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Abstract

An approximate sparse recovery systant; horm consists of parametetse, N, anm-by-N mea-
surementb, and a recovery algorithn®. Given a vectory, the system approximatesy X = R(Dx),
which must satisfyix — x||1 < (1+ €)|Ix — Xk/|1. We consider the “for all” model, in which a single matrix
®, possibly “constructed” non-explicitly using the problaiic method, is used for all signals The
best existing sublinear algorithm by Porat and Strauss (8T usesO(e 3k log(N/k)) measurements
and runs in time(k}-*N®) for any constan > 0.

In this paper, we improve the number of measuremen@ o’k log(N/k)), matching the best exist-
ing upper bound (attained by super-linear algorithms),theduntime taO(k** poly(logN, 1/¢)), with
a modest restriction that < (logk/logN)?, for any constantg,y > 0. Whenk < log®N for some
¢ > 0, the runtime is reduced ©(k poly(N, 1/¢)). With no restrictions or, we have an approximation
recovery system witm = O(k/elog(N/K)((logN/ logk)” + 1/€)) measurements.

The overall architecture of this algorithm is similar to tledé Porat and Strauss (SODA'12) in that
we repeatedly use a weak recovery system (with varying petens) to obtain a top level recovery
algorithm. The weak recovery system consists of a two-lagehing procedure (or with two unbalanced
expanders, for a deterministic algorithm). The algorithinhovation is a novel encoding procedure that
is reminiscent of network coding and that reflects the stmgcof the hashing stages. The idea is to
encode the signal position indéby associating it with a unique messagg which will be encoded
to a longer messag®; (in contrast to (Porat-Strauss, SODA'12) in which the enegds simply the
identity). Portions of the message correspond to repetitions of the hashing and we use a regular
expander graph to encode the linkages among these portions.

The decoding or recovery algorithm consists of recoverirgggortions of the longer messagag
and then decoding to the original messaggsall the while ensuring that corruptions can be detected
andor corrected. The recovery algorithm is similar to list reexy introduced in (Indyk et al., SODA'10)
and used in (Gilbert et al., ICALP’13). In our algorithm, theessagegm;} are independent from the
hashing, which enables us to obtain a better result.
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1 Introduction

Sparse signal recovery is a critical data-acquisition amtgssing problem that arises in many modern
scientific and computational applications, including sigand image processing, machine learning, data
networking, and medicineé [7, 116]. It is a method for acqujrimear measurements or observations of a
signal with a measurement matdx and an algorithm], for recovering the significant components of the
original signal. We model this problem mathematically bsuaming that waneasurea vectorx and collect
observatiory = ®x, then we run aecovery algorithmand produce an approximatiohn= D(®, y) to x with

the guarantee that the approximation etpor x|| is bounded above.

More quantitatively, let us denote the length of the vegtioy N, the sparsity (or compression) parameter
k, and distortion parameter Letx denote the bestterm approximation ta, the “heavy hitters” ok, i.e.,

x with all but thek largest-magnitude terms zeroed out. There are mdtgreint ways to assess the error of
the recovery algorithm and the quality of the measuremeitixndepending on the particular application.
(See Tablell for an overview of all of problem variations.}his paper, we address thg/ ¢;-forall probler{ﬂ
which is to give a measurement matfixand a recovery algorithrd, such that, for any input vector, we
have

X = Xll12 < (L + &)lIXpg — X1
The goal is to use the minimum number of measurements (rows,ofiamely, O(klog(N/k)/€?) and to
keep the runtime ab to polynomial inklog(N)/e.

What makes this problem challenging is that we must simatiasly keep the number of measurements
small, ensure the recovery algorithm is highlii@ent, and achieve a good approximation for all input vec-
tors. If we increase the number of measurements by factol@gd, it is easy to optimize the run-time.
Similarly, if we severely restrict the distortion paranretiewe may also increase the number of measure-
ments by factors ok. In many applications, all three quantities are importaat; in medical imaging
applications, the measurements reflect the time a patiehtsisrved, the recovery time drives tHeeetive-
ness of real-time imaging systems, and the recovery accdetermines the diagnosti€fectiveness of the
imaging system.

Related work. There has been considerable work on this problem in a vasfgtgrameter settings and we
summarize the results in Tal)le 1. A number of parameter saueincommensurate: we can achieve better
approximation guarantees (using thg¢>» norm) but only in the for-each model and in the for-all signal
model, we can achiev&/¢1 error guarantees. A somewhat harder problem than the onédvess in this
paper is the mixed-norm (dk/¢1) for-all result. In this setting, the goal is to gideandD, such that, for
anyx, we have

€
IX—Xll2 < W”X[k] — Xll1. (1.1)

It is known that if @, D) solves thef»/£1 problem it also solves th& /¢, problem [4].
In another direction, thé,/ ¢, for-each problem is to givdistribution F on ® andD, such that, for any
X, if ® ~ F, we have
! {lr Xll2 < (1 + €)lixpg — Xll2} = 1 - O(2).

The ¢, /¢, for-each problem Wlth constant failure probability wasveal in [11], where the authors gave an
algorithm with constant-factor-optimal runtime and numbemeasurements. The failure probability was
recently improved to exponentially small [n]12], but thehiaique is not likely to give aty /¢, for-all result
without additional logarithmic factors in the number of rmegements.

The first sublinear-time algorithm in the for-all settingr(the¢1/¢1 norm) was given in[[19], though
that algorithm had a number of limitations.

IMore generally, the expressidp/ ¢, means that we measure the approximation éfiteix||, with the £, norm and we compare
it to the {y error of the besk-term approximation||x;q — Xllg.
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Figure 1: Algorithm to generate the measurements. Darker spotsdtel&chigger value of the bucketeasurement. Strikethroughs
are used to show where our approach or our object sifées fiom [19].

e The runtime, while sublinear, wagkN or, more generally, of the fork~*N® for any constand > 0.
That algorithm did not achieve runtime polynomiakifog(N)/e.

¢ The algorithm required a precomputed table of $i#&2.

e The result was far from optimal in its dependence of the nurobmeasurements an

Our results. In this work, we rectify the above limitations, assuming {heodest) restriction thad <
logk/logN. We also make the measurement dependenceamtimal. The best lower bound for tie/¢1
for-all problem isQ(k/€? + (k/€)log(eN/K)) [17], which is also the best lower bound for the/¢; for-all
problem. Our algorithm use3(k/e? log(N/k)) measurements when< (logk/ log N)”, which is suboptimal
only by a logarithmic factor. Whek < log® N for somec > 0, the runtime is reduced ©(k poly(N, 1/¢)).

Theorem 1(Main Theorem) Lets,y > 0. There is amapproximate sparse recovery systeomsisting of
an mx N measurement matri® and a decoding algorithrD that satisfy the following property: for any
vectorx € R", given®x, the system approximatesyX = D(®x), which satisfies

IX = Xll1 < (L + &)X — X1
Provided that N= Q(maxk?, k/€%}), the matrix® has m= O(k/elog(N/k)((log N/ logK)? + 1/¢€)) rows and
the decoding algorithnD runs in time @k poly(logN, 1/¢€)). Whene = O((Iog,‘fl)y) the number of rows

m = O(k/€e? log(N/K)). If, in addition, k< log®® N, the runtime can be reduced tqkpoly(N, 1/¢)).

Overview of Techniques.Our overall approach builds on [19] and [12] with severdiical innovations. In
Figurell is a framework which captures both the algorithnilBj pnd the algorithm in this paper.

First, we describe the encoding procedure at a high levélially eachi € [N] is associated with a
unique messagm;, which is encoded to a longer messagg In [19] this encoding is trivial, namely,
m;{ = m;; while in our work it is a more complicated procedure (seeufg{B). The first hash assigns one
of B buckets to eache [N], while maintaining the original indek the aggregationstep sums each bucket.
There are% repetitions. The indekin each repetition is now associated with a chunkf In [19],
the aggregated buckets are hashed ikfe)(buckets and there are Idgi(k)/e repetitions. Thus, altogether,
there areD(e 3klog(N/K)) measurements. In our work, there are only B¢k repetitions, saving a factor
of 1/¢, so the total number of measurement®{g~?klog(N/k)).

The identificationportion of the recovery algorithm is shown in Figlide 2. Tooawsr the identity of
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Figure 2: Algorithm to recover from the measurements
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Figure 3: Encoding scheme. The Parvaresh-Vardy code adayer indicates corrupted measurements (owing to coliisio
tomatically has a chunk structure. Suppose that thereDare noise). The Reed-Solomon decoding either recovers the mes-
chunks. Choose @-regular expander oB vertices as desired. sage chunk (with linking information) or produces a useless
For thei-th chunk of the PV code, append to it the informationone (crossed out). Then the clustering procedure finds & set o
of the neighbours of thieth vertex in the expander. Then apply chunks, of which a small fraction is good. This idfazient for
Reed-Solomon to each appended message chunk. Recall tH Parvaresh-Vardy decoding to succeed.
k = O(VN) so logN/k) = ©(log N).

heavy hitters, the algorithm readff the measurements and recovers the message chunk assediated
each bucket. This message chunk is supposed to be assogittdde heavy hitter in the bucket. Then, all
B buckets are examined exhaustively. The pre-image of eanlylieicket under the first hash is determined,
in [19], from a look-up table and searched exhaustively.unwork, this is done by the decoding procedure
illustrated in Figuré 4. We encode the “linking informatianto the message chunks so that we can collect
across the repetitions enough heavy buckets which corttaisdame heavy hittér(whose actual value is
unknown at this stage of the algorithm). Thus, we obtain a(grfraction of m;, which is stficient for
the Parvaresh-Vardy decoding algorithm to produce thetaxacfrom which we recover the value of
immediately.

The estimationportion of the recovery algorithm estimates the fio&nt at each of those candidate
positions by reading the aggregated bucket value of thesponding heavy buckets at the first hash level.
Putting these pieces together, we haveveak recovery systemvhich identifies all butk/2 of the
heavy hitters. We then repeat with smaller (easier) syapsitameteik/2 < k and smaller (harder) dis-

tortion parameter (&)e < e, resulting in a number of measurements whose leading te(ki23(4/3¢)? =
(8/9)k/€? < k/€?>. Summing the geometric progression gives the result we.niéedlly, we note that our
algorithm works (deterministically) with any unbalanceghander having the appropriate properties.



Encoding and Decoding detailsSee Figurgl3 and Figuré 4 for a detailed illustration of treteps. For each
messagen, the Parvaresh-Vardy code encodes it into a longer messggehich automatically exhibits a
chunk structure, so that if a few number of the chunks areecorthe originam will be recovered. Suppose
there areD chunks. Now, choose dregular expander grapB (d is a constant) oD nodes such that
after removingO(D) nodes fromG, the remaining graph still contains an expander of §¥B). For the
i-th chunk ofm’, append to it the information of the neighbours of th@ vertex inG. Then we apply
Reed-Solomon to protect the appended chunks.

To decode, we first recover the appended message chunkswdHayer hash guarantees that for the
same heavy hitter, at moS{(D) of them will be wrong and the remaining ones are all corrsiciw, consider
a breadth-first search from a correct message chunk (whiogénty information” is therefore correct). By
the special property of the expander gradphwe shall be able to visit all nodes (i.e., all corresponding
message chunks) of a smaller expander graph of @& in logD steps. This small fraction of good
message chunks of’ will enable the P-V code to recover the original messagsuccessfully. Recall
thatd is a constant, the total number of vertices visite®{g'°?P) = O(poly(D)) = O(poly(logN)) for
appropriateD. This enables a sublinear recovery time.

Our contributions.

e We give an algorithm for sparse recovery in the for-all sgftiunder a modest restriction on the
distortion factore, having the number of measurements that matches the best nppnd, attained
by super-linear algorithms; e.d., [15], and optimal in mn& up to a power.

¢ We conjecture that our algorithm can be extended from therfnrio the mixed norm guarantee and
that the restriction ol can be weakened or eliminated. Thus our algorithm may beppisig stone
to the final algorithm.

e Our work is not the first to consider list recovery. Indyk etiatroduces the idea in the context of
combinatorial group testing [14]. The idea of list recovisrglso used i [12], where the list decoding,
however, would fiect the hashing and the hashing was thus required tofbeisntly random. In our
algorithm, the messagdm;} are independent of the hashing, which enables us to obtagttarb
result.

e Finally, our encodinflecoding techniques are reminiscent of network coding aay nave other
contexts for soft-decoding or network coding.

Paper Organization. In Section 2 we review some properties of expanders. In @&&j we show that
provided with good identification results, unbalanced exieas with appropriate properties will give a weak
system. Our construction of weak system culminates in @adtj where we shall show how to achieve good
identification via message encoding and decoding. Then vl te overall algorithm on the weak system
in Sectior{ b. Finally we close with a short discussion anchqmeblems in Sectionl 6.

2 Preliminaries

Our main algorithm will be built on regular graph expandensl anbalanced bipartite expanders. In this
section we review some properties of expanders.nlet d, £ be positive integers ang x be positive reals.
The following two definitions are adapted from [13].
Definition 2 (expander) An (n, ¢, k)-expander is a grapB(V, E), where|V| = n, such that for any s& C V
with |S| < ¢ it holds that'(S)| > «|S]|.

Whennis clear from the context, we abbreviate the expandef,a%-éxpander.
Definition 3 (bipartite expander)An (n,m,d, ¢, €)-bipartite expander is d-left-regular bipartite graph
G(LUR E) where|L| = nand|R = msuch that for anys c L with |S| < ¢ it holds thati['(S)| > (1 — €)d|S],
wherel'(S) is the neighbour 08 (in R).

Whenn andm are clear from the context, we abbreviate the expandef,dse]-bipartite expander.



Paper A/E Number of Column sparsity Decode time Approx. error | Noise
Measurements Update time
2] E klog®N log°N Nlog® N < Cl,
5] E klog®N log° N klog°N t, <Cl,
11 E e Tklog(N/K) log® N e klog°N < (1+e)ls Y
[6.1] A klog(N/K) klog(N/K) LP £ < (C/ VKO Y
[10] A e 2klog® N e 2klogt N e*k?log® N 6 < (e/ VKO Y
[9] A klog®N log® N klog°N ¢, < (ClogN)¢, Y
[15] A e ’klog(N/K) e Llog(N/k) N log(N/K) O <(1+e)y Y
(any [Irléﬂ‘ ger) A | e 3klog(N/K) | ce2log(N/K)logk | £ce3k(N/K)Y¢ H<(1+e)y Y
This paper
(anyg > 0) A e ?klog(N/K) etlog(N/K) K*8(etlogN)e | 6 <(1+e€)ty Y
(restrictions ore apply)
[ Lowerbound’A [ A [ e?klogN/K | etlogN/K | e?klogN/k) [ L<(e/ VG [ Y ]

Table 1: Summary of the best previous results and the result obtamgts paper. Some constant factors are omitted for clarity
“LP” denotes (at least) the time to do a linear program of aizeastN. The column “AE” indicates whether the algorithm works
in the forall (A) model or the foreach (E) model. The columwoise” indicates whether the algorithm tolerates noisy measents.
Measurement and decode time dependence, erhere applicable, is polynomial. The constantould be diferent in diferent
occurrences. The lower bound on number of measurementsliahove is, in fact, the best upper bound attained by Sirpear
algorithms.

Whend is also clear from the context, we simply wrii& €)-bipartite expander.

Consider the adjacency matwy of and-regular expandeg. It always holds that the biggest eigenvalue
of Ag is d. Let A(G) denote the largest absolute value of any other eigenvdlbe.following theorem is
now well-known.

Theorem 4 ([8]). For all sufficiently large n and even d, there exists a d-regular expariglesuch that
IV(G)| = n andA(G) < C Vd for some absolute constant>C0.

Next we present a result due to Upfal [20], implicitly usedtie proof of Lemma 1 and 2 therein. It
states that there exists a expander graphraddes and constant degree, such that after removing a nbnsta
fraction of nodes the remaining subgraph contains an exgasfcsizeQ(n).

Theorem 5([20]). LetG be as-regular expander of n nodes such thé6) < C Vs, wheres is a (syficiently
large) constant. There exist absolute constants > 0 and« > 1 such that after removing an arbitrary set
T of nodes withT| < ¢n from G, the remaining graph contains a subgraphdach thaiV(G’)| > an and
G’ isa(V(G),n/2, k) graph expander.

The following definitions concern hashing, in which the pagtersN, B, B, di, d, are positive integers.
We adopt the conventional notation thaf][= {1,2,...,m}.
Definition 6 (one-layer hashing schemefhe (N, B, d) (one layer) hashing scheme is the uniform distribu-
tion on the set of all function$ : [N] — [B]C.

Each instance of such a hashing scheme induaktefi-regular bipartite graph witl3d right nodes.
WhenN is clear from the context, we simply writ®(d) hashing scheme.
Definition 7 (two-layer hashing schemefn (N, By, d1, By, dp) (two-layer) hashing scheme is a distribu-
tion 1 on the set of all functions : [N] — [B,]%% defined as follows. Leg be a random function subject
to the (N, By, d;) hashing scheme anh; jlic[q,],je[d,] D€ @ family of independent functions subject to the
(B4, By, do) hashing scheme which are also independegt @henu is defined to be the distribution induced
by the mapping - (h1,1(1(X)), . . ., hy,a,(91(X)), h21(92(X)). - - . . h2,6,(92(X)). - - -, Pty,1(Fay (X)), - - - - ety 6, (T, (X))

Each instance of such a hashing scheme givihslaleft-regular bipartite graph dB,d;d, right nodes.
WhenN is clear from the context, we simply writ®{, d;, B>, d») hashing scheme. Conceptually we hash
N elements intd; buckets and repeah times, those buckets will be referred to as first-layer bts;kie



each of thed; repetitions, we hasB; elements intdB, buckets and repeak times, those buckets will be
referred to as second-layer buckets.

We note that bipartite expander graphs can be used as hasifiagies because of their unique neigh-
bours property (and hence isolation property).

Definition 8 (unique neighbours)Let G = (L U R, E) be a bipartite graph arfdl T C L. Define

Us(T) ={ye R: (xy) € Efor somex e T while (zy) ¢ Eforall ze S\ {x}}.
Definition 9 (isolation property) An (n, m, d, £, €)-bipartite expandeB is said to satisfy thel(, », £)-isolation
property if for any seS c L(G) with |S| < L, there existsS’ c S with |S’| = (1 — 7)|S| such that for all
x € S’ it holds thafUs({x})| > (1 - ¢)d.

3 Weak System

To simplify our analysis, we decompose a sighnaito two parts of disjoint suppork = y + z, wherey has
small support and has small norm. We cajl theheadandz thetail. To simplify the language we may also
use head to refer to supp( We aim to recover the elementsyinintroduced in[[19], aveak systertakes an
additional input, some sétof indices (called the candidate set), and tries to estimdiar i € |, hoping to
recover some head items with estimate error dependejigi|enit is shown in[19] that wheh contains the
entire head, we can always recover a good fraction of the.HadHtis paper we make a slight modification
on the definition of weak system as below. We only ne&alcontain a good fraction of the head instead of
the entire head.

Definition 10 (Weak system) A Weak systensonsists of parameten, s, 7, /, an mby-N measurement
matrix ®, and adecoding algorithirD, that satisfy the following property:

For anyx € RN that can be written as = y + z, where|suppy)| < sand||zll; < 3/2, given the
measurement®x and a subsdt C [N] such thatl n suppg)| = (1 - £/2) supp§)|, the decoding algorithm
D returnsx, such thak admits the following decomposition:

X=X+Y+7Z
where| supp&)| = O(s), | supp®)| < ¢s, and|[Z]|; < l|zll, +7. Intuitively, ¥ andZ will be the head and the tail
of the residuak — X, respectively.

Theorem 11 (Weak) Suppose tha® is the adjacency matrix of afiN, Bd, d, 4s, n)-bipartite expander
such that (a) d= O(n—%2 log %) and B= 0(%) and (b) it is an instance of &B, d)-hashing scheme. With
appropriate instantiations of constants, Algorithin 2 (#gmendix) yields a correct Weak system that runs
in time Q(l1771z7?1og(N/9)).

The proof is essentially the same as!/[19, Lemma 4] and isfthrerpostponed to AppendixIA.

To complete the construction of a Weak system, it remainhdwshat a bipartite expander as required
by Theoreni Il exists. By probabilistic methods, we showitte@n be attained by both one-layer and two-
layer hashing schemes, with appropriate parameters. W thia results for two-layer hashing schemes
only because our identification procedure uses it. All magfe standard techniques and are postponed to
the Appendix.

Lemma 12 (expanding property)Let e € (0,1/4), k > 1 and N = Q(maxk/e% k?}). A random two-
layer (B1, d1, By, d) hashing scheme gives &N, Bod;dy, d1dy, 4k, €) bipartite expander with probability
> 1-1/N¢, where B = Q(%), dy = Q(%%), B, = Q(X) and & = Q(log &) with appropriate choices
of constants.

Remarkl3. The constraint thadt = O( VN) could be weakened to= O(N1%) for any¢ > 0. The constants
hidden in variou€)(-) notations above will depend @h

Lemma 14 (isolation property) Lete > O, « > 1 be arbitrary constants an{Bs, d;, By, dy) be a two-layer

hashing scheme withiB= Q(z5), th = Q(;% - £ &), B = Q(L) and ¢ = (L log ). Then with




Figure 5: Sparse recovery channel. The encoder and decoder agrememsairix®. The encoder takes messageand produces
a measurement matri®’ based orm and®. The channel is fed wit’ andx and produce®’x, from which the decoder tries to
recoverm in the sense of weak list recovery.

probability > 1 — 1/N€, the two-layer hashing scheme with parameters prescritlbene gives a bipartite
graph with the(L, €, £)-isolation property, where & O(K/¢).

4 Identification of Heavy Hitters

In the previous section, we showed how to estimate all catelsdin a candidate setquickly. The main
bottleneck in a highly #icient algorithm is finding a non-trivial sétc [N] of candidates which we address
in this section.

The overall strategy is as follows. Using the two-layer aglschemeB4, d;, By, d»), we expect that a
heavy hitter dominates the first-layer buckets where itdan@2(d;) repetitions. In each of these repetitions,
it is a heavy hitter in a signal of lengtB,, and we expect to recover it using the Weak algorithm applied
to the signal of lengttB, with | = [B1]. After finding the heavy buckets in each repetition, the agmmg
problem is to extract the position of a heavy hittérom theQ(d;) repetitions that contain To do this, we
shall encode the indexin such a way that if we recover the buckets contairingenough repetitions we
shall be able to reconstruct To that end, we introduce the following model of weak listaeery in the
sparse recovery channel

Definition 15. The (m, N, s) Sparse Recovery Chanriakes anm-by-N matrix ® as input, chooses a signal
x with decompositiorx = y + z with | supp§)| < sand||z||; < O(1), and outputsbx.

Note thatx may depend o®. Also note thatanysignal may be chosen by the channel and normalized
so thatl|z||; < 3/2. It will be convenient to assign the normalization at thagnpto match the Weak system
(Defintion[I0). Next, we define th&/eak Recovery Criterioappropriate for this channel. See Figlre 5.

Definition 16 (Weak list Recovery Criterion)Fix parametersn, N, s, €. Letm be a vector oB-bit messages,
for i € [N], and suppos@ is a list of possible index-message pairs. We say itlad correct in the List
Weak sensk, for at least| supp§)| — s/8 indicesi in supp§), we have i, m;) € m.

The encodin@lecoding scheme is given in Algorithimh 1. We break each messagssociated with
positioni into d; chunks,m;1,...,m;g,. Note thatm; could be much longer than ldg bits in order to
guarantee a successful list recovery. Now in fké repetition of thed; repetitions, we obtain a signal
X of length B. EachX; is associated with a message that can be viewed as a weigltedfsn; j for
positionsi hashed into buckef. If a heavy hitteri is isolated in bucket and the noise is mild in this
bucket, this weighted sum would be approximately;, and we expect to recoven; ; from the second-
layer hashing, with inner encoding and decoding. Now werassthhat we have recoverex ; for heavy
hitteri in suficiently many repetitiong. The central dficulty is to matchm; ; with m; j with j # " in order
to find enough fraction ofn; in the end. In order to solve this we shall encode some linkifymation in
the node that will enable us to mataoh ; with m; j.. This will be the topic of the next subsection, in which
we shall use the Parvaresh-Vardy code to overcome tfiisudty.

Lemmd_ 17 is a simple case to illustrate our idea of encodimghich we show how to coge = log(B/k)
bits in the lengthB Sparse Recovery Channel and how to recover the messagemsssovithQ(k) heavy
hitters in the lengttB signal in time approximatelf. The proof is postponed to Appendix E.



Algorithm 1 EncdingDecoding paradigm.

// Encoding with B4, d1, By, do) hashing scheme
for i=1toNdo
Break: Break the information off into d; chunks
Outer encoding Encode the chunks with cluster info (from a regular expagdeph) and against errors, getting
fmi 16
end for
for j=1tod; do
Inner encoding: Encodem; j, fori € [N]
end for
// Decoding with B4, d;, By, d2) hashing scheme
for j=1tod; do
// ... lengthBy, (B2d2)-measurement Sparse Recovery Channel ...
Inner decoding: Recovem; in the Weak List sense
Record Side Infa Tag each element a@fij with j
end for
Outer decoding Fromm = (J; mj’s, find chunk clusters and correct errors; produce

([ J
<«— N columns——

e+—o<—0
o+—o<—0
oo <—0
oo <—0
° °
oo <—0
o+—o<—0
oo <—0

[ [ J [ J T [ J
d; rows
[ J [ J [ J T [ J ([ J [} [ ] ([ ]
° ° ° ° : \tg :
: . : . ® (. ® (.
A\ K. <, (. K, Figure 7: Recovered grap6 in ideal situation, with
X1 Xo X3 XN expander copies clairvoyantly aligned in a column.
Since the first column corresponds to a tail item, it is
Figure 6: Underlying graptGy. Suppose that; is almost absent in the recovered graph. There are arcs
in the tail and thak,, X3 andxy are heavy hitters. from nonG;; nodes tdG;; nodes.

Lemma 17. Fix k, B, 8, with B = Q(k) and3 = O(log(B/k)). There is a coding scheme for the length-B
m-measurememt Sparse Recovery Channel fof m(‘g log E) in the weak list recovery sense in which
decoding runs in time (B Iog3%). This scheme also uses a look up table of 8ize

4.1 Expander Encoding

Parameters. We assume that the constagfisy > 0 are fixed; the parameteB,, di, By, d» are as
in Lemmal14 such thaB; = Q((E—kz)“'8 Iog%); Cc < m are constant integerd) is an integer; and =

O(() ™= (RER)")-
g(N/K) _ L
Let G be a graph ofl; nodes with constant degréethat satisfies Theorel 4, and, x be constants

provided by Theoreml5 when applied@ Without loss generality we can assume ilat 1/2. Adjust the
hidden constants together withm andh appropriately (depending ghandy) such that

(@) Bi>dy;

(b) (h—1)mlogg, N < ady;

(¢) (ady - (h-1)mlogg, N)-h™ > df;

(d) c=>logd/logk.



Figure 8: Recovered grapls, with ‘supposed’ expander
copies clairvoyantly aligned in columns. The first column
corresponds to a tail item so it is almost absent. The top
node in the second column is corrupted so it points to wrong
columns but nevertheless the correct rows because the row
information is hard-wired. The top node in the third column
is correctly recovered but the second node in the column is
corrupted. The top node in the last column has a small bucket

[ ] [ ] [ ]
. : . value in the first repetition so it is abse@t If we perform
( ' ( " BFSatthe top node in the third column, we may include a lot
[ ] [ [ ]
X2 X3 XN

°
X1

of nodes in the second column.

We note that an instance of hiis to choosen > ¢(1 + 1/y) andh = ©(dY'™).

Encoding. We shall use Reed-Solomon for inner encoding. Next, we defimeuter coding, which uses
the Parvaresh-Vardy code |18]. TaKedisconnected copies & and call the unioiGy, where each node is
indexed by a pairi(r) € [N] x [d{]. See Figuré6. Also, Ief be a field such thdF| = ©(B;) is a power of
2 andE(x) be an irreducible monic polynomial ovErsuch that de(x) = logg, N. View eachi € [N] as a
polynomial f overF with degree log, N—1. For eachi(r) € Gy, associate with it an elemep(i, r) € Fml
as

p(.1) = (%ir. f (%), (F" MO E)(xir), ..., (f" " mod E)(i)).
wheref is a polynomial associated withe [N] and x;, € F so thatx; are distinct for diferentr. This is
possible because of Property (a).

Attach to a nodei(r) a messagen;, containing the information of(i,r) as well asH(i, v4(r)).. . .,
H(i, vs(r)), wherevy(r),...,vs(r) are the neighbours af in G and H(i, j) € [B1] gives the bucket index
wherei lands in thej-th outer hashing repetition. It is clear that, has®(logB;) = O(d;) bits and
therefore we can encode it @ hash repetitions, see Lemind 17.

Decoding. In each of thed; repetitions, we shall recoved(k/e) heavy buckets and thus obtai(k/e€)
nodes with their messages. Even when the messages arersztouerectly, we only know that a message
corresponds ton;, for somei € [N] and we do not know whichit is. However, if we can determine that
enough messages are associated with the sareewould have obtained enougki, r) for different values
of r then we should be able to finfdand thus recover the position

To determine enough(i, r) for the sama, we do clustering as follows. Suppose that therekdreavy
hitters at positionis, . ..,ix. LetG be a graph ofl; x O(k/€) nodes, arranged in @ x O(k/e) grid. For
now we assume that the messages are recovered correctctoheavy hitter in all d; repetitions. (This
means that there are no collisions and the noise in the eketall small.) Each message has the form
p(@i,r),hy, ..., hs, whereh; = H(i, vj(r)) for 1 < j <. Add an arci;r) — (hj,vj(r)) for each 1< j < 6.

Since the messages are recovered correctly, the @saplti contain several disjoint copies of the ex-
pander grapls, sayG;,, . .., G;j,, though eacl®;; is not necessarily aligned within the same columiBin
There will be arcs incoming t&;; from nodes not in ang;;, but there are no outgoing arcs frdgy. In

this case, we can recover ea@f) perfectly, and collect the full sdtn; j,r}fi , and thus recoverj. Let us
rearrange the nodes within each row and align each cofyinfthe same column for clarity. In this case,
the columndy, ..., ik are exact copies of the expander gr&lSee Figurél7 for an illustration.
The heavy hitters may not, however, be recovered in soméditiepe and the messages could be seri-

ously corrupted. When we are adding the arcs, we introduoekimds of errors, respectively:

() We lose a node i@, i.e., the node is not present(fhbecause the heavy hittgris not recovered in

that repetition;
(if) We connect a node i, to a node in some oth&;,, (j # '), owing to errorous message.



As before, we align each “ideal copy” & in the same column. See Figdre 8 for an example. We know that
for a heavy hitteii, only a few messagesn;}; are ruined and theth column ofGy will contain a large
connected subgrap®’ of G, by Theorenib. Hence, if we start a breadth-first search frorappropriate
node with deptltlog; di, the wholeG’ will be visited. In other words, we shall obtain a large sefyf, r)},

only a small number of which will be associated with the sanhbeit we expect to obtain enougp(i, r)} of

the same, which turns out to be dficient to extractf associated with using a good error-correcting code
such as the Parvaresh-Vardy code that allows us to recogezatieword from a large fraction of errors.
Without attempting to identify the ‘appropriate node’ déised above, we shall perform this breadth-first
search on every node @.

Guarantee. Thus we have shown that the system described above meefsthmantioned guarantee. The
proof is postponed to AppendiX F.

Lemma 18. Lets,y > 0. The encoding and decoding strategy of Sedtioh 4.1 are coimehe sense of the
guarantee of that section, against the channel describébanhsection. It uses @ 2slog(N/s)) measure-

ments and runs in time @-*# poly(logN, 1/¢)), provided that N= Q(maxs’, s/€’}) ande = O((Eﬁ)y).

5 Toplevel System

Now we define a Toplevel system, similarly to [L1] 19], thaamsalgorithm that solves our overall problem.

Definition 19. An approximate sparse recovery systéefly, aToplevelsystem), consists of parameters
N, k, €, anmby-N measurement matri®, and adecoding algorithniD that satisfy the following property:
for any vectorx € R", given®Xx, the system approximatesby X = D(®x), which satisfies

X=Xz < (L+ €)X — Xlla
Using this definition, we restate our main result from Thedfkin a slightly diferent form.

Theorem 20. Letg, y > 0. There is a Toplevel system that us€s®k log(N/k)) measurements and runtime
O(k™# poly(logN. 1/¢)), provided that N= Q(max(k?, k/€2}) ande = O((;22x)").
The proof follows easily using the results on the weak systiévie need Lemm@a_18 for identification

and Theorerfi 11 for estimation. The proof of this theorem sfgmaned to Appendix1G.

Remark2l We note that

(a) the constants in bi@-notations and the power in poly(lddgl 1/¢) depend o8 andy; and,

(b) asin Remark3, The constraint that O(VN) could be weakened to= O(N¢) for any& > 0;

(c) the factork in the runtime is due to our choice 8 = Q((k/e?)**# log(N/K)) such that lod; =
O(log(B1/K)) = O(dz). Whenk < (logN)¢ for somec > 0, sinceB; = Q(k/e2*#)), choosing
B; = O(klog(N/k)/e2A)) would suffice. It leads to runtim®(k poly(logN, 1/¢)).

(d) For largee we can taked; = (log(N/K)/log(B1/K))**® for @ > 0, which gives an algorithm which
uses more measuremer@gk log**(N/k)/€2) but suboptimal by only a logarithmic factor from the
best known lower bound.

6 Discussions and Open Problems

At the core part of this paper lies the following list recoygroblem: Suppose that there ake= 3—€L : :gggﬂg

lists Ly,...,Lqg, with |[Li| = O(k/e) for all i = 1,...,d;, we want to recover all possible codewortls=
(C1,...,Cq,) such thatc; € L; for at leastQ(d;) differentis. We used an expander structure to reduce the
problem tokd; /e subproblems, each of which has a smaller number of nodesnétural to be tempted to
apply Parvaresh-Vardy code directly without the expanttactire. Indeed it works for some configurations
of k ande with a runtime ofO(k poly(logN, 1/¢)), but only for smallk ande. A direct application already
fails even fork = exp(+/logn). The runtime resulting from a direct application is alsttdaefor very smalk,
however, obtaining the precise range iidult and beyond the scope of our work, as it relies on the peeci
complexity of factorizing a polynomial, which is not exptiin the literature.
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Next we list a few open problems.
logk

Restriction on €. The algorithm in this paper restrictsto (logN)y for anyy > 0 because of its way
of applying the Parvaresh-Vardy code. In a sense our cantigtnureduces the problem to a list recovery
problem. We ask if it is possible to find an improvement by ging a better list recoverable code. The
ultimate goal is to relax the restriction etto € < ¢ for some constand, > 0.

Sparse Recovery irf,/¢; norm. The ultimate problem is th&/¢1 problem with error guarantee aslin (1.1).
We hope that the algorithm in this papdfers new ideas for the mixed-norm problem. Again th@alilty

is in identification, as an RiPmatrix would be sflicient for estimation.

Post-measurement Noiseln many algorithms on the sparse recovery problem, the itgothie decoding
algorithm is®x + v instead of®x, wherey is an arbitrary noise vector. It can been seen that our afgori
does tolerate substantial noisefinnorm. We leave to future work full analysis and possible ioved
algorithms.

References

[1] E. Candés, J. Romberg, and T. Tao. Robust uncertaintgiptes: Exact signal reconstruction from
highly incomplete frequency informatiotEEE Inf. Theory52(2):489-509, 2006.

[2] Moses Charikar, Kevin Chen, and Martin Farach-Coltonndihg frequent items in data streams.
In Proceedings of the 29th International Colloquium on Auttamd.anguages and Programming
(ICALP), pages 693—703, 2002.

[3] Raphaél Clitord, Klim Efremenko, Ely Porat, and Amir Rothschild. Frondowg theory to #icient
pattern matching. IfProceedings of the twentieth Annual ACM-SIAM Symposiumiscré&e Algo-
rithms, SODA '09, pages 778-784, Philadelphia, PA, USA, 2009. &pdor Industrial and Applied
Mathematics.

[4] Albert Cohen, Wolfgang Dahmen, and Ronald Devore. Casged sensing and best k-term approxi-
mation. J. Amer. Math. Sqgages 211-231, 20009.

[5] G. Cormode and S. Muthukrishnan. Combinatorial aldgwnis for Compressed Sensing.Rroc. 40th
Ann. Conf. Information Sciences and Systdpmsiceton, Mar. 2006.

[6] D. L. Donoho. Compressed SensingEE Trans. Info. Theory52(4):1289-1306, Apr. 2006.

[7] M F Duarte, M A Davenport, D Takhar, J N Laska, K F Kelly, aRd5 Baraniuk. Single-pixel imaging
via compressive samplingEEE Signal Processing Magazin25(2):83-91, 2008.

[8] J. Friedman, J. Kahn, and E. Szemerédi. On the secormhfue of random regular graphs. In
Proceedings of the twenty-first annual ACM symposium on iyheacomputing STOC, pages 587—
598, 1989.

[9] Anna Gilbert, Martin Strauss, Joel Tropp, and Roman Rgnin. Algorithmic linear dimension reduc-
tion in thef; norm for sparse vectors. Killerton, 2006.

[10] Anna Gilbert, Martin Strauss, Joel Tropp, and Romarskfgnin. One sketch for all: fast algorithms
for compressed sensing. ACM STOC pages 237-246, 2007.

[11] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Straus&pproximate sparse recovery: Optimizing
time and measurementSIAM J. Comput.41(2):436-453, 2012.

11



[12] Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, andaiin J. Strauss.f,/¢,-foreach sparse
recovery with low risk. InAutomata, Languages, and Programmirglume 7965 of.ecture Notes in
Computer Scienggpages 461-472. Springer Berlin Heidelberg, 2013.

[13] Venkatesan Guruswami, Christopher Umans, and Satlhsa. Unbalanced expanders and random-
ness extractors from Parvaresh-Vardy codefACM 56(4):20:1-20:34, July 2009.

[14] Piotr Indyk, Hung Q. Ngo, and Atri Rudra. fliciently decodable non-adaptive group testing. In
Proceedings of the Twenty-First Annual ACM-SIAM SymposinrDiscrete AlgorithmsSODA '10,
pages 1126-1142, 2010.

[15] Piotr Indyk and Milan Ruzic. Near-optimal sparse regvin theL; norm. Foundations of Computer
Sciencepages 199-207, 2008.

[16] Michael Lustig, David Donoho, and John M. Pauly. Spavel: The application of compressed
sensing for rapid MR imagingvlagnetic Resonance in Medicirg8(6):1182—-1195, 2007.

[17] Jelani Nelson, Huy L. Nguyen, and David P. WodtlriOn deterministic sketching and streaming for
sparse recovery and norm estimation ARPROX-RANDONMpages 627-638, 2012.

[18] Farzad Parvaresh and Alexander Vardy. Correctingetieyond the guruswami-sudan radius in poly-
nomial time. InProceedings of the 46th Annual IEEE Symposium on FoundatibBomputer Science
FOCS '05, pages 285-294, 2005.

[19] Ely Porat and Martin J. Strauss. Sublinear time, mesment-optimal, sparse recovery for all. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposiuiscrete AlgorithmsSODA 12,
pages 1215-1227, 2012.

[20] Eli Upfal. Tolerating linear number of faults in netwksr of bounded degree. Iroceedings of the
eleventh annual ACM symposium on Principles of distribuigechputing PODC '92, pages 83-89,
1992.

12



Algorithm 2 Weak system.

Input: N, s, ® (adjacency matrix of d-left-regular expandeB), ®x, andl
Output: X
for j « 1toddo
for eachi e | do
xi(’) — mediaRer(iy X (uv)eE Xu > each sum is an element of inpiix
for eachi e | do _
X/ — mediancj<q xi(”
X « top O(s) elements ok’
return X

A Proof of Theorem[11

First, we need the following two lemmata.

Lemma 22 (Noise) Leta > 1 and t> ak. Let® be the adjacency graph of gn, m, d, 2ak, €)-expander
with € < 1/2. Letx € R" be such thaixs| > [Xo| > --- > |Xp|. Let | = [aK], then

(@0 = Xpg))royllz < 4ed(lx — Xpglly + akiXeral).

Proof. Partition{1,..., N} into blocks| U Hy U By U By U ..., whereH; = {ak+ 1,...,t} andB; =
{t+(—-Lak+1,...,t+iak} fori> 1. Consideix restricted to a blociB;.

Case 1 xg, isflat, i.e.,[Xtiokl > [Xt+(i-1)ek+1l/2. Consider altl|B;j| edges in the expander emanating from
Bi. Suppose thaf edges of them are incident Igl), then

IC(1) UT(B) < ed(l] + |Bi|) — Z.
On the other hand, by the expansion property,

IC(1) UI(B)l > (1 - e)d(ll] +|Bil),
which implies that

Z < ed(|l] + |Bj]) < 2eakd.
Each of theZ edges sends a noisexfto I'(1), therefore
(DX )rnll < Z- rifggxlxil < 2eakd - [Xir(i-1)ak+1| < 4edlIXp;ll1,
where the last inequality follows from the fact thay is flat so thatvk|Xt.(-1)ek+1] < 2lIXg;1l1.
Case 2 xg, is not flat, thenXeiokl < [Xt+(i-1)ok+1l/2. Let

J={i € Bj ! Xi| < [Xts(i-1)aks1l/2}.
Increasgx;| for all i € J so that|xj| = [Xt+(-1)0k+1]/2 andxg, becomes flat, and this increagps; [|1 by at
mostak|Xi(i-1)ek+11/2. INVOking Case 1, we obtain that

aK | Xt (i-1)ak+1
1(@Xg, )rqlly < 4ed [uxanl + %)

Now we go back to the entire. Suppose thaB;,, ..., B, are not flat, then by triangle inequality we shall
have

q
ak
I(@0x = x)reylla < dedlix Xl + ded - = > Xesp-iakea -
p=1

Observe that. (i,-1)ek+1] < Xt+(i,1-1)ek+1] fOr p > 2, we can show inductively that

Xt11]
Xt+(ip-1)okr1| < zé—tll, p=>1,
whence it follows that
(DX = X )roylle < 4ed(IX — Xgllz + aKiXey1l). O
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In the usual decomposition, the head contains the entrigslange coordinate values, which will be
referred to aheavy hitters If a heavy hitter fails to be recovered, it must have beeplaéed by another
entry, loosely called a decoy, in the recovered signal. Tx lemma bounds the number of decoys.

Lemma 23(Decoys) Suppose that G is@s, =53)-bipartite expander which satisfies t@, Be, {)-isolation
property, wher% — ¢ > 5763. Letx € R" be a signal satisfying the assumption in the Weak systemgand
x’ € R" be the estimates defined as

X; Tg%}gn(u%;E Xu, 1 €[N].
Define

D ={i € [N]: Ixi = X{| > €/(49)},
then|D| < s/8.

Proof. Without loss of generality, assume thBt = s/8, or we replacé with a subset of size exactly8.
Also assume thaki| > |Xg| > --- > |Xp|. Suppose thaki| > €/(2s) for all i € H := supp§), otherwise
we can place the violateits into z, causing|z||1 to increase by at most- €/(2s) = €/2, so we would have
l|zllp < 2. LetT = HUD U{i: |Xi| > €/(49)}, thent := |T| < ||Zl|1/(e/(49)) + |D| + |H| < 9s/e.

Note thatix¢,1| < €/(4s). Takinga = 2 in Lemmd 2R, we know that

3 € €
— <4. = _ —| < .
[I(D(x X(t)))F(HUD)||1 < 4. Bed (2 + > +2s 48) < 8Bed

By the isolation property, there are at mé;ét- 132 = 1 elements ifl which are not isolated in at least
/d nodes from other elementsin This implies that at least/16 elements ifD are isolated in at leagd
nodes from other elementsh

A decoy at position receives at least/(4s) noise in at least (R — £)d isolated nodes df({i}), hence
in total, a decoy element receives at legd/2 — ¢)d/(4s) noise. Therefore the/16 decoys overall should
receive noise at least

z-0d s
-z . 6~ 8Bed > [|(D(X — X))rHup)ll1,
which is a contradiction. TherefotB| < s/8. O

Remark24. Despite the fact that we have specified various constant$ (@s! 4,5%2, 9, etc) in the lemma
above, the constants can be flexibly adjusted such that tmdemof decoys is at mogts for any given
smallZ > 0 with appropriate choices of other constants.

Now we are ready to show Theorém 11.

Proof of Theoreri 11 The proof is essentially the same as|[19, Lemma 4]. It follfnemn LemmdZB that
with appropriate choices of constants, that there are at 1834 decoys and at least @//4)s elements
in suppg) satisfy|x; — x{| < n/(4s). Letl” =1 N suppy). We describe below the constructiomxgfy andz.
e Elements e suppk) with a good estimate (to within/(4s) contributex; —X; toZ. There are at most
sof these, each contributing/(4s), for total contributiony/4 toz.
e Elements € suppk) with a bad estimate (not to withian/(4s)) contributex; — X toy. There are at
most/s/4 of these.
e Elements € suppg) \ suppk) contributex; toZz. The#; norm of these is at mogg||; .
e Elementsi € I’ \ suppk) with a good estimate that are nevertheless displaced byhemnelement
i” € suppk) \ suppg) with a good estimate contribute ™ There are at mos$ of these. While
the valuex; may be large and make a large contributiorztdhis is dfset byx; satisfying|xj/| >
Xi:|—n/(4s) > [Xi|—n/(49) > |xi|—n/(2s), which contributes ta but not toz. Thus the net contribution
toZis at mosty/(2s) for each of thes of thesei, for a totalr/2 contribution taz.
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e Elements € I’ \ suppk) that themselves have bad estimates or are displaced bgmienith bad
estimates contributg to'y. There are at mogts/4 bad estimates overall, so there are at rfest of

these.
e Elements € | \ I’ contribute tdy. There are at mogts/2 of these.
It is clear thaf supp®)| < Zsand|[Z)|; < ||zll1 + n, as desired. The runtime is easy to verify. O

B One-layer Hashing Construction

Lemma 25 (expanding property)For anye € (0,1/4), k > 1, @ > 1 and N = Q(ak), a random one-layer
(B, d) hashing scheme gives &k, €) bipartite expander with probability 1—1/N°, where B= Q(“?") and
d=Q(Llog}).
Lemma 26 (isolation property) For anye, ¢ € (0,1/4), k > 1, @ > 1 and N= Q(k/¢), a random one-layer
(B, d) hashing scheme gives a bipartite graph w(the, ¢)-isolation property with probability> 1 — 1/N°€,
where B= Q(£), d = Q(z log §), L = O(k/e).

If we combine Lemma 25, Lemnilal26 and Theoferm 11, we have a fdeanlation, in the language of
expanders, of the result on weak systemni in [19].

B.1 Proof of Lemmal25

Proof. Let ps be the probability of a fixed set afelements hashed into less than{%)ds elements. By

symmetry this probability is independent of thpositions and thus is well-defined. Hence the probability
4k

Pr{hashing does not give an expan}derz (I:)ps. (B.1)
s=2
Our goal is to show that
Ps < exp(—csln %\I) (B.2)
for some absolute constanit- 2, for which it sufices to show that
ps < exp(—csln % In C—Sk) (B.3)

for somec, C > 0. Indeed, it follows from[{Bl3) that

<ex csInNIn Ck < expy—cs InN +1In Ck =ex ( csInCN)
Ps = &P ks =P k s )P s
and [B.2) holds. Assume for the moment tI-B 2) is proveeh) tve can bound (B.1) to be

Z( )ps Z exp{sln — —csin C—?}
< Zexp{ (c-1)sIn C,N}

ak
< > exp(-(c- 1)slogN) < &
s=2

as desired.
Now we computeps. Fix a setS of s elements. Suppose that they are hashed Xt = 1,...,d)
buckets ind repetitions, respectively. We have that IX; < sand} X; < (1 - €)sd. Define the event
Ei(Xi) = {Sis hashed into rows ini-th reptitiory,
and we shall compute FE;(X))}.
When E; happens, there are— X; repetitions. Consider we hash the element one by one, aigosi
by,...,bq € {1,...,B} sequentially. We have a collision when selectingf bj € {by,...,b_1}. The
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probability that a collision occurs at stegeven conditioned oby, ..., bj_1, is at mosi/B < s/B. Therefore,
S S S—Xi
PHE{ (X))} < (S— Xi)(B)
Hence
sa-Y X d

P = Z PHE1(X1), ..., Ea(Xa)} = Z i[ (s_sxi)(g)srXi - Z (g) 1_[ (S—Sxi)

i=1
where the summation is over all possible configurationsXgt Invoking the combinatorial identity

r1\(r2 rm\ _(fi+Tr2+--+Iny
kkzkm (kl)(kz) - (m) B ( n ) (B.4)

and writingX = ), X;, we see that

(1-€)sd S5 X d X
w2 3 B ()= S 6
&~ B sd— Y X X:sst B
Now we invoke Chernd bound

n en
> (n)/lk < (e—/l) , A<e (B.5)
k=en K €
to obtain that
< ( S)ESd < exp|-cslo N In Ck
Ps = eB = &Xp 9 k S
as desired, where the constaat€ > 0 can be made arbitrarily big. m]

B.2 Proof of Lemmal26

Proof. Let S be a set of sizes < L. We shall bound the probabilitgs (which is defined by symmetry) that
at leastes elements ofS collide with each other in at leagt repetitions. When this happens, there are at
leaste/ds colliding element-repetition pairs. As in Lemral 25 itfstes to have (BI3) for somgeC > 0
that can be made arbitrarily large.

In one repetition, one element 8fcollide with others with probabilityc s/B. By a coupling argument
as in [19], among alsdelement-repetition pairs with expected= s°d/B failed pairs, there are at leastsd
failed pairs with probability

eu lesd es lesd N Ck
(ge_ds) :(&—B) sexp(—cslogiln ?)

as desired, where the absolute consténts> 0 can be made arbitrary large. O

C Proof of Lemmall2

Proof. Let ps be the probability of a fixed set afelements hashed into less than{%¥)ds elements. By

symmetry this probability is independent of thpositions and thus is well-defined. Hence the probability
4k

Pr{hashing does not give an expan}derz (I:)ps. (C.H
s=2
Similarly to Lemma 25, it sfices to show that
Ps < exp(—csln %) (C.2)
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Assume for the moment that this is proved, then we can bdurf) (€ be

4k 4k

N eN N
Z ( S)ps < Z exp{sln < csin F}
s=2 s=2

4
< Z exp{sln(eN) - gsln(el\l)} (k< vN/e)
s=2

aK c 1
< ; exp(— (5 - l) sIog(eN)) < N
as desired.
Now we prove[[C.R). Fix a s& of selements. The outer layer of hashing ka®blocks of sizeB,, and
letY; (i = 1,...,d;1) be the number of hashed row of teelements in-th block. The inner layer hatyd,

blocks, indexed byi(j)1<i<d; 1<j<d, Of SizeB>, and letX;; be the number of hashed row of teelements in
the (, j)-th block. Define the events

Ei(Y;) = {S is hashed intdr; rows ini-th outer block
Eij(Xij) = {S hashed intdX;; rows in §, j)-th inner block
First we calculate RE;}(Y;). Consider we pick a row at one time for an elemer®im order. Wherg;(Y;)
happens there are at least Y; collisions, hence

s s\
(.53

AARTAA N
PiEsO)E =y s ()

and similarly

It follows that
Ps = Z Pr{ Ell(xll), cees Edldz(xd1d2)|El(Yl)’ cees Edl(Ydl)} Pr{ El(Yl), cees Edl(Ydl)}

< . [ [PHENH | | PHE; 6)IET))
i i,

20GE) TG

I,

0 A RN (1) (%)

i i,
where the summation is taken over all possible configuratadfX;} and{Y;} so thats > Y; > max; X;; and
2 Xij < (1 - €)sthdy.

Invoking the combinatorial equality (B.4) and lettiXg= Y, Xj; andY = } Y;, we obtain that

o < SZdJ: (Sdl)( S )Sdl—Y min{dZY’(Zl—lf)Sdldz} (sz)( S )sz—X
s < — —
v\ Y/ \By X=0dp X J\Be

T S e
- Y=d; Y Bl X=d;dy X Bz

S e
Y=(1=¢/2)sc; Y J\By X=dthdp X J\B2

=:S51+S) (C3)
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We boundS; andS; separately. First,
(1-€/2)sch sti—Y dY stid, St Y
w2 2 (V) (s <tes) 2 ()6
V= 1 2 2 vZ5sa 1
It follows from Cherndrf bound [B.b) that
s )Sdldz( es )ESd1/2

S <f1e—] (=2
1‘(*52 <B;

1 eBq S
< exp{—éesdl (In Es) + stidy In (1 + B_z)}

IA

exp{—%esdl In % + CZESd.I.dZ} (sinceB; x k/e?)

< exp{—03sln %} (C.4)

where the absolute constagyt > 0 can be made arbitrarily close to 0 and the absolute consias#n be
made arbitrarily large.
Now we boundS,. WhenY > (1 - €/2)sd; then
(1-e)schd, <1 €
dY 2
Again invoking Chernff bound,
(l—E)Sd_LdZ (sz)( S )sz—X ( es )sz—(l—E)Sd_Ldz ( s )sz—(l—E)Sdldz
— <|= < .
Nr: B, 5B2 C’k

whereC’ > 0 is an absolute constant which can be made arbitrarily l&8ge

e 5 (" ™

Y=(1"¢/2)sth Y J\By Ck
g (eﬂz)sdl (sdl) ( s )Y ( ? )esd1d2/2
& \Y/J\B1) \C k
IS esthdy/2
<
<2()
It immediately follows, similarly to upper-boundirg;, that
Sy < exp{—c4sln % In Csk}, (C.5)
wherec, > 0 can be made arbitrarily large. Pluggiig (C.4) dnd(C.5) {.3) we see thai (Q.2) holds.
This completes the proof. m]

D Proof of Lemmall4
Proof. Fix a setS of sizes. Let eventé be that at least (+ ¢/2)s elements inS are isolated in at least
(1 - 2/2)d, first-layer buckets. Similarly to Lemnial26 we know that

cs )&Sdl

{eBy
wherec’ is an absolute constant and- 0 can be made arbitrarily large. In the above we used thatHatt
sinceB; = Q(k/(£%€%)) it holds that
2
Inge—B1 > (1— C—ly)lnE

cik k-
Conditioned on the eveidt Among the (+¢/2)s elements we shall show that at least€) of them are

N
< e—cslog X

Prie% < (
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isolated in at least (2 £)d;dz second-layer buckets. That means, there are a total ofsit|gach d, failed
element-reptitions. But now, the probability of each &idin is always bounded bs/B, even conditioned
on previous outcomes, and we can proceed as in Lemina 26 thudertbat there are at lea&tesd;d, (for
some absolute constafitwith probability at most

es 0lesthdy
95682
as desired, where the constafit> 0 can be made arbitrarily large. m]

E Proof of Lemmall7

Proof. As an outer code, use Reed-Solomon over an alphabet gBslag3. This is concatenated with a
random code of length Iggias an inner code. The inner code can be decoded in constarfréim a lookup
table of sizes and the outer code can be decoded by solving a linear systsimechpproximately in time
O(B?). To encode thg bits of the inner code, proceed as follows.

To encode a single bl € {0, 1}, replace each row of ® with a 2-byN submatrix. In column of p,
replace each 1 with a height-two colurf§) or ([?i ) depending otb. For decoding in the presence of noise,
consider any §) to be arelaxedencoding equivalent t¢) ) if |al > |b| and([?i) otherwise. Replace each 0
with a height-2 column of zeros.

Overall we use a Weak system (Theorem 11) withogk), O(1)) bipartite expander that exhibits a
(®(k), d) hashing scheme, whek = ©(log(B/k)). We know that there exis(k) heavy hitters, each
dominates the buckets where it land<€ifd) repetitions. In each such repetition, our bit encodingesud
ensures that the associated bit can be recovered suctgdsénice for each of such heavy hitter, we shall
collectQ(d) bits, enough to recover the messagg bfts.

The runtime iSO(BB? log(B/K)) for exhaustive recovery in the Weak system. m]

F Proof of Lemmal[l8

Proof. Combining Lemm&12 and Lemrhal14, one can show that theres exigi, €)-expander such that
(a) the expander exhibits 84, d;, Bo, dv) hashing structure, where the parameters are as in Lémima 14;
(b) the expander satisfies the(§/¢), O(e), O(1))-isolation property;

As in the proof of Lemm& 23, suppose that > e/sfor all i € suppg), otherwise we can place the
violatedi’s into z, causing||Z|; to increase by at most- €/s = ¢, so we would havédiz|; < 2. Call the
elements in suppj heavy hitters. If supp§)| < s/8 our goal is automatically achieved, so we assume that
|suppg)| > s/8.

Step 1.Overall we know from Remaik 24 that we have at mgg$tdecoys, or, we can recoMeuppy)|—

s/8 heavy hitters from the second-layer bucket values, whereessful recovery means that each of them
dominates in at least,d;d> second-layer buckets, i.e., the bucket noise is at maste/(2s). For each

of them, in at leasB1d; of d; outer repetitions, it dominates in at le@stl, inner repetitions, where (&
B1)(1-pB2) > 1— ap. Because whenever an element dominates in the secondblagiest, it must dominate
the first-layer bucket incident to that second-layer bucket conclude that there exists a et supp§),

|S| > | supp¥)|—s/8, such that eache S dominates at leag d; first-layer buckets among all repetitions,
and in each of such repetitions, it dominates at I8ad second-layer buckets.

We can choose the hidden constants in the expander paramsatdr tha3; > 1 — 7 andB, matches
the error tolerance of the coding scheme we described in Lafin where” is the parameter we set in
Sectior{4.11.

Step 2. It follows from above that eache S will be recovered in at leagt d; outer repetitions, since
its bucket value is> €¢/s— v > €/(29). Indeed, in every repetition of outer hashing, we colleg®(s/¢)
(first-layer) buckets, so we will include every bucket withlue > ¢/(2s), and thus the heavy hittér In
this case, the message associated with the heavy hittdseviicovered correctly, as the inner encoding can

< g ¢’slog 1’}’
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tolerate 1- B, fraction of error. Therefore we know that for eack S, the associated messages will be
correctly recovered i81d; outer repetitions.

Step 3.As described in the previous section, we shall form a gapNote that fori € S, 81d; nodes in
the column are good nodes (i.e., with correct message). debr & them, perform a breadth-first search of
O(log, d1) steps, collecting at mosf nodes. Since the column contains at most (#d; < /d; bad nodes,
by Theoreni b and Property (d) of our choices of parameteese texists a good node in tieh column
such that if we perform a breadth-first searcle lafg; d; steps, we shall collecid; good nodes which are all
in thei-th column. The Parvaresh-Vardy code with our choice of patars (Property (b) and (c)) enables
us to include it in the list. We shall briefly describe the ditiog below. Having collected at modf points
(x,r(x)) € F™1, we consider all polynomial®(x, yo, . . . , ym-1) of degree at mosty = ad;—(h-1)mlogg, N
in its first variable and at mos$t— 1 in each such tha(x,r(x)) = 0 for all i. Our choice of parameters
(Property (c), i.e.dxh™ > df) guarantees that su exists. Then, the existence @fl; good nodes (in the
BFS visited nodes) indicates that the equation

Q. fi(¥), (f" modE)(x). ..., (f"" modE)(x)) = 0
hasad; roots inF for f; corresponding to the coordinate S. By our choice of parameters (Property (b)),
the univariate polynomia@(x) has degree less thaml; and must be identically zero. This means thét)
is aroot ofQ*(2) = Q(x,z 2", ..., zh"H) = 0 overF[X]/E(X). We can findf; by factoringQ* and thus recover
the positioni of the heavy hitter.

In the end, our candidate list will contain ak S, that is, we shall have recovergslippg)| — s/8 heavy
hitters.

Number of Measurements.The number of measurementsd¢B,d;d,) = O(e ?slog(N/s)).

Size of Look-up Table.The inner decoding uses a look-up table of €Xg B;) = O(2 + log Iog%). The
algorithm also stores the expander gr&hwhich takes spac®(d;). Both are smaller than the space cost
of the recovered grapB(sd;/¢), so their contribution to the space complexity can be retgte

Runtime. For each ofi; repetitions, we shall recover every bucket with vatue/(2s) in O(B1 log®(B1/k)) =
O(s'*? poly(logN, 1/¢)) time. There areé(s/€) of them in each repetition. Then we form a graph of size
O(sdy/€). Forming this graph takes tim@(s*2 poly(logN, 1/€)) from the argument above. Then we do
breadth-first search aflog; d; steps on every node. Each BFS takid?) time. Each decoding of the BFS
nodes takes polyg, log|B,|) = poly(logN, 1/¢) time, and can be done deterministically (see, €.9., [3pThe
rem 4.3]), sincdF| has a small characteristic. Hence extracting heavy hittieosn the recovered grap@
takes timeO(spoly(logN, 1/€)) and therefore, the overall runtime @&(s'*# poly(logN, 1/¢)). In the end,
we shall obtain a candidate list of si@¢spoly(logN, 1/¢)). O

G Proof of Theorem[20

Proof. Suppose that in Lemniall8, the exponent &f ih runtime isc = ¢(8,y) > 2. Chooser < 1 such
thate® > 1/2.
Using Lemma 118 for identification and Theorem 11 for estiorativith appropriate choice of constants,
we claim that at the beginning of theth stepx = y + z, where| suppg)| < k/2! and
Iz <1+ e(l+a+a?+---+al™t).

We shall prove this claim by induction. Lettirg= k/21, n = €(1 - a)a! for identification, which introduces
at mostn into the tail and the tail remains at most23by assuming that all head items, i.e., the non-zero
elements iry, are all larger tharm/s.

The identification procedure returns a candidatieat contains B4 fraction of suppy) (note that when
the head is flat, we can change syppb be a superset that satisfies this condition without cimgnthe
norm ofz). Then the estimation procedure, with- O(k/2!) andn = ea/*! will give us

X=X+Y+7Z
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Algorithm 3 Toplevel System

Input: @, ®x, N, K, €
Output: X

X« 0

u — Pbx

for j « Otologkdo

Run Algorithm[1 oru with lengthN, s « k/21, n « e

Run Algorithm2 on candiate séwith s < k/2) andn « ey/

Let x’ be the result

Xe—X+X
po— pu—Bx
end for
return X

and obtain a candidate list

where| suppk)| = O(s), | suppf)| < s/2 and

21 < Izl + €1 - @)a! + ™t = |jzl|y + o

It is easy to verify thafjz||; < 1+ €/(1 — @) = O(1) and thus Lemmia_18 for identification and Theoferh 11
can be applied at the next round and the inductive hypotliesatisfied. Therefore, in the end we shall

obtain that

€
X —Xll1 < (1 t1 o )le — Xl
-

The number of measurements used for identification is

O

and the number of measurements used for estimation is

1 k, N k 1V
0{2@‘5"’91 =0 —zZ(z) (R

2]

hence the total number of measurements(is %k log(N/k)) as claimed.

1 k, N Kk 1\, N
Y 7% |05 Xz (003)

£|0N
€2 gk

£|Oﬂ
€2 gk

It can be verified in a similar way that total runtimeQgk'*? poly(logN, 1/¢)).

Finally, replacinge with (1 — @)e completes the proof.
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