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Abstract

The Fréchet distance is a well-studied and very popular measure of similarity of two curves.
The best known algorithms have quadratic time complexity, which has recently been shown to
be optimal assuming the Strong Exponential Time Hypothesis (SETH) [Bringmann FOCS’14].

To overcome the worst-case quadratic time barrier, restricted classes of curves have been
studied that attempt to capture realistic input curves. The most popular such class are c-
packed curves, for which the Fréchet distance has a (1 + ε)-approximation in time Õ(cn/ε)
[Driemel et al. DCG’12]. In dimension d > 5 this cannot be improved to O((cn/

√
ε )1−δ) for

any δ > 0 unless SETH fails [Bringmann FOCS’14].
In this paper, exploiting properties that prevent stronger lower bounds, we present an im-

proved algorithm with runtime Õ(cn/
√
ε ). This is optimal in high dimensions apart from lower

order factors unless SETH fails. Our main new ingredients are as follows: For filling the clas-
sical free-space diagram we project short subcurves onto a line, which yields one-dimensional
separated curves with roughly the same pairwise distances between vertices. Then we tackle
this special case in near-linear time by carefully extending a greedy algorithm for the Fréchet
distance of one-dimensional separated curves.
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1 Introduction

The Fréchet distance is a very popular measure of similarity of two given curves and has two classic
variants. Roughly speaking, the continuous Fréchet distance of two curves π, σ is the minimal
length of a leash required to connect a dog to its owner, as they walk without backtracking along π
and σ, respectively. In the discrete Fréchet distance we replace the dog and its owner by two frogs
– in each time step each frog can jump to the next vertex along its curve or stay where it is.

In a seminal paper in 1991, Alt and Godau introduced the continuous Fréchet distance to
computational geometry [4, 19]. For polygonal curves π and σ with n and m vertices1, respectively,
they presented an O(nm log nm) algorithm. The discrete Fréchet distance was defined by Eiter
and Mannila [18], who presented an O(nm) algorithm.

Since then, Fréchet distance has become a rich field of research: The literature contains gener-
alizations to surfaces (see, e.g., [3]), approximation algorithms for realistic input curves ([5, 6, 17]),
the geodesic and homotopic Fréchet distance (see, e.g., [12, 15]), and many more variants (see,
e.g., [9, 16, 22, 24]). As a natural measure for curve similarity [2], the Fréchet distance has found
applications in various areas such as signature verification (see, e.g., [25]), map-matching tracking
data (see, e.g., [7]), and moving objects analysis (see, e.g., [10]).

Apart from log-factor improvements [1, 11] the quadratic complexity of the classic algorithms for
the continuous and discrete Fréchet distance are still the state of the art. In fact, the first author
recently showed a conditional lower bound: Assuming the Strong Exponential Time Hypothesis
(SETH) there is no algorithm for the (continuous or discrete) Fréchet distance in time O((nm)1−δ)
for any δ > 0, so apart from lower order terms of the form no(1) the classic algorithms are optimal [8].

In attempts to obtain faster algorithms for realistic inputs, various restricted classes of curves
have been considered, such as backbone curves [6], κ-bounded and κ-straight curves [5], and φ-low
density curves [17]. The most popular model of realistic inputs are c-packed curves. A curve π
is c-packed if for any point z ∈ Rd and any radius r > 0 the total length of π inside the ball
B(z, r) is at most cr, where B(z, r) is the ball of radius r around z. This model has been used
for several generalizations of the Fréchet distance, such as map matching [14], the mean curve
problem [21], a variant of the Fréchet distance allowing shortcuts [16], and Fréchet matching queries
in trees [20]. Driemel et al. [17] introduced c-packed curves and presented a (1+ε)-approximation for
the continuous Fréchet distance in time O(cn/ε+cn log n), which works in any Rd, d > 2. Assuming
SETH, the following lower bounds have been shown for c-packed curves: (1) For sufficiently small
constant ε > 0 there is no (1 + ε)-approximation in time O((cn)1−δ) for any δ > 0 [8]. Thus, for
constant ε the algorithm by Driemel et al. is optimal apart from lower order terms of the form
no(1). (2) In any dimension d > 5 and for varying ε > 0 there is no (1 + ε)-approximation in time
O((cn/

√
ε )1−δ) for any δ > 0 [8]. Note that this does not match the runtime of the algorithm by

Driemel et al. for any ε = n−b and constant b > 0.
In this paper we improve upon the algorithm by Driemel et al. [17] by presenting an algorithm

that matches the conditional lower bound of [8].

Theorem 1.1. For any 0 < ε 6 1 we can compute a (1 + ε)-approximation on c-packed curves for
the continuous and discrete Fréchet distance in time Õ(cn/

√
ε ).

Specifically, our runtime is O( cn√
ε

log(1/ε) + cn log n) for the discrete variant and

O( cn√
ε

log2(1/ε) + cn log n) for the continuous variant.

We want to highlight that in general dimensions (specifically, d > 5) this runtime is optimal
(apart from lower order terms of the form no(1) unless SETH fails [8]). Moreover, we obtained

1We always assume that m 6 n.
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our new algorithm by investigating why the conditional lower bound [8] cannot be improved and
exploiting the discovered properties. Thus, the above theorem is the outcome of a synergetic effect
of algorithms and lower bounds2.

We remark that the same algorithm also yields improved runtime guarantees for other models
of realistic input curves, like κ-bounded and κ-straight curves, where we are also able to essentially
replace ε by

√
ε in the runtime bound. In contrast to c-packed curves, it is not clear how far these

bounds are from being optimal. See Section 3.2 for details.

Outline We give an improved algorithm that approximately decides whether the Fréchet distance
of two given curves π, σ is at most δ. Using a construction of [16] to search over possible values
of δ, this yields an improved approximation algorithm. We partition our curves into subcurves,
each of which is either a long segment, i.e., a single segment of length at least Λ = Θ(

√
ε δ), or

a piece, i.e., a subcurve staying in the ball of radius Λ around its initial vertex. Now we run the
usual algorithm that explores the reachable free-space (see Section 2 for definitions), however, we
treat regions spanned by a piece π′ of π and a piece σ′ of σ in a special way. Typically, if π′, σ′

consist of n′,m′ segments then their free-space would be resolved in time O(n′m′). Our overall
speedup comes from reducing this runtime to Õ(n′ +m′), which is our first main contribution. To
this end, we consider the line through the initial vertices of the pieces π′, σ′, and project π′, σ′ onto
this line to obtain curves π̂, σ̂. Since π′, σ′ are pieces, i.e., they stay within distance Λ = Θ(

√
ε δ) of

their initial vertices, this projection does not change distances from π to σ significantly (it follows
from the Pythagorean theorem that any distance of approximately δ is changed, by the projection,
by less than εδ). Thus, we can replace π′, σ′ by π̂, σ̂ without introducing too much error. Note
that π̂, σ̂ are one-dimensional curves; without loss of generality we can assume that they lie on
R. Moreover, we show how to ensure that π̂, σ̂ are separated, i.e., all vertices of π̂ lie above 0 and
all vertices of σ̂ lie below 0. Hence, we reduced our problem to resolving the free-space region of
one-dimensional separated curves.

It is known3 that the Fréchet distance of one-dimensional separated curves can be computed
in near-linear time, essentially since we can walk along π and σ with greedy steps to either find a
feasible traversal or bottleneck subcurves. However, we face the additional difficulty that we have
to resolve the free-space region of one-dimensional separated curves, i.e., given entry points on π̂
and σ̂, compute all exits on π̂ and σ̂. Our second main contribution is that we present an extension
of the known result to handle this much more complex problem.

Organization We start with basic definitions and techniques borrowed from [16] in Section 2.
In Section 3 we present our approximate decision procedure which reduces the problem to one-
dimensional separated curves. We solve the latter in Section 4. In the whole paper, we focus on
the continuous Fréchet distance. It is straightforward to obtain a similar algorithm for the discrete
variant, in fact, then Section 4.1 becomes obsolete, which is why we save a factor of log 1/ε in the
running time.

2This yields one more reason why conditional lower bounds such as [8] should be studied, as they can show
tractable cases and suggest properties that make these cases tractable.

3We thank Wolfgang Mulzer for pointing us to this result by Matias Korman and Sergio Cabello (personal com-
munication). To the best of our knowledge this result is not published.
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2 Preliminaries

For z ∈ Rd, r > 0 we let B(z, r) be the ball of radius r around z. For i, j ∈ N, i 6 j, we let
[i..j] := {i, i+1, . . . , j}, which is not to be confused with the real interval [i, j] = {x ∈ R | i 6 x 6 j}.
Throughout the paper we fix the dimension d > 2. A (polygonal) curve π is defined by its vertices
(π1, . . . , πn) with πp ∈ Rd, p ∈ [1..n]. We let |π| = n be the number of vertices of π and ‖π‖ be its
total length

∑n−1
i=1 ‖pi − pi+1‖. We write πp..b for the subcurve (πp, πp+1, . . . , πb). Similarly, for an

interval I = [p..b] we write πI = πp..b. We can also view π as a continuous function π : [1, n]→ Rd
with πp+λ = (1−λ)πp+λπp+1 for p ∈ [1..n−1] and λ ∈ [0, 1]. For the second curve σ = (σ1, . . . , σm)
we will use indices of the form σq..d for the reader’s convenience.

Variants of the Fréchet distance Let Φn be the set of all continuous and non-decreasing
functions φ from [0, 1] onto [1, n]. The continuous Fréchet distance between two curves π, σ with n
and m vertices, respectively, is defined as

dF(π, σ) := inf
φ1∈Φn
φ2∈Φm

maxt∈[0,1] ‖πφ1(t) − σφ2(t)‖,

where ‖.‖ denotes the Euclidean distance. We call φ := (φ1, φ2) a (continuous) traversal of (π, σ),
and say that it has width maxt∈[0,1] ‖πφ1(t) − σφ2(t)‖.

In the discrete case, we let ∆n be the set of all non-decreasing functions φ from [0, 1] onto [1..n].
We obtain the discrete Fréchet distance ddF(π, σ) by replacing Φn and Φm by ∆n and ∆m. We
obtain an analogous notion of a (discrete) traversal and its width. Note that any φ ∈ ∆n is a
staircase function attaining all values in [1..n]. Hence, (φ1(t), φ2(t)) changes only at finitely many
points in time t. At any such time step, we jump to the next vertex in π or σ or both.

Free-space diagram The discrete free-space of curves π, σ is defined as Dd6δ(π, σ) := {(p, q) ∈
[1..n] × [1..m] | ‖πp − σq‖ 6 δ}. Note that any discrete traversal of π, σ of width at most δ
corresponds to a monotone sequence of points in the free-space where at each point in time we
increase p or q or both. Because of this property, the free-space is a standard concept used in many
algorithms for the Fréchet distance.

The continuous free-space is defined as D6δ(π, σ) := {(p, q) ∈ [1, n] × [1,m] | ‖πp − σq‖ 6 δ}.
Again, a monotone path from (1, 1) to (n,m) in D6δ(π, σ) corresponds to a traversal of width at
most δ. It is well-known [4, 19] that each free-space cell Ci,j := {(p, q) ∈ [i, i+ 1]× [j, j + 1] | ‖πp−
σq‖ 6 δ} (for i ∈ [1..n− 1], j ∈ [1..m− 1]) is convex, specifically it is the intersection of an ellipsoid
with [i, i+1]×[j, j+1]. In particular, the intersection of the free-space with any interval [i, i+1]×{j}
(or {i}×[j, j+1]) is an interval Ihi,j (or Ivi,j), and for any such interval the subset that is reachable by

a monotone path from (1, 1) is an interval Rhi,j (or Rvi,j). Moreover, in constant time one can solve

the following free-space cell problem: Given intervals Rhi,j ⊆ [i, i + 1] × {j}, Rvi,j ⊆ {i} × [j, j + 1],

determine the intervals Rhi,j+1 ⊆ [i, i + 1] × {j + 1}, Rvi+1,j ⊆ {i + 1} × [j, j + 1] consisting of all

points that are reachable from a point in Rhi,j ∪ Rvi,j by a monotone path within the free-space
cell Ci,j . Solving this problem for all cells from lower left to upper right we determine whether
(n,m) is reachable from (1, 1) by a monotone path and thus decide whether the Fréchet distance
is at most δ.

From approximate deciders to approximation algorithms An approximate decider is an
algorithm that, given curves π, σ and δ > 0, 0 < ε 6 1, returns one of the outputs (1) dF(π, σ) > δ

4



(a) This figure illustrates our partitioning of a curve
into pieces (contained in dashed circles) and long seg-
ments (bold edges).

(b) The free-space problem for pieces π′ and σ′ in the
free-space diagram of π and σ. Given entry intervals
on the lower and left boundary of the region, com-
pute exit intervals on the upper and right boundary.

Figure 1: Definition and treatment of pieces.

or (2) dF(π, σ) 6 (1 + ε)δ. In any case, the returned answer has to be correct. In particular, if
δ < dF(π, σ) 6 (1 + ε)δ the algorithm may return either of the two outputs.

Let D(π, σ, δ, ε) be the runtime of an approximate decider and set D(π, σ, ε) :=
maxδ>0D(π, σ, δ, ε). We assume polynomial dependence on ε, in particular, that there are constants
0 < c1 < c2 < 1 such that for any 1 < ε 6 1 we have c1D(π, σ, ε/2) 6 D(π, σ, ε) 6 c2D(π, σ, ε/2).
Driemel et al. [17] gave a construction of a (1 + ε)-approximation for the Fréchet distance given an
approximate decider. (This follows from [17, Theorem 3.15] after replacing their concrete approxi-
mate decider with runtime “O(N(ε, π, σ))” by any approximate decider with runtime D(π, σ, ε).)

Lemma 2.1. Given an approximate decider with runtime D(π, σ, ε) we can construct a (1 + ε)-
approximation for the Fréchet distance with runtime O

(
D(π, σ, ε) +D(π, σ, 1) log n

)
.

3 The approximate decider

Let π, σ be curves for which we want to (approximately) decide whether dF(π, σ) > δ or dF(π, σ) 6
(1 + ε)δ. We modify the curve π by introducing new vertices as follows. Start with the initial
vertex π1 as current vertex. If the segment following the current vertex has length at least Λ =
Λε,δ := min{1

2

√
ε , 1

4} · δ then mark this segment as long and set the next vertex as the current
vertex. Otherwise follow π from the current vertex πx to the first point πy such that ‖πx−πy‖ = Λ
(or until we reach the last vertex of π). If πy is not a vertex, but lies on some segment of π, then
introduce a new vertex at πy. Mark πx..y as a piece of π and set πy as current vertex. Repeat
until π is completely traversed. Since this procedure introduces at most |π| new vertices and does
not change the shape of π, with slight abuse of notation we call the resulting curve again π and
set n := |π|. This partitions π into subcurves π1, . . . , πk, with πs = πps..bs , where every part πs is
either (see also Figure 1a)
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• a long segment : bs = ps + 1 and ‖πps − πbs‖ > Λ, or

• a piece: ‖πps − πbs‖ = Λ and ‖πps − πx‖ < Λ for all x ∈ [ps, bs).

Note that the last piece actually might have distance ‖πps−πbs‖ less than Λ, however, for simplicity
we assume equality for all pieces (in fact, a special handling of the last piece would only be necessary
in Lemma 3.6). Similarly, we introduce new vertices on σ and partition it into subcurves σ1, . . . , σ`,
with σt = σqt..dt , each of which is a long segment or a piece. Let m := |σ|.

We do not want to resolve each free-space cell on its own, as in the standard decision algorithm
for the Fréchet distance. Instead, for any pair of pieces we want to consider the free-space region
spanned by the two pieces at once, see Figure 1b. This is made formal by the following subproblem.

Problem 3.1 (Free-space region problem). Given δ > 0, 0 < ε 6 1, curves π, σ with n and
m vertices, and entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and R̃v1,j ⊆ {1} × [j, j + 1] for

j ∈ [1..m), compute exit intervals R̃hi,m ⊆ [i, i+1]×{m} for i ∈ [1..n) and R̃vn,j ⊆ {n}× [j, j+1] for
j ∈ [1..m) such that (1) the exit intervals contain all points reachable from the entry intervals by
a monotone path in D6δ(π, σ) and (2) all points in the exit intervals are reachable from the entry
intervals by a monotone path in D6(1+ε)δ(π, σ).

To stress that we work with approximations, we denote reachable intervals by R̃ instead of R
in the remainder of the paper.

The standard solution to the free-space region problem would split it up into n ·m free-space
cells and resolve each cell in constant time, resulting in an O(n · m) algorithm (this solves the
problem even exactly, i.e., for ε = 0). Restricted to pieces, we will show the following improvement,
which will yield the desired overall speedup of a factor of

√
ε .

Lemma 3.2. If π and σ are pieces then the free-space region problem can be solved in time O((n+
m) log2 1/ε).

We will prove this lemma in Sections 3.3 and 4.

Algorithm 3.3. Using an algorithm for the free-space region problem on pieces as in Lemma 3.2,
we obtain an approximate decider for the Fréchet distance a follows. We create a directed graph
which has a node vs,t for every region [ps, bs]× [qt, dt] spanned by pieces πs and σt, and a node ui,j
for every remaining region [i, i + 1] × [j, j + 1] (which is not contained in any region spanned by
two pieces), i ∈ [1..n), j ∈ [1..m). We add edges between two nodes whenever their regions touch
(i.e., have a common interval I on their boundary), and direct this edge from the region that is
to the left or below I to the other one. With each node ui,j we store the entry intervals R̃hi,j and

R̃vi,j , and with each node vs,t we store the entry intervals R̃hi,qt ⊆ [i, i+ 1]× {qt} for i ∈ [ps..bs) and

R̃vps,j ⊆ {ps} × [j, j + 1] for j ∈ [qt..dt). After correctly initializing the outer reachability intervals

R̃hi,1 and R̃v1,j , we follow any topological ordering of this graph. For any node ui,j , we resolve its
region by solving the corresponding free-space cell problem in constant time. For any node vs,t,
we solve the corresponding free-space region problem on π′ = πs, σ′ = σt (and δ′ = δ, ε′ = ε) using
Lemma 3.2. Finally, we return dF(π, σ) 6 (1 + ε)δ if (n,m) ∈ R̃hn−1,m and dF(π, σ) > δ otherwise.

Lemma 3.4. Algorithm 3.3 is a correct approximate decider.

Proof. Observe that if (n,m) ∈ R̃hn−1,m then there exists a monotone path from (1, 1) to (n,m) in
D6(1+ε)δ(π, σ), which implies dF(π, σ) 6 (1 + ε)δ. If dF(π, σ) 6 δ then there is a monotone path

from (1, 1) to (n,m) in D6δ(π, σ), implying (n,m) ∈ R̃hn−1,m.

6



In the above algorithm we can ignore unreachable nodes, i.e., nodes where all stored entry inter-
vals would be empty. To this end, we fix a topological ordering by mapping a node corresponding
to a region [x1, x2] × [y1, y2] to x2 + y2 and sorting by this value ascendingly. This yields n + m
layers of nodes, where the order within each layer is arbitrary. For each layer we build a dictionary
data structure (a hash table), in which we store only the reachable nodes of this layer. This allows
to quickly enumerate all reachable nodes of a layer. The total overhead for managing the n + m
dictionaries is O(n+m).

Let us analyze the runtime of the obtained approximate decider. Let S be the set of non-empty
free-space cells Ci,j of D6(1+ε)δ(π, σ) such that i or j is not contained in a piece. Moreover, let T be
the set of all pairs (s, t) such that πs, σt are pieces with initial vertices within distance (1+ε)δ+2Λ.
Define N(π, σ, δ, ε) := |S| +

∑
(s,t)∈T (|πs| + |σt|) and set N(π, σ, ε) := maxδ>0N(π, σ, δ, ε). Since

the algorithm considers only reachable cells and any reachable cell is also non-empty, the cost
over all free-space cell problems solved by our approximate decider is bounded by O(|S|). Since
every reachable (thus non-empty) region spanned by two pieces has initial points within distance
(1 + ε)δ+ 2Λ, the second term bounds the cost over all free-space region problems on pieces (apart
from the log2 1/ε factor). Hence, we obtain the following.

Lemma 3.5. The approximate decider has runtime D(π, σ, ε) = O(N(π, σ, ε) · log2 1/ε).

3.1 The free-space complexity of c-packed curves

Recall that a curve π is c-packed if for any point z ∈ Rd and any radius r > 0 the total length of π
inside the ball B(z, r) is at most cr.

Lemma 3.6. Let π, σ be c-packed curves with n vertices in total and ε > 0. Then N(π, σ, ε) =
O(cn/

√
ε ).

Proof. Our proof uses a similar argument as [16, Lemma 4.4]. Let δ > 0 be arbitrary. First consider
the set S of non-empty free-space cells Ci,j of D6(1+ε)δ(π, σ) such that i or j is not contained in a

piece. Then one of the segments πi..i+1 and σj..j+1 is long, i.e., of length at least Λ = min{1
2

√
ε , 1

4}·δ.
We charge the cell Ci,j to the shorter of the two segments. Let us analyze how often any segment
v = πi..i+1 can be charged. Consider the ball B of radius r := 1

2‖v‖ + (1 + ε)δ + max{‖v‖,Λ}
centered at the midpoint of v. Every segment u = σj..j+1 with (i, j) ∈ S, which charges v, is of
length at least µ := max{‖v‖,Λ} (since it is longer than v and a long segment) and contributes at
least µ to the total length of σ in B. Since σ is c-packed, the number of such charges is at most

‖σ ∩B‖
µ

6
cr

µ
6
c(1

2‖v‖+ (1 + ε)δ + max{‖v‖,Λ})
max{‖v‖,Λ}

6 3
2c+

c(1 + ε)δ

min{1
2

√
ε , 1

4} · δ
= O

( c√
ε

)
.

Thus, the contribution of |S| to the free-space complexity N(π, σ, ε) is O(cn/
√
ε ).

Let T be the set of all pairs (s, t) such that πs, σt are pieces of π, σ with initial vertices within
distance (1 + ε)δ + 2Λ, and consider Σ :=

∑
(s,t)∈T (|πs|+ |σt|). We distribute Σ over the segments

of π, σ by charging 1 to every segment of πs and σt for any pair (s, t) ∈ T . Let us analyze how
often any segment v of a piece πs can be charged. Consider the ball B′ of radius r′ := (1 + ε)δ+ 3Λ
around the initital vertex πps of πs. Since ‖σt‖ > Λ, for any (s, t) ∈ T the piece σt contributes at
least Λ to the total length of σ in B′. Since σ is c-packed, the number of such charges to v is at
most

‖σ ∩B′‖
Λ

6
cr′

Λ
=
c(1 + ε+ 3

2

√
ε )

min{1
2

√
ε , 1

4}
= O

( c√
ε

)
.
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Hence, the contribution of Σ to the free-space complexity N(π, σ, ε) is also at most O(cn/
√
ε ),

which finishes the proof.

Combining Lemmas 3.6, 3.5, and 2.1, we obtain an approximation algorithm for the Fréchet
distance with running time O( cn√

ε
log2 1/ε+ cn log n) = Õ( cn√

ε
), as desired.

3.2 The free-space complexity of κ-bounded and κ-straight curves

Definition 3.7. Let κ > 1 be a given parameter. A curve π is κ-straight if for any p, b ∈ [1, |π|]
we have ‖πp..b‖ 6 κ‖πp − πb‖. A curve π is κ-bounded if for all p, b the subcurve πp..b is contained
in B(πp, r) ∪B(πb, r), where r = κ

2‖πp − πb‖.

The following lemma from [16] allows us to transfer our speedup for c-packed curves directly to
κ-straight curves.

Lemma 3.8. A κ-straight curve is 2κ-packed.

In the remainder of this section we consider κ-bounded curves, closely following [16, Sect. 4.2].

Lemma 3.9. Let δ > 0, 0 < ε 6 1, λ > 0, and let π be a κ-bounded curve with disjoint subcurves
π1, . . . , πk, where πs = πps..bs and ‖πps−πbs‖ > λ for all s. Then for any z ∈ Rd, r > 0 the number
of subcurves πs intersecting B(z, r) is bounded by O(κd(1 + r/λ)d).

Proof. Let πs1 , . . . , πs` be the subcurves that intersect the ball B = B(z, r). Let X = {s1, s3, . . . , }
be the odd indices among the intersecting subcurves. For all s ∈ X pick any point πxs in πs ∩ B.
Between any points πxs , πxs′ there must lie an even subcurve πs2i . As the endpoints of this even
subcurve have distance at least λ, we have ‖πxs − πxs′‖ > λ/(κ + 1). Otherwise the even part
would not fit into B(πxs , r) ∪ B(πxs′ , r) which has diameter (κ + 1)‖πxs − πxs′‖. Hence, the balls
B(πxs , λ/2(κ + 1)) are disjoint and contained in B(z, r + λ). A standard packing argument now
shows that ` 6 2 · (r + λ)d/(λ/2(κ+ 1))d = O(κd(1 + r/λ)d).

Lemma 3.10. For any κ-bounded curves π, σ with n vertices in total, 0 < ε 6 1, we have
N(π, σ, ε) = O((κ/

√
ε )dn).

Proof. Let δ > 0 and consider the partitionings into long segments and pieces π1, . . . , πk, σ1, . . . , σ`

computed by our algorithm. Then σt = σqt..dt satisfies ‖σqt − σdt‖ > Λ = min{1
2

√
ε , 1

4} · δ for all t.
We use the same charging scheme as in Lemma 3.6. Consider any segment v of a piece πs. The
segment v can be charged by a part σt which is either a long segment or a piece. In both cases, σt

intersects the ball B centered at the midpoint of ‖v‖ with radius r := (1 + ε)δ+ 2Λ. By Lemma 3.9
with λ := Λ, the number of such charges is bounded by O((κ/

√
ε )d).

Now consider any long segment v of π. The segment v can be charged by segments of σ which
are longer than v. Any such charging gives rise to a long segment σt intersecting the ball B centered
at the midpoint of v of radius r := (1+ε)δ+ 1

2‖v‖. By Lemma 3.9 with λ := ‖v‖, the number of such
charges is bounded by O(κd(3

2 + (1 + ε)δ/‖v‖)d) = O((κ/
√
ε )d), since ‖v‖ > Λ = min{1

2

√
ε , 1

4} · δ.
Hence, every segment of π is charged O((κ/

√
ε )d) times; a symmetric statement holds for σ.

Plugging the above lemma into Lemma 2.1 we obtain the following result. The best previously
known runtime was O((κ/ε)dn+ κdn log n) [16].

Theorem 3.11. For any 0 < ε 6 1 there is a (1 + ε)-approximation for the continuous and
discrete Fréchet distance on κ-bounded curves with n vertices in total in time O((κ/

√
ε )dn log2 1/ε+

κdn log n) = Õ((κ/
√
ε )dn).
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Figure 2: Projection of the pieces π, σ onto the line L through their initial vertices. This yields one-dimensional
separated curves π̂, σ̂.

3.3 Solving the free-space region problem on pieces

It remains to prove Lemma 3.2. Let (π, σ, δ, ε) be an instance of the free-space region problem,
where n := |π|, m := |σ|, with ‖π1 − πx‖, ‖σ1 − σy‖ 6 Λε,δ = Λ for any x ∈ [1, n], y ∈ [1,m]
(and entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and R̃v1,j ⊆ {1} × [j, j + 1] for j ∈ [1..m)).
We reduce this instance to the free-space region problem on one-dimensional separated curves, i.e.,
curves π̂, σ̂ in R such that all vertices of π̂ lie above 0 and all vertices of σ̂ lie below 0.

Since π and σ stay within distance Λ of their initial vertices, if their initial vertices are within
distance ‖π1 − σ1‖ 6 δ − 2Λ then all pairs of points in π, σ are within distance δ. In this case, we
find a translation of π making ‖π1 − σ1‖ = δ − 2Λ and all pairwise distances are still at most δ.
This ensures that the curves π, σ are contained in disjoint balls of radius Λ 6 1

4δ centered at their
initial vertices.

Consider the line L through the initial vertices π1 and σ1. Denote by Π: Rd → L the pro-
jection onto L. Now, instead of the pieces π, σ we consider their projections π̂ := Π(π) =
(Π(π1), . . . ,Π(πn)) and σ̂ := Π(σ) = (Π(σ1), . . . ,Π(σm)), see Figure 2. Note that after rotation
and translation we can assume that π̂ and σ̂ lie on R ⊂ Rd and π̂ and σ̂ are separated by 0 ∈ R
(since π and σ are contained in disjoined balls centered on L). Now we solve the free-space region
problem on π̂, σ̂, δ̂ := δ, and ε̂ := 1

2ε (with the same entry intervals R̃hi,j , R̃
v
i,j)).

Lemma 3.12. Any solution to the the free-space region problem on (π̂, σ̂, δ̂, ε̂) solves the free-space
region problem on (π, σ, δ, ε).

Proof. Let x, y be vertices of π, σ, respectively. Clearly, ‖Π(x) − Π(y)‖ 6 ‖x − y‖. Hence, any
monotone path in D6δ(π, σ) yields a monotone path in D6δ(π̂, σ̂) = D6δ̂(π̂, σ̂), so it will be found.

Note that x and y have distance at most Λ to L. Since Π(x)−Π(y) and x−Π(x)− (y−Π(y))
are orthogonal, we can use the Pythagorean theorem to obtain

‖x− y‖ =
√
‖Π(x)−Π(y)‖2 + ‖x−Π(x)− (y −Π(y))‖2 6

√
‖Π(x)−Π(y)‖2 + (2Λ)2 .

Hence, any monotone path in D6(1+ε̂)δ̂(π̂, σ̂) yields a monotone path in D6α(π, σ) with α 6√
(1 + ε̂)2δ̂2 + (2Λ)2 . Plugging in δ̂ = δ, ε̂ = 1

2ε, and Λ = min{1
2

√
ε , 1

4} · δ we obtain

α 6
√

(1 + 1
2ε)

2 + ε · δ 6 (1 + ε) δ. Thus, the desired guarantees for the free-space region problem

are satisfied.

We will show the following lemma in Section 4, concluding the proof of Lemma 3.2.
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Lemma 3.13. The free-space region problem on one-dimensional separated curves can be solved in
time O((n+m) log2 1/ε).

4 On one-dimensional separated curves

In this section, we show how to solve the free-space region problem on one-dimensional separated
curves in time O((n+m) log2 1/ε), i.e., we prove Lemma 3.13.

First, in Section 4.1, we show how to reduce this problem to a discrete version, meaning that
we can eliminate the continuous Fréchet distance and only consider the much simpler discrete
Fréchet distance (for general curves such a reduction is not known to exist, but we only need it
for one-dimensional separated curves). Moreover, we simplify our curves further by rounding the
vertices. This yields a reduction to the following subproblem. Note that we no longer ask for an
approximation algorithm.

Problem 4.1 (Reduced free-space problem). Given one-dimensional separated curves π, σ
with n,m vertices and all vertices being multiples of 1

3εδ, and given an entry set E ⊆ [1..n],
compute the exit set F π ⊆ [1..n] consisting of all points f such that ddF(πe..f , σ) 6 δ for some
e ∈ E and the exit set F σ ⊆ [1..m] consisting of all points f such that ddF(πe..n, σ1..f ) 6 δ for some
e ∈ E.

Lemma 4.2. The reduced free-space problem can be solved in time O((n+m) log 1/ε).

As a second step, we prove the above lemma. We first consider the special case of E = {1} and
the problem of deciding whether n ∈ F π, i.e., the lower left corner (1, 1) of the free-space is the
only entry point and we want to determine whether the upper right corner (n,m) is an exit. This
is equivalent to deciding whether the discrete Fréchet distance of π, σ is at most δ, which is known
to have a near-linear time algorithm as π, σ are one-dimensional and separated (see the footnote
in the introduction for details). We present a greedy algorithm for this special case in Section 4.2.
To extend this to the reduced free-space problem, we prove useful structural properties of one-
dimensional separated curves in Section 4.3. With these, we first solve the problem of determining
the exit set F π assuming E = {1} in Section 4.4.1. Then we show for general E ⊆ [1..n] how to
compute F π (Section 4.4.2) and F σ (Section 4.4.3).

4.1 Reduction from the continuous to the discrete case

Essentially we use the following lemma to reduce the continuous free-space region problem on
one-dimensional separated curves to the discrete reduced free-space problem.

Lemma 4.3. Let π, σ be one-dimensional separated curves with subcurves πp..b, σq..d. Then we have
dF(πp..b, σq..d) = ddF(πp..b, σq..d). In particular, assume that we subdivide any segments of π, σ by
adding new vertices, which yields new curves π′, σ′ with subcurves π′p′..b′ , σ

′
q′..d′ that are subdivisions

of πp..b, σq..d. Then we have ddF(π′p′..b′ , σ
′
q′..d′) = ddF(πp..b, σq..d) = dF(πp..b, σq..d).

Proof. It is known that dF(π, σ) 6 ddF(π, σ) holds for all curves π, σ. Thus, we only need to show
that any continuous traversal φ = (φ1, φ2) of πp..b, σq..d can be transformed into a discrete traversal
with the same width. We adapt φ as follows. For any point in time t ∈ [0, 1], if φ1(t) is at a
vertex of π we set φ′1(t) := φ1(t). Otherwise φ1(t) is in the interior of a segment πi..i+1 of π.
Let j ∈ {i, i + 1} minimize πj . We set φ′1(t) := j. Observe that φ′1 indeed is a non-decreasing
function from [0, 1] onto [1..n]. A similar construction, where we round to the value j ∈ {i, i + 1}
maximizing σj , yields φ′2 and we obtain a discrete traversal φ′ = (φ′1, φ

′
2). The width of φ′ is at
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most the width of φ since we rounded in the right way, i.e., we have π(φ′1(t)) 6 π(φ1(t)) and
σ(φ′2(t)) > σ(φ2(t)) so that ‖π(φ′1(t))− σ(φ′2(t))‖ 6 ‖π(φ1(t))− σ(φ2(t))‖ for all t ∈ [0, 1].

Note that the discrete Fréchet distance is in general not preserved under subdivision of segments,
but the continuous Fréchet distance is. Thus, the second statement follows from the first one,
ddF(πp..b, σq..d) = dF(πp..b, σq..d) = dF(π′p′..b′ , σ

′
q′..d′) = ddF(π′p′..b′ , σ

′
q′..d′).

The above lemma allows the following trick. Consider any finite sets E ⊆ [1, n] and F ⊆ [1, n].
Add πx as a vertex to π for any x ∈ E ∪ F , with slight abuse of notation we say that π now has
vertices at πi, i ∈ [1..n], and πx, x ∈ E ∪ F . Mark the vertices πx, x ∈ E, as entries. Now solve
the reduced free-space problem instance (π, σ,E). This yields the set F π of all values f ∈ F such
that there is an e ∈ E with ddF(πe..f , σ) 6 δ, which by Lemma 4.3 is equivalent to dF(πe..f , σ) 6 δ.
Thus, we computed all exit points in F given entry points in E, with respect to the continuous
Fréchet distance. This is already near to a solution of the free-space region problem, however, we
have to cope with entry and exit intervals.

For the full reduction we need two more arguments. First, we can replace all non-empty input
intervals R̃hi,1 by the leftmost point (yi, 1) in R̃hi,1∩D6δ(π, σ), specifically, we show that any traversal

starting in a point in R̃hi,1 can be transformed into a traversal starting in (yi, 1). Thus, we add πyi
as a vertex and mark it as an entry to obtain a finite and small set of entry points. Second, for any
segment πi..i+1 we call a point f ∈ [i, i+ 1] reachable if there is an e ∈ E with dF(πe..f , σ) 6 δ. We
show that if f is reachable then essentially all points f ′ ∈ [i, i+ 1] with πf ′ 6 πf are also reachable.
Thus, the set of reachable points is an interval with one trivial endpoint, and we only need to
search for the other endpoint of the interval, which can be done by binary search. Moreover, we
can parallelize all these binary searches, as solving one reduced free-space problem can answer for
every segment of π whether a particular point on this segment is reachable (after adding this point
as a vertex). To make these binary searches finite, we round all vertices of π and σ to multiples of
γ := 1

3εδ and only search for exit points that are multiples of γ. This is allowed since the free-space
region problem only asks for an approximate answer. A similar procedure yields the exits on σ
reachable from entries on π, and determining the exits reachable from entries on σ is a symmetric
problem. Since for the binary searches we reduce to O(log 1/ε) instances of the reduced free-space
problem, Lemma 3.13 follows from Lemma 4.2.

In the following we present the details of this approach. Let π, σ be one-dimensional separated
curves, i.e., they are contained in R, all vertices of π lie above 0, and all vertices of σ lie below 0.
Let n = |π|, m = |σ|, δ > 0 and 0 < ε 6 1. Consider entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for

i ∈ [1..n) and R̃v1,j ⊆ {1}× [j, j + 1] for j ∈ [1..m). We reduce this instance of the free-space region
problem to O(log 1/ε) instances of the reduced free-space problem.

First we change π, σ as follows. (1) Let Z ⊂ R be the set of all integral multiples4 of γ := 1
3εδ.

We round all vertices of π, σ to values in Z, where we round down everything in π and round up in
σ, yielding curves π′, σ′. (2) Let I ⊆ [1..n) be the set of all i with nonempty R̃hi,1 ∩D6δ(π

′, σ′). For

any i ∈ I let (yi, 1) be the leftmost point in R̃hi,1 ∩ D6δ(π
′, σ′) and note that π′yi is also a multiple

of γ. Add π′yi as a vertex to π′ and mark it as an entry. With slight abuse of notation, we say that
π′ now has its vertices at π′i, i ∈ [1..n] and π′yi , i ∈ I. We let E = {yi | i ∈ I} be the indices of the
entry vertices. Note that (π′, σ′, E) can be computed in time O(n+m).

For every i ∈ [1..n) consider the multiples of γ on π′i..i+1, i.e., Si := {x ∈ [i, i + 1] | π′x ∈ Z}.
Note that Si forms an arithmetic progression, specifically Si = {i, i + 1/ti, i + 2/ti, . . . , i + 1} for
some ti ∈ N, since π′i, π

′
i+1 are in Z and π′x is a linear function in x. Thus, Si and subsequences of

Si can be handled efficiently, we omit these details in the following. We want to determine the set

4Without loss of generality we assume 1/ε ∈ N so that δ ∈ Z.
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Fi of all f ∈ Si such that there is an e ∈ E with ddF(π′e..f , σ
′) 6 δ. We first argue that Fi is of an

easy form.

Lemma 4.4. If Fi is non-empty then we have Fi = [a, b] ∩ Z for some a, b ∈ Si with {a, b} ∩
{i, yi, i+ 1} 6= ∅ (or {a, b} ∩ {i, i+ 1} 6= ∅ if yi does not exist).

Proof. We show that if any f ∈ Si is reachable, i.e., there is an e ∈ E with ddF(π′e..f , σ
′) 6 δ, then

any f ′ ∈ Si with π′f ′ 6 π′f and yi 6∈ (f ′, f ] is also reachable. This proves the claim. Let φ be any
traversal of π′e..f , σ

′ of width at most δ. Note that e 6 f ′, since yi 6∈ (f ′, f ] and yi is the only entry
on the segment containing f and f ′. If f ′ 6 f then we change φ to stop at π′f ′ once it arrives at this
point, and we traverse the remaining part of σ staying fixed at π′f ′ . Since π′f ′ 6 π′f this does not
increase the width of the traversal and shows that f ′ is also reachable. If f ′ > f then we append
a traversal to φ that stays fixed at σ′m but walks in π′ from π′f to π′f ′ . Again since π′f ′ 6 π′f this
does not increase the width of the traversal and shows that f ′ is also reachable.

Note that by solving the reduced free-space problem on (π′, σ′, E) we decide for each f ∈
[n]∪ {yi | i ∈ I} whether there is an e ∈ E with ddF(π′e..f , σ

′) 6 δ. By the above lemma, this yields
one of the endpoints of the interval Fi, say a, and we only have to determine the other endpoint,
say b. In the special case π′i = π′i+1 we even determined both endpoints already, so from now on
we can assume π′i 6= π′i+1 so that |Si| <∞. We search for the other endpoint of Fi using a binary
search over Si. To test whether any z ∈ Si is in Fi, we add π′z as a vertex of π′ and solve the
reduced free-space problem on (π′, σ′, E). If z is in the output set F π then it is in Fi.

Note that any vertex π′x > δ on π′ does not have any point of σ within distance δ, which is
preserved by setting π′x := 2δ. Thus, we can assume that π′ takes values in [0, 2δ], which implies
|Si| 6 O(1/ε), so that our binary search needs O(log 1/ε) steps. Moreover, note that we can
parallelize these binary searches, since we can add a vertex zi on every subcurve π′i..i+1, so that
one call to the reduced free-space problem determines for every zi whether it is reachable. Here we
use Lemma 4.3, since we need that further subdivision of some segments of π′ does not change the
discrete Fréchet distance. Note that since we add O(n) vertices to π′ and since we need O(log 1/ε)
steps of binary search, Lemma 4.2 implies a total runtime of O((n+m) log2 1/ε).

We thus computed Fi = [a, b] ∩ Z with a, b ∈ Si. We extend Fi slightly to F ′i = [a′, b′] ∩ Z
by including the neighboring elements of a and b in Si. Finally, we set R̃hi,m(π) := [a′, b′] × {m}.
A similar procedure adding entries Eσ on σ′ and doing a binary search over exits on π′ yields an
interval R̃hi,m(σ) consisting of points (f,m) ∈ [i, i + 1] × {m} such that there is an e ∈ Eσ with

ddF(π′1..f , σ
′
e..m) 6 δ. We set R̃hi,m := R̃hi,m(π) ∪ R̃hi,m(σ), which will be again an interval (which

follows from the proof of Lemma 4.4). A symmetric algorithm determines R̃vn,j for j ∈ [1..m).
We show that we correctly solve the given free-space region problem instance.

Lemma 4.5. The computed intervals are a valid solution to the given free-space region instance.

Proof. Let φ be any monotone path in D6δ(π, σ) that starts in a point (p, 1) ∈ R̃hj,1 and ends in
(b,m), witnessing that ddF(πp..b, σ) 6 δ. After rounding down π to π′ and rounding up σ to σ′, φ is
still a monotone path in D6δ(π

′, σ′). Moreover, we can prepend a path from (yj , 1) to (p, 1) to φ,
since R̃hj,1 ∩D6δ(π

′, σ′) is an interval containing (yj , 1) and (p, 1). Let r be the value of πb rounded
down to a multiple of γ. This value r is attained at some point πf on the same segment πi..i+1 as πb.
If f 6 b then we change φ to stop at πf whenever it reaches this point. If f > b then we change φ
by appending a path from (b,m) to (f,m). In any case, this yields a monotone path in D6δ(π

′, σ′)
from (yj , 1) to (f,m). Since such a continuous traversal is equivalent to a discrete traversal by
Lemma 4.3, we have f ∈ Fi. By the construction of F ′i , the point (b,m) will be contained in the
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output R̃hi,m(π), so we find the reachable exit (b,m) as desired. A similar argument with entries on
σ shows that we satisfy property (1) of the free-space region problem.

Consider any point (f,m) in the output set R̃hi,m(π). By the construction of F ′i , there is a point
b on the same segment as f with ‖π′b − π′f‖ 6 γ and there is an entry e ∈ E with ddF(π′e..b, σ

′) 6 δ,
witnessed by a traversal φ. If b 6 f we change φ so that it stops at π′b once it reaches this
point. If b > f we change φ by appending a path from (b,m) to (f,m). In any case, this shows
ddF(π′e..f , σ

′) 6 δ + γ. Since π′, σ′ are rounded versions of π, σ where all vertices are moved by less
than γ, we obtain ddF(πe..f , σ) 6 δ + 3γ = (1 + ε)δ. Thus, any point (f,m) in the output set is
reachable form the entry sets by a monotone path in D6(1+ε)δ(π, σ), which together with a similar
argument for entries on σ proves that we satisfy property (2) of the free-space problem.

4.2 Greedy Decider for the Fréchet Distance of One-Dimensional Separated
Curves

In the remainder of the paper all indices of curves will be integral. Let π = (π1, . . . , πn) and
σ = (σ1, . . . , σm) be two separated polygonal curves in R, i.e., πi > 0 > σj . For indices 1 6 i 6 n
and 1 6 j 6 m, define visσ(i, j) := {k | k > j and σk > πi − δ} as the index set of vertices on σ
that are later in sequence than σj and are still in distance δ to πi (i.e, seen by πi) and, likewise,
visπ(i, j) := {k | k > i and πk 6 σj+δ}. Hence, the set of points that we may reach on σ by starting
in (πi, σj) and staying in πi can be defined as the longest contiguous subsequence [j + 1..j + k]
such that [j + 1..j + k] ⊆ visσ(i, j). Let reachσ(i, j) := [j + 1..j + k] denote this subsequence and
let reachπ(i, j) be defined symmetrically. Note that πi 6 πi′ implies that visσ(i, j) ⊇ visσ(i′, j),
however the converse does not necessarily hold. Also, visσ(i, j) + visσ(i′, j) implies that visσ(i, j) (
visσ(i′, j) and πi > πi′ .

The visibility sets established above enable us to define a greedy algorithm for the Fréchet
distance of π and σ. Let 1 6 p 6 n and 1 6 q 6 m be arbitrary indices on σ and π. We say that p′

is a greedy step on π from (p, q), written p′ ← GreedyStepπ(πp..n, σq..m), if p′ ∈ reachπ(p, q) and
visσ(i, q) ⊆ visσ(p′, q) holds for all p 6 i 6 p′. Symmetrically, q′ ∈ reachσ(p, q) is a greedy step on σ
from (p, q), if visπ(p, i) ⊆ visπ(p, q′) for all q 6 i 6 q′. In pseudo code, GreedyStepπ(πp..n, σq..m)
denotes a function that returns an arbitrary greedy step p′ on π from (p, q) if such an index exists
and returns an error otherwise (symmetrically for σ). See Figure 3.

Consider the following greedy algorithm:

Algorithm 1 Greedy algorithm for the Fréchet distance of separated curves π1..n and σ1..m in R
1: p← 1, q ← 1
2: repeat
3: if p′ ← GreedyStepπ(πp..n, σq..m) then
4: p ← p′

5: if q′ ← GreedyStepσ(πp..n, σq..m) then
6: q ← q′

7: until no greedy step was found in the last iteration
8: if p = n and q = m then return ddF(π, σ) 6 δ
9: else return ddF(π, σ) > δ

Theorem 4.6. Let π and σ be separated curves in R and δ > 0. Algorithm 1 decides whether
ddF(π, σ) 6 δ in time O((n+m) log(nm)).

13



Figure 3: An illustration of greedy steps. For better visibility, the one-dimensional separated curves π, σ are
drawn in the plane by mapping πi to (i, πi). In particular, the results of MinGreedyStepπ(πp..n, σq..m),
MaxGreedyStepπ(πp..n, σq..m), and stopπ(πp..n, σq..m) are shown.

We will first prove the correctness of the algorithm in Lemma 4.8 below and postpone the
discussion how to implement the algorithm efficiently to Section 4.2.2.

4.2.1 Correctness

Note that Algorithm 1 considers potentially only very few points of the curve explicitly during its
execution. Call the indices (p, q) of point pairs considered in some iteration of the algorithm (for
any choice of greedy steps, if more than one exists) greedy (point) pairs and all points contained
in some such pair greedy points (of π and σ). The following useful monotonicity property holds: If
some greedy point on π sees a point on σ that is yet to be traversed, all following greedy points on
π will see it until it is traversed.

Lemma 4.7. Let (p1, q1), . . . , (pi, qi) be the greedy point pairs considered in the iterations 1, . . . , i.
It holds that

1. visσ(`, qi) ⊆ visσ(pi, qi) for all 1 6 ` 6 pi, and

2. visπ(pi, `) ⊆ visπ(pi, qi) for all 1 6 ` 6 qi.

Proof. Let k < i. We first show that visσ(`, qi) ⊆ visσ(pk+1, qi) holds for all pk 6 ` < pk+1. If
pk = pk+1, the claim is immediate. Otherwise pk+1 is the result of a greedy step on π. By definition
of visibility, we have visσ(`, qi) = visσ(`, qk)∩[qi..m] ⊆ visσ(pk+1, qk)∩[qi..m] = visσ(pk+1, qi), where
the inequality follows from pk+1 being a greedy step from (pk, qk).

For arbitrary ` 6 i, let k < i be such that pk 6 ` < pk+1. Then visσ(`, qi) ⊆ visσ(pk+1, qi) ⊆
visσ(pk+2, qi) ⊆ · · · ⊆ visσ(pi, qi). The second statement is symmetric.

We will exploit this monotonicity to prove that if Algorithm 1 finds a greedy point pair
that allows no further greedy steps, then no feasible traversal of π and σ exists. We derive
an even stronger statement using the following notion: For a greedy point pair (p, q), define
stopπ(πp..n, σq..m) := max(reachπ(p, q) ∪ {p}) + 1 as the index of the first point after πp on π
which is not seen by σq, or n+ 1 if no such index exists. Let stopσ be defined symmetrically.

Lemma 4.8 (Correctness of Algorithm 1). Let (p, q) be a greedy point of π and σ, pstop :=
stopπ(πp..n, σq..m) and qstop := stopσ(πp..n, σq..m). If on both curves, no greedy step from (p, q)
exists, then ddF(π, σ) > δ.
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In particular, if qstop < m, then for all 1 6 p′ 6 n, we have that ddF(π1..p′ , σ1..qstop) > δ and if
pstop < n, then ddF(π1..pstop , σ1..q′) > δ for all 1 6 q′ 6 m.

Note that the correctness of Algorithm 1 follows immediately: If the algorithm is stuck, then
ddF(π, σ) > δ. Otherwise, it finds a feasible traversal.

Proof of Lemma 4.8. Consider the case that no greedy step from (p, q) exists, then the following
stuckness conditions have to hold:

1. For all p′ ∈ reachπ(p, q), we have visσ(p′, q) ( visσ(p, q), and

2. for all q′ ∈ reachσ(p, q), we have visπ(p, q′) ( visπ(p, q).

In this case, we can extend the monotonicity property of Lemma 4.7 to include all reachable
and the first unreachable point.

Claim 4.9. If the stuckness conditions hold for (p, q), then we have visσ(i, q) ⊆ visσ(p, q) for all
1 6 i 6 pstop. In particular, if πp does not see σ` for some ` > q, then no vertex πi with 1 6 i 6 pstop

sees σ`. The symmetric statement holds for σ.

Proof. By the monotonicity of the previous claim, visσ(i, q) ⊆ visσ(p, q) holds for all i 6 p. The
first of the stuckness conditions implies visσ(i, q) ⊆ visσ(p, q) for all p < i < pstop. If pstop = n+ 1,
this already completes the proof of the claim. Otherwise, note that πpstop > πp, since otherwise
pstop ∈ reachπ(p, q). Hence visσ(pstop, q) ⊆ visσ(p, q) holds as well.

We distinguish the following cases that may occur under the stuckness conditions:
Case 1: pstop 6 n or qstop 6 m. Without loss of generality, let pstop 6 n (the other case is

symmetric). Assume for contradiction that a feasible traversal φ of π1..pstop and σ1..q′ exists for some
1 6 q′ 6 m. In φ, at some point in time we have to move in π from pstop − 1 to pstop while moving
in σ1..q′ from some σ`′ to σ` where `′ ∈ {` − 1, `} and σ` sees πpstop . Since σq does not see πpstop ,
the previous claim shows that ` > qstop. If qstop = m + 1 or qstop < q′, this is impossible, yielding
a contradiction. Otherwise, to do this transition, in some earlier step we have to move in σ from
qstop−1 to qstop while moving in π from πk′ to πk for some k < pstop and k′ ∈ {k−1, k}. However, by
definition qstop /∈ visσ(p, q), hence Claim 4.9 implies that the transition is illegal, since πk does not
see σqstop . This is a contradiction. By a symmetric argument, it holds that ddF(π1..p′ , σ1..qstop) > δ.

Case 2: pstop = n+1 and qstop = m+1. In this case, reachπ(p, q) = [p+1..n] and reachσ(p, q) =
[q + 1..n]. By stuckness conditions, there exist an index pmax > p such that no σq′ with q′ > q sees
πpmax and an index qmin such that no πp′ with p′ > p sees σqmin . Assume for contradiction that a
feasible traversal φ exists. In φ, at some point in time t, we have to cross either (1) from πp to πp+1

while moving in σ from σ`′ to σ` with ` 6 q + 1 6 qmin and `′ ∈ {` − 1, `} or (2) from σq to σq+1

while moving from π`′ to π` with ` 6 p + 1 6 pmax and `′ ∈ {` − 1, `}. In the first case, ` < qmin

holds, since πp+1 does not see σqmin . For all consecutive times t′ > t, φ is in a point πp′ (p′ > p+ 1)
that does not see σqmin , which still has to be traversed, leading to a contradiction. Symmetrically,
in the second case, for all times t′ > t, φ is in a point σq′ (q′ > q+ 1) that does not see πpmax , which
still has to be traversed.

This concludes the proof of Lemma 4.8.
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4.2.2 Implementing greedy steps

To prove Theorem 4.6, it remains to show how to implement the algorithm to run in time O((n+
m) log(nm)). We make use of geometric range search queries. The classic technique of fractional
cascading [13, 23, 26] provides a data structure D with the following properties: (i) Given n
points P in the plane, D(P) can be constructed in time O(n log n) and (ii) given a query rectangle
Q := I1 × I2 with intervals I1 and I2, find and return q ∈ Q ∩ P with minimal y-coordinate, or
report that no such point exists, in time O(log n). Here, each interval Ii may be open, half-open
or closed.

By invoking the above data structure on P := {(i, πi) | i ∈ [1 . . . n]} for a given curve π = π1..n

(as well as all three rotations of P by multiples of 90◦), we obtain a datastructure Dπ such that:

1. Dπ can be constructed in time O(n log n),

2. the query Dπ.minIndex([x1, x2], [p, b]) (Dπ.maxIndex([x1, x2], [p, b])) returns the minimum
(maximum) index p 6 i 6 b such that x1 6 πi 6 x2 in time O(log n), and

3. the query Dπ.minHeight([x1, x2], [p, b]) (Dπ.maxHeight([x1, x2], [p, b])) returns the mini-
mum (maximum) height x1 6 πi 6 x2 such that p 6 i 6 b in time O(log n).

The queries extend naturally to open and half-open intervals. If no index exists in the queried
range, all of these operations return the index∞. We will use the corresponding data structure Dσ

for σ as well.
With these tools, we implement the following basic operations for arbitrary subcurves π′ := πp..b

and σ′ := σq..d of π and σ. See also Figure 3.

1. Stopping points stopπ(π′, σ′). For points p, q, stopπ(π′, σ′) := max(reachπ′(p, q)∪{p})+1
returns the index of the first point after πp on π′ which is not seen by σq, or b+ 1 if no such
index exists.

Algorithm 2 Finding the stopping point

1: function stopπ(πp..b, σq..d)
2: pstop ← Dπ.minIndex((σq + δ,∞), [p, b]) . First non-visible point on π
3: if pstop <∞ then return pstop

4: else return b+ 1

2. Minimal greedy steps MinGreedyStepπ(π′, σ′). This function returns the smallest index
p′ ∈ reachπ′(p, q) such that visσ′(p

′, q) ⊇ visσ′(p, q) or reports that no such index exists.

Algorithm 3 Minimal greedy step

1: function MinGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pcand ← Dπ.minIndex((−∞, σqmin + δ], [p+ 1, d]) . If p′ exists, it is pcand

4: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
5: if pcand < pstop then return pcand

6: else return “No greedy step possible.” . πpcand not reachable from πp while staying in σq

3. Maximal greedy steps MaxGreedyStepπ(π′, σ′). Let p′ ∈ reachπ′(p, q) be such that (i)
p′ is the largest index maximizing |visσ′(z, q)| among all z ∈ reachπ′(p, q) and (ii) visσ′(p

′, q) ⊇
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visσ′(p, q). If p′ exists, MaxGreedyStepπ returns this value, otherwise it reports that no
such index exists. Note that if p′ exists, then by definition there is no greedy step on π
starting from (p′, q), i.e., this step is a maximal greedy step.

Algorithm 4 Maximal greedy step

1: function MaxGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
4: pmin ← Dπ.minHeight((−∞, σqmin + δ], [p+ 1, pstop − 1]) . Maximizes visibility among

reachable points
5: if pmin =∞ then
6: return “No greedy step possible.” . No reachable point has better visibility than πp
7: else
8: qmin ← Dσ.minHeight([πpmin − δ,∞), [q, d]) . Lowest point on σ still seen by pmin

9: return Dπ.maxIndex((−∞, σqmin + δ], [pmin, pstop − 1])

4. Arbitrary greedy steps GreedyStepπ(π′, σ′). If, in some situation, it is only required to
find an arbitrary index p′ ∈ reachπ′(p, q) such that all p 6 i 6 p′ satisfy visσ′(i, q) ⊆ visσ′(p

′, q)
or report that no such index exists, we use the function GreedyStepπ(π′, σ′) to denote that
any such function suffices; in particular, MinGreedyStepπ or MaxGreedyStepπ can be
used.

For σ, we define the obvious symmetric operations. Note that in these operations, it is not feasible
to traverse all directly feasible points and check whether the visibility criterion is satisfied, since
this would not necessarily yield a running time of O∗(1).

Lemma 4.10. Using O((n + m) log nm) preprocessing time, MaxGreedyStepπ,
MinGreedyStepπ and stopπ can be implemented to run in time O(log nm).

Proof. In time O((n+m) log nm), we can build the data structure Dπ for π and symmetrically Dσ

for σ. Algorithms 2, 3 and 4 implement the greedy steps and stopπ using only a constant number
of queries to Dπ and Dσ, each with running time O(log n) or O(logm).

For the reduced free-space problem, these operations can be implemented even faster.

Lemma 4.11. Let π = π1..n and σ = σ1..m be input curves of the reduced free-space problem. Using
O((n+m) log 1/ε) preprocessing time, MaxGreedyStepπ, MinGreedyStepπ and stopπ can be
implemented to run in time O(log 1/ε).

Proof. We argue that range searching can be implemented with O(log 1/ε) query time and
O(n log 1/ε) preprocessing time. This holds since for the point set P = {(i, πi) | i ∈ [1 . . . n]}
(1) the x-values are 1, . . . , n, so that we can determine the relevant pointers in the first level of the
fractional-cascading tree in constant time instead of O(log n) and (2) all y-values are multiples of
1
3εδ and in [−2δ, 2δ], i.e., there are only O(1/ε) different y-values. For the latter, note that any
point πp > δ sees no point in σ, and this is preserved by setting πp to 2δ (and similarly for σ).
Using these properties it is straightforward to adapt the fractional-cascading data structure, we
omit the details.
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(a) Lemma 4.12 (b) Lemma 4.13 (c) Lemma 4.14

Figure 4: Composition properties of feasible traversals of one-dimensional separated curves.

4.3 Composition of one-dimensional curves

In this subsection, we collect essential composition properties of feasible traversals of one-
dimensional curves that enable us to tackle the reduced free-space problem (see Figure 4 for an
illustration of these results). The first tool is a union lemma that states that two intersecting
intervals I, J of π that each have a feasible traversal together with σ prove that also πI∪J can be
traversed together with σ.

Lemma 4.12. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and let I, J ⊆ [1..n]
be intervals with I ∩ J 6= ∅. If ddF(πI , σ) 6 δ and ddF(πJ , σ) 6 δ, then ddF(πI∪J , σ) 6 δ.

Proof. If I ⊆ J , the claim is trivial. W.l.o.g, let I = [aI ..bI ] and J = [aJ ..bJ ], where aI 6
aJ 6 bI 6 bJ . Let φI (and φJ) be a feasible traversal of (πI , σ) (and (πJ , σ), respectively). By
reparameterization, we can assume that φI(t) = (ψI(t), f(t)) and φJ(t) = (ψJ(t), f(t)) for suitable
(non-decreasing onto) functions ψI , ψJ : [0, 1]→ [1..n] and f : [0, 1]→ [1..m]. One of the following
cases occurs.

Case 1: There is some 0 6 t 6 1 with ψI(t) = φJ(t). Then we can concatenate φI(0, t) and
φJ(t, 1) to obtain a feasible traversal of φI∪J .

Case 2: For all 0 6 t 6 1, we have ψI(t) < ψJ(t). Let σq be the highest point on σ. By
ddF(πI , σ) 6 δ and ddF(πJ , σ) 6 δ, the point σq sees all points on πI∪J . There is some 0 6
t∗ 6 1 with f(t∗) = q. We can concatenate φI(0, t) and the traversal of πψI(t∗)..ψJ (t∗) and σq to
obtain a feasible traversal of πaI ..ψI(t∗) and σ1..f(t∗). Appending φJ(t∗, 1) to this traversal yields
ddF(πaI ..bJ , σ) 6 δ.

The second result formalizes situations in which a traversal φ of subcurves has to cross a traversal
ψ of other subcurves, yielding the possibility to follow φ up to the crossing point and to follow ψ
from there on.

Lemma 4.13. Let π = π1..n and σ = σ1..m be one-dimensional curves and consider intervals
I = [aI ..bI ] and J = [aJ ..bJ ] with J ⊆ I ⊆ [1..n], and K = [1..k] ⊆ [1..m]. If ddF(πI , σK) 6 δ and
ddF(πJ , σ) 6 δ, then ddF(πaI ..bJ , σ) 6 δ.

18



Proof. Let φ be a feasible traversal of πI and σK and ψ a feasible traversal of πJ and σ. We first
show that φ and ψ cross, i.e., there are 0 6 t, t′ 6 1 such that φ(t) = ψ(t′). For all k ∈ [1..K], let

[sφk ..e
φ
k ] denote the interval of points that φ traverses on π while staying in σk. Similarly, [sψk ..e

ψ
k ]

denotes the interval of points ψ traverses on π while staying in σk. Assume for contradiction that
[sφk ..e

φ
k ] and [sψk ..e

ψ
k ] are disjoint for all 1 6 k 6 K. Then initially, we have sφ1 = aI 6 aJ = sψ1

and hence eφ1 < sψ1 . This implies sφ2 6 eφ1 + 1 6 sψ1 6 sψ2 and inductively we obtain eφk < sψk 6 eψk
for all k ∈ [1..K]. This contradicts eφK = bI > bJ > eψK . Hence, for some 1 6 k 6 K, [sφk ..e

φ
k ]

and [sψk ..e
ψ
k ] intersect, which gives φ(t) = (p, k) = ψ(t′) for any p ∈ [sφk , e

φ
k ] ∩ [sψk , e

ψ
k ] and the

corresponding 0 6 t, t′ 6 1. By concatenating φ(0, t) with ψ(t′, 1), we obtain a feasible traversal of
πaI ..bJ and σ.

The last result in our composition toolbox strengthens Lemma 4.12 to the case that the traversal
of πI uses only an initial subcurve σ1..k of σ and not the complete curve.

Lemma 4.14. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and consider
intervals I = [aI ..bI ] and J = [aJ ..bJ ] with 1 6 aI 6 aJ 6 bI 6 bJ 6 n, and K = [1..k] ⊆ [1..m]. If
ddF(πI , σK) 6 δ and ddF(πJ , σ) 6 δ, then dF (πI∪J , σ) 6 δ.

Proof. Let φ be any feasible traversal of πJ and σ. There exists aJ 6 ` 6 bJ with φ(t) = (`, k)
for some 0 6 t 6 1. Hence φ restricted to [0, t] yields a feasible traversal of πaJ ..` and σK , i.e.,
ddF(πaJ ..`, σK) 6 δ. Since I and [aJ ..`] are intersecting, Lemma 4.12 yields that ddF(πaI ..`, σK) 6 δ.
Let ψ be such a feasible traversal of πaI ..` and σK . Concatenating ψ at ψ(1) = (`, k) = φ(t) with
φ(t, 1), we construct a feasible traversal of πaI ..bJ and σ, proving the claim.

4.4 Solving the Reduced Free-space Problem

In this section, we solve the reduced free-space problems, using the structural properties derived
in the previous section and the principles underlying the greedy algorithm of Section 4.2. Recall
that the greedy steps implemented as discussed in Section 4.2.2 run in time O(log 1/ε) on the input
curves of the reduced free-space problem.

4.4.1 Single Entry

Given the separated curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm) and entry set E = {1}, we show
how to compute F σ. We present the following recursive algorithm.

Algorithm 5 Special Case: Single entry

1: function Find-σ-exits(πp..b, σq..d)
2: if q = d then
3: if stopπ(πp..b, σq) = b+ 1 then
4: return {q} . The end of π is reachable while staying in σq
5: else return ∅

6: if p′ ←MaxGreedyStepπ(πp..b, σq..d) then
7: return Find-σ-exits(πp′..b, σq..d))
8: else if q′ ← GreedyStepσ(πp..b, σq..d) then
9: return Find-σ-exits(πp..b, σq..q′−1) ∪ Find-σ-exits(πp..b, σq′..d)

10: else
11: return Find-σ-exits(πp..b, σq..d−1) . No greedy step possible
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The following property establishes that a greedy step on a long curve is also a greedy step on
a shorter curve. Clearly, the converse does not necessarily hold.

Proposition 4.15. Let 1 6 p 6 P 6 n and 1 6 q 6 Q 6 m. Any greedy step on π from (p, q) to
(p′, q) with p′ 6 P is also a greedy step with respect to π̃ := πp..P and σ̃ := σq..Q, i.e., if there is
some p′ 6 P with visσ(i, q) ⊆ visσ(p′, q) for all p 6 i 6 p′, then also visσ̃(i, q) ⊆ visσ̃(p′, q).

Proof. From the definition of visσ, we immediately derive visσ̃(i, q) = visσ(i, q)∩[q..Q] ⊆ visσ(p′, q)∩
[q..Q] = visσ̃(p′, q) for all p 6 i 6 p′. Restricting the length of π also has no influence on the
greedy property, except for the trivial requirement that p′ still has to be contained in the restricted
curve.

Lemma 4.16. Algorithm 5 correctly identifies F σ given the single entry E = {1}.

Proof. Clearly, if Find-σ-exits(π, σ) finds and returns an exit e on σ, then it is contained in F σ,
since the algorithm uses only feasible (greedy) steps. Conversely, we show that for all I = [p..b] and
J = [q..d], where (p, q) is a greedy point pair of π and σ, and all e ∈ J with ddF(πI , σJ∩[1..e]) 6 δ,
we have e ∈ Find-σ-Exits(πI , σJ), i.e. we find all exits.

Consider some call of Find-σ-Exits(πI , σJ) for which the precondition is fulfilled. If J consists
only of a single point, then J = {e}, and a feasible traversal of πI and σJ exists if and only if σe
sees all points on πI . Let I = [p..b], then this happens if and only if stopπ(πI , σe) = b + 1, hence
the base case is treated correctly.

Assume that I = [p..b] and a maximal greedy step p′ on π exists. By Property 4.15, this step is
a greedy step also with respect to σJ∩[1..e]. Hence by Lemma 4.8, if there is a traversal of πp..b and
σJ∩[1..e], then a traversal of π[p′..b] and σJ∩[1..e] also exists.

Consider the case in which J = [q..d] and a greedy step q′ in σ exists. If e < q′, then e ∈ [q..q′−1]
and J ∩ [1..e] = [q..q′ − 1] ∩ [1..e]. Hence, e is found in the recursive call with J ′ = [q..q′ − 1]. If
e > q′, then by Property 4.15, this step is a greedy step with respect to the curves πI and σJ∩[1..e].
Again, by Lemma 4.8, the existence of a feasible traversal of πI and σJ implies that also a feasible
traversal of πI and σJ∩[q′..e] exists.

It remains to regard the case in which no greedy step exists. By Lemma 4.8, there is no feasible
traversal of π1..n and σ1..d. This implies e 6= d and all exits are found in the recursive call with
J ′ = [q, d− 1].

Lemma 4.17. Find-σ-Exits(πp..b, σq..d) runs in time O((d− q + 1) · log 1/ε).

Proof. Since the algorithm’s greedy steps on π are maximal, after each greedy step on π, we split
σ (by a greedy step on σ) or shorten σ (if no greedy step on σ is found). Thus, it takes at most
O(log 1/ε) time until σ is split or shortened. The base case is also handled in time O(log 1/ε). In
total, this yields a running time of O((d− q + 1) log 1/ε).

Note that by swapping the roles of π and σ, Find-σ-Exits can be used to determine F π given
the single entry σ1 on σ. This is equivalent to having the single entry E = {1} on π. Thus, we
can also implement the function Find-π-Exits(π1..n, σ1..m) that returns F π given the single entry
E = {1} in time O(n log 1/ε).

4.4.2 Entries on π, Exits on π

In this section, we tackle the task of determining F π given a set of entries E on π. It is essential
to avoid computing the exits by iterating over every single entry. We show how to divide π into
disjoint subcurves that can be solved by a single call to Find-π-Exits each.
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Assume we want to traverse πp..b and σq..d starting in πp and σq. Let u(p) := max{p′ ∈ [p, b] |
∃q 6 q′ 6 d : ddF(πp..p′ , σq..q′) 6 δ} be the last point on π that is reachable while traversing an
arbitrary subcurve of σq..d that starts in σq. This point fulfills the following properties.

Lemma 4.18. It holds that

1. If there are p 6 e 6 e′ 6 u(p) with ddF(πe..e′ , σq..d) 6 δ, then ddF(πp..e′ , σq..d) 6 δ.

2. For all p 6 e 6 u(p) < e′, we have that ddF(πe..e′ , σq..d) > δ.

Proof. By definition of u(p), there is a q 6 q′ 6 d with ddF(πp..u(p), σq..q′) 6 δ. Since [e, e′] ⊆
[p, u(p)], Lemma 4.13 proves the first statement. For the second statement, assume for contradiction
that ddF(πe..e′ , σq..d) 6 δ. Then, Lemma 4.14 yields that ddF(πp..e′ , σq..d) 6 δ. This is a contradiction
to the choice of u(p), since e′ > u(p).

The above lemma implies that we can ignore all entries in [p..u(p)] except for p and that all exits
reachable from p are contained in the interval [p..u(p)]. This gives rise to the following algorithm.

Algorithm 6 Given entry points E on π, compute all exits on π.

1: function π-exits-from-π(π, σ,E)
2: S ← ∅
3: while E 6= ∅ do
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: repeat
7: if q′ ←MaxGreedyStepσ(πp..n, σq..m) then
8: q ← q′

9: if p′ ← GreedyStepπ(πp..n, σq..m) then
10: p ← p′

11: until no greedy step was found in the last iteration
12: p ← stopπ(πp..n, σq..m)− 1 . determines the maximal reachable point u(p̂)
13: S ← S ∪ Find-π-Exits(πp̂..p, σ)
14: E ← E ∩ [p+ 1, n] . drops all entries in [p̂, u(p̂)]

15: return S

Lemma 4.19. Algorithm 6 correctly computes F π.

Proof. We first argue that for each considered entry p̂, the algorithm computes p = u(p̂). Clearly,
p 6 u(p̂), since only feasible steps are used to reach p. If p = m, this already implies that also
u(p̂) = m. Otherwise, let (p, q) be the greedy point pair on the curves πp̂...n and σ for which no
greedy step has been found. Then by Lemma 4.8, for pstop := stopπ(πp..n, σq..m) and all 1 6 q′ 6 m,
we have that ddF(πp̂..pstop , σ1..q′) > δ. Hence, u(p̂) < pstop. Finally, note that Algorithm 6 computes
p = pstop − 1, which proves p = u(p̂).

It is clear that every found exit is included in F π. Conversely, let e′ ∈ F π and 1 6 e 6 n be such
that ddF(πe..e′ , σ) 6 δ. For some p̂ with p̂ 6 e 6 u(p̂) = p, we run Find-π-Exits(πp̂..p, σ). Hence
by Lemma 4.18 (2), e′ 6 u(p̂) and by Lemma 4.18 (1), ddF(πp̂..e′ , σ) 6 δ. Hence, the corresponding
call Find-π-Exits(πp̂..p, σ) will find e′.

Lemma 4.20. Using preprocessing time O((n+m) log 1/ε), Algorithm 6 runs in time O(n log 1/ε).
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Proof. We first bound the cost of all calls Find-π-Exits(πIi , σ). Clearly, all intervals Ii are disjoint
with

⋃
Ii ⊆ [1..n]. Hence, by Lemma 4.17, the total time spent in these calls is bounded by

O(
∑

i |Ii| log(1/ε)) = O(n log 1/ε). To bound the number greedy steps, let p1, . . . , pk be the distinct
indices considered as values of p during the execution of π-exits-from-π(π, σ). Between changing
p from each pi to pi+1, we will make, by maximality, at most one call to MaxGreedyStepσ and at
most call to GreedyStepπ. Since k 6 n, the total cost of greedy calls is bounded by O(n log 1/ε)
as well. The total time spent in all other operations is bounded by O(n log 1/ε).

4.4.3 Entries on π, Exits on σ

Similar to the previous section, we show how to compute the exits F σ given entries E on π, by
reducing the problem to calls of Find-σ-Exits on subcurves of π and σ. This time, however, the
task is more intricate. For any index p on π, let Q(p) := min{q | ddF(πp..n, σ1..q) 6 δ} be the
endpoint of the shortest initial fragment of σ such that the remaining part of π can be traversed
together with this fragment5. Let P (p) := min{p′ | ddF(πp..p′ , σ1..Q(p)) 6 δ} be the endpoint of the
shortest initial fragment of π, such that σQ(p) can be reached by a feasible traversal.

Note that by definition, entries p with Q(p) =∞ are irrelevant for determining the exits on σ.
In fact, if an entry p is relevant, i.e., Q(p) < ∞, it is easy to compute Q(p) due to the following
lemma.

Lemma 4.21. Let Q′(p) := min{q | σq > maxi∈[p..n] πi − δ}. If Q(p) < ∞, then Q(p) = Q′(p).
Similarly, Q(p) <∞ implies that P (p) = min{p′ | πp′ 6 mini∈[q..Q(p)] σi + δ} <∞.

Proof. Assume that Q(p) < Q′(p) holds, then no point in σ1..Q(p) sees the highest point in πp..n.
Hence no feasible traversal of these curves can exist, yielding a contradiction. Assume that Q(p) >
Q′(p) holds instead and consider the feasible traversal φ of the shortest initial fragment of σ that
passes through all points in πp..n. At some point φ visits (πp′ , σQ′(p)) for some p 6 p′ 6 n. We can
alter this traversal to pass through the remaining curve πp′..n while staying in σQ′(p), since σQ′(p)
sees all points on πp′..n. This gives a feasible traversal of πp..n and σ1..Q′(p), which is a contradiction
to the choice of φ and Q(p) > Q′(p).

The statement for P (p) follows analogously by regarding the curves πp..n and σ1..Q(p) and switch-
ing their roles.

Note that the previous lemma shows that for relevant entries p1 < p2, we have Q(p1) > Q(p2),
since for relevant entries, Q(p1) = Q′(p1) > Q′(p2) = Q(p2). We will use the following lemma
to argue that (i) if Q(p1) = Q(p2), entry p1 dominates p2, and (2) if Q(p1) > Q(p2), we have
p2 /∈ [p1..P (p1)]. Hence, we can ignore all entries in [p1..P (p1)] except for p1 itself.

Lemma 4.22. Let p1 < p2 be indices on π with q1 := Q(p1) < ∞ and q2 := Q(p2) < ∞. Let
p′1 := P (p1) and p′2 := P (p2). If q1 = q2, then p′1 6 p′2. Otherwise, i.e., if q1 > q2, we even have
p′1 < p2.

Proof. See Figure 5 for illustrations. Let q1 = q2. Assume for contradiction that p′1 > p′2, then
we have ddF(πp1..p′1 , σ1..q1) 6 δ and ddF(πp2..p′2 , σ1..q1) 6 δ, where [p2..p

′
2] ⊆ [p1..p

′
1]. Hence by

Lemma 4.13, ddF(πp1..p′2 , σ1..q1) 6 δ and thus p′1 6 p′2, which is a contradiction to the assumption.
For the second statement, let p be maximal such that πp > σq2 +δ. If p does not exist or p < p1,

we have that Q′(p1) = Q′(p2) and hence by Lemma 4.21, q1 = q2. Note that additionally p < p2,
since otherwise σq2 < πp − δ with p > p2 shows that q2 6= Q′(p2) contradicting Lemma 4.21. Thus,
in what follows, we can assume that p1 < p < p2.

5As a convention, we use min ∅ = max ∅ = ∞.
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(a) Case q1 = q2. (b) Case q1 > q2.

Figure 5: Illustration of Lemma 4.22. For both pi, i ∈ {1, 2}, a feasible traversal of the curves πpi..p′i and σ1..qi is
depicted as monotone paths in the free-space.

Assume for contradiction that q1 > q2 and p′1 > p2. Then a feasible traversal φ of πp1..p′1 and
σ1..q1 visits (πp, σq) for some 1 6 q 6 q1. It even holds that q < q1, since otherwise there is a
feasible traversal of σ1..q1 and πp1..p with p < p′1, contradicting the choice of p′1. Clearly, σq > σq2 ,
since πp sees σq, while it does not see σq2 . Since by choice of p, σq2 sees all of πp+1..n and σq
sees only more (including πp), we conclude that we can traverse all points of πp..n while staying
in σq. Concatenating this traversal to the feasible traversal φ yields ddF(πp1..n, σ1..q) 6 δ and
thus Q′(p1) 6 q < q1, which is a contradiction to Lemma 4.21. This proves that q1 > q2 implies
p′1 6 p2.

Lemma 4.23. Algorithm 7 fulfills the following properties.

1. Let (p, q) with q < Q′(p̂) be a greedy point pair of πp̂..n and σ1..Q′(p̂) for which no greedy step
exists. For all e ∈ [p̂, p], we have Q(e) =∞.

2. For each p̂ considered, if Q(p̂) < ∞, the algorithm calls Find-σ-Exits(πP (p̂)..n, σQ(p̂)..q). In
this case, the point (P (p̂), Q(p̂)) is a greedy pair of πp̂..n and σ.

Proof. For the first statement, assume for contradiction that Q(e) < ∞. By Lemma 4.21,
Q(e) = Q′(e), which implies that for all q′ < Q′(e) 6 Q′(p̂), we have σq′ < σQ′(e) and hence
visπ(p, q′) ⊆ visπ(p,Q′(e)). Hence, stopσ(πp..n, σq..Q′(p̂)) 6 Q′(e), since otherwise Q′(e) ←
GreedyStepσ(πp..n, σq..Q′(p̂)). By Lemma 4.8, this proves that ddF(πp̂..n, σ1..Q′(e)) > δ. Since
ddF(πp̂..e, σ1..q′) 6 δ for some q′ < Q′(e), Lemma 4.14 yields ddF(πe..n, σ1..Q′(e)) > δ. This is a
contradiction to Q(e) = Q′(e).

For the second statement, note that if Q(p̂) < ∞, then by Lemma 4.21, Q(p̂) = Q′(p̂). Hence
Lemma 4.8 yields that the algorithm finds a feasible traversal of πp̂..p and σ1..Q′(p̂) for some p̂ 6
p 6 n. This shows that P (p̂) 6 p < ∞. Let σ′ := σ1..Q(p̂) and assume that there is a p′ < p
with ddF(πp̂..p′ , σ

′) 6 δ and let (p̃, q̃) be the greedy point of πp̂..n and σ′ right before the algorithm
made a greedy step on π to some index in (p′, p]. By maximality of the greedy steps on σ, there
exists q̃ < qmin < Q(p̂) such that πp̃ does not see σqmin , since otherwise Q(p̂) ∈ reachσ′(p̃, σ̃)
with visπ(p̃, q̃) ( visπ(p̃, Q(p̂)), i.e., Q(p̂) would be a greedy step on σ′. By minimality of greedy

23



Algorithm 7 Given entry points E on π, compute all exits on σ.

1: function σ-exits-from-π(π, σ,E)
2: F ← ∅, q ← m
3: repeat
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: Q′ ← Q′(p)
7: repeat
8: if q′ ←MaxGreedyStepσ(πp..n, σq..Q′) then
9: q ← q′

10: if q 6= Q′ and p′ ←MinGreedyStepπ(πp..n, σq..Q′) then
11: p ← p′

12: until q = Q′ or no greedy step was found in the last iteration
13: if q = Q′ then
14: F ← F ∪ Find-σ-Exits(πp..n, σQ′..q)
15: q ← Q′ − 1

16: E ← E ∩ [p+ 1, n]
17: until E = ∅
18: return F

steps on π, visσ′(p̃, q̃) ) visσ′(i, q̃) for all p̃ 6 i 6 p′. Hence, no vertex on πp̃..p′ sees σqmin ,
which proves ddF(πp̃..p′ , σ

′) > δ. Since (p̃, σ̃) is a greedy pair of πp̂..p′ and σ′, this yields that
ddF(πp̂..p′ , σ

′) > δ by Lemma 4.8, which is a contradiction to the assumption. Hence, the algorithm
calls Find-σ-Exits(πp..n, σQ′(p̂)..q), where p = P (p̂) and Q′(p̂) = Q(p̂).

It remains to show that (P (p̂), Q(p̂)) is also a greedy pair of πp̂..n and the complete curve σ. By
Lemma 4.21, every p̂ 6 p < P (p̂) satisfies πp > πP (p̂) and hence visσ(p, q) ⊆ visσ(P (p̂), q) for all 1 6
q 6 m. Hence, if at some greedy pair (p, q), q 6 Q(p̂), a greedy step p′ ← GreedyStepπ(πp..n, σ)
with p′ > P (p̂) exists, then also P (p̂) ← GreedyStepπ(πp..n, σ), which shows that (P (p̂), q) is a
greedy point of πp̂..n and σ. If q = Q(p̂), then (P (p̂), Q(p̂)) is a greedy point pair. Otherwise, by
Lemma 4.21, P (p̂) sees all of σq..Q(p̂) and σq < σQ(p̂), hence Q(p̂) ∈ GreedyStepσ(πP (p)..n, σ) and
(P (p̂), Q(p̂)) is a greedy step of πp̂..n and σ.

It is left to consider the case that for all greedy pairs (p, q), q 6 Q(p̂), of πp̂..n and σ, no
greedy step to some p′ > P (p̂) exists. Then there is some (p, q) with p < P (p̂) and q 6 Q(p̂) for
which no greedy step exists at all. We have pstop := stopπ(πp..n, σq..m) 6 P (p̂), since otherwise
P (p̂) would be a greedy step. Since Lemma 4.8 shows that ddF(πp̂..pstop , σ1..q) > δ, this contradicts
ddF(πp̂..P (p̂), σ1..Q(p̂)) 6 δ.

Lemma 4.24. Algorithm 7 correctly computes F σ.

Proof. Clearly, any exit found is contained in F σ, since σ-exits-from-π and Find-σ-Exits only
use feasible steps. For the converse, let e ∈ E be an arbitrary entry and consider the set F σe = {q |
ddF(πe..n, σ1..q) 6 δ} of σ-exits corresponding to the entry e.

We first show that if F σe 6= ∅ and hence Q(e) < ∞, we have F σe =
Find-σ-Exits(πP (e)..n, σQ(e)..m). Let e ∈ F σe . By Lemma 4.23, (P (e), Q(e)) is a greedy pair of
πe..n and σ and hence also of πe..n and σ1..e. Lemma 4.8 thus implies ddF(πP (e)..n, σQ(e)..e) 6 δ and
consequently e ∈ Find-σ-Exits(πP (e)..n, σQ(e)..m). The converse clearly holds as well.
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Note that e is not considered as p̂ in any iteration of the algorithm if and only if the al-
gorithm considers some p̂ with e ∈ [p̂ + 1..p], where either (i) the algorithm finds a greedy
pair (p, q) of πp̂..n and σ1..Q′(p̂) that allows no further greedy steps, or (ii) the algorithm calls
Find-σ-Exits(πp..n, σQ′(p̂)..q), where p = P (p̂) by Lemma 4.23. In the first case, F σe = ∅ since
Lemma 4.23 proves Q(e) = ∞. In the second case, if F σe 6= ∅, we have Q(e) < ∞, and hence by
Lemma 4.22, Q(e) = Q(p̂) and P (p̂) 6 P (e). Since σQ(p̂) sees all of πP (p̂)..n, any exit reachable from
(P (e), Q(e)) is reachable from (P (p̂), Q(p̂)) as well. Hence F σe ⊆ F σp̂ .

Let p̂1 6 .. 6 p̂k be the entries considered as p̂ by the algorithm. It remains to show that the
algorithm finds all exits

⋃k
i=1 F

σ
p̂i

. We inductively show that the algorithm computes F σp̂i \
⋃
j<i F

σ
p̂j

in the loop corresponding to p̂ = p̂i. The base case i = 1 follows immediately. Note that for
every i > 2, the corresponding loop computes Find-σ-Exits(πP (p̂i)..n, σQ(p̂i)..Q(p̂i−1)−1) = F σp̂i ∩
[Q(p̂i)..Q(p̂i−1)− 1]. The claim follows if we can show F σp̂i ∩ [Q(p̂i−1)..m] ⊆ Fp̂i−1

. Let e ∈ F σp̂i with
e > Q(p̂i−1). Then ddF(πp̂i..n, σ1..e) 6 δ. Together with ddF(πp̂i−1..n, σ1..Q(p̂i−1)) 6 δ, Lemma 4.13
shows that ddF(πp̂i−1..n, σ1..e) 6 δ and hence e ∈ F σp̂i−1

.

Lemma 4.25. Algorithm 7 runs in time O((n+m) log 1/ε).

Proof. Consider the total cost of the calls Find-σ-Exits(πIi , σJi). Since all Ji are disjoint
and

⋃
i Ji ⊆ [1..m], Lemma 4.17 bounds the total cost of such calls by O(

∑
i |Ji| log(1/ε)) =

O(m log(1/ε)). Let p1, . . . , pk denote the distinct indices considered as p during the execution of
the algorithm. Between changing pi to pi+1, we will make at most one call to MaxGreedyStepσ
(by maximality) and at most once call to MinGreedyStepπ. Hence k 6 n bounds the number of
calls to greedy steps by O(n log(1/ε)).
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subquadratic time. In Proc. 24th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA’13), pages
156–167, 2013.

[2] H. Alt. The computational geometry of comparing shapes. In Efficient Algorithms, volume 5760 of
LNCS, pages 235–248. Springer, 2009.

[3] H. Alt and M. Buchin. Can we compute the similarity between surfaces? Discrete & Computational
Geometry, 43(1):78–99, 2010.
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[10] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting patterns by
clustering subtrajectories. Internat. J. Comput. Geom. Appl., 21(3):253–282, 2011.

25



[11] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the dog - with an application
to Alt’s conjecture. In Proc. 25th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA’14), pages
1399–1413, 2014.
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SIAM Journal on Computing, 42(5):1830–1866, 2013.

[17] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic curves in near
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[21] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. In Proc. 27th Annu. Symp.
Comp. Geometry (SoCG’11), pages 448–457. ACM, 2011.

[22] P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In Proc.
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