rotenone (S nM) reported an increase of cellular energy
metabolism gene transcripts, based on GSEA results (note that
the FDR p-values were over 0.15; our cutoff was <0.05).2

We found that the pentose-phosphate pathway (PPP),
galactose metabolism, and glycolysis and gluconeogenesis were
significantly downregulated (Supporting Information Table S7,
based on KEGG). Furthermore, glutathione metabolism, cell
adhesion, and the ribosome were significantly downregulated in
CI deficient cells.

PPP provides reducing equivalents in the form of NADPH for
antioxidant defense; our study shows significantly reduced
glutathione metabolism and about 2-fold decreased levels of
glutathione (GSH) and oxidized glutathione (GSSG) as well as
10-fold decreased levels of NADPH (Supporting Information
Table S6).

Porphyrin metabolism was downregulated as well (FDR value
0.094), including cytochrome c-type heme lyase (HCCS), the
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Figure S. String network and pathway analysis of significant and/or 2-fold regulated proteins upon rotenone treatment. Unconnected nodes have been
removed. (A) Upregulated and (B) downregulated networks. (C—E) Network from panel A with proteins of the following GO pathways highlighted in

red: (C) spindle organization, (D) cell cycle, and (E) cytokinesis.

protein that covalently links the heme group to the apoprotein of
cytochrome ¢ and coproporphyrinogen-III oxidase (CPOX),
involved in heme biosynthesis.

The only significantly upregulated pathways were the cell cycle
and cytokinesis (Supporting Information Table S7, based on
Gene Ontology).

Network Analysis and Hub Protein Identification:
Upregulation of Proteins Involved in Cytokinesis, Cell Cycle,
and the Spindle and Downregulation of Cytoskeleton upon
Cl Inhibition

The interaction network of upregulated proteins upon rotenone
treatment is visualized in Figure SA, showing one main cluster of
proteins. GO pathway analysis within this network revealed that
the proteins of this cluster are involved in mitotic spindle
dynamics (Figure SC), cell cycle (Figure SD), and cytokinesis
(Figure SE). The most important hub proteins extracted from
this network, are listed in Table 2 along with an additional
pertinent description of their function.

The network analysis revealed a role of cyclin-dependent
kinase 2 (CDK2), a serine/threonine-protein kinase and master
regulator of mitotic events, as the main hub protein with the
highest BC value. The six top hub proteins, DNA topoisomerase
2-alpha (TOP2A), importin subunit alpha-1 (KPNA2), aurora
kinas B (AURKB), serine/threonine-protein kinase PLK1
(PLK1), kinesin-like protein KIF11 (KIF11), and ubiquitin-
conjugating enzyme (UBE2C), all have CC values above 0.59
and BC values above 0.05 and are all important players in the cell
cycle.

If we take a closer look at the compelling upregulation of
proteins involved in the regulation of the mitotic spindle (Figure
5C), then we find AURKB, a component of the chromosomal
passenger complex, which has essential functions at the
centromere in ensuring correct chromosome alignment and
segregation.*® Two kinases, AURKB and PLK1, both regulate
protein regulator of cytokinesis 1 (PRC1),*” a key regulator of
cytokinesis, controlling the spatiotemporal formation of the
midzone during the metaphase to anaphase transition.*® UBE2C
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Table 2. Key Hub Proteins Based on Topological Parameters Betweenness and Closeness Centrality of the String Network of

Differentially Expressed Proteins upon Rotenone Treatment

closeness

centrality

protein protein name degree

Significant and/or 2-Fold Upregulated Proteins upon Rotenone Treatment

CDK2 Cyclin-dependent kinase 2 18 0.6
TOP2A DNA topoisomerase 2-alpha 20 0.643
KPNA2 Importin subunit alpha-1 18 0.621
AURKB Aurora kinase B 22 0.621
PLK1 Serine/threonine-proteinkinase 22 0.621
KIF11 Kinesin-like protein KIF11 21 0.61
UBE2C Ubiquitin-conjugating enzyme 18 0.59
TYMS Thymidylate synthase 18 0.59
NUF2 Kinetochore protein Nuf2 20 0.6
NDC80 Kinetochore protein NDC80 homologue 19 0.59
NUSAP1  Nucleolar and spindle-associated 20 0.6
protein 1
KIF23 Kinesin-like protein KIF23 19 0.59
MSH2 DNA mismatch repair protein Msh2 14 0.529
PRC1 Protein regulator of cytokinesis 1 19 0.59
ANLN Actin-binding protein anillin 18 0.581
INCENP  Inner centromere protein 1S5 0.522
ECT2 Protein ECT2 17 0.571
SKA3 Spindle and kinetochore-associated 16 0.529
protein 3
FANCD2  Fanconi anemia group D2 protein 9 0.468
KIFC1 Kinesin-like protein KIFC1 9 0.439
Significant and/or 2-Fold Downregulated Proteins upon Rotenone Treatment
CYCS Cytochrome ¢ 3 0.311
FTHI1 Ferritin heavy chain 3 0.295
PARK?7 Parkinson disease protein 7 3 0.261
COPSs COP?9 signalosome complex subunit 5 4 0.202
ENO2 Gamma-enolase S 0.261
CD99 CD99 antigen 3 0.258
TALDO1  Transaldolase 4 0.217
TKT Transketolase 4 0.217

betweenness
centrality function (extracted from uniprot.org)
0.210 cell cycle
0.135 segregation of daughter chromosomes
0.114 functions in nuclear protein import
0.100 correct chromosome alignment and segregation
0.100 key regulator of cytokinesis
0.060 required for establishing a bipolar spindle
0.055 essential factor of the anaphase promoting complex/
cyclosome
0.0SS mitochondrial thymidylate biosynthesis pathway
0.016 required for kinetochore integrity
0.013 chromosome segregation and spindle checkpoint activity
0.012 organization of mitotic spindle microtubules
0.009 component of the centralspindlin complex
0.008 component of the postreplicative DNA mismatch repair
system
0.008 key regulator of cytokinesis
0.006 required for cytokinesis
0.004 key regulator of mitosis
0.002 component of the centralspindlin complex
0.002 essential for proper chromosome segregation
0.001 required for maintenance of chromosomal stability
0.000 required for bipolar spindle formation
0.656 heme carrying key player of the respiratory chain
0.498 important for iron homeostasis
0.466 plays a significant role in antioxidative defense
0.320 cellular and developmental processes
0.300 glycolysis and gluconeogenesis
0.237 involved in T-cell adhesion processes
0.042 balance of metabolites in the pentose-phosphate pathway
0.042 pentose phosphate pathway

is an essential factor of the anaphase promoting complex/
cyclosome, where it attaches ubiquitin to other proteins.

Another hub proteins was kinetochore protein (NDC80),
required for chromosome segregation and spindle checkpoint
activity. Furthermore, the two kinesines, kinesin-like protein
KIF23 (KIF23) and KIF11, are hub proteins. KIF23 is a
component of the centralspindlin complex that serves in the
microtubule-dependent and Rho-mediated signaling required for
myosin contractile ring formation during cell cycle cytokinesis,
whereas KIF11 is a motor protein required for establishing a
bipolar spindle.

Several proteins involved in cytoskeleton organization were
significantly downregulated, such as actin-related protein
(ACTR3), mediating the formation of a branched actin network,
gamma-adducin (ADD3), a membrane-cytoskeleton-associated
protein that promotes the assembly of the spectrin—actin
network, kinectin (KTN1), a receptor for kinesin-driven vesicle
motility, and moesin (MSN) (Figure SB), another protein
involved in cellular movement (Supporting Information Table
SS). This is in accordance with a previous study which showed
that CI inhibition upon rotenone treatment leads to minor
cytoskeletal changes.

Which mechanisms are responsible for the observed increase
of cell cycle and cytokinesis proteins and decrease of the
cytoskeleton upon CI inhibition by rotenone?

Light and electron microscopic examinations of cells treated
with rotenone revealed that chromosome, spindle, and centriole
configurations were grouped in a spherical mass near the cell’s
center and that cells did not progress beyond the early stages of
mitosis.” It has been shown that rotenone has a Cl-independent
function, as it induces conformational changes in tubulin by
directly binding to tubulin (in vivo and in vitro), which leads to
perturbed chromosome alignment at the metaphase plate in
which they do not properly attach to microtubules (MT) and
form multipolar spindles.®

Others have shown that rotenone-induced cytotoxicity is
mediated by MT destabilization” and that dopaminergic neuron
death induced by treatment with rotenone is independent of CI
inhibition.*’

In addition, it has been reported that free radical generation in
human neurons leads to the disruption and loss of the
cytoskeleton.*® Others suggest that upregulation of cell cycle
proteins under oxidative stress is a well-orchestrated process of
apoptosis, particularly in Alzheimer’s disease.>’ In contrast, a
transcriptome study showed a downregulation of cell cycle genes
upon rotenone treatment,2 but RNA and protein expression are
poorly correlated in general.>*'

In summary, we think that the increase of key proteins
necessary for the cell cycle could be a side effect of the
depolymerization of MT, induced by binding of rotenone to
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tubulin. The depolymerization of MT causes a cell cycle block
during mitosis and leads to an overexpression of proteins to
rescue mitosis, as detected in our study, and could therefore be
regarded as being independent of CI dysfunction. However, if we
consider a study that analyzed mtDNA depleted p0 cells, which
feature severe cytoskeletal alterations, like a collapsed vimentin
network and a dense accumulation of mitochondria around the
nucleus,* then this indicates a potent role of the OXPHOS state
per se. Many other proteins, like knocking down components of
the fission and fusion machineries, not only affect ATP
production but also impede cell cycle progression.**

Therefore, we cannot conclude whether the OXPHOS status
of the cell in general,rotenone’s side target tubulin, or both are
responsible for the upregulation of proteins involved in the cell

cycle.

Downregulation of Iron—Sulfur Clusters in Cl Deficient HeLa
Cells

Mitochondria play an essential role in cellular iron homeo-
stasis,>> where iron is used for heme biosynthesis and the
formation of iron—sulfur clusters (Fe—S). Protein complexes
containing Fe—S clusters within the respiratory chain and TCA
cycle are NADH-dehydrogenase, succinate dehydrogenase,
cytochrome c-oxireductase (complex III), and aconitate
dehydratase. In general, Fe—S clusters are involved in key
biological processes such as electron transfer, DNA synthesis,
and metabolic and regulatory processes.”*

In our study, transferrin receptor 1 (TFRC), responsible for
the cellular uptake of iron, was found to be significantly
upregulated, whereas the iron storage protein ferritin (FTH1)
was significantly downregulated. In a former study with similar
results, the upregulation of TFRC was explained by the
transformation of aconitase (ACO1) activity into iron regulatory
protein 1 (IRP1) activity upon the loss of Fe—S clusters. Because
low iron conditions normally activate IRP1, its activation by
decreased Fe—S clusters may give a false low iron signal.>*

The main downregulated hub proteins (Table 2) in rotenone-
treated cells besides FTH1 were cytochrome ¢ (CYCS) and
cytochrome c oxidase subunit 7A2 (COX7A2). CYCS is a heme-
carrying key player of the respiratory chain, which transfers
electrons from complex III to cytochrome c oxidase (complex
IV), where complex IV is the terminal oxidase in mitochondrial
electron transport. As already mentioned in the Metabolome
Profile of Rotenone Treated HeLa Cells section, bilirubin, a
degradation product of heme, was significantly downregulated,
showing a well-coordinated regulation of the proteome and
metabolome. Together, these data strikingly show how an
impaired CI affects heme and Fe—S clusters.

Another main hub protein is Parkinson disease protein 7
(PARK?). It plays a significant role in the antioxidant defense to
protect cells from oxidative stress and is a potential biomarker for
Parkinson’s disease.>> Exposure of naive neuroblastoma cells to
increasing concentrations of rotenone led to the uépregulation of
both the mRNA and protein levels of PARK7,® suggesting a
differential response in tumor cells.

CI deficiency is associated with increased ROS levels, but the
cellular context (e.g, cell type, cell metabolic state, culture
conditions, external glucose concentration, cell immortalization)
may quench and counteract such an increase.”’

According to our findings, the respiratory chain and the TCA
cycle are completely failing to provide ATP for the cell: citrate
levels are 100-fold downregulated. Our working hypothesis is
that this lack of energy will be compensated by an upregulation of

glycolysis and PPP. Instead, these pathways were significantly
downregulated as well. Thus, rotenone-treated cells have a
serious energy problem and, additionally, their defense against
ROS is severely compromised, as indicated by decreased
glutathione metabolism, GSH, GSSG, and NADPH.

B CONCLUSIONS

In the present study, we integrated metabolome and proteome
profiles of rotenone-treated HeLa cells. For metabolite screen-
ing, we report a rapid, high confidence method for identification
and relative quantification using up to three MRMs and their
MRM ion ratios for robust and unambiguous analysis of complex
samples.

We detected molecular changes in CI deficient cells by
quantitatively analyzing targeted metabolomics and shotgun
proteomics data, applying bioinformatics network approaches,
and identified several biological pathways and hub proteins that
are dysregulated in rotenone-treated HeLa cells. We showed that
OXPHOS and the TCA cycle were shut down entirely in
addition to significantly decreased glycolysis and PPP upon
rotenone treatment. Furthermore, Fe—S clusters and glutathione
metabolism were significantly downregulated, indicated by both
metabolome and proteome data. We saw an enrichment of M-
phase components, most likely due to an arrest at M-phase.

B ASSOCIATED CONTENT
© Supporting Information

Figure S1: Determination of the CI enzyme activity, viability, and
apoptosis rate of HeLa cells treated with different concentrations
of rotenone: (A) CI enzyme activity in units/gram of protein
versus the concentration of rotenone, (B) viability (percent of
living/dead cells), and (C) agarose gel loaded with nuclear DNA
showing no evidence of apoptosis. Figure S2: Multiscatter plot to
test the reproducibility of LFQ_intensities of all biological
replicates for the proteome data: (A) Pearson correlation was
>0.97 for controls and (B) >0.94 for rotenone-treated replicates.
Figure S3: GSEA pathway analysis featuring dysregulation of
proteins involved in the OXPHOS system. All subunits that are
assigned to the REACTOME pathway (A) respiratory electron
transport, (B) formation of ATP by chemiosmotic coupling, and
(C) ion transport by P type ATPases. Black bars represent single
subunits separated according to their log, protein ratio on the
heat map (red, upregulated in rotenone-treated samples; blue,
downregulated). Table S1: HPLC running conditions for
metabolome profiling. Table S2: List of all metabolites and
their specific MRM instrument settings and MRM ion ratios.
Table S3: MaxQuant output file of the proteome profile with
LFQ intensities. Table S4: List of protein groups and LFQ
intensities identified in every replicate. Table SS: List of
significantly expressed proteins in CI deficiency. Table S6: List
of all metabolite ratios between rotenone treatment and controls.
Table S7: GSEA analysis of proteome data; list of significantly
altered pathways of CI deficient cells. This material is available
free of charge via the Internet at http://pubs.acs.org.
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