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Abstract

The present paper is intended to provide the basis for the study of
weakly differentiable functions on rectifiable varifolds with locally bounded
first variation. The concept proposed here is defined by means of integra-
tion by parts identities for certain compositions with smooth functions.
In this class the idea of zero boundary values is realised using the relative
perimeter of superlevel sets. Results include a variety of Sobolev Poincaré
type embeddings, embeddings into spaces of continuous and sometimes
Hölder continuous functions, pointwise differentiability results both of ap-
proximate and integral type as well as coarea formulae.

As prerequisite for this study decomposition properties of such vari-
folds and a relative isoperimetric inequality are established. Both involve
a concept of distributional boundary of a set introduced for this purpose.

As applications the finiteness of the geodesic distance associated to
varifolds with suitable summability of the mean curvature and a charac-
terisation of curvature varifolds are obtained.
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Introduction

Overview

The main purpose of this paper is to present a concept of weakly differentiable
functions on nonsmooth “surfaces” in Euclidean space with arbitrary dimension
and codimension arising in variational problems involving the area functional.
The model used for such surfaces are rectifiable varifolds whose first variation
with respect to area is representable by integration (that is, in the terminology
of Simon [Sim83, 39.2], rectifiable varifolds with locally bounded first variation).
This includes area minimising rectifiable currents1, in particular perimeter min-
imising “Caccioppoli sets”, or almost every time slice of Brakke’s mean cur-
vature flow2 just as well as surfaces occurring in diffuse interface models3 or
image restoration models4. The envisioned concept should be defined without
reference to an approximation by smooth functions and it should be as broad
as possible so as to still allow for substantial positive results.

In order to integrate well the first variation of the varifold into the concept of
weakly differentiable function, it appeared necessary to provide an entirely new
notion rather than to adapt one of the many concepts of weakly differentiable
functions which have been invented for different purposes. For instance, to study
the support of the varifold as metric space with its geodesic distance, stronger
conditions on the first variation are needed, see Section 14.

Description of results

Setup and basic results

To describe the results obtained, consider the following set of hypotheses; the
notation is explained in Section 1.

General hypothesis. Suppose m and n are positive integers, m ≤ n, U is an
open subset of Rn, V is an m dimensional rectifiable varifold in U whose first
variation δV is representable by integration.

1See Allard [All72, 4.8 (4)].
2See Brakke [Bra78, §4].
3See for instance Hutchinson and Tonegawa [HT00] or Röger and Tonegawa [RT08].
4See for example Ambrosio and Masnou [AM03].
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The study of weakly differentiable functions is closely related to the study
of connectedness properties of the underlying space or varifold. Therefore it is
instructive to begin with the latter.

Definition (see 6.2). If V is as in the general hypothesis, it is called inde-
composable if and only if there is no ‖V ‖ + ‖δV ‖ measurable set E such that
‖V ‖(E) > 0, ‖V ‖(U ∼E) > 0 and δ(V xE × G(n,m)) = (δV ) xE.

The basic theorem involving this notion is the following.

Decomposition theorem, see 6.10 and 6.12. If m, n, U , and V are as in
the general hypothesis, then there exists a countable disjointed collection G of
Borel sets whose union is U such that V xE× G(n,m) is nonzero and indecom-
posable and δ(V xE × G(n,m)) = (δV ) xE whenever E ∈ G.

Employing the following definition, the Borel partition G of U is required to
consist of members whose distributional V boundary vanishes and which cannot
be split nontrivially into smaller Borel sets with that property.

Definition (see 5.1). If m, n, U , and V are as in the general hypothesis and E
is ‖V ‖ + ‖δV ‖ measurable, then the distributional V boundary of E is defined
by

V ∂E = (δV ) xE − δ(V xE × G(n,m)) ∈ D
′(U,Rn).

If the varifold is sufficiently regular a version of the Gauss Green theorem
can be proven which both justifies the terminology and links the concept of
boundary to the one for currents, see 5.10 and 5.11.

In the terminology of 6.6 and 6.9 the varifolds V xE × G(n,m) occurring
in the decomposition theorem are components of V and the family {V xE ×
G(n,m) :E ∈ G} is a decomposition of V . However, unlike the decomposition
into connected components for topological spaces, the preceding decomposition
is nonunique in an essential way. In fact, the varifold corresponding to the
union of three lines in R2 meeting at the origin at equal angles may also be
decomposed into two “Y-shaped” varifolds each consisting of three rays meeting
at equal angles, see 6.13.

The seemingly most natural definition of weakly differentiable function would
be to require an integration by parts identity involving the first variation of the
varifold. However, the resulting class of real valued functions is neither stable
under truncation of its members nor does a coarea formula hold, see 8.26 and
8.31. Therefore, instead one requires an integration by parts identity for the
composition of the function in question with smooth functions whose derivative
has compact support, see 8.3. Whenever Y is a finite dimensional normed
vectorspace the resulting class of functions of Y valued functions is denoted by

T(V, Y ).

Whenever f belongs to that class there exists a ‖V ‖ measurable Hom(Rn, Y )
valued function V Df , called the (generalised) weak derivative of f , which is
‖V ‖ almost uniquely determined by the integration by parts identity. In defining
T(V, Y ), it seems natural not to require local summability of V Df but only

´

K∩{x : |f(x)|≤s}
|V Df | d‖V ‖ < ∞
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whenever K is a compact subset of U and 0 ≤ s < ∞; this is in analogy with
definition of the space “T 1,1

loc (U)” introduced by Bénilan, Boccardo, Gallouët,
Gariepy, Pierre and Vázquez in [BBG+95, p. 244] for the case of Lebesgue
measure, see 8.19. In both cases the letter “T” in the name of the space stands
for truncation.

Stability properties under composition (for example truncation) then follow
readily, see 8.12 and 8.15. Also, it is evident that members of T(V, Y ) may be
defined on components separately, see 8.24. The space T(V, Y ) is stable under
addition of a locally Lipschitzian function but it is not closed with respect to
addition in general, see 8.20 (3) and 8.25. A similar statement holds for multi-
plication of functions, see 8.20 (4) and 8.25. Adopting an axiomatic viewpoint,
consider the class of functions which satisfies the following three conditions for
a given varifold:

(1) Each function which is constant on the components of some decomposition
of the varifold belongs to the class.

(2) The class is closed under addition.

(3) The class is closed under truncation.

Then there exists a stationary one dimensional integral varifold in R2 such that
the associated class necessarily contains characteristic functions with nonvan-
ishing distributional derivative representable by integration, see 8.27. These
characteristic functions should not belong to a class of “weakly differentiable”
functions but rather to a class of functions of “bounded variation”. The reason
for this phenomenon is the afore-mentioned nonuniqueness of decompositions of
varifolds.

Much of the development of the theory rests on the following basic theorem.

Coarea formula, functional analytic form, see 8.5 and 8.29. Suppose m,
n, U , and V are as in the general hypothesis, f ∈ T(V ), and E(y) = {x : f(x) >
y} for y ∈ R.

Then there holds

´

〈φ(x, f(x)), V Df(x)〉 d‖V ‖x =
´

V ∂E(y)(φ(·, y)) dL
1y,

´

g(x, f(x))|V Df(x)| d‖V ‖x =
´ ´

g(x, y) d‖V ∂E(y)‖xdL
1y.

whenever φ ∈ D(U × R,Rn) and g : U × R → R is a continuous function with
compact support.

An example of such a development is provided by passing from the notion
of zero boundary values on a relatively open part G of the boundary of U for
sets to a similar notion for weakly differentiable functions. For ‖V ‖ + ‖δV ‖
measurable sets E such that V ∂E is representable by integration, the condition
is defined in 7.1. In the special case that ‖V ‖ is associated to M ∩ U for some
properly embedded m dimensional submanifold M of Rn ∼((BdryU) ∼G) of
class 2 without boundary it is equivalent to E being of locally finite perimeter
inM and its distributional boundary being measure theoretically contained in U ,
see 7.2. In order to define such a notion for nonnegative members f of T(V,R),
one requires for L 1 almost all 0 < y < ∞ that the set E(y) = {x : f(x) > y}
satisfies the corresponding zero boundary value condition.
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This gives rise to the subspaces TG(V ) of T(V,R) ∩ {f : f ≥ 0} with |f | ∈
T∅(V ) whenever f ∈ T(V, Y ), see 9.1 and 9.2. The space TG(V ) satisfies
useful truncation and closure properties, see 9.9 and 9.13. Moreover, under
a natural summability hypothesis, the multiplication of a member of TG(V )
by a nonnegative Lipschitzian function belongs to TG(V ), see 9.16. Whereas
the usage of level sets in the definition of TG(V ) is tailored to work nicely
in the proofs of embedding results in Section 10, the stability property under
multiplication requires a more delicate proof in turn.

Embedding results and structural results

To proceed to deeper results on functions in T(V, Y ), the usage of the isoperi-
metric inequality for varifolds seems indispensable. The latter works best under
the following additional hypothesis.

Density hypothesis. Suppose m, n, U , and V are as in the general hypothesis
and satisfy

Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x.

The key to prove effective versions of Sobolev Poincaré type embedding
results is the following theorem.

Relative isoperimetric inquality, see 7.9. Suppose m, n, U , and V satisfy
the general hypothesis and the density hypothesis, E is ‖V ‖ + ‖δV ‖ measurable,
1 ≤ Q ≤ M < ∞, n ≤ M , Λ = Γ7.8(M), 0 < r < ∞,

‖V ‖(E) ≤ (Q −M−1)α(m)rm, ‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Λ−1rm,

and A = {x : U(x, r) ⊂ U}.
Then there holds

‖V ‖(E ∩A)1−1/m ≤ Λ
(

‖V ∂E‖(U) + ‖δV ‖(E)
)

,

where 00 = 0.

In the special case that V ∂E = 0, ‖δV ‖(E) = 0 and

Θm(‖V ‖, x) ≥ Q for ‖V ‖ almost all x

the varifold V xE×G(n,m) is stationary and the support of its weight measure,
spt(‖V ‖ xE), cannot intersect A by the monotonicity identity and the upper
bound on ‖V ‖(E). The value of the theorem lies in quantifying this behaviour.
Much of the usefulness of the result for the purposes of the present paper stems
from the fact that values of Q larger than 1 are permitted. This allows to effec-
tively apply the result in neighbourhoods of points where the density function
Θm(‖V ‖, ·) has a value larger than 1 and is approximately continuous. The case
Q = 1 is partly contained in a result of Hutchinson [Hut90, Theorem 1] which
treats Lipschitzian functions.

If the set E satisfies a zero boundary value condition, see 7.1, on a relatively
open subset G of BdryU , the conclusion may be sharpened by replacing A =
{x : U(x, r) ⊂ U} by

A′ = U ∩ {x : U(x, r) ⊂ Rn ∼B}, where B = (BdryU) ∼G.
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In order to state a version of the resulting Sobolev Poincaré inequalities,
recall a less known notation from Federer’s treatise on geometric measure theory,
see [Fed69, 2.4.12].

Definition. Suppose µ measures X and f is a µ measurable function with
values in some Banach space Y .

Then one defines µ(p)(f) for 1 ≤ p ≤ ∞ by the formulae

µ(p)(f) = (
´

|f |p dµ)1/p in case 1 ≤ p < ∞,

µ(∞)(f) = inf
{

s : s ≥ 0, µ({x : |f(x)| > s}) = 0
}

.

In comparison to the more common notation ‖f‖Lp(µ,Y ) it puts the measure
in focus and avoids iterated subscripts.

Sobolev Poincaré inequality, zero median version, see 8.16, 9.2, and

10.1 (1a). Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, U , and V satisfy the general hypothesis and the density hypothesis,

n ≤ M , Y is a finite dimensional normed vectorspace, f ∈ T(V, Y ), 1 ≤ Q ≤ M ,
0 < r < ∞, E = U ∩ {x : f(x) 6= 0},

‖V ‖(E) ≤ (Q −M−1)α(m)rm,

‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

β = ∞ if m = 1, β = m/(m− 1) if m > 1,

A = {x : U(x, r) ⊂ U}, then

(‖V ‖ xA)(β)(f) ≤ Γ
(

‖V ‖(1)(V Df) + ‖δV ‖(1)(f)
)

.

Again, apart from extending the result to the class T(V, Y ), the main im-
provement upon known results such as Hutchinson [Hut90, Theorem 1] is the
applicability with values Q > 1. If f belongs to TG(V ), then A may be re-
placed by A′ as in the relative isoperimetric inequality. Not surprisingly, there
also exists a version of the Sobolev inequality for members of TBdry U (V ).

Sobolev inequality, see 10.1 (2a). Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, U , and V satisfy the general hypothesis and the density hypothesis,

n ≤ M , f ∈ TBdry U (V ),

E = U ∩ {x : f(x) 6= 0}, ‖V ‖(E) < ∞,

β = ∞ if m = 1, β = m/(m− 1) if m > 1,

then there holds

‖V ‖(β)(f) ≤ Γ
(

‖V ‖(1)(V Df) + ‖δV ‖(1)(f)
)

.

For Lipschitzian functions Sobolev inequalities were obtained by Allard [All72,
7.1] and Michael and Simon [MS73, Theorem 2.1] for varifolds and by Federer in
[Fed75, §2] for rectifiable currents which are absolutely minimising with respect
to a positive, parametric integrand.

Coming back the Sobolev Poincaré inequalities, one may also establish a
version with several “medians”. The number of medians needed is controlled by
the total weight measure of the varifold in a natural way.
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Sobolev Poincaré inequality, several medians, see 10.7 (1). Suppose 1 ≤
M < ∞.

Then there exists a positive, finite number Γ with the following property.
If m, n, U , and V satisfy the general hypothesis and the density hypothesis,

Y is a finite dimensional normed vectorspace, sup{dimY, n} ≤ M , f ∈ T(V, Y ),
1 ≤ Q ≤ M , N is a positive integer, 0 < r < ∞,

‖V ‖(U) ≤ (Q−M−1)(N + 1)α(m)rm,

‖V ‖({x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

β = ∞ if m = 1, β = m/(m− 1) if m > 1,

and A = {x : U(x, r) ⊂ U}, then there exists a subset Υ of Y such that 1 ≤
card Υ ≤ N and

(‖V ‖ xA)(β)(fΥ) ≤ ΓN1/β
(

‖V ‖(1)(V Df) + ‖δV ‖(1)(fΥ)
)

,

where fΥ(x) = dist(f(x),Υ) for x ∈ dmn f .

If Y = R, the approach of Hutchinson, see [Hut90, Theorem 3], carries over
unchanged and, in fact, yields a somewhat sharper estimate, see 10.9 (1). If
dim Y ≥ 2 and N ≥ 2 the selection procedure for Υ is more delicate.

In order to precisely state the next result, the concept of approximate tangent
vectors and approximate differentiability (see [Fed69, 3.2.16]) will be recalled.

Definition. Suppose µ measures an open subset U of a normed vectorspace X ,
a ∈ U , and m is a positive integer.

Then Tanm(µ, a) denotes the closed cone of (µ,m) approximate tangent vec-
tors at a consisting of all v ∈ X such that

Θ∗m(µ xE(a, v, ε), a) > 0 for every ε > 0,

where E(a, v, ε) = X ∩ {x : |r(x − a) − v| < ε for some r > 0}.

Moreover, if X is an inner product space, then the cone of (µ,m) approximate
normal vectors at a is defined to be

Norm(µ, a) = X ∩ {u :u • v ≤ 0 for v ∈ Tanm(µ, a)}.

If V is an m dimensional rectifiable varifold in an open subset U of Rn, then
at ‖V ‖ almost all a, T = Tanm(‖V ‖, a) is an m dimensional plane such that

r−m
´

f(r−1(x− a)) d‖V ‖x → Θm(‖V ‖, a)
´

T
f dH

m as r → 0+

whenever f : U → R is a continuous function with compact support. However,
at individual points the requirement that Tanm(‖V ‖, a) forms an m dimensional
plane differs from the condition that ‖V ‖ admits an m dimensional approximate
tangent plane in the sense of Simon [Sim83, 11.8].

Definition. Suppose µ, U , a and m are as in the preceding definition and f
maps a subset of X into another normed vectorspace Y .

Then f is called (µ,m) approximately differentiable at a if and only if there
exist b ∈ Y and a continuous linear map L : X → Y such that

Θm(µ xX ∼{x : |f(x) − b − L(x− a)| ≤ ε|x− a|}, a) = 0 for every ε > 0.
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In this case L| Tanm(µ, a) is unique and it is called the (µ,m) approximate
differential of f at a, denoted

(µ,m) apDf(a).

Also, the following notation will be convenient, see Almgren [Alm00, T.1 (9)].

Definition. Whenever P is an m dimensional plane in Rn, the orthogonal
projection of Rn onto P will be denoted by P♮.

The Sobolev Poincaré inequality with zero median and a suitably chosen
number Q is the key to prove the following structural result for weakly differen-
tiable functions.

Approximate differentiability, see 11.2. Suppose m, n, U , and V satisfy
the general hypothesis and the density hypothesis, Y is a finite dimensional
normed vectorspace, and f ∈ T(V, Y ).

Then f is (‖V ‖,m) approximately differentiable with

V Df(a) = (‖V ‖,m) apDf(a) ◦ Tanm(‖V ‖, a)♮

at ‖V ‖ almost all a.

The preceding assertion consists of two parts. Firstly, it yields that

V Df(a)| Norm(‖V ‖, a) = 0 for ‖V ‖ almost all a;

a property that is not required by the definition. Secondly, it asserts that

V Df(a)| Tanm(‖V ‖, a) = (‖V ‖,m) apDf(a) for ‖V ‖ almost all a.

This is somewhat similar to the situation for the generalised mean curvature of
an integral m varifold where it was first obtained by Brakke in [Bra78, 5.8] that
its tangential component vanishes and secondly by the author in [Men13, 4.8]
that its normal component is induced by approximate quantities.

Differentiability in Lebesgue spaces, see 11.4 (1). Suppose m, n, U , and
V satisfy the general hypothesis and the density hypothesis, Y is a finite di-
mensional normed vectorspace, f ∈ T(V, Y ) ∩ Lloc

1 (‖δV ‖, Y ), and V Df ∈
Lloc

1 (‖V ‖,Hom(Rn, Y )).
If m > 1 and β = m/(m− 1), then

lim
r→0+

r−m
´

B(a,r)(|f(x) − f(a) − V Df(a)(x− a)|/|x− a|)β d‖V ‖x = 0

for ‖V ‖ almost all a.

The result is derived from the approximate differentiability result mainly by
means of the zero median version of the Sobolev Poincaré inequality. Another
consequence of the approximate differentiability result is the rectifiability of
the distributional boundary of almost all superlevel sets of weakly differentiable
functions which supplements the functional analytic form of the coarea formula.

Coarea formula, measure theoretic form, see 12.2. Suppose m, n, U ,
and V satisfy the general hypothesis and the density hypothesis, f ∈ T(V,R),
and E(y) = {x : f(x) > y} for y ∈ R.

8



Then there exists an L 1 measurable function W with values in the weakly
topologised space of m − 1 dimensional rectifiable varifolds in U such that for
L 1 almost all y there holds

Tanm−1(‖W (y)‖, x) = Tanm(‖V ‖, x) ∩ kerV Df(x) ∈ G(n,m− 1),

Θm−1(‖W (y)‖, x) = Θm(‖V ‖, x)

for ‖W (y)‖ almost all x and

V ∂E(y)(θ) =
´

|V Df(x)|−1V Df(x)(θ(x)) d‖W (y)‖x for θ ∈ D(U,Rn),

in particular ‖V ∂E(y)‖ = ‖W (y)‖ for such y.

The proof of an appropriate form of the coarea formula was the original
motivation for the author to establish the new relative isoperimetric inequality
and its corresponding Sobolev Poincaré inequalities as well as the approximate
differentiability result. In this respect notice that the proof of the measure
theoretic form of the coarea formula could not be based on the more elementary
functional analytic form of the coarea formula in conjunction with an extension
of the Gauss Green theorem (see [Fed69, 4.5.6]) to sets whose distributional
V boundary is representable by integration. In fact, for general sets E whose
distributional V boundary is representable by integration it may happen that
there is no m− 1 dimensional rectifiable varifold whose weight measure equals
‖V ∂E‖, see 12.3. This is in contrast to the behaviour of sets of locally finite
perimeter in Euclidean space.

Critical mean curvature

Several of the preceding estimates and structural results may be sharpened
in case the generalised mean curvature satisfies an appropriate summability
condition.

Mean curvature hypothesis. Suppose m, n, U and V are as in the general
hypothesis and satisfies the following condition.

If m > 1 then for some h ∈ Lloc
m (‖V ‖,Rn) there holds

(δV )(θ) = −
´

h • θ d‖V ‖ for θ ∈ D(U,Rn).

In this case ψ will denote the Radon measure over U characterised by the con-
dition ψ(X) =

´

X
|h|m d‖V ‖ whenever X is a Borel subset of U .

Clearly, if this condition is satisfied, then the function h is ‖V ‖ almost equal
to the generalised mean curvature vector h(V, ·) of V . The exponent m is
“critical” with respect to homothetic rescaling of the varifold. Replacing it by
a slightly larger number would entail upper semicontinuity of Θm(‖V ‖, ·) and
the applicability of Allard’s regularity theory, see Allard [All72, §8]. In contrast,
replacing the exponent by a slightly smaller number would allow for examples
in which the varifold is locally highly disconnected, see the author [Men09, 1.2].

The importance of this hypothesis for the present considerations lies in the
fact that in the relative isoperimetric inequality, the summand “‖δV ‖(U)” may
be dropped provided V satisfies additionally the mean curvature hypothesis
with ψ(E)1/m ≤ Λ−1, see 7.11. As a first consequence, one obtains the following
version of the Sobolev Poincaré inequality.
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Sobolev Poincaré inequality, zero median, critical mean curvature,

see 8.16, 9.2, 10.1 (1c) (1d). Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, U , V , and ψ satisfy the general hypothesis, the density hypothesis

and the mean curvature hypothesis, n ≤ M , Y is a finite dimensional normed
vectorspace, f ∈ T(V, Y ), 1 ≤ Q ≤ M , 0 < r < ∞, E = U ∩ {x : f(x) 6= 0},

‖V ‖(E) ≤ (Q−M−1)α(m)rm, ψ(E) ≤ Γ−1,

‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

and A = {x : U(x, r) ⊂ U}, then the following two statements hold:

(1) If 1 ≤ q < m, then

(‖V ‖ xA)(mq/(m−q))(f) ≤ Γ(m− q)−1‖V ‖(q)(V Df).

(2) If 1 < m < q ≤ ∞, then

(‖V ‖ xA)(∞)(f) ≤ Γ1/(1/m−1/q)‖V ‖(E)1/m−1/q‖V ‖(q)(V Df).

Even if Q = q = 1 and f and V correspond to smooth objects, this estimate
appears to be new; at least, it seems not to be straightforward to derive from
Hutchinson [Hut90, Theorem 1].

A similar result holds for m = 1, see 10.1 (1b). Again, if f belongs to
TG(V ), then A may be replaced by A′. Also, appropriate versions of the Sobolev
inequality may be furnished, see 10.1 (2b)–(2d). The same is true with respect
to the Sobolev Poincaré inequalities with several medians, see 10.7 (2)–(4) and
10.9 (2)–(4).

Before stating the stronger differentiability properties that result from the
mean curvature hypothesis, recall the definition of relative differential from
[Fed69, 3.1.21, 3.1.22].

Definition. Suppose X and Y are normed vectorspaces, A ⊂ X , and a ∈
ClosA, and f : A → Y .

Then the tangent cone of A at a, denoted Tan(A, a), is the set of all v ∈ X
such that for every ε > 0 there exist x ∈ A and 0 < r ∈ R with |x− a| < ε and
|r(x − a) − v| < ε. Moreover, f is called differentiable relative to A at a if and
only if there exist b ∈ Y and a continuous linear map L : X → Y such that

|f(x) − b− L(x− a)|/|x− a| → 0 as A ∋ x → a.

In this case L| Tan(A, a) is unique and denoted Df(a).

Differentiability in Lebesgue spaces, critical mean curvature, see 11.4

(2)–(4). Suppose m, n, U , and V satisfy the general hypothesis, the density
hypothesis and the mean curvature hypothesis, Y a finite dimensional normed
vectorspace, f ∈ T(V, Y ), 1 ≤ q ≤ ∞, and V Df ∈ Lloc

q (‖V ‖,Hom(Rn, Y )).
Then the following two statements hold.

(1) If q < m and ι = mq/(m− q), then

lim
r→0+

r−m
´

B(a,r)
(|f(x) − f(a) − V Df(a)(x− a)|/|x− a|)ι d‖V ‖x = 0

for ‖V ‖ almost all a.

10



(2) If m = 1 or m < q, then there exists a subset A of U with ‖V ‖(U ∼A) = 0
such that f |A is differentiable relative to A at a with

D(f |A)(a) = V Df(a)| Tanm(‖V ‖, a) for ‖V ‖ almost all a,

in particular Tan(A, a) = Tanm(‖V ‖, a) for such a.

Considering V associated to two crossing lines, it is evident that one cannot
expect a function in T(V,R) to be ‖V ‖ almost equal to a continuous function
even if δV = 0 and V Df = 0. Yet, in case f is continuous, its modulus
of continuity may be locally estimated by its weak derivative. This estimate
depends on V but not on f as formulated in the next theorem.

Oscillation estimate, see 13.1 (2). Suppose m, n, U , and V satisfy the gen-
eral hypothesis, the density hypothesis and the mean curvature hypothesis, K is
a compact subset of U , 0 < ε ≤ dist(K,Rn ∼U), ε < ∞, and 1 < m < q.

Then there exists a positive, finite number Γ with the following property.
If Y is a finite dimensional normed vectorspace, f : spt ‖V ‖ → Y is a

continuous function, f ∈ T(V, Y ), and κ = sup{(‖V ‖ xU(a, ε))(q)(V Df) : a ∈

K}, then

|f(x) − f(χ)| ≤ εκ whenever x, χ ∈ K ∩ spt ‖V ‖ and |x− χ| ≤ Γ−1.

A similar result holds for m = 1, see 13.1 (1). This theorem rests on the
fact that connected components of spt ‖V ‖ are relatively open in spt ‖V ‖, see
6.14 (3). If a varifold V satisfies the general hypothesis, the density hypothe-
sis and the mean curvature hypothesis then the decomposition of spt ‖V ‖ into
connected components yields a locally finite decomposition into relatively open
and closed subsets whose distributional V boundary vanishes, see 6.14 (2)–(4).
Moreover, any decomposition of the varifold V will refine the decomposition of
the topological space spt ‖V ‖ into connected components, see 6.14 (1).

When the amount of total weight measure (“mass”) available excludes the
possibility of two separate sheets, the oscillation estimate may be sharpened
to yield Hölder continuity even without assuming a priori the continuity of the
function, see 13.3.

Two applications

Despite the necessarily rather weak oscillation estimate in the general case, this
estimate is still sufficient to prove that the geodesic distance between any two
points in the same connected component of the support is finite.

Geodesic distance, see 14.2. Suppose m, n, U , and V satisfy the general
hypothesis, the density hypothesis and the mean curvature hypothesis, C is a
connected component of spt ‖V ‖, and a, x ∈ C.

Then there exist −∞ < b ≤ y < ∞ and a Lipschitzian function g : {υ : b ≤
υ ≤ y} → spt ‖V ‖ such that g(b) = a and g(y) = x.

The proof follows a pattern common in theory of metric spaces, see 14.3.
Finally, the presently introduced notion of weak differentiability may also be

used to reformulate the defining condition for curvature varifolds, see 15.4 and
15.5, introduced by Hutchinson in [Hut86, 5.2.1].
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Characterisation of curvature varifolds, see 15.6. Suppose m and n are
positive integers, m ≤ n, U is an open subset of Rn, V is an m dimensional
integral varifold in U ,

X = U ∩ {x : Tanm(‖V ‖, x) ∈ G(n,m)}, Y = Hom(Rn,Rn) ∩ {σ :σ = σ∗},

and τ : X → Y satisfies

τ(x) = Tanm(‖V ‖, x)♮ whenever x ∈ X.

Then V is a curvature varifold if and only if ‖δV ‖ is a Radon measure
absolutely continuous with respect to ‖V ‖ and τ ∈ T(V, Y ).

The condition is readily verified to be a necessary one for curvature varifolds.
The key to prove its sufficiency is to relate the mean curvature vector of V to
the weak differential of the tangent plane map τ . This may be accomplished, for
instance, by means of the approximate differentiability result, see 11.2, applied
to τ , in conjunction with the previously obtained second order rectifiability
result for such varifolds, see [Men13, 4.8].

Possible lines of further study

Sobolev spaces. The results obtained by the author on the area formula
for the Gauss map, see [Men12b, Theorem 3], rest on several estimates for
Lipschitzian solutions of certain linear elliptic equations on varifolds satisfying
the mean curvature hypothesis. The formulation of these estimates necessitated
several ad hoc formulations of concepts such as zero boundary values which
would not seem natural from the point of view of partial differential equations.
In order to avoid repetition, the author decided to directly build an adequate
framework for these results rather than first publish the Lipschitzian case along
with a proof of the results announced in [Men12b].5 The first part of such
framework is provided in the present paper. Continuing this programme, a
notion of Sobolev spaces, complete vectorspaces contained in T(V, Y ) in which
locally Lipschitzian functions are suitably dense, has already been developed
but is not included here for length considerations.

Functions of locally bounded variation. It seems worthwhile to investi-
gate to which extent results of the present paper for weakly differentiable func-
tions extend to a class of “functions of locally bounded variation.” A possible
definition is suggested in 8.10.

Intermediate conditions on the mean curvature. The mean curvature
hypothesis may be weakened by replacing Lloc

m by Lloc
p for some 1 < p < m. In

view of the Sobolev Poincaré type inequalities obtained for height functions by
the author in [Men10, Theorem 4.4], one might seek for adequate formulations
of the Sobolev Poincaré inequalities and the resulting differentiability results for
functions belonging to T(V, Y ) in these intermediate cases. This could poten-
tially have applications to structural results for curvature varifolds, see 15.11
and 15.12. Additionally, the case p = m− 1 seems to be related to the study of
the geodesic distance for indecomposable varifolds, see 14.4.

5Would the author have fully anticipated the effort needed for such a construction he might
have reconciled himself with some repetition.
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Multiple valued weakly differentiable functions. For convergence con-
siderations it appears useful to extend the concept of weakly differentiable func-
tions to a more general class of “multiple-valued” functions in the spirit of Moser
[Mos01, §4], see 8.11.

Organisation of the paper

In Section 1 the notation is introduced. In Section 2 some basic terminology and
results on topological vector spaces are collected. Sections 3 and 4 contain pre-
liminary results concerning respectively certain distributions representable by
integration and consequences of the monotonicity identity. Section 5 introduces
the concept of distributional boundary of a set with respect to a varifold. In
Section 6 the decomposition properties for varifolds are established and Section
7 contains the relative isoperimetric inequality. In Sections 8–13 the theory of
weakly differentiable functions is presented. Finally, in Sections 14 and 15 the
applications to the study of the geodesic distance associated to certain varifolds
and to curvature varifolds are discussed briefly.
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1 Notation

The notation of Federer [Fed69] and Allard [All72] will be used throughout.

Less common symbols. The set of positive integers is denoted by P, see
[Fed69, 2.2.6]. For the open and closed ball with centre a and radius r the
symbols U(a, r) and B(a, r) are employed, see [Fed69, 2.8.1]. Whenever f is a
linear map and v belongs to its domain the alternate notation 〈v, f〉 for f(v) are
used, see [Fed69, 1.10.1]. Inner products, in contrast, are denoted by “•”, see
[Fed69, 1.7.1]. For integration the alternate notations

´

f dµ,
´

f(x) dµx and
µ(f) are employed, see [Fed69, 2.4.2]. Moreover, for evaluating a distribution T
at φ are alternately denoted by T (φ) and Tx(φ(x)), see [Fed69, 4.1.1].

Modifications. If f is a relation, then f [A] = {y : (x, y) ∈ f for some x ∈ A}
whenever A is a set, see Kelley [Kel75, p. 8]. Following Almgren [Alm00, T.1 (9)],
the symbol P♮ will denote the orthogonal projection of Rn onto P whenever P is
a plane in Rn. Extending Federer [Fed69, 3.2.16], whenever µ measures an open
subset of a normed vectorspace X , ι : U → X is the inclusion map, a ∈ U and m
is a positive integer notions of tangent vectors, normal vectors and differentials
of (µ,m) approximate type will refer to the corresponding (ι#µ,m) approximate
notion, for instance Tanm(µ, a) will denote Tanm(ι#µ, a). Following Schwartz,
see [Sch66, Chapitre III, §1], the vectorspace D(U, Y ) is given the (usual) locally
convex topology, see 2.10, which differs from the topology employed by Federer
in [Fed69, 4.1.1], see 2.14. Moreover, the usage of ‖S‖ for distributions S is
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chosen to be in accordance with Allard [All72, 4.2] which agrees with Federer’s
usage in [Fed69, 4.1.5] in most but not in all cases, see 2.15 and 2.16.

Extending Allard [All72, 2.5 (2)], whenever M is a submanifold of Rn of
class 2 and a ∈ M the mean curvature vector of M at a is the unique h(M,a) ∈
Nor(M,a) such that

Tan(M,a)♮ • (Dg(a) ◦ Tan(M,a)♮) = −g(a) • h(M,a)

whenever g : M → Rn is of class 1 and g(x) ∈ Nor(M,x) for x ∈ M . If V is an
m dimensional varifold in U and ‖δV ‖ is a Radon measure, then the generalised
mean curvature vector of V at x is the unique h(V, x) ∈ Rn such that

h(V, x) • u = − lim
r→0+

(δV )(bx,r · u)
‖V ‖ B(x, r)

for u ∈ Rn,

where bx,r is the characteristic function of B(x, r); hence x ∈ dmn h(V, ·) if and
only if the above limit exists for every u ∈ Rn, see [Men12a, p. 9].

Additional notation. If 1 ≤ p ≤ ∞, µ is a Radon measure over a locally com-
pact Hausdorff space X , and Y is a Banach space, then Lloc

p (µ, Y ) consists of all
f such that f ∈ Lp(µ xK,Y ) whenever K is a compact subset of X . Concerning
the Besicovitch Federer covering theorem, whenever n ∈ P the number β(n) de-
notes the least positive integer with the following property, see Almgren [Alm86,
p. 464]: If G is a family of closed balls in Rn with sup{diamB :B ∈ G} < ∞,
then there exist disjointed subfamilies G1, . . . , Gβ(n) such that

{x : B(x, r) ∈ G for some 0 < r < ∞} ⊂
⋃ ⋃

{Gi : i = 1, . . . ,β(n)}.

Concerning the isoperimetric inequality, whenever m ∈ P the smallest number
with the following property is denoted by γ(m), see [Men09, 2.2–2.4]: If n ∈ P,
m ≤ n, V ∈ RVm(Rn), ‖V ‖(Rn) < ∞, and ‖δV ‖(Rn) < ∞, then

‖V ‖(Rn ∩ {x : Θm(‖V ‖, x) ≥ 1}) ≤ γ(m)‖V ‖(Rn)1/m‖δV ‖(Rn).

Definitions in the text. The notions of Lusin space, locally convex space
and locally convex topology, strict inductive limit as well as final topology and
locally convex final topology are defined in 2.1, 2.3, 2.4 and 2.6 respectively. The
topologies on K (X) and D(U, Y ) are defined in 2.7 and 2.10. The restriction of
a distribution representable by integration to a set will be defined in 2.17. In 5.1,
the notion of distributional boundary of a set with respect to certain varifolds
is defined. The notions of indecomposability, component, and decomposition for
certain varifolds are defined in 6.2, 6.6 and 6.9 respectively. The notion of
generalised weakly differentiable functions with respect to certain varifolds and
the corresponding generalised weak derivatives, V Df , and the associated space
T(V, Y ) are introduced in 8.3. The space TG(V ) is defined in 9.1. Finally, the
notion of curvature varifold is explained in 15.4.

A convention. Each statement asserting the existence of a positive, finite
number Γ will give rise to a function depending on the listed parameters whose
name is Γx.y, where x.y denotes the number of the statement. This is a refine-
ment of a concept employed by Almgren in [Alm00].
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2 Topological vector spaces

Some basic results on topological vector spaces and Lusin spaces are gathered
here mainly from Schwartz [Sch73] and Bourbaki [Bou87].

2.1 Definition (see [Sch73, Chapter II, Definition 2, p. 94]). Suppose X is a
topological space.

Then X is called a Lusin space if and only if X is a Hausdorff topological
space and there exists a complete, separable metric space W and a continuous
univalent map f : W → X whose image is X .

2.2 Remark. Any subset of a Lusin space is sequentially separable.

2.3 Definition (see [Bou87, II, p. 23, def. 1]). A topological vector space is
called a locally convex space if and only if there exists a fundamental system of
neighbourhoods of 0 that are convex sets; its topology is called locally convex
topology.

2.4 Definition. The locally convex spaces form a category; its morphisms
are the continuous linear maps. An inductive limit in this category is called
strict if and only if the morphisms of the corresponding inductive system are
homeomorphic embeddings.

2.5 Remark. The notion of inductive limit is employed in accordance with [ML98,
p. 67–68].

2.6 Definition (see [Bou98, I, §2.4, prop. 6], [Bou87, II, p. 27, prop. 5]). Sup-
pose E is a set [vector space], Ei are topological spaces [topological vector
spaces] and fi : Ei → E are functions [linear maps] for i ∈ I.

Then there exists a unique topology [unique locally convex topology] on E
such that a function [linear map] g : E → F into a topological space [locally
convex space] F is continuous if and only if g ◦ fi are continuous for i ∈ I. This
topology is called final topology [locally convex final topology] on E with respect
to the family fi.

2.7 Definition (see [Bou87, II, p. 29, Example II]6). Suppose X is a locally
compact Hausdorff space. Consider the inductive system consisting of the locally
convex spaces K (X)∩{f : spt f ⊂ K} with the topology of uniform convergence
corresponding to all compact subsets K of U and its inclusion maps.

Then K (X) endowed with the locally convex final topology with respect to
the inclusions of the topological vector spaces K (X) ∩ {f : spt f ⊂ K} is the
inductive limit of the above system in the category of locally convex spaces.

2.8 Remark (see [Bou87, II, p. 29, Example II]). The locally convex topology
on K (X) is Hausdorff and induces the given topology on each closed subspace
K (X) ∩ {f : spt f ⊂ K}. Moreover, the space K (X)∗ of Daniell integrals on
K (X) agrees with the space of continuous linear functionals on K (X).

2.9 Remark. If K(i) is a sequence of compact subsets of X with K(i) ⊂ IntK(i+
1) for i ∈ P and X =

⋃∞
i=1 K(i), then K (X) is the strict inductive limit of the

sequence of locally convex spaces K (X) ∩ {f : spt f ⊂ K(i)}.

6In the terminology of [Bou87, II, p. 29, Example II] a locally compact Hausdorff space is
called a locally compact space.
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2.10 Definition. Suppose U is an open subset of Rn and Z is a Banach space.
Consider the inductive system consisting of the locally convex spaces DK(U,Z)
with the topology induced from E (U,Z) corresponding to all compact subsets
K of U and its inclusion maps.

Then D(U,Z) endowed with the locally convex final topology with respect
to the inclusions of the topological vector spaces DK(U,Z) is the inductive limit
of the above inductive system in the category of locally convex spaces.

2.11 Remark. The locally convex topology on D(U,Z) is Hausdorff and induces
the given topology on each closed subspace DK(U,Z).

2.12 Remark. IfK(i) is a sequence of compact subsets of U withK(i) ⊂ IntK(i+
1) for i ∈ P and U =

⋃∞
i=1 K(i), then D(U,Z) is the strict inductive limit of

the sequence of locally convex spaces DK(i)(U,Z). In particular, the convergent
sequences in D(U,Z) are precisely the convergent sequences in some DK(U,Z),
see [Bou87, III, p. 3, prop. 2; II, p. 32, prop. 9 (i) (ii); III, p. 5, prop. 6].

2.13 Remark. The locally convex topology on D(U,Z) is also the inductive limit
topology in the category of topological vector spaces, see [Bou87, I, p. 9, Lemma
to prop. 7; II, p. 75, exerc. 14].

2.14 Remark. Consider the inductive system consisting of the topological spaces
DK(U,Z) corresponding to all compact subsets K of U and its inclusion maps.
Then D(U,Z) endowed with the final topology with respect to the inclusions of
the topological vector spaces DK(U,Z) is the inductive limit of this inductive
system in the category of topological spaces.

Denoting this topology by S and the topology described in 2.10 by T , the
following three statements hold.

(1) Amongst all locally convex topologies on D(U,Z), the topology T is char-
acterised by the following property: A linear map from D(U,Z) into some
locally convex space is T continuous if and only if it is S continuous.

(2) The S closed sets are precisely the T sequentially closed sets, see 2.12.

(3) If U is nonempty and dimZ > 0, then S is strictly finer than T , compare
Shirai [Shi59, Théorème 5].7 In particular, in this case S is not compatible
with the vector space structure of D(U,Z) by 2.13.

2.15 Definition. Suppose U is an open subset of Rn, Z is a separable Banach
space, and S : D(U,Z) → R is linear.

Then ‖S‖ is defined to be the largest Borel regular measure over U such that

‖S‖(G) = sup{S(θ) : θ ∈ D(U,Z) with spt θ ⊂ G and |θ(x)| ≤ 1 for x ∈ U}

whenever G is an open subset of U .8

2.16 Remark. This concept agrees with [Fed69, 4.1.5] in case ‖S‖ is a Radon
measure (which is equivalent to S being a distribution in U of type Z repre-
sentable by integration) in which case S(θ) continuous to denote the value of

7The topological preliminaries of [Shi59] are quite general. For the purpose of verifying only
the cited result, one may replace the terms «topologie» [respectively «véritable-topologie»]
with operators satisfying conditions (a), (b) and (d) [respectively all] of the Kuratowski closure
axioms, see [Kel75, p. 43]. (Extending [Shi59, Théorème 5] which treats the case U = Rn and
Z = R to the case stated poses no difficulty.)

8Existence may be shown by use of the techniques occurring in [Fed69, 2.5.14].
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the unique ‖S‖(1) continuous extension of S to L1(‖S‖, Z) at θ ∈ L1(‖S‖, Z). In
general the concepts differ since it may happen that |S(θ)| > ‖S‖(|θ|) for some
θ ∈ D(U,Z); an example is provided by taking U = Z = R and S = ∂(δ0 ∧ e1),
see [Fed69, 4.1.16].

2.17 Definition. Suppose U is an open subset of Rn, Z is a separable Banach
space, S ∈ D ′(U,Z) is representable by integration, and A is ‖S‖ measurable.

Then the restriction of S to A, S xA ∈ D ′(U,Z), is defined by

(S xA)(θ) = S(θA) whenever θ ∈ D(U,Z),

where θA(x) = θ(x) for x ∈ A and θA(x) = 0 for x ∈ U ∼A.

2.18 Remark. This extends the notion for currents in [Fed69, 4.1.7].

2.19 Theorem. Suppose E is the strict inductive limit of an increasing se-
quence of locally convex spaces Ei and the spaces Ei are separable, complete
(with respect to its topological vector space structure) and metrisable for i ∈ P.9

Then E and the dual E′ of E endowed with the compact open topology are
Lusin spaces and whenever D is a dense subset of E the Borel family of E′ is
generated by the family

{

E′ ∩ {u :u(x) < t} :x ∈ D and t ∈ R
}

.

Proof. First, note that Ei is a Lusin space for i ∈ P, since it may be metrised
by a translation invariant metric by [Bou87, II, p. 34, prop. 11]. Second, note
that E is Hausdorff and induces the given topology on Ei by [Bou87, II, p. 32,
prop. 9 (i)]. Therefore E is a Lusin space by [Sch73, Chapter II, Corollary 2 to
Theorem 5, p. 102]. Since every compact subset K of E is a compact subset of
Ei for some i by [Bou87, III, p. 3, prop. 2; II, p. 32, prop. 9 (ii); III, p. 5, prop. 6],
it follows that E′ is a Lusin space from [Sch73, Chapter 2, Theorem 7, p. 112].
Defining the continuous, univalent map ι : E′ → RD by ι(u) = u|D for u ∈ E′,
the initial topology on E′ induced by ι is a Hausdorff topology coarser than the
compact open topology, hence their Borel families agree by [Sch73, Chapter II,
Corollary 2 to Theorem 4, p. 101].

2.20 Example. Suppose X is a locally compact Hausdorff space which admits a
countable base of its topology.

Then K (X) with its locally convex topology (see 2.7) and K (X)∗ with its
weak topology are Lusin spaces and the Borel family of K (X)∗ is generated
by the sets K (X)∗ ∩ {µ :µ(f) < t} corresponding to f ∈ K (X) and t ∈ R.
Moreover, the topological space

K (X)∗ ∩ {µ :µ is monotone}

is homeomorphic to a complete, separable metric space;10 in fact, choosing a
countable dense subset D of K (X)+, the image of its homeomorphic embedding
into RD is closed.

9That is, Ei are separable Fréchet spaces in the terminology of [Bou87, II, p. 24].
10Such spaces are termed polish spaces in [Sch73, Chapter II, Definition 1].
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2.21 Example. Suppose U is an open subset of Rn and Z is a separable Banach
space.

Then D(U,Z) with its locally convex topology (see 2.10) and D ′(U,Z) with
its weak topology are Lusin spaces and the Borel family of D ′(U,Z) is generated
by the sets D ′(U,Z) ∩ {S :S(θ) < t} corresponding to θ ∈ D(U,Z) and t ∈ R.
Moreover, recalling 2.2 and [Fed69, 4.1.5], it follows that

(

D
′(U,Z) × K (U)∗

)

∩ {(S, ‖S‖) :S is representable by integration}

is a Borel function whose domain is a Borel set (with respect to the weak topol-
ogy on both spaces).

3 Distributions on products

The purpose of the present section is to separate functional analytic considera-
tions from those employing properties of the varifold or the weakly differentiable
function in deriving the various coarea type formulae in 8.1, 8.29, 12.1, and 12.2.

3.1. Suppose U and V are open subsets of Euclidean spaces and Z is a Banach
space. Then the image of D(U,R) ⊗D(V,R) ⊗Z in D(U ×V, Z) is sequentially
dense, compare [Fed69, 1.1.3, 4.1.2, 4.1.3].

3.2. If J is an open subset of R, R ∈ D ′(J,R) is representable by integration,
and ‖R‖ is absolutely continuous with respect to L 1|2J , then there exists k ∈
Lloc

1 (L 1|2J) such that

R(ω) =
´

Jωk dL
1 whenever ω ∈ L1(‖R‖),

k(y) = lim
ε→0+

ε−1R(iy,ε) for L
1 almost all y ∈ J,

where iy,ε is the characteristic function of the interval {υ : y < υ ≤ y + ε}; in
fact, localising the problem, one employs [Fed69, 2.5.8] to construct k satisfying
the first condition which implies the second one by [Fed69, 2.8.17, 2.9.8].

3.3 Lemma. Suppose n ∈ P, µ is a Radon measure over an open subset U
of Rn, J is an open subset of R, f is a µ measurable real valued function,
A = f−1[J ], F is a µ measurable Hom(Rn,R) valued function with

´

K∩{x : f(x)∈I}
|F | dµ < ∞

whenever K is a compact subset of U and I is a compact subset of J , and
T ∈ D ′(U × J,Rn) satisfies

T (φ) =
´

A
〈φ(x, f(x)), F (x)〉 dµx for φ ∈ D(U × J,Rn)

Then T is representable by integration and

T (φ) =
´

A
〈φ(x, f(x)), F (x)〉 dµx,

´

g d‖T ‖ =
´

A
g(x, f(x))|F (x)| dµx

whenever φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function.
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Proof. Define p : U × J → U by

p(x, y) = x for (x, y) ∈ U × J.

Define the measure ν over U by ν(B) =
´ ∗

A∩B
|F | dµ for B ⊂ U . Let G : A →

U × J be defined by G(x) = (x, f(x)) for x ∈ A. Employing [Fed69, 2.2.2, 2.2.3,
2.4.10] yields that ν x{x : f(x) ∈ I} is a Radon measure whenever I is a compact
subset of J , hence so is the measure G#(ν|2A) over U×J by [Fed69, 2.2.2, 2.2.3,
2.2.17, 2.3.5]. One deduces that

T (φ) =
´ 〈

φ, |F ◦ p|−1F ◦ p
〉

dG#(ν|2A) for φ ∈ D(U × J,Rn);

in fact, F |A = F ◦p◦G, hence both sides equal
´ 〈

φ ◦G, |F |−1F
〉

dν by [Fed69,
2.4.10, 2.4.18 (1)]. Consequently, ‖T ‖ = G#(ν|2A) and the conclusion follows
by means of [Fed69, 2.2.2, 2.2.3, 2.4.10, 2.4.18 (1)].

3.4 Theorem. Suppose U is an open subset of Rn, J is an open subset of R,
Z is a separable Banach space, T ∈ D ′(U ×J, Z) is representable by integration,
Rθ ∈ D ′(J,R) satisfy

Rθ(ω) = T(x,y)(ω(y)θ(x)) whenever ω ∈ D(J,R) and θ ∈ D(U,Z).

and S(y) : D(U,Z) → R satisfy, see 3.2,

S(y)(θ) = lim
ε→0+

ε−1Rθ(iy,ε) ∈ R for θ ∈ D(U,Z)

whenever y ∈ J , that is y ∈ dmnS if and only if the limit exists and belongs to
R for θ ∈ D(U,Z).

Then S is an L 1
xJ measurable function with respect to the weak topology

on D ′(U,Z) and the following two statements hold.

(1) If g is an {u : 0 ≤ u ≤ ∞} valued ‖T ‖ measurable function, then
´

J

´

g(x, y) d‖S(y)‖xdL
1y ≤

´

g d‖T ‖.

(2) If ‖Rθ‖ is absolutely continuous with respect to L 1|2J for θ ∈ D(U,Z),
then

T (φ) =
´

J
S(y)(φ(·, y)) dL

1y,
´

J
g d‖T ‖ =

´

J

´

g(x, y) d‖S(y)‖xdL
1y.

whenever φ ∈ L1(‖T ‖, Z) and g is an R valued ‖T ‖ integrable function.

Proof. Define p : U × J → R and q : U × J → U by

p(x, y) = x and q(x, y) = y for (x, y) ∈ U × J.

First, one derives that S is an L 1
x J measurable function with values in

D
′(U,Z) ∩ {Σ : Σ is representable by integration},

where the weak topology on D ′(U,Z) is employed; in fact, choosing countable,
sequentially dense subsets C and D of K (U)+ and D(U,Z) respectively (see
2.2, 2.20, and 2.21) and noting that S(y) belongs to set in question whenever

lim
ε→0+

ε−1‖T ‖((f ◦ p)(iy,ε ◦ q)) ∈ R, lim
ε→0+

ε−1Rθ(iy,ε) ∈ R
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for f ∈ C and θ ∈ D by means of 2.12, the assertion follows from [Fed69, 2.9.19]
and 2.21.

In order to prove (1), one may assume g ∈ K (U×J)+. Suppose f ∈ K (U)+,
h ∈ K (J)+, and g = (f ◦p)(h◦q) and β denotes the Radon measure over U×J
defined by β(B) =

´ ∗

Bf ◦ p d‖T ‖ for B ⊂ U × J . Noting

‖S(y)‖(f) ≤ D(q#β,L
1|2J , V, y) for L

1 almost all y ∈ J,

where V = {(b, I) : b ∈ I ⊂ J and I is a compact interval}

and employing [Fed69, 2.4.10, 2.8.17, 2.9.7] and 2.21, one infers that
´

J‖S(y)‖(f)h(y) dL
1y ≤

´

JD(q#β,L
1|2J , V, y)h(y) dL

1y

≤ (q#β)(h) = ‖T ‖(g).

An arbitrary g ∈ K (U × J)+ may be approximated by a sequence of func-
tions which are nonnegative linear combinations of functions of the previously
considered type, compare [Fed69, 4.1.2, 4.1.3].

To prove the first equation in (2), it is sufficient to exhibit a sequentially
dense subset E of D(U × J, Z) such that

T (φ) =
´

J
S(y)(φ(·, y)) dL

1y whenever φ ∈ E

by (1) and 2.12. If θ ∈ D(U,Z), then

T(x,y)(ω(y)θ(x)) = Rθ(ω) =
´

JS(y)x(ω(y)θ(x)) dL
1y

for ω ∈ D(J,R) by 3.2. One may now take E to be the image of D(J,R) ⊗
D(U,Z) in D(U × J, Z), see 3.1.

The second equation in (2) follows from (1) and the first equation in (2).

4 Monotonicity identity

The purpose of this section is to derive the modifications and consequences of
the monotonicity identity which will be employed in 6.12, 8.33, 13.1, and 14.2.

4.1 Lemma. Suppose 1 ≤ m < ∞, 0 ≤ s < r < ∞, 0 ≤ κ < ∞, I = {t : s <
t ≤ r}, and f : I → {y : 0 < y < ∞} is a function satisfying

lim sup
u→t−

f(u) ≤ f(t) ≤ f(r) + κf(r)1/m
´ r

t u
−1f(u)1−1/m dL

1u for t ∈ I.

Then there holds

f(t) ≤
(

1 +m−1κ log(r/t)
)m
f(r) for t ∈ I.

Proof. Suppose f(r) < y < ∞ and υ = m−1κf(r)1/my−1/m and consider the
set J of all t ∈ I such that

f(u) ≤ (1 + υ log(r/u))my whenever t ≤ u ≤ r.

Clearly, J is an interval and r belongs to the interior of J relative to I. The
same holds for t with s < t ∈ ClosJ since

f(t) ≤ f(r) + κf(r)1/my1−1/m
´ r

t
u−1(1 + υ log(r/u))m−1 dL

1u

= f(r) +
(

(1 + υ log(r/t))m − 1
)

y < (1 + υ log(r/t))my.

Therefore I equals J .
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4.2 Theorem. Suppose m,n ∈ P, m ≤ n, a ∈ Rn, 0 < r < ∞, V ∈
Vm(U(a, r)), and ̺ ∈ D({s : 0 < s < r},R).

Then there holds

−
´ r

0 ̺
′(s)s−m‖V ‖ B(a, s) dL

1s

=
´

(U(a,r) ∼{a})×G(n,m)
̺(|x− a|)|x − a|−m−2|P⊥

♮ (x − a)|2 dV (x, P )

− (δV )x

(

(´ r

|x−a|
s−m−1̺(s) dL

1s
)

(x− a)
)

.

Proof. Assume a = 0 and let I = {s : −∞ < s < r} and J = {s : 0 < s < r}.
If ω ∈ E (I,R), sup sptω < r, 0 /∈ sptω′ and θ : U(a, r) → Rn is associated

to ω by θ(x) = ω(|x|)x for x ∈ U(a, r), then Dθ(0) • P♮ = mω(0) and

Dθ(x) • P♮ = |P♮(x)|2|x|−1ω′(|x|) +mω(|x|)

= −|P⊥
♮ (x)|2|x|−1ω′(|x|) + |x|ω′(|x|) +mω(|x|)

whenever x ∈ Rn, 0 < |x| < r, and P ∈ G(n,m). Define ω, γ ∈ E (I,R) by

ω(s) = −
´ r

sup{s,0}u
−m−1̺(u) dL

1u and γ(s) = sω′(s) +mω(s)

for s ∈ I, hence sup spt γ ≤ sup sptω < r, 0 /∈ sptω′, and

ω′(s) = s−m−1̺(s), ω′′(s) = −(m+ 1)s−m−2̺(s) + s−m−1̺′(s)

for s ∈ J . Using Fubini’s theorem, one computes with θ as before that

δV (θ) +
´

(Rn×G(n,m))∩{(x,P ) : 0<|x|<r}
̺(|x|)|x|−m−2|P⊥

♮ (x)|2 dV (x, P )

=
´

γ(|x|) d‖V ‖x = −
´ ´ r

|x|
γ′(s) dL

1s d‖V ‖x = −
´ r

0
γ′(s)‖V ‖ B(a, s) dL

1s.

Finally, notice that γ′(s) = sω′′(s) + (m+ 1)ω′(s) = s−m̺′(s) for s ∈ J .

4.3 Remark. This is a slight generalisation of Simon’s version of the monotonicity
identity, see [Sim83, 17.3], included here for the convenience of the reader.

4.4. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn, V ∈ Vm(U), ‖δV ‖
is a Radon measure, and η(V, ·) is a ‖δV ‖ measurable Sn−1 valued function
satisfying

(δV )(θ) =
´

η(V, x) • θ(x) d‖δV ‖x for θ ∈ D(U,Rn),

see Allard [All72, 4.3].

4.5 Corollary. Suppose m, n, U , V , and η are as in 4.4.
Then there holds

s−m‖V ‖ B(a, s) +
´

(B(a,r) ∼ B(a,s))×G(n,m)
|x− a|−m−2|P⊥

♮ (x− a)|2 dV (x, P )

= r−m‖V ‖ B(a, r)

+m−1
´

B(a,r)
(sup{|x− a|, s}−m − r−m)(x − a) • η(V, x) d‖δV ‖x

whenever a ∈ Rn, 0 < s ≤ r < ∞, and B(a, r) ⊂ U .
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Proof. Letting ζ approximate the characteristic function of {t : s < t ≤ r}, the
assertion is a consequence of 4.2.

4.6 Remark. Using Fubini’s theorem, the last summand can be expressed as

´ r

s t
−m−1

´

B(a,t)(x− a) • η(V, x) d‖δV ‖xdL
1t.

4.7 Remark. 4.5 and 4.6 are a minor variations of Simon [Sim83, 17.3, 17.4].

4.8 Corollary. Suppose m, n, U , and V are as in 4.4, m = 1, and X =
U ∩ {a : ‖δV ‖({a}) > 0}.

Then the following three statements hold.

(1) If a ∈ Rn, 0 < s ≤ r < ∞, and B(a, r) ⊂ U , then

s−1‖V ‖ B(a, s) +
´

(B(a,r) ∼ B(a,s))×G(n,m)
|x− a|−3|P⊥

♮ (x− a)|2 dV (x, P )

≤ r−1‖V ‖ B(a, r) + ‖δV ‖(B(a, r) ∼{a})

(2) Θ1(‖V ‖, ·) is a real valued function whose domain is U .

(3) Θ1(‖V ‖, ·) is upper semicontinuous at a whenever a ∈ U ∼X.

If additionally Θ1(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x, then the following two
statements hold.

(4) If a ∈ spt ‖V ‖, then

Θ1(‖V ‖, a) ≥ 1 if a 6∈ X and Θ1(‖V ‖, a) ≥ 1/2 if a ∈ X.

(5) If a ∈ spt ‖V ‖, 0 < s ≤ r < ∞, U(a, r) ⊂ U , and ‖δV ‖(U(a, r) ∼{a}) ≤ ε,
then

‖V ‖ U(x, s) ≥ 2−1(1 − ε)s whenever x ∈ spt ‖V ‖ and |x− a| + s ≤ r.

Proof. If a ∈ U , 0 < s < r < ∞ and B(a, r) ⊂ U , then
∣

∣ sup{|x− a|, s}−1 − r−1
∣

∣|x− a| ≤ 1 whenever x ∈ B(a, r).

Therefore (1) follows from 4.5. (1) readily implies (2) and (3) and the first
half of (4). To prove the second half, choose η as in 4.4 and consider a ∈ X .
One may assume a = 0 and in view of Allard [All72, 4.10 (2)] also U = Rn.
Abbreviating v = η(V, 0) ∈ Sn−1 and defining the reflection f : Rn → Rn by
f(x) = x − 2(x • v)v for x ∈ Rn, one infers the second half of (4) by applying
the first half of (4) to the varifold V + f#V .

If a, s, r, ε and x satisfy the conditions of (5), then

‖V ‖ U(x, s) ≥ (1 − ε)s if either s ≤ |x− a| or x = a,

‖V ‖ U(x, s) ≥ ‖V ‖ U(a, s/2) ≥ 2−1(1 − ε)s if 2|x− a| ≤ s

by (1) and (4), the case |x− a| < s < 2|x− a| then follows.
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4.9 Corollary. Suppose m, n, U , and V are as in 4.4, a ∈ Rn, 0 < s < r < ∞,
B(a, r) ⊂ U , 0 ≤ κ < ∞, and

‖δV ‖ B(a, t) ≤ κr−1‖V ‖(B(a, r))1/m‖V ‖(B(a, t))1−1/m for s < t < r,

where 00 = 1.
Then there holds

s−m‖V ‖ B(a, s) ≤
(

1 +m−1κ log(r/s)
)m
r−m‖V ‖ B(a, r).

Proof. Assume ‖V ‖ B(a, r) > 0 and define t = inf{u : ‖V ‖ B(a, u) > 0} and
f(u) = u−m‖V ‖ B(a, u) for sup{s, t} < u ≤ r. Then, in view of 4.5 and 4.6, one
may apply 4.1 with s replaced by sup{s, t} to infer the conclusion.

5 Distributional boundary

In this section the notion of distributional boundary of a set with respect to
certain varifolds is introduced, see 5.1. Moreover, a basic structural theorem is
proven, see 5.10, which allows to compare this notion to a similar one employed
by Bombieri and Giusti in the context of area minimising currents in [BG72,
Theorem 2], see 7.14.

5.1 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ Vm(U), ‖δV ‖ is a Radon measure, and E is ‖V ‖ + ‖δV ‖ measurable.

Then the distributional V boundary of E is given by (see 2.17)

V ∂E = (δV ) xE − δ(V xE × G(n,m)) ∈ D
′(U,Rn).

5.2 Remark. If W ∈ Vm(U), ‖δW‖ is a Radon measure and E is additionally
‖W‖ + ‖δW‖ measurable, then

(V +W ) ∂E = V ∂E +W ∂E.

5.3 Remark. If E and F are ‖V ‖ + ‖δV ‖ measurable sets and E ⊂ F , then

V ∂(F ∼E) = (V ∂F ) − (V ∂E).

5.4 Remark. If V ∂E is representable by integration, W = V xE×G(n,m), and
F is a Borel set, then

V ∂(E ∩ F ) = W ∂F + (V ∂E) xF.

5.5 Remark. If G is a countable, disjointed collection of ‖V ‖+‖δV ‖ measurable
sets with V ∂E = 0 for E ∈ G and ‖V ‖(U ∼

⋃

G) = 0, then

‖δV ‖(U ∼
⋃

G) = 0;

in fact δV =
∑

E∈G δ(V xE × G(n,m)) =
∑

E∈G(δV ) xE = (δV ) x
⋃

G.

5.6 Example. Suppose E and P are distinct members of G(2, 1) and V ∈
IV1(R2) is characterised by ‖V ‖ = H 1

x(E ∪ P ).
Then δV = 0 and V ∂E = 0 but there exists no sequence of locally Lips-

chitzian functions fi : R2 → R satisfying
´

|fi − f | + |(‖V ‖, 1) apDfi| d‖V ‖ → 0 as i → ∞,

where f is the characteristic function of E.
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5.7 Remark. Since it will follow from 8.24 (3) that f is a generalised weakly dif-
ferentiable function with vanishing generalised weak derivative, the preceding
example shows that the theory of generalised weakly differentiable functions can-
not be developed using approximation by locally Lipschitzian functions. Instead,
the relevant properties of sets are studied first in Sections 5–7 before proceeding
to the theory of generalised weakly differentiable functions in Sections 8–13.

5.8 Lemma. Suppose n ∈ P, 1 ≤ m ≤ n, U is an open subset of Rn, µ is
a Radon measure over U , K is a compact subset of U , A is compact subset of
IntK, H m−1(A) = 0, and

lim
r→0+

sup{s−mµB(x, s) :x ∈ A and 0 < s ≤ r} < ∞.

Then there exists a sequence fi ∈ E (U,R) satisfying

0 ≤ fi ≤ 1, A ⊂ Int{x : fi(x) = 0}, {x : fi(x) < 1} ⊂ K for i ∈ P,

lim
i→∞

fi(x) = 1 for H
m−1 almost all x ∈ U, lim

i→∞

´

|Dfi| dµ = 0.

Proof. Let φ∞ denote the size ∞ approximating measure for H m−1 over Rn.
Observe that it is sufficient to prove that for ε > 0 there exists f ∈ E (U,R)
with

0 ≤ f ≤ 1, A ⊂ Int{x : f(x) = 0}, {x : f(x) < 1} ⊂ K,

φ∞({x : f(x) < 1}) < ε,
´

|Df | dµ < ε.

For this purpose assume A 6= ∅, denote the limit in the hypotheses of the lemma
by Q, and choose j ∈ P and xi ∈ A, 0 < ri < ∞ for i ∈ {1, . . . , j} with

µB(xi, ri) ≤ (Q + 1)rm
i and B(xi, ri) ⊂ K for i ∈ {1, . . . , j},

A ⊂
⋃j

i=1 U(xi, ri/2),
∑j

i=1 r
m−1
i < ε/∆,

where ∆ = sup{α(m − 1), 4(Q + 1)}. Selecting fi ∈ E (U,R) with 0 ≤ fi ≤ 1,
|Dfi| ≤ 4r−1

i , and

U(xi, ri/2) ⊂ {x : fi(x) = 0}, {x : fi(x) < 1} ⊂ B(xi, ri)

whenever i ∈ {1, . . . , j}, one may take f =
∏j

i=1 fi.

5.9 (see [Fed69, 1.7.5]). Suppose m,n ∈ P and m ≤ n. Then one defines the
linear map γm : ΛmRn → ΛmRn by the equation

〈ξ, γm(η)〉 = ξ • η whenever ξ, η ∈ ΛmRn.

5.10 Theorem. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ IVm(U), 0 ≤ κ < ∞, ‖δV ‖ ≤ κ‖V ‖, M is a relatively open subset of
spt ‖V ‖, H m−1((spt ‖V ‖) ∼M) = 0, M is an m dimensional submanifold of
class 2, τ : M → Hom(Rn,Rn) satisfies τ(x) = Tan(M,x)♮ for x ∈ M , E is a
‖V ‖ measurable set, and

B = M ∼{x : Θm(H m
xM ∩ E, x) = 0 or Θm(H m

xM ∼E, x) = 0}.

Then the following three statements hold.
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(1) If θ ∈ D(U,Rn) then

V ∂E(θ) = −
´

E∩M
τ(x) •D 〈θ, τ〉 (x)Θm(‖V ‖, x) dH

mx.

(2) If ξ is an m vectorfield orienting M and γm is as in 5.9, then

V ∂E(θ) = (−1)m
´

E∩M 〈ξ(x), d(θ y(γm ◦ ξ))(x)〉 Θm(‖V ‖, x) dH
mx

for θ ∈ D(U,Rn).

(3) The distribution V ∂E is representable by integration if and only if

H
m−1(K ∩B) < ∞ whenever K is a compact subset of U ;

in this case B is H m−1 almost equal to {x : n(M ;E, x) ∈ Sn−1} and meets
every compact subset of U is a (H m−1,m− 1) rectifiable set and

V ∂E(θ) = −
´

n(M ;E, x) • θ(x)Θm(‖V ‖, x) dH
m−1x

for θ ∈ D(U,Rn).

Proof. Notice that the results of Allard [All72, 2.5, 4.5–4.7] stated for subman-
ifolds of class ∞ have analogous formulations for submanifolds of class 2. The
meaning of Tan(M, θ), Nor(M, θ), Gm(M), and IVm(M) defined in [All72, 2.5,
3.1] will be extended accordingly.

The following assertion will be proven. If ξ is as in (2), then φ = γm ◦ ξ
satisfies

〈ξ, d(θ yφ)(x)〉 = (−1)m−1τ(x) •D 〈θ, τ〉 (x) for x ∈ M

whenever θ : U → Rn is a vectorfield of class 1; in fact, assuming θ|M =
Tan(M, θ) and noting |ξ(x)| = 1 for x ∈ M , one infers

〈ξ(x), 〈u,Dφ(x)〉〉 = ξ(x) • 〈u,Dξ(x)〉 = 0 for x ∈ M , u ∈ Tan(M,x),

hence for x ∈ M one expresses ξ(x) = u1 ∧ · · · ∧ um for some orthonormal basis
u1, . . . , um of Tan(M,x) and computes

〈ξ(x), d(θ yφ)(x)〉

=
∑m

i=1(−1)i−1 〈u1 ∧ · · · ∧ ui−1 ∧ ui+1 ∧ · · · ∧ um, 〈ui, Dθ(x)〉 yφ(x)〉

= (−1)m−1∑m
i=1 〈ui, Dθ(x)〉 • ui = (−1)m−1τ(x) •Dθ(x).

Next, the case M = spt ‖V ‖ will be considered. In this case one may assume
M to be connected. Since

δV (θ) = 0 whenever θ ∈ D(U,Rn) and Nor(M, θ) = 0

for instance by Brakke [Bra78, 5.8] (or [Men13, 4.8]), Allard [All72, 4.6 (3)] then
implies for some 0 < λ < ∞ that

V (k) = λ
´

M
k(x,Tan(M,x)) dH

mx for k ∈ K (U × G(n,m)).
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Define W ∈ IVm(M) by W (k) =
´

E×G(n,m)
k dV for k ∈ K (Gm(M)) and

notice that

V ∂E(θ) = −
´

Eh(V, x) • θ(x) d‖V ‖x−
´

E×G(n,m)P♮ •Dθ(x) dV (x, P )

= −
´

E×G(n,m)P♮ • (DTan(M, θ)(x) ◦ P♮) dV (x, P ) = −δW (Tan(M, θ))

whenever θ ∈ D(U,Rn) by Allard [All72, 2.5 (2)]. (1) is now evident and implies
(2) by the assertion of the preceding paragraph. Concerning (3), the subcase
M = U follows from [Fed69, 4.5.6, 4.5.11] (recalling also [Fed69, 4.1.28 (5),
4.2.1]) to which the case M = spt ‖V ‖ may be reduced by applying Allard
[All72, 4.5] to W , see also Allard [All72, 4.7].

To treat the general case, first notice that, in view of Allard [All72, 5.1 (3)],
5.8 is applicable with µ = ‖V ‖ and A = (spt θ) ∩ (spt ‖V ‖) ∼M whenever
θ ∈ D(U,Rn), K is a compact subset of U , and spt θ ⊂ IntK. The resulting
functions fi ∈ E (U,R) satisfy

´

|θ − fiθ| + |Dθ −D(fiθ)| d‖V ‖ +
´

X
|θ − fiθ| dH

m−1 → 0

as i → ∞ whenever X is a H m−1 measurable subset of U with H m−1(X) < ∞.
It follows that V ∂E(θ) = limi→∞ V ∂E(fiθ) and, if H m−1(K ∩B) < ∞, then

lim
i→∞

´

n(M ;E, x) • (θ(x) − (fiθ)(x))Θm(‖V ‖, x) dH
m−1x = 0.

Therefore one now readily verifies the assertion.

5.11 Remark. If S ∈ Rloc
m (Rn) is absolutely area minimising with respect to

Rn, ∂S = 0, and n−m = 1, then V ∈ IVm(Rn) characterised by ‖S‖ =
‖V ‖ satisfies the hypotheses of 5.10 (2) with U = Rn, κ = 0 for some M and
ξ by Allard [All72, 4.8 (4)], [Fed69, 5.4.15], and Federer [Fed70, Theorem 1],
and in this case ‖∂(S xE)‖ = ‖V ∂E‖ as may be verified using 5.10 (2) (3) in
conjunction with [Fed69, 3.1.19, 4.1.14, 4.1.20, 4.1.30, 4.5.6].11

5.12 Remark. Considering the situation m,n ∈ P, 1 < m < n, U is an open
subset of Rn, V ∈ IVm(U) and δV = 0, few properties of V are known to
hold near H m−1 almost all x ∈ spt ‖V ‖. Consequently, it appears difficult to
obtain a structural description similar to 5.10 (3) for ‖V ‖ measurable sets whose
distributional V boundary is representable by integration in this more general
situation. However, for L 1 almost all superlevel sets of a real valued generalised
weakly differential function such a description will be proven under even milder
hypotheses on V in 12.2.

6 Decompositions of varifolds

In this section the existence of a decomposition of rectifiable varifolds whose
first variation is representable by integration is established in 6.12. If the first
variation is sufficiently well behaved, this decomposition may be linked to the
decomposition of the support of the weight measure into connected components,
see 6.14.

11Referring additionally to [Fed69, 5.3.20] and Almgren [Alm00, 5.22], the hypothesis
n − m = 1 could have been omitted. However, the author has not checked Almgren’s re-
sult and its consequences will not be used in the present paper.
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6.1. A useful set of hypotheses is gathered here for later reference.
Suppose m,n ∈ P, m ≤ n, 1 ≤ p ≤ m, U is an open subset of Rn,

V ∈ Vm(U), ‖δV ‖ is a Radon measure, Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x.
If p > 1, then suppose additionally that h(V, ·) ∈ Lloc

p (‖V ‖,Rn) and

δV (θ) = −
´

h(V, x) • θ(x) d‖V ‖x for θ ∈ D(U,Rn).

Therefore V ∈ RVm(U) by Allard [All72, 5.5 (1)]. If p = 1 let ψ = ‖δV ‖. If
p > 1 define a Radon measure ψ over U by ψ(A) =

´ ∗

A|h(V, x)|p d‖V ‖x for
A ⊂ U .

6.2 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ Vm(U) and ‖δV ‖ is a Radon measure.

Then V is called indecomposable if there exists no ‖V ‖ + ‖δV ‖ measurable
set E such that

‖V ‖(E) > 0, ‖V ‖(U ∼E) > 0, V ∂E = 0.

6.3 Remark. The same definition results if E is required to be a Borel set.

6.4 Remark. If V is indecomposable then so is λV for 0 < λ < ∞. This is in
contrast to a similar notion employed by Mondino in [Mon14, 2.15].

6.5 Lemma. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn, V ∈
Vm(U), ‖δV ‖ is a Radon measure, E0 and E1 are nonempty, disjoint, relatively
closed subset of spt ‖V ‖, and E0 ∪ E1 = spt ‖V ‖.

Then there holds

‖V ‖(Ei) > 0 and V ∂Ei = 0

for i ∈ {0, 1}. In particular, if V is indecomposable then spt ‖V ‖ is connected.

Proof. Notice that U ∼E0 and U ∼E1 are open, hence

‖V ‖(E0) = ‖V ‖(U ∼E1) > 0, ‖V ‖(E1) = ‖V ‖(U ∼E0) > 0.

Next, one constructs w ∈ E (U,R) such that

Ei ⊂ Int{x :w(x) = i} for i = {0, 1};

in fact, applying [Fed69, 3.1.13] with Φ = {U ∼E0, U ∼E1}, one obtains h, S
and vs, notices that either B(s, 10h(s)) ⊂ Rn ∼E0 or B(s, 10h(s)) ⊂ Rn ∼E1

whenever s ∈ S, lets T = S ∩
{

s : B(s, 10h(s)) ⊂ Rn ∼E0} and takes

w(x) =
∑

t∈T

vt(x) for x ∈ U.

This yields V ∂Ei = 0 for i = {0, 1} by Allard [All72, 4.10 (1)].

6.6 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ Vm(U), and ‖δV ‖ is a Radon measure.

Then W is called a component of V if and only if 0 6= W ∈ Vm(U) is
indecomposable and there exists a ‖V ‖ + ‖δV ‖ measurable set E such that

W = V xE × G(n,m), V ∂E = 0.
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6.7 Remark. Suppose F is a ‖V ‖+‖δV ‖ measurable set. Then E is ‖V ‖+‖δV ‖
almost equal to F if and only if

W = V xF × G(n,m), V ∂F = 0.

6.8 Remark. If C is a connected component of spt ‖V ‖ and W is a component
of V with C ∩ spt ‖W‖ 6= ∅, then spt ‖W‖ ⊂ C by 6.5.

6.9 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ Vm(U), ‖δV ‖ is a Radon measure, and Ξ ⊂ Vm(U).

Then Ξ is called a decomposition of V if and only if the following three
conditions are satisfied:

(1) Each member of Ξ is a component of V .

(2) Whenever W and X are distinct members of Ξ there exist disjoint ‖V ‖ +
‖δV ‖ measurable sets E and F with V ∂E = 0 = V ∂F and

W = V xE × G(n,m), X = V xF × G(n,m).

(3) V (k) =
∑

W ∈ΞW (k) whenever k ∈ K (U × G(n,m)).

6.10 Remark. Clearly, Ξ is countable.
Moreover, using 6.7 one constructs a function ξ mapping Ξ into the class of

all Borel subsets of U such that distinct members of Ξ are mapped onto disjoint
sets and

W = V x ξ(W ) × G(n,m), V ∂ξ(W ) = 0

whenever W ∈ Ξ. Consequently, in view of 5.5, one infers

(‖V ‖ + ‖δV ‖)
(

U ∼
⋃

im ξ
)

= 0.

Also notice that V ∂(
⋃

ξ[N ]) = 0 whenever N ⊂ Ξ.

6.11 Remark. Suppose m, n, p, U and V are as in 6.1, p = m, and Ξ is a
decomposition of W . Observe that 4.8 (5) and [Men09, 2.5] imply

card(Ξ ∩ {W :K ∩ spt ‖W‖ 6= ∅}) < ∞

whenever K is a compact subset of U , hence

spt ‖V ‖ =
⋃

{spt ‖W‖ :W ∈ Ξ}.

Notice that [Men09, 1.2] readily shows that both assertions need not to hold in
case p < m.

6.12 Theorem. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ RVm(U), and ‖δV ‖ is a Radon measure.

Then there exists a decomposition of V .

Proof. Assume V 6= 0.
Denote by R the family of Borel subsets E of U such that V ∂E = 0. Notice

that
⋂∞

i=1 Ei ∈ R whenever Ei is a sequence in R with Ei+1 ⊂ Ei for i ∈ P,

E ∈ R if and only if E∼F ∈ R whenever E ⊃ F ∈ R
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by 5.3. Let P = R ∩ {E : ‖V ‖(E) > 0}. Next, define

δi = α(m)2−m−1i−1−2m, εi = 2−1i−2

for i ∈ P and let Ai denote the Borel set of a ∈ Rn satisfying

|a| ≤ i, U(a, 2εi) ⊂ U, Θm(‖V ‖, a) ≥ 1/i,

‖δV ‖ B(a, r) ≤ α(m)irm for 0 < r < εi

whenever i ∈ P. Clearly, Ai ⊂ Ai+1 for i ∈ P and ‖V ‖(U ∼
⋃∞

i=1 Ai) = 0 by
Allard [All72, 3.5 (1a)] and [Fed69, 2.8.18, 2.9.5]. Moreover, define

Pi = R ∩ {E : ‖V ‖(E ∩Ai) > 0}

and notice that Pi ⊂ Pi+1 for i ∈ P and P =
⋃∞

i=1 Pi. One observes the lower
bound given by

‖V ‖(E ∩ B(a, εi)) ≥ δi

whenever E ∈ R, i ∈ P, a ∈ Ai and Θ∗m(‖V ‖ xE, a) ≥ 1/i; in fact, noting
´ εi

0
r−m‖δ(V xE × G(n,m))‖ B(a, r) dL

1r ≤ α(m)iεi,

the inequality follows from 4.5 and 4.6. Let Qi denote the set of E ∈ P such
that there is no F satisfying

F ⊂ E, F ∈ Pi, E∼F ∈ Pi.

Denote by Ω the class of Borel partitions H of U with H ⊂ P and let
G0 = {U} ∈ Ω. The previously observed lower bound implies

δi card(H ∩ Pi) ≤ ‖V ‖(U ∩ {x : dist(x,Ai) ≤ εi}) < ∞

whenever H is a disjointed subfamily of P , since for each E ∈ H ∩ Pi there
exists a ∈ Ai with Θm(‖V ‖ xE, a) = Θm(‖V ‖, a) ≥ 1/i by [Fed69, 2.8.18,
2.9.11], hence

‖V ‖(E ∩ {x : dist(x,Ai) ≤ εi}) ≥ ‖V ‖(E ∩ B(a, εi)) ≥ δi.

In particular, such H is countable.
Next, one inductively (for i ∈ P) defines Ωi to be the class of all H ∈ Ω such

that every E ∈ Gi−1 is the union of some subfamily of H and chooses Gi ∈ Ωi

such that

card(Gi ∩ Pi) ≥ card(H ∩ Pi) whenever H ∈ Ωi.

The maximality of Gi implies Gi ⊂ Qi; in fact, if there would exist E ∈ Gi ∼Qi

there would exist F satisfying

F ⊂ E, F ∈ Pi, E∼F ∈ Pi

and H = (Gi ∼{E}) ∪ {F,E∼F} would belong to Ωi with

card(H ∩ Pi) > card(Gi ∩ Pi).
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Moreover, it is evident that to each x ∈ U there corresponds a sequence Ei

uniquely characterised by the requirements x ∈
⋂∞

i=1 Ei and Ei+1 ⊂ Ei ∈ Gi

for i ∈ P.
Define G =

⋃∞
i=1 Gi and notice that G is countable. Define C to be the col-

lection of sets
⋂∞

i=1 Ei with positive ‖V ‖ measure corresponding to all sequences
Ei with Ei+1 ⊂ Ei ∈ Gi for i ∈ P. Clearly, C is a disjointed subfamily of P ,
hence C is countable. Next, it will be shown that

‖V ‖(U ∼
⋃

C) = 0.

In view of [Fed69, 2.8.18, 2.9.11] it is sufficient to prove

Ai ∼
⋃

C ⊂
⋃

{

E ∩ {x : Θ∗m(‖V ‖ xE, x) < Θ∗m(‖V ‖, x)} :E ∈ G
}

for i ∈ P. For this purpose consider a ∈ Ai ∼
⋃

C with corresponding sequence
Ej . It follows that ‖V ‖(

⋂∞
j=1 Ej) = 0, hence there exists j with ‖V ‖(Ej ∩

B(a, εi)) < δi and the lower bound implies

Θ∗m(‖V ‖ xEj , a) < 1/i ≤ Θm(‖V ‖, a).

It remains to prove that each varifold V xE × G(n,m) corresponding to
E ∈ C is indecomposable. If this were not the case, then there would exist
E =

⋂

i=1 Ei ∈ C with Ei+1 ⊂ Ei ∈ Gi for i ∈ P and a Borel set F such that

‖V ‖(E ∩ F ) > 0, ‖V ‖(E∼F ) > 0, V ∂(E ∩ F ) = 0

by 5.4 and 6.3. This would imply E ∩ F ∈ P and E∼F ∈ P , hence for some i
also E ∩ F ∈ Pi and E∼F ∈ Pi which would yield

E ∩ F ⊂ Ei, Ei ∼(E ∩ F ) ∈ Pi,

since E∼F ⊂ Ei ∼(E ∩ F ) ∈ R; a contradiction to Ei ∈ Qi.

6.13 Remark. The decomposition of V may be nonunique. In fact, considering
the six rays

Rj = {t exp(πij/3) : 0 < t < ∞} ⊂ C = R2, where π = Γ(1/2)2,

corresponding to j ∈ {0, 1, 2, 3, 4, 5} and their associated varifolds Vj ∈ IV1(R2)
with ‖Vj‖ = H 1

xRj , one notices that V =
∑5

j=0 Vj ∈ IV1(R2) is a stationary
varifold such that

{V0 + V2 + V4, V1 + V3 + V5} and {V0 + V3, V1 + V4, V2 + V5}

are distinct decompositions of V .

6.14 Corollary. Suppose m, n, p, U and V are as in 6.1, p = m, and Φ is the
family of all connected components of spt ‖V ‖.

Then the following four statements hold.

(1) If C ∈ Φ, then

C =
⋃

{spt ‖W‖ :W ∈ Ξ, C ∩ spt ‖W‖ 6= ∅}

whenever Ξ is decomposition of V .
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(2) card(Φ ∩ {C :C ∩K 6= ∅}) < ∞ whenever K is a compact subset of U .

(3) If C ∈ Φ, then C is open relative to spt ‖V ‖.

(4) If C ∈ Φ, then spt(‖V ‖ xC) = C and V ∂C = 0.

Proof. (1) is a consequence of 6.8 and 6.11. In view of (1) and 6.12, (2) is a
consequence of 6.11. Next, (2) implies (3). Finally, (3) and 6.5 yield (4).

6.15 Remark. If V is stationary, then (4) implies that V xC×G(n,m) is station-
ary. This fact might prove useful in considerations involving a strong maximum
principle such as Wickramasekera [Wic14, Theorem 1.1].

7 Relative isoperimetric inequality

In this section a general isoperimetric inequality for varifolds satisfying a lower
density bound is established, see 7.8. As corollaries one obtains two relative
isoperimetric inequalities under the relevant conditions on the first variation of
the varifold, see 7.9 and 7.11.

7.1. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn, V ∈ Vm(U), ‖δV ‖
is a Radon measure, Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x, E is ‖V ‖ + ‖δV ‖
measurable, B is a closed subset of BdryU , and, see 2.15–2.17,

(‖V ‖ + ‖δV ‖)(E ∩K) + ‖V ∂E‖(U ∩K) < ∞,
´

E×G(n,m)
P♮ •Dθ(x) dV (x, P ) = ((δV ) xE)(θ|U) − (V ∂E)(θ|U)

whenever K is compact subset of Rn ∼B and θ ∈ D(Rn ∼B,Rn). Defining
W ∈ Vm(Rn ∼B) by

W (A) = V (A ∩ (E × G(n,m))) for A ⊂ (Rn ∼B) × G(n,m),

this implies

‖δW‖(A) ≤ ‖δV ‖(E ∩A) + ‖V ∂E‖(U ∩A) for A ⊂ Rn ∼B.

7.2 Example. Using 5.10 (1) (3) one verifies the following statement. If m,n ∈ P,
m ≤ n, U is an open subset of Rn, B is a closed subset of BdryU , M is an m
dimensional submanifold of Rn of class 2, M ⊂ Rn ∼B, (ClosM) ∼M ⊂ B,
V ∈ Vm(U) and V ′ ∈ Vm(Rn ∼B) satisfy

V (k) =
´

M∩Uk(x,Tan(M,x)) dH
mx for k ∈ K (U × G(n,m)),

V ′(k) =
´

M
k(x,Tan(M,x)) dH

mx for k ∈ K ((Rn ∼B) × G(n,m)),

and E is an H m measurable subset of M ∩ U , then E satisfies the conditions
of 7.1 if and only if V ′ ∂E is representable by integration and n(M ;E, x) = 0
for H m−1 almost all x ∈ (Rn ∼B) ∼U ; in this case

V ∂E(θ|U) = −
´

U
n(M ;E, x) • θ(x) dH

m−1x for θ ∈ D(Rn ∼B,Rn).

Since in the situation of 7.1 there no varifold V ′ available which extends V in
a canonical way, the condition on E is formulated in terms of the behaviour W .
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7.3 Lemma. Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m,n ∈ P, m ≤ n ≤ M , 1 ≤ Q ≤ M , a ∈ Rn, 0 < r < ∞, W ∈

Vm(U(a, r)), ‖δW‖ is a Radon measure, Θm(‖W‖, x) ≥ 1 for ‖W‖ almost all
x, a ∈ spt ‖W‖, and

‖δW‖ B(a, s) ≤ Γ−1‖W‖(B(a, s))1−1/m for 0 < s < r,

‖W‖({x : Θm(‖W‖, x) < Q}) ≤ Γ−1‖W‖ U(a, r),

then there holds

‖W‖ U(a, r) ≥ (Q−M−1)α(m)rm.

Proof. If the lemma were false for some M , there would exist a sequence Γi

with Γi → ∞ as i → ∞, and sequences mi, ni, Qi, ai, ri, and Wi showing that
Γ = Γi does not have the asserted property.

One could assume for some m,n ∈ P, 1 ≤ Q ≤ M that m ≤ n ≤ M ,

m = mi, n = ni, ai = 0, ri = 1

for i ∈ P and Qi → Q as i → ∞ and, by [Men09, 2.5],

‖Wi‖ B(0, s) ≥ (2mγ(m))−msm whenever 0 < s < 1 and i ∈ P.

Defining W ∈ Vm(Rn ∩U(0, 1)) to be the limit of some subsequence of Wi, one
would obtain

‖W‖ U(0, 1) ≤ (Q −M−1)α(m), 0 ∈ spt ‖W‖, δW = 0.

Finally, using Allard [All72, 5.1 (2), 5.4, 8.6], one would then conclude that

Θm(‖W‖, x) ≥ Q for ‖W‖ almost all x,

Θm(‖W‖, 0) ≥ Q, ‖W‖ U(0, 1) ≥ Qα(m),

a contradiction.

7.4 Remark. Considering stationary varifolds whose support is contained in two
affine planes with Θm(‖W‖, a) a small positive number, shows that the hypothe-
ses “Θm(‖W‖, x) ≥ 1 for ‖W‖ almost all x” cannot be omitted.

7.5 Remark. Even for smooth functions, 7.3 is the key observation which –
through the relative isoperimetric inequalities 7.9 and 7.11 – leads to Sobolev
Poincaré type estimates which are applicable near ‖V ‖ almost all points of
{x : Θm(‖V ‖, x) ≥ 2}, see 10.1. For generalised weakly differentiable functions,
these estimates in turn provide an important ingredient for the differentiability
results obtained in 11.2 and 11.4 and the coarea formula in 12.2.

7.6 Remark. Taking Q = 1 in 7.3 (or applying [Men09, 2.6]) yields the following
proposition: If m, n, p, U , V , and ψ are as in 6.1, p = m, a ∈ spt ‖V ‖, and
ψ({a}) = 0, then Θm

∗ (‖V ‖, a) ≥ 1. If ‖δV ‖ is absolutely continuous with respect
to ‖V ‖ then the condition ψ({a}) = 0 is redundant.

If m = n and f : Rn → {y : 1 ≤ y < ∞} is a weakly differentiable function
with Df ∈ Lloc

n (L n,Hom(Rn,R)), then the varifold V ∈ RVn(Rn) defined
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by the requirement ‖V ‖(B) =
´

B
f dL n whenever B is a Borel subset of Rn

satisfies the conditions of 6.1 with p = n since

δV (g) = −
´

〈g(x),D(log ◦f)(x)〉 d‖V ‖x for g ∈ D(Rn,Rn).

If n > 1 and C is a countable subset of Rn, one may use well known properties of
Sobolev functions, in particular example [AF03, 4.43], to construct f such that
C ⊂ {x : Θn(‖V ‖, x) = ∞}. It is therefore evident that the conditions of 6.1
with p = m > 1 are insufficient to guarantee finiteness or upper semicontinuity of
Θm(‖V ‖, ·) at each point of U . However, the following proposition was obtained
by Kuwert and Schätzle in [KS04, Appendix A]: If m, n, p, U , and V are as
in 6.1, p = m = 2, and V ∈ IV2(U), then Θ2(‖V ‖, ·) is a real valued, upper
semicontinuous function whose domain is U .

7.7 Remark. The preceding remark is a corrected and extended version of the
author’s remark in [Men09, 2.7] where the last two sentences should have referred
to integral varifolds.

7.8 Theorem. Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m,n ∈ P, m ≤ n ≤ M , 1 ≤ Q ≤ M , U is an open subset of Rn,

W ∈ Vm(U), S,Σ ∈ D ′(U,Rn) are representable by integration, δW = S + Σ,
Θm(‖W‖, x) ≥ 1 for ‖W‖ almost all x, 0 < r < ∞, and

‖S‖(U) ≤ Γ−1 if m = 1,

S(θ) ≤ Γ−1‖W‖(m/(m−1))(θ) for θ ∈ D(U,Rn) if m > 1,

‖W‖(U) ≤ (Q−M−1)α(m)rm, ‖W‖({x : Θm(‖W‖, x) < Q}) ≤ Γ−1rm,

then there holds

‖W‖({x : U(x, r) ⊂ U})1−1/m ≤ Γ ‖Σ‖(U),

where 00 = 0.

Proof. Define

∆1 = Γ7.3(2M)−1, ∆2 = inf{(2γ(m))−1 :M ≥ m ∈ P},

∆3 = ∆1 inf{(2mγ(m))−m :M ≥ m ∈ P}, ∆4 = sup{β(n) :M ≥ n ∈ P},

∆5 = (1/2) inf{∆2,∆3}, Γ = ∆4∆−1
5 .

Notice that γ(1) ≥ 1/2, hence 2∆5 ≤ Γ7.3(2M)−1.
Suppose m, n, Q, U , W , S, Σ, and r satisfy the hypotheses in the body of

the theorem with Γ.
Abbreviate A = {x : U(x, r) ⊂ U}. Clearly, if m = 1 then ‖S‖(U) ≤ ∆5.

Observe, if m > 1 then

‖S‖(X) ≤ ∆5‖W‖(X)1−1/m whenever X ⊂ U.

Next, the following assertion will be shown: If a ∈ A ∩ spt ‖W‖ then there
exists 0 < s < r such that

∆5‖W‖(B(a, s))1−1/m < ‖Σ‖ B(a, s).
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Since ‖δW‖ B(a, s) ≤ ∆5‖W‖(B(a, s))1−1/m + ‖Σ‖ B(a, s), it is sufficient to
exhibit 0 < s < r with

2∆5‖W‖(B(a, s))1−1/m < ‖δW‖ B(a, s).

As ‖W‖ U(a, r) ≤ ‖W‖(U) <
(

Q − (2M)−1
)

α(m)rm the nonexistence of such
s would imply by use of [Men09, 2.5] and 7.3

∆1(2mγ(m))−mrm ≤ ∆1‖W‖ U(a, r)

< ‖W‖(U(a, r) ∩ {x : Θm(‖W‖, x) < Q}) ≤ ∆5r
m,

a contradiction.
By the assertion of the preceding paragraph there exist countable disjointed

families of closed balls G1, . . . , Gβ(n) such that

A ∩ spt ‖W‖ ⊂
⋃ ⋃

{Gi : i = 1, . . . ,β(n)} ⊂ U,

‖W‖(B)1−1/m ≤ ∆−1
5 ‖Σ‖(B) whenever B ∈ Gi and i ∈ {1, . . . ,β(n)}.

If m > 1 then, defining β = m/(m− 1), one estimates

‖W‖(A) ≤
∑β(n)

i=1

∑

B∈Gi
‖W‖(B) ≤ ∆−β

5

∑β(n)
i=1

∑

B∈Gi
‖Σ‖(B)β

≤ ∆−β
5

∑β(n)
i=1

(
∑

B∈Gi
‖Σ‖(B)

)β
≤ ∆−β

5 β(n)‖Σ‖(U)β .

If m = 1 and ‖W‖(A) > 0 then ∆5 ≤ ‖Σ‖(B) ≤ ‖Σ‖(U) for some B ∈
⋃

{Gi : i = 1, . . . ,β(n)}.

7.9 Corollary. Suppose m, n, U , V , E, and B are as in 7.1, 1 ≤ Q ≤ M < ∞,
n ≤ M , Λ = Γ7.8(M), 0 < r < ∞, and

‖V ‖(E) ≤ (Q−M−1)α(m)rm, ‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Λ−1rm.

Then there holds

‖V ‖(E ∩ {x : U(x, r) ⊂ Rn ∼B})1−1/m ≤ Λ
(

‖V ∂E‖(U) + ‖δV ‖(E)
)

,

where 00 = 0.

Proof. Define W as in 7.1 and note Θm(‖W‖, x) = Θm(‖V ‖, x) ≥ 1 for ‖W‖
almost all x by [Fed69, 2.8.18, 2.9.11]. Therefore applying 7.8 with U , S, and
Σ replaced by Rn ∼B, 0, and δW yields the conclusion.

7.10 Remark. The case B = BdryU and Q = 1 corresponds to Hutchinson
[Hut90, Theorem 1] which is formulated in the context of functions rather than
sets.

7.11 Corollary. Suppose m, n, p, U , V , and ψ are as in 6.1, p = m, n ≤ M , E
and B are related to m, n, U , and V , as in 7.1, 1 ≤ Q ≤ M < ∞, Λ = Γ7.8(M),
0 < r < ∞, and

‖V ‖(E) ≤ (Q−M−1)α(m)rm, ψ(E)1/m ≤ Λ−1,

‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Λ−1rm.

Then there holds

‖V ‖(E ∩ {x : U(x, r) ⊂ Rn ∼B})1−1/m ≤ Λ ‖V ∂E‖(U),

where 00 = 0.
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Proof. Define W as in 7.1 and note Θm(‖W‖, x) = Θm(‖V ‖, x) ≥ 1 for ‖W‖
almost all x by [Fed69, 2.8.18, 2.9.11]. If m > 1 then approximation shows

((δV ) xE)(θ|U) = −
´

E
h(V, x) • θ(x) d‖V ‖x for θ ∈ D(Rn ∼B,Rn);

in fact since ‖(δV ) xE‖ = ‖δV ‖ xE and θ|U ∈ L1(‖δV ‖ xE,Rn) the problem
reduces to the case spt θ ⊂ U which is readily treated. Therefore applying 7.8
with U , S(θ) and Σ(θ) replaced by Rn ∼B, ((δV ) xE)(θ|U) and −(V ∂E)(θ|U)
yields the conclusion.

7.12 Remark. Evidently, considering E = U , B = BdryU , Q = 1, and station-
ary varifolds V such that ‖V ‖(U) is a small positive number shows that the
intersection with {x : U(x, r) ⊂ Rn ∼B} cannot be omitted in the conclusion.

7.13 Remark. Since estimating ‖δV ‖(E) by means of Hölder’s inequality seems
insufficient to derive 7.11 from 7.9 by means of “absorption”, this procedure was
implemented at an earlier stage and led to the formulation of 7.8.

7.14 Remark. It is instructive to consider the following situation. Suppose
m,n ∈ P, 1 ≤ m ≤ n, 1 ≤ M < ∞, a ∈ Rn, 0 < r < ∞, 0 ≤ κ < ∞,
1 < λ < ∞, U = U(a, λr), B = BdryU , A = {x : U(x, r) ⊂ Rn ∼B}, hence
A = B(a, (λ − 1)r), V ∈ IVm(U) is a stationary varifold, and E is a ‖V ‖
measurable set satisfying the relative isoperimetric estimate

inf{‖V ‖(A ∩ E), ‖V ‖(A∼E)}1−1/m ≤ κ‖V ∂E‖(U),

where 00 = 0. Then ‖V ‖(A ∩ E) ≤ (1 −M−1)‖V ‖(A) implies

‖V ‖(A ∩ E)1−1/m ≤ Mκ‖V ∂E‖(U).

Exhibiting a suitable class of V and E such that the relative isoperimetric
estimate holds with a uniform number κ is complicated by the absence of such an
estimate on the catenoid.12 If V corresponds to an absolutely area minimising
locally rectifiable current in codimension one, then such uniform control was
obtained for some λ in Bombieri and Giusti [BG72, Theorem 2] (and attributed
by the authors to De Giorgi); see 5.11 for the link of the concept of distributional
boundary employed by Bombieri and Giusti and the one of the present paper.

Finally, the term “relative isoperimetric inequality” (or estimate) is chosen
in accordance with the usage of that term in the case ‖V ‖ = L n by Ambrosio,
Fusco and Pallara, see [AFP00, (3.43), p. 152].

8 Basic properties of weakly differentiable func-

tions

In this section generalised weakly differentiable functions are defined in 8.3.
Properties studied include behaviour under composition, see 8.12, 8.13 and 8.15,
addition and multiplication, see 8.20 (3) (4), and decomposition of the varifold,
see 8.24 and 8.33. Moreover, coarea formulae in terms of the distributional
boundary of superlevel sets are established, see 8.1 and 8.29. A measure theo-
retic description of the boundary of the superlevel sets will appear in 12.2. The
theory is illustrated by examples in 8.25 and 8.27.

12See for instance [Oss86, p. 18] for a description of the catenoid.
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8.1 Lemma. Suppose m,n ∈ P, U is an open subset of Rn, V ∈ Vm(U),
‖δV ‖ is a Radon measure, f is a real valued ‖V ‖ + ‖δV ‖ measurable function
with dmn f ⊂ U , and E(y) = {x : f(x) > y} for y ∈ R.

Then there exists a unique T ∈ D ′(U × R,Rn) such that, see 2.16,

(δV )((ω ◦ f)θ) =
´

ω(f(x))P♮ •Dθ(x) dV (x, P ) + T(x,y)(ω
′(y)θ(x))

whenever θ ∈ D(U,Rn), ω ∈ E (R,R), sptω′ is compact and inf sptω > −∞.
Moreover, there holds

T (φ) =
´

V ∂E(y)(φ(·, y)) dL
1y for φ ∈ D(U × R,Rn).

Proof. Define C = {(x, y) :x ∈ E(y)} and g : (U × G(n,m)) × R → U × R by
g((x, P ), y) = (x, y) for x ∈ U , P ∈ G(n,m) and y ∈ R. Using [Fed69, 2.2.2,
2.2.3, 2.2.17, 2.6.2], one obtains that C is ‖V ‖×L 1 and ‖δV ‖×L 1 measurable,
hence that g−1[C] is V × L 1 measurable since ‖V ‖ × L 1 = g#(V × L 1).

Define p : Rn × R → Rn by p(x, y) = x for (x, y) ∈ Rn × R and let
T ∈ D ′(U × R,Rn) be defined by

T (φ) =
´

C
η(V, x) • φ(x, y) d(‖δV ‖ × L

1)(x, y)

−
´

g−1[C]
P♮ • (Dφ(x, y) ◦ p∗) d(V × L

1)((x, P ), y)

whenever φ ∈ D(U × R,Rn), see 4.4. Fubini’s theorem then yields the two
equations. The uniqueness of T follows from 3.1.

8.2 Remark. Notice that characterising equation for T also holds if the require-
ment inf sptω > −∞ is dropped.

8.3 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ RVm(U), ‖δV ‖ is a Radon measure, and Y is a finite dimensional normed
vectorspace.

Then a Y valued ‖V ‖ + ‖δV ‖ measurable function f with dmn f ⊂ U is
called generalised V weakly differentiable if and only if for some ‖V ‖ measurable
Hom(Rn, Y ) valued function F the following two conditions hold:

(1) If K is a compact subset of U and 0 ≤ s < ∞, then
´

K∩{x : |f(x)|≤s}‖F‖ d‖V ‖ < ∞.

(2) If θ ∈ D(U,Rn), γ ∈ E (Y,R) and sptDγ is compact then

(δV )((γ ◦ f)θ)

=
´

γ(f(x))P♮ •Dθ(x) dV (x, P ) +
´

〈θ(x), Dγ(f(x)) ◦ F (x)〉 d‖V ‖x.

The function F is ‖V ‖ almost unique. Therefore, one may define the generalised
V weak derivative of f to be the function V Df characterised by a ∈ dmn V Df
if and only if

(‖V ‖, C) ap lim
x→a

F (x) = σ for some σ ∈ Hom(Rn, Y )

and in this case V Df(a) = σ, where C = {(a,B(a, r)) : B(a, r) ⊂ U}. Moreover,
the set of all Y valued generalised V weakly differentiable functions will be
denoted by T(V, Y ) and T(V ) = T(V,R).
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8.4 Remark. Condition (2) is equivalent to the following condition:

(2)′ If ζ ∈ D(U,R), u ∈ Rn, γ ∈ E (Y,R) and sptDγ is compact, then

(δV )((γ ◦ f)ζ · u)

=
´

γ(f(x)) 〈P♮(u), Dζ(x)〉 + ζ(x) 〈u,Dγ(f(x)) ◦ F (x)〉 dV (x, P ).

If dim Y ≥ 2 or f is locally bounded then one may require spt γ to be compact
in (2) or (2)′ as dim Y ≥ 2 implies that Y ∼ B(0, s) is connected for 0 < s < ∞.

8.5 Remark. If f ∈ T(V ) then the distribution T associated to f in 8.1 is
representable by integration and, see 2.12, 3.1, and 3.3 with J = R,

T (φ) =
´

〈φ(x, f(x)), V Df(x)〉 d‖V ‖x,
´

g d‖T ‖ =
´

g(x, f(x))|V Df(x)| d‖V ‖x

whenever φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function.

8.6 Remark. If f ∈ T(V, Y ), θ : U → Rn is Lipschitzian with compact support,
γ : Y → R is of class 1, and either sptDγ is compact of f is locally bounded,
then

(δV )((γ ◦ f)θ) =
´

γ(f(x))P♮ • ((‖V ‖,m) apDθ(x) ◦ P♮) dV (x, P )

+
´

〈θ(x), Dγ(f(x)) ◦ V Df(x)〉 d‖V ‖x

as may be verified by means of approximation and [Men12a, 4.5 (3)]. Conse-
quently, if f ∈ T(V, Y ) is locally bounded, Z is a finite dimensional normed
vectorspace, and g : Y → Z is of class 1, then g ◦ f ∈ T(V, Z) with

V D(g ◦ f)(x) = Dg(f(x)) ◦ V Df(x) for ‖V ‖ almost all x.

8.7 Example. If f : U → Y is a locally Lipschitzian function then f is generalised
V weakly differentiable with

V Df(x) = (‖V ‖,m) apDf(x) ◦ Tanm(‖V ‖, x)♮ for ‖V ‖ almost all x,

as may be verified by means of [Men12a, 4.5 (4)]. Moreover, if Θm(‖V ‖, x) ≥ 1
for ‖V ‖ almost all x, then the equality holds for any f ∈ T(V, Y ) as will be
shown in 11.2.

8.8 Remark. The prefix “generalised” has been chosen in analogy with the no-
tion of “generalised function of bounded variation” treated in [AFP00, §4.5]
originating from De Giorgi and Ambrosio [DGA88].

8.9 Remark. The usefulness of partial integration identities involving the first
variation in defining a concept of weakly differentiable functions on varifolds
has already been “expected” by Anzellotti, Delladio and Scianna who developed
two notions of functions of bounded variation on integral currents, see [ADS96,
p. 261],

8.10 Remark. In order to define a concept of “generalised (real valued) function
of bounded variation” with respect to a varifold, it could be of interest to study
the class of those functions f satisfying the hypotheses of 8.1 such that the
associated function T is representable by integration.
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8.11 Remark. A concept related to the present one has been proposed by Moser
in [Mos01, Definition 4.1] in the context of curvature varifolds (see 15.4 and 15.5);
in fact, it allows for certain “multiple-valued” functions. In studying convergence
of pairs of varifolds and weakly differentiable functions, it would seem natural
to investigate the extension of the present concept to such functions. (Notice
that the usage of the term “multiple-valued” here is different but related to the
one of Almgren in [Alm00, §1]).

8.12 Lemma. Suppose m, n, U , V , and Y are as in 8.3, f ∈ T(V, Y ), Z is a
finite dimensional normed vectorspace, 0 ≤ κ < ∞, Υ is a closed subset of Y ,
g : Y → Z, H : Y → Hom(Y, Z), gi : Y → Z is a sequence of functions of class
1, sptDgi ⊂ Υ, Lip gi ≤ κ, g|Υ is proper, and

g(y) = lim
i→∞

gi(y) uniformly in y ∈ Y ,

H(y) = lim
i→∞

Dgi(y) for y ∈ Y .

Then g ◦ f ∈ T(V, Z) and

V D(g ◦ f)(x) = H(f(x)) ◦ V Df(x) for ‖V ‖ almost all x.

Proof. Note Lip g ≤ κ, ‖H(y)‖ ≤ κ for y ∈ Y , and H |Y ∼ Υ = 0, hence

{y : |g(y)| ≤ s} ⊂ {y :H(y) = 0} ∪ (g|Υ)−1[B(0, s)],
´

K∩{x : |g(f(x))|≤s}
‖H(f(x)) ◦ V Df(x)‖ d‖V ‖x < ∞

whenever K is a compact subset of U and 0 ≤ s < ∞.
Suppose γ ∈ E (Z,R) and 0 ≤ s < ∞ with sptDγ ⊂ U(0, s) and C =

(g|Υ)−1[B(0, s)]. Then im γ is bounded, C is compact and

Y ∩ {y :Dγ(gi(y)) ◦Dgi(y) 6= 0} ⊂ (gi|Υ)−1[sptDγ] ⊂ C for large i,

in particular sptD(γ ◦ gi) ⊂ C for such i. Using 8.6, it follows

(δV )((γ ◦ gi ◦ f)θ) =
´

γ(gi(f(x)))P♮ •Dθ(x) dV (x, P )

+
´

〈θ(x), Dγ(gi(f(x))) ◦Dgi(f(x)) ◦ V Df(x)〉 d‖V ‖x

for θ ∈ D(U,Rn) and considering the limit i → ∞ yields the conclusion.

8.13 Example. Amongst the functions g and H admitting an approximation as
in 8.12 are the following:

(1) If L : Y → Y is a linear automorphism of Y , then g = L and H = DL is
admissible.

(2) If b ∈ Y then g = τ b with H = Dτ b is admissible.

(3) If Y is an inner product space and b ∈ Y then one may take g and H such
that g(y) = |y − b| for y ∈ Y ,

H(y)(v) = |y − b|−1(y − b) • v if y 6= b, H(y) = 0 if y = b

whenever v, y ∈ Y .
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(4) If Y = R and b ∈ R then one may take g and H such that

g(y) = sup{y, b}, H(y)(v) = v if y > b, H(y) = 0 if y ≤ b

whenever v, y ∈ R.

(1) and (2) are trivial.
To prove (3), assume Y = Rl for some l ∈ P by (1), choose ̺ ∈ D(Y,R)+

with
´

̺ dL l = 1 and ̺(y) = ̺(−y) for y ∈ Y and take κ = 1, Υ = Y , and
gi = ̺1/i ∗ g in 8.12 noting (̺1/i ∗ g)(b− y) = (̺1/i ∗ g)(b+ y) for y ∈ Y , hence
D(̺1/i ∗ g)(b) = 0.

To prove (4), choose ̺ ∈ D(R,R)+ with
´

̺ dL 1 = 1, spt ̺ ⊂ B(0, 1) and
ε = inf spt ̺ > 0, and take κ = 1, Υ = R ∩ {y : y ≥ b}, and gi = ̺1/i ∗ g in 8.12
noting gi(y) = b if −∞ < y ≤ b+ ε/i, hence Dgi(y) = 0 for −∞ < y ≤ b.

8.14 Lemma. Suppose U is an open subset of Rn, µ is a Radon measure over
U , Y is a finite dimensional normed vectorspace, g ∈ L1(µ), K denotes the set
of all f ∈ L1(µ, Y ) such that

|f(x)| ≤ g(x) for µ almost all x,

L1(µ, Y ) = L1(µ, Y )/{f :µ(1)(f) = 0} is the (usual) quotient Banach space, and
π : L1(µ, Y ) → L1(µ, Y ) denotes the canonical projection.

Then π[K] with the topology induced by the weak topology on L1(µ, Y ) is
compact and metrisable.

Proof. First, notice that π[K] is convex and closed, hence weakly closed by
[DS88, V.3.13]. Therefore one may assume that Y = R as a basis of Y induces
a linear homeomorphism L1(µ,R)dim Y ≃ L1(µ, Y ) with respect to the weak
topologies on L1(µ,R) and L1(µ, Y ). Since L1(µ,R) is separable, the conclusion
now follows combining [DS88, IV.8.9, V.6.1, V.6.3].

8.15 Lemma. Suppose m, n, U , V , and Y are as in 8.3, f ∈ T(V, Y ), Z
is a finite dimensional normed vectorspace, Υ is a closed subset of Y , c is the
characteristic function of f−1[Υ], and g : Y → Z is a Lipschitzian function
such that g|Υ is proper and g|Y ∼ Υ is locally constant.

Then g ◦ f ∈ T(V, Z) and

‖V D(g ◦ f)(x)‖ ≤ Lip(g)c(x)‖V Df(x)‖ for ‖V ‖ almost all x.

Proof. Suppose 0 < ε ≤ 1 and abbreviate κ = Lip g.
Define B = Y ∩ {y : dist(y,Υ) ≤ ε} and let b denote the characteristic func-

tion of f−1[B]. Since g|B is proper, one may employ convolution to construct
gi ∈ E (Y, Z) satisfying Lip gi ≤ κ, sptDgi ⊂ B and

δi = sup{|(g − gi)(y)| : y ∈ Y } → 0 as i → ∞.

Therefore, if δi < ∞ then gi|B is proper and gi ◦ f ∈ T(V, Z) with

‖V D(gi ◦ f)(x)‖ ≤ κ b(x)‖V Df(x)‖ for ‖V ‖ almost all x

by 8.12 with Υ, g, and H replaced by B, gi, and Dgi. Choose a sequence
of compact sets Kj such that Kj ⊂ IntKj+1 for j ∈ P and U =

⋃∞
j=1 Kj
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and define E(j) = Kj ∩ {x : |f(x)| < j} for j ∈ P. In view of 8.14, possibly
passing to a subsequence by means of a diagonal process, there exist functions
Fj ∈ L1(‖V ‖ xE(j),Hom(Rn, Z)) such that

‖Fj(x)‖ ≤ κ b(x)‖V Df(x)‖ for ‖V ‖ almost all x ∈ Ej ,
´

E(j) 〈V D(gi ◦ f), G〉 d‖V ‖ →
´

E(j) 〈Fj , G〉 d‖V ‖ as i → ∞

whenever G ∈ L∞

(

‖V ‖,Hom(Rn, Z)∗
)

and j ∈ P. Noting Ej ⊂ Ej+1 and
Fj(x) = Fj+1(x) for ‖V ‖ almost all E(j) for j ∈ P, one may define a ‖V ‖
measurable function F by F (x) = limj→∞ Fj(x) whenever x ∈ U .

In order to verify g ◦ f ∈ T(V, Z) with V D(g ◦ f)(x) = F (x) for ‖V ‖ almost
all x, suppose θ ∈ D(U,Rn) and γ ∈ E (Z,R) with sptDγ compact. Then
there exists j ∈ P with spt θ ⊂ Kj and (g|B)−1[sptDγ] ⊂ U(0, j). Define
Gi, G ∈ L∞

(

‖V ‖,Hom(Rn, Z)∗
)

by the requirements

〈σ,Gi(x)〉 = 〈θ(x), Dγ(gi(f(x))) ◦ σ〉 , 〈σ,G(x)〉 = 〈θ(x), Dγ(g(f(x))) ◦ σ〉

whenever x ∈ dmn f and σ ∈ Hom(Rn, Z), hence

‖V ‖(∞)(Gi −G) → 0 as i → ∞.

Observing (gi|B)−1[sptDγ] ⊂ U(0, j) for large i, one infers
´

〈θ(x), Dγ(g(f(x))) ◦ F (x)〉 d‖V ‖x =
´

E(j) 〈F,G〉 d‖V ‖

= lim
i→∞

´

E(j) 〈V D(gi ◦ f)(x), Gi(x)〉 d‖V ‖x

= lim
i→∞

´

〈θ(x), Dγ(gi(f(x)) ◦ V D(gi ◦ f)(x)〉 d‖V ‖x

as 〈F,G〉 (x) = 0 = 〈V D(gi ◦ f), Gi〉 (x) for ‖V ‖ almost all x ∈ U ∼E(j).

8.16 Remark. Taking Υ = Y and g(y) = |y| for y ∈ Y yields |f | ∈ T(V ) and

‖V D|f |(x)‖ ≤ ‖V Df(x)‖ for ‖V ‖ almost all x.

8.17. Whenever Y is a finite dimensional normed vectorspace, there exists a
family of functions gs ∈ D(Y, Y ) with 0 < s < ∞ satisfying

gs(y) = y whenever y ∈ Y ∩ B(0, s), 0 < s < ∞,

sup{Lip gs : 0 < s < ∞} < ∞;

in fact, one may assume Y = Rl for some l ∈ P, select ω ∈ D(R,R) such that

0 ≤ ω(t) ≤ t for 0 ≤ t < ∞, ω(t) = t for −1 ≤ t ≤ 1,

define ωs = sω ◦ µ1/s and gs ∈ D(Y, Y ) by

gs(y) = 0 if y = 0, gs(y) = ωs(|y|)|y|−1y if y 6= 0,

whenever y ∈ Y and 0 < s < ∞, and conclude

ωs(t) = t for −s ≤ t ≤ s, Lipωs = Lipω,

Dgs(y)(v) = ω′
s(|y|)(|y|−1y) • v(|y|−1y) + ωs(|y|)|y|−1

(

v − (|y|−1y) • v(|y|−1y)
)

whenever y ∈ Y ∼{0}, v ∈ Y , and 0 < s < ∞, hence Lip gs ≤ 2 Lipω < ∞.
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8.18 Lemma. Suppose m, n, U , V , and Y are as in 8.3, f ∈ T(V, Y ) ∩
Lloc

1 (‖V ‖ + ‖δV ‖, Y ), V Df ∈ Lloc
1 (‖V ‖,Hom(Rn, Y )), and α ∈ Hom(Y,R).

Then α ◦ f ∈ T(V ) and

V D(α ◦ f)(x) = α ◦ V Df(x) for ‖V ‖ almost all x,

(δV )((α ◦ f)θ) = α
(´

(P♮ •Dθ(x))f(x) + 〈θ(x), V Df(x)〉 dV (x, P )
)

whenever θ ∈ D(U,Rn).

Proof. If f is bounded the conclusion follows from 8.6. The general case may
be treated by approximation based on 8.12 and 8.17.

8.19 Remark. If l = 1, m = n, and ‖V ‖(A) = L m(A) for A ⊂ U , then f ∈ T(V )
if and only if f belongs to the class T

1,1
loc (U) introduced by Bénilan, Boccardo,

Gallouët, Gariepy, Pierre and Vázquez in [BBG+95, p. 244] and in this case
V Df corresponds to “the derivative Df of f ∈ T

1,1
loc (U)” of [BBG+95, p. 246]

as may be verified by use of 8.12, 8.13 (1) (4), 8.18, and [BBG+95, 2.1, 2.3].

8.20 Theorem. Suppose m, n, U , V , and Y are as in 8.3, and f ∈ T(V, Y ).
Then the following four statements hold:

(1) If A = {x : f(x) = 0}, then

V Df(x) = 0 for ‖V ‖ almost all x ∈ A.

(2) If Z is a finite dimensional normed vectorspace, g : U → Z is locally
Lipschitzian, and h(x) = (f(x), g(x)) for x ∈ dmn f , then h ∈ T(V, Y ×Z)
and

V Dh(x)(u) = (V Df(x)(u), V Dg(x)(u)) whenever u ∈ Rn

for ‖V ‖ almost all x.

(3) If g : U → Y is locally Lipschitzian, then f + g ∈ T(V, Y ) and

V D(f + g)(x) = V Df(x) + V Dg(x) for ‖V ‖ almost all x.

(4) If f ∈ Lloc
1 (‖V ‖, Y ), V Df ∈ Lloc

1 (‖V ‖,Hom(Rn, Y )), and g : U → R is
locally Lipschitzian, then gf ∈ T(V, Y ) and

V D(gf)(x) = V Dg(x) f(x) + g(x)V Df(x) for ‖V ‖ almost all x.

Proof of (1). By 8.17 in conjunction with 8.12 one may assume f to be bounded
and V Df ∈ Lloc

1 (‖V ‖,Hom(Rn, Y )), hence by 8.18 also Y = R. In this case it
follows from 8.12 and 8.13 (1) (4) that f+ and f− satisfy the same hypotheses
as f , hence

(δV )(gθ) =
´

(P♮ •Dθ(x))g(x) + 〈θ(x), V Dg(x)〉 dV (x, P )

for θ ∈ D(U,R) and g ∈ {f, f+, f−} by 8.18. Since f = f+ − f−, this implies

V Df(x) = V Df+(x) − V Df−(x) for ‖V ‖ almost all x

and the formulae derived in 8.13 (4) yield the conclusion.
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Proof of (2). Assume dim Y > 0. Define a ‖V ‖ measurable function H with
values in Hom(Rn, Y × Z) by

H(x)(u) = (V Df(x)(u), V Dg(x)(u)) for u ∈ Rn

whenever x ∈ dmn V Df ∩ dmn V Dg. It will proven that

(δV )((γ ◦ h)θ) =
´

γ(h(x))P♮ •Dθ(x) + 〈θ(x), Dγ(h(x)) ◦H(x)〉 dV (x, P )

whenever γ ∈ D(Y ×Z,R) and θ ∈ D(U,Rn); in fact, in view of 2.12 and 3.1 the
problem reduces to the case that, for some µ ∈ D(Y,R) and some ν ∈ D(Z,R),

γ(y, z) = µ(y)ν(z) for (y, z) ∈ Y × Z

in which case one computes, using 8.6 and 8.7,

(δV )((γ ◦ h)θ) = (δV )((µ ◦ f)(ν ◦ g)θ)

=
´

µ(f(x))
(

〈θ(x), Dν(g(x)) ◦ V Dg(x)〉 + ν(g(x))P♮ •Dθ(x)
)

dV (x, P )

+
´

ν(g(x)) 〈θ(x), Dµ(f(x)) ◦ V Df(x)〉 d‖V ‖x

=
´

γ(h(x))P♮ •Dθ(x) + 〈θ(x), Dγ(h(x)) ◦H(x)〉 dV (x, P ).

If dimY ≥ 2 or f is bounded the conclusion now follows from 8.4. Finally,
to approximate f in case dim Y = 1, one assumes Y = R and employs the
functions fi defined by fi(x) = sup{inf{f(x), i},−i} for x ∈ dmn f and i ∈ P

and notices that fi ∈ T(V ) and

|V Dfi(x)| ≤ |V Df(x)|, V Dfi(x) → V Df(x) as i → ∞,

|fi(x)| < |f(x)| implies V Dfi(x) = 0

for ‖V ‖ almost all x by 8.12, 8.13 (1) (4).

Proof of (3). Assume dim Y > 0 and that im g ⊂ B(0, t) for some 0 < t < ∞.
Define h as in (2) and let L : Y × Y → Y denote addition.

The following assertion will be shown. If γ ∈ D(Y,R) and θ ∈ D(U,Rn),
then

(δV )((γ ◦ L ◦ h)θ)

=
´

γ(L(h(x)))P♮ •Dθ(x) + 〈θ(x), D(γ ◦ L)(h(x)) ◦ V Dh(x)〉 dV (x, P ).

For this purpose define D = Y × (Y ∩ B(0, 2t)) and choose ̺ ∈ D(Y,R) with

B(0, t) ⊂ Int{z : ̺(z) = 1}, spt ̺ ⊂ B(0, 2t).

Let φ : Y × Y → Y be defined by

φ(y, z) = ̺(z)(γ ◦ L)(y, z) for (y, z) ∈ Y × Y .

Noting that

L|D is proper, sptφ ⊂ D ∩ L−1[spt γ], sptDφ is compact,

φ(y, z) = (γ ◦ L)(y, z) and Dφ(y, z) = D(γ ◦ L)(y, z)

for y ∈ Y and z ∈ Y ∩ B(0, t), one uses (2) and 8.3 (2) with f and γ replaced
by h and φ to infer the assertion.

If dim Y ≥ 2 or f is bounded the conclusion now follows from the assertion
of the preceding paragraph in conjunction with 8.4. Finally, the case dim Y = 1
may be treated by means of approximation as in (2).
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Proof of (4). Assume g to be bounded, define h as in (2) and let µ : Y ×R → Y
be defined by µ(y, t) = ty for y ∈ Y and t ∈ R. If f is bounded the conclusion
follows from (2) and 8.6 with f and g replaced by h and µ. The general case
then follows by approximation using 8.12 and 8.17.

8.21 Remark. The approximation procedure in the proof of (2) uses ideas from
[Fed69, 4.1.2, 4.1.3].

8.22 Remark. The need for some strong restriction on g in (2) and (3) will be
illustrated in 8.25.

8.23. If φ is a measure, A is φ measurable and B is a φ xA measurable subset
of A, then B is φ measurable.

8.24 Theorem. Suppose m, n, U , V , and Y are as in 8.3, Ξ is a decomposition
of V , ξ is associated to Ξ as in 6.10, fW ∈ T(W,Y ) for W ∈ Ξ, and

f =
⋃

{fW |ξ(W ) :W ∈ Ξ}, F =
⋃

{W DfW |ξ(W ) :W ∈ Ξ}.

Then the following three statements hold:

(1) f is ‖V ‖ + ‖δV ‖ measurable.

(2) F is ‖V ‖ measurable.

(3) If
´

K∩{x : |f(x)|≤s}
‖F‖ d‖V ‖ < ∞ whenever K is a compact subset of U

and 0 ≤ s < ∞, then f ∈ T(V, Y ) and

V Df(x) = F (x) for ‖V ‖ almost all x.

Proof. Clearly, f |ξ(W ) = fW |ξ(W ) and F |ξ(W ) = W DfW |ξ(W ) for W ∈
Ξ. (1) and (2) readily follow by means of 8.23, since ‖W‖ = ‖V ‖ x ξ(W ) and
‖δW‖ = ‖δV ‖ x ξ(W ) for W ∈ Ξ. The hypothesis of (3) implies

(δV )((γ ◦ f)θ) =
∑

W ∈Ξ(δW )((γ ◦ fW )θ)

=
∑

W ∈Ξ

´

γ(fW (x))P♮ •Dθ(x) + 〈θ(x), Dγ(fW (x)) ◦W DfW (x)〉 dW (x, P )

=
∑

W ∈Ξ

´

ξ(W )×G(n,m)
γ(f(x))P♮ •Dθ(x) + 〈θ(x), Dγ(f(x)) ◦ F (x)〉 dV (x, P )

=
´

γ(f(x))P♮ •Dθ(x) + 〈θ(x), Dγ(f(x)) ◦ F (x)〉 dV (x, P )

whenever θ ∈ D(U,Rn), γ ∈ E (Y,R) and sptDγ is compact.

8.25 Example. Suppose Rj , Vj , and V are as in 6.13. Define f : C → R,
g : C → R, and h : C → R by

f(x) = 1 if x ∈ R1 ∪R3 ∪R5, f(x) = 0 else,

g(x) = 1 if x ∈ R1 ∪R4, g(x) = 0 else,

h(x) = (f(x), g(x))

whenever x ∈ C.
Then f ∈ T(V1 + V3 + V5), g ∈ T(V1 + V4), hence f, g ∈ T(V ) with

V Df(x) = 0 = V Dg(x) for ‖V ‖ almost all x

by 8.24. However, neither h /∈ T(V,R×R) nor f+g ∈ T(V ) nor gf ∈ T(V ); in
fact the characteristic function of R1 which equals gf does not belong to T(V ),
hence f + g /∈ T(V ) by 8.12 and h ∈ T(V,R × R) would imply f + g ∈ T(V )
by 8.6 with f and g replaced by h and the addition on R.
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8.26 Remark. Here some properties of the class W(V, Y ) consisting of all f ∈
Lloc

1 (‖V ‖ + ‖δV ‖, Y ) such that for some F ∈ Lloc
1 (‖V ‖,Hom(Rn, Y ))

(δV )((α ◦ f)θ) = α
(´

(P♮ •Dθ(x))f(x) + 〈θ(x), F (x)〉 dV (x, P )
)

whenever θ ∈ D(U,Rn) and α ∈ Hom(Y,R), associated with V and Y whenever
m, n, U , V , and Y are as in 8.3 will be discussed briefly.

Clearly, F is ‖V ‖ almost unique and W(V, Y ) is a vectorspace. Note that

T(V, Y ) ∩ Lloc
1 (‖V ‖ + ‖δV ‖, Y ) ∩ {f :V Df ∈ Lloc

1 (‖V ‖,Hom(Rn, Y )}

is contained in W(V, Y ) by 8.18. However, it may happen that f ∈ W(V, Y )
but ̺◦f /∈ W(V, Y ) for some ̺ ∈ D(Y,R); in fact the function f+g constructed
in 8.25 provides an example.

8.27 Example. The considerations of 8.25 may be axiomatised as follows.
Suppose Φ denotes the family of stationary one dimensional integral varifolds

in R2 and, whenever V ∈ Φ, C(V ) is a class of real valued functions on R2

satisfying the following conditions.

(1) If Ξ is a decomposition of V , ξ is associated to Ξ as in 6.10, υ : Ξ → R

and f : R2 → R satisfies

f(x) = υ(W ) if x ∈ ξ(W ), W ∈ Ξ, f(x) = 0 if x ∈ R2 ∼
⋃

im ξ,

then f ∈ C(V ).

(2) If f, g ∈ C(V ), then f + g ∈ C(V ).

(3) If f ∈ C(V ), ω ∈ E (R,R) and sptω′ is compact, then ω ◦ f ∈ C(V ).

Then, using the terminology of 6.13, the characteristic function of any ray
Rj belongs to C(V ). Moreover, the same holds, if the conditions (2) and (3) are
replaced by the following condition.

(4) If f, g ∈ C(V ), then fg ∈ C(V ).

8.28 Lemma. Suppose m, n, U , and V are as in 8.3, f ∈ T(V ), y ∈ R, and
E = {x : f(x) > y}.

Then there holds

V ∂E(θ) = lim
ε→0+

ε−1
´

{x : y<f(x)≤y+ε}
〈θ, V Df〉 d‖V ‖ for θ ∈ D(U,Rn).

Proof. Suppose θ ∈ D(U,Rn). Define gε : R → R by gε(υ) = ε−1 inf{ε, sup{υ−
y, 0}} whenever υ ∈ R and 0 < ε ≤ 1. Notice that

gε(υ) = 0 if υ ≤ y, gε(υ) = 1 if υ ≥ y + ε,

gε(υ) ↑ 1 as ε → 0+ if υ > y

whenever υ ∈ R. Consequently, one infers gε ◦ f ∈ T(V ) with

V D(gε ◦ f)(x) = ε−1V Df(x) if y < f(x) ≤ y + ε, V D(gε ◦ f)(x) = 0 else

for ‖V ‖ almost all x from 8.12, 8.13 (1) (2) (4) and 8.20 (1). It follows

V ∂E(θ) = lim
ε→0+

(δV )((gε ◦ f)θ) − lim
ε→0+

´

(gε ◦ f)(x)P♮ •Dθ(x) dV (x, P )

= lim
ε→0+

ε−1
´

{x : y<f(x)≤y+ε} 〈θ(x), V Df(x)〉 d‖V ‖x,

where 8.18 with α and f replaced by 1R and gε ◦ f was employed.
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8.29 Theorem. Suppose m, n, U , and V are as in 8.3, f ∈ T(V ), T ∈
D ′(U × R,Rn) satisfies

T (φ) =
´

〈φ(x, f(x)), V Df(x)〉 d‖V ‖x for φ ∈ D(U × R,Rn),

and E(y) = {x : f(x) > y} for y ∈ R.
Then T is representable by integration and

T (φ) =
´

V ∂E(y)(φ(·, y)) dL
1y,

´

g d‖T ‖ =
´ ´

g(x, y) d‖V ∂E(y)‖xdL
1y

whenever φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function. In
particular, for L 1 almost all y, the distribution V ∂E(y) is representable by
integration and ‖V ∂E(y)‖(U ∩ {x : f(x) 6= y}) = 0.

Proof. Taking 8.5 into account, 8.1 yields
´

ω ◦ f 〈θ, V Df〉 d‖V ‖ = T(x,y)(ω(y)θ(x)) =
´

ω(y)V ∂E(y)(θ) dL
1y

for ω ∈ D(R,R) and θ ∈ D(U,Rn). In view of 8.28, the principal conclusion
is implied by 3.4 (1) (2) with J = R and Z = Rn. The postscript follows
employing 8.5 and noting that (U × R) ∩ {(x, y) : f(x) 6= y} is ‖T ‖ measurable
since f is ‖V ‖ almost equal to a Borel function by [Fed69, 2.3.6].

8.30 Remark. The formulation of 8.29 is modelled on [Fed69, 4.5.9 (13)].

8.31 Remark. The equalities in 8.29 are not valid for functions in W(V ) with
V Df in the definition of T replaced by the function F occurring in the definition
of W(V ), see 8.26; in fact, the function f + g constructed in 8.25 provides an
example.

8.32 Corollary. Suppose m, n, U , V , and Y are as in 8.3 and f ∈ T(V, Y ).
Then there holds

(‖δV ‖ xX)(∞)(f) ≤ (‖V ‖ xX)(∞)(f)

whenever X is an open subset of U .

Proof. Assume X = U and abbreviate s = ‖V ‖(∞)(f). Recalling 8.16, one
applies 8.29 with f replaced by |f | to infer

V ∂E(t) = 0 for L
1 almost all s < t < ∞,

where E(t) = {x : |f(x)| > t}, hence ‖δV ‖(E(t)) = 0 for those t.

8.33 Theorem. Suppose m, n, U , V , and Y are as in 8.3, f ∈ T(V, Y ), and

V Df(x) = 0 for ‖V ‖ almost all x.

Then there exists a decomposition Ξ of V and υ : Ξ → Y such that

f(x) = υ(W ) for ‖W‖ + ‖δW‖ almost all x

whenever W ∈ Ξ.
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Proof. Define B(y, r) = {x : |f(x) − y| ≤ r} for y ∈ Y and 0 ≤ r < ∞. First,
one observes that 8.29 in conjunction with 8.12, 8.13 (2) and 8.16 implies

V ∂B(y, r) = 0 for y ∈ Y and 0 ≤ r < ∞.

Next, a countable subset Υ of Y such that

f(x) ∈ Υ for ‖V ‖ almost all x

will be constructed. For this purpose define δi = α(m)2−m−1i−1−2m, εi =
2−1i−2 and Borel sets Ai consisting of all a ∈ Rn satisfying

|a| ≤ i, U(a, 2εi) ⊂ U, Θm(‖V ‖, a) ≥ 1/i,

‖δV ‖ B(a, s) ≤ α(m)ism for 0 < s < εi

whenever i ∈ P. Clearly, Ai ⊂ Ai+1 for i ∈ P and ‖V ‖(U ∼
⋃∞

i=1 Ai) = 0 by Al-
lard [All72, 3.5 (1a)] and [Fed69, 2.8.18, 2.9.5]. Abbreviating µi = f#(‖V ‖ xAi),
one obtains

‖V ‖(B(y, r) ∩ {x : dist(x,Ai) ≤ εi}) ≥ δi

whenever y ∈ sptµi, 0 ≤ r < ∞ and i ∈ P; in fact, assuming r > 0 there
exists a ∈ Ai with Θm(‖V ‖ xB(y, r), a) = Θm(‖V ‖, a) ≥ 1/i by [Fed69, 2.8.18,
2.9.11], hence

´ εi

0 s−m‖δ(V xB(y, r) × G(n,m))‖ B(a, s) dL
1s ≤ α(m)iεi

implying ‖V ‖(B(y, r) ∩ B(a, εi)) ≥ δi by 4.5 and 4.6. As {B(y, 0) : y ∈ sptµi}
is disjointed, one deduces

δi card sptµi ≤ ‖V ‖(U ∩ {x : dist(x,Ai) ≤ εi}) < ∞

and one may take Υ =
⋃∞

i=1 sptµi, since µi(Y ∼ sptµi) = 0.
Applying 6.12 to V xB(y, 0) × G(n,m) for y ∈ Υ and recalling 5.4 and 6.10,

one constructs a decomposition Ξ of V and a function ξ mapping Ξ into the
class of all ‖V ‖ + ‖δV ‖ measurable sets such that distinct members of Ξ are
mapped onto disjoint sets,

W = V x ξ(W ) × G(n,m), V ∂ξ(W ) = 0

whenever W ∈ Ξ, and each ξ(W ) is contained in some B(y, 0). Defining υ :
Ξ → Y by the requirement {υ(W )} = f [ξ(W )] for W ∈ Ξ and noting (‖W‖ +
‖δW‖)(U ∼ ξ(W )) = 0 for W ∈ Ξ, the conclusion is now evident.

8.34 Remark. Clearly, the second paragraph of the proof has conceptual overlap
with the second and third paragraph of the proof of 6.12.

9 Zero boundary values

In this section a notion of zero boundary values for nonnegative weakly dif-
ferentiable functions based on the behaviour of superlevel sets is introduced.
Stability of this class under composition, see 9.9, convergence, see 9.13 and
9.14, and multiplication by a nonnegative Lipschitzian function, see 9.16, are
investigated. The deeper parts of this study rest on a characterisation of such
functions in terms of an associated distribution built from certain distributional
boundaries of superlevel sets, see 9.12.

46



9.1 Definition. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ RVm(U), ‖δV ‖ is a Radon measure, and G is a relatively open subset of
BdryU .

Then TG(V ) is defined to be the set of all nonnegative functions f ∈ T(V )
such that with

B = (BdryU) ∼G and E(y) = {x : f(x) > y} for 0 < y < ∞

the following conditions hold for L 1 almost all 0 < y < ∞, see 2.15–2.17,

(‖V ‖ + ‖δV ‖)(E(y) ∩K) + ‖V ∂E(y)‖(U ∩K) < ∞,
´

E(y)×G(n,m)P♮ •Dθ(x) dV (x, P ) = ((δV ) xE(y))(θ|U) − V ∂E(y)(θ|U)

whenever K is a compact subset of Rn ∼B and θ ∈ D(Rn ∼B,Rn).

9.2 Remark. Notice that |f | ∈ T∅(V ) whenever Y is a finite dimensional normed
vectorspace and f ∈ T(V, Y ) by 8.16 and 8.29.

9.3 Remark. The condition on E(y) has been studied in Section 7 under the
supplementary hypothesis on V that Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x, see
7.1. In the present section this hypothesis will not occur leaving those properties
of TG(V ) employing the additionally hypothesis on V to Section 10.

9.4 Lemma. Suppose m, n, U , V , G, B, and E(y) are as in 9.1, f ∈ TG(V ),
and

Clos spt
(

(‖V ‖ + ‖δV ‖) xE(y)
)

⊂ Rn ∼B for L
1 almost all 0 < y < ∞.

Then f ∈ TBdry U (V ).

Proof. Define A(y) = Clos spt
(

(‖V ‖ + ‖δV ‖) xE(y)
)

for 0 < y < ∞. Suppose
y satisfies the conditions of 9.1 and A(y) ⊂ Rn ∼B. One concludes

(‖V ‖ + ‖δV ‖)(E(y) ∩K) + ‖V ∂E(y)‖(U ∩K) < ∞

whenever K is a compact subset of Rn. Hence one may define S ∈ D ′(Rn,Rn)
by

S(θ) =
´

E(y)×G(n,m)
P♮ •Dθ(x) dV (x, P ) − ((δV ) xE(y))(θ|U) + V ∂E(y)(θ|U)

whenever θ ∈ D(Rn,Rn). Notice that sptS ⊂ A(y) ⊂ Rn ∼B. On the other
hand the conditions of 9.1 imply sptS ⊂ B. It follows sptS = ∅ and S = 0.

9.5 Lemma. Suppose m, n, U , V , G, and B are as in 9.1, f ∈ TG(V ), X is
an open subset of Rn ∼B, H = X ∩ BdryU , and W = V |2(U∩X)×G(n,m).

Then f |X ∈ TH(W ).

Proof. Notice that H = X ∩ Bdry(U ∩X). In particular, H is a relatively open
subset of Bdry(U ∩X). Let C = (Bdry(U ∩X)) ∼H and observe the inclusions

(Rn ∼C) ∩ Clos(U ∩X) ⊂ X ⊂ Rn ∼(B ∪ C).

Suppose 0 < y < ∞ satisfies the conditions of 9.1. Define E = {x : f(x) > y}
and notice that

(‖W‖ + ‖δW‖)(E ∩X ∩K) + ‖W ∂(E ∩X)‖(U ∩X ∩K) < ∞
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whenever K is a compact subset of Rn ∼C by the first inclusion of the first
paragraph. Therefore one may define S ∈ D ′(Rn ∼C,Rn) by

S(θ) =
´

(E∩X)×G(n,m)P♮ •Dθ(x) dW (x, P )

− ((δW ) xE ∩X)(θ|U ∩X) + (W ∂(E ∩X))(θ|U ∩X)

whenever θ ∈ D(Rn ∼C,Rn). Notice that sptS ⊂ (Rn ∼C)∩Clos(U∩X) ⊂ X .
On the other hand the conditions of 9.1 in conjunction with the second inclusion
of the first paragraph imply

S(θ|Rn ∼C)

=
´

E×G(n,m)P♮ •Dθ(x) dV (x, P ) − ((δV ) xE)(θ|U) + V ∂E(θ|U) = 0

whenever θ ∈ D(Rn,Rn) and spt θ ⊂ X , hence X ∩ sptS = ∅. It follows
sptS = ∅ and S = 0.

9.6 Remark. Recalling the first paragraph of the proof of 9.5, one notices that

U ∩ {x : U(x, r) ⊂ X} ⊂ U ∩X ∩ {x : U(x, r) ⊂ Rn ∼C} for 0 < r < ∞;

this fact will be useful for localisation in 10.1 (1d).

9.7 Example. Suppose m = n = 1, U = R ∼{0}, V ∈ RVm(U) with ‖V ‖(A) =
L 1(A) for A ⊂ U , f : U → R with f(x) = 1 for x ∈ U , X = U ∩ {x :x < 0},
and W = V |2X×G(n,m).

Then δV = 0 and f ∈ T{0}(V ) but f |X /∈ T{0}(W ).

9.8 Remark. The preceding example shows that 9.5 may not be sharpened by
allowing H to be an arbitrary relatively open subset of Bdry(U ∩X) contained
in G.

9.9 Lemma. Suppose m, n, U , V , and G are as in 9.1, f ∈ TG(V ), Υ is a
closed subset of {y : 0 ≤ y < ∞}, g : {y : 0 ≤ y < ∞} → {z : 0 ≤ z < ∞} is a
Lipschitzian function such that g(0) = 0, g|Υ is proper and g|R ∼ Υ is locally
constant.

Then g ◦ f ∈ TG(V ).

Proof. Let h = g ∪ {(y, 0) : −∞ < y < 0}. Since Liph = Lip g and h|R ∼ Υ is
locally constant, 8.15 yields g ◦ f = h ◦ f ∈ T(V ).

Define F to be the class of all Borel subsets Y of {y : 0 < y < ∞} such that
E = f−1[Y ] satisfies

(‖V ‖ + ‖δV ‖)(E ∩K) + ‖V ∂E‖(U ∩K) < ∞,
´

E×G(n,m)
P♮ •Dθ(x) dV (x, P ) = ((δV ) xE)(θ|U) − (V ∂E)(θ|U)

whenever K is a compact subset of Rn ∼B and θ ∈ D(Rn ∼B,Rn). If Y ∈ F ,
G is a finite disjointed subfamily of F and

⋃

G ⊂ Y , then Y ∼
⋃

G ∈ F ; as
one readily verifies using 5.3. Let O denote the set of 0 < b < ∞ such that
either {y : b < y < ∞} or {y : b ≤ y < ∞} does not belong to F . Since
(‖V ‖+‖δV ‖)(f−1[{b}]) = 0 for all but countably many b, one obtains L 1(O) =
0.

Next, it will be shown that

D = g−1[{z : c < z < ∞}] ∈ F
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whenever c satisfies 0 < c ∈ R ∼ g[O] and N(g, c) < ∞. For this purpose assume
D 6= ∅. Since inf D > 0 and BdryD ⊂ {y : g(y) = c}, one infers that BdryD is a
finite subset of {b : 0 < b < ∞} ∼O, in particular Y = {y : inf D < y < ∞} ∈ F .
Let G denote the family of connected components of Y ∼D. Observe that G is
a finite disjointed family of possibly degenerated closed intervals. Since

Bdry I ⊂ BdryD, I = {y : inf I ≤ y < ∞} ∼{y : sup I < y < ∞}

whenever I ∈ G, it follows G ⊂ F and D = Y ∼
⋃

G ∈ F .
Finally, notice that L 1 almost all 0 < c < ∞ satisfy N(g|{y : y ≤ i}, c) < ∞

for i ∈ P by [Fed69, 3.2.3 (1)], hence ∞ > N(g|Υ, c) = N(g, c) for such c.

9.10 Example. Suppose m = n = 1, U = R ∼{0}, and V ∈ RVm(U) with
‖V ‖(A) = L 1(A) for A ⊂ U .

Then δV = 0 and the following two statements hold.

(1) If f = sign |U then f ∈ T(V ) and |f | ∈ T{0}(V ) but f+ /∈ T{0}(V ).

(2) If y, b ∈ R2, |y| = |b|, ν is a norm on R2, ν(y) 6= ν(b), f(x) = y for
0 > x ∈ R and f(x) = b for 0 < x ∈ R, then f ∈ T(V,R2) and
|f | ∈ T{0}(V ) but ν ◦ f /∈ T{0}(V ).

9.11 Remark. The preceding example shows that the class T(V, Y ) ∩ {f : |f | ∈
TG(V )}, where Y is a finite dimensional normed vectorspace, does not satisfy
stability properties similar to those proven for TG(V ) in 9.9.

9.12 Theorem. Suppose m, n, U , V , G, and B are as in 9.1, f ∈ T(V ), f is
nonnegative, J = {y : 0 < y < ∞}, A = f−1[J ], E(y) = U ∩ {x : f(x) > y} for
y ∈ J ,

(‖V ‖ + ‖δV ‖)(K ∩ E(y)) < ∞

whenever K is a compact subset of Rn ∼B and y ∈ J , and the distributions
S(y) ∈ D ′(Rn ∼B,Rn) and T ∈ D ′((Rn ∼B) × J,Rn) satisfy

S(y)(θ) = ((δV ) xE(y))(θ|U) −
´

E(y)×G(n,m)P♮ •Dθ(x) dV (x, P ) for y ∈ J,

T (φ) =
´

JS(y)(φ(·, y)) dL
1y

whenever θ ∈ D(Rn ∼B,Rn) and φ ∈ D((Rn ∼B) × J,Rn).
Then the following three conditions are equivalent:

(1)
´

K∩{x : f(x)∈I}|V Df(x)| d‖V ‖x < ∞ whenever K is a compact subset of
Rn ∼B and I is a compact subset of J , and f ∈ TG(V ).

(2)
´

I‖S(y)‖(K) dL 1y < ∞ whenever K is a compact subset of Rn ∼B and
I is a compact subset of J , and ‖S(y)‖((Rn ∼B) ∼U) = 0 for L 1 almost
all y ∈ J .

(3) T is representable by integration and ‖T ‖(((Rn ∼B) ∼U) × J) = 0.

If these conditions are satisfied then the following three statements hold:

(4) For L 1 almost all y ∈ J , there holds

S(y)(θ) = V ∂E(y)(θ|U) whenever θ ∈ D(Rn ∼B,Rn).
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(5) If φ ∈ L1(‖T ‖,Rn), then

T (φ) =
´

J
V ∂E(y)(φ(·, y)|U) dL

1y =
´

A
〈φ(x, f(x)), V Df(x)〉 d‖V ‖x.

(6) If g is an R valued ‖T ‖ integrable function, then
´

g d‖T ‖ =
´

J

´

g(x, y) d‖V ∂E(y)‖xdL
1y

=
´

A
g(x, f(x))|V Df(x)| d‖V ‖x.

Proof. Notice that S(y)(θ) = V ∂E(y)(θ|U) whenever θ ∈ D(Rn ∼B,Rn) and
spt θ ⊂ U . From 8.5 and 8.29 one infers

´

K∩{x : f(x)∈I}|V Df(x)| d‖V ‖x =
´

I‖V ∂E(y)‖(U ∩K) dL
1y

whenever K is a compact subset of Rn ∼B and I is a compact subset of J .
Consequently, (1) and (2) are equivalent.

Moreover, one remarks that S is L 1
x J measurable by 2.21 and, employing

a countable sequentially dense subset of D(Rn ∼B,Rn), one obtains that, for
L 1 almost all y ∈ J ,

S(y)(θ) = lim
ε→0+

ε−1
´ y+ε

y
S(υ)(θ) dL

1υ whenever θ ∈ D(Rn ∼B,Rn)

by 2.2, 2.12, and [Fed69, 2.8.17, 2.9.8]. Defining Rθ ∈ D ′(J,R) by

Rθ(ω) = T(x,y)(ω(y)θ(x)) whenever ω ∈ D(J,R) and θ ∈ D(Rn ∼B,Rn),

one notes that ‖Rθ‖ is absolutely continuous with respect to L 1|2J for θ ∈
D(Rn ∼B,Rn). If (2) holds, then T is representable by integration and 3.4 (2)
with U and Z replaced by Rn ∼B and Rn yields (3). Conversely, if (3) holds,
then (2) follows similarly from 3.4 (1).

Suppose now (1)–(3) hold. Then (4) is evident from 9.1 and implies

T (φ) =
´

A
〈φ(x, f(x)), V Df(x)〉 d‖V ‖x for φ ∈ D((Rn ∼B) × J,Rn)

by 8.5 and 8.29. Finally, (5) and (6) follow from 3.3 and 3.4 (2) with U replaced
by Rn ∼B.

9.13 Lemma. Suppose m, n, U , V , G, and B are as in 9.1, f ∈ T(V ), fi is
a sequence in TG(V ), J = {y : 0 < y < ∞}, and

(‖V ‖ + ‖δV ‖)(K ∩ {x : f(x) > b}) < ∞,

fi → f as i → ∞ in (‖V ‖ + ‖δV ‖) xU ∩K measure,

̺(K, I, b, δ) < ∞ for 0 < δ < ∞, ̺(K, I, b, δ) → 0 as δ → 0+

whenever K is a compact subset of Rn ∼B, I is a compact subset of J , and
inf I > b ∈ J , where ̺(K, I, b, δ) denotes the supremum of all numbers

lim sup
i→∞

´

K∩A∩{x : fi(x)∈I}
|V Dfi| d‖V ‖

corresponding to ‖V ‖ measurable sets A with ‖V ‖(A ∩K ∩ {x : f(x) > b}) ≤ δ.
Then f ∈ TG(V ).
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Proof. Define C = (U×J)∩{(x, y) : f(x) > y}, Ci = (U×J)∩{(x, y) : fi(x) > y}
for i ∈ P, E(y) = {x :(x, y) ∈ C} and Ei(y) = {x :(x, y) ∈ Ci} for y ∈ J and
i ∈ P, and g : (U × G(n,m)) × J → U × J by g((x, P ), y) = (x, y) for x ∈ U ,
P ∈ G(n,m), and y ∈ J . As in 8.1 one derives that C and Ci are ‖δV ‖ × L 1

measurable and that g−1[C] and g−1[Ci] are V × L 1 measurable. Defining
T ∈ D ′(Rn ∼B,Rn) as in 9.12, Fubini’s theorem yields that (see 4.4)

T (φ) =
´

C
η(V, x) • φ(x, y) d(‖δV ‖ × L

1)(x, y)

−
´

g−1[C]
P♮ •Dφ(·, y)(x) d(V × L

1)((x, P ), y)

for φ ∈ D((Rn ∼B) × J,Rn). Observe that
(

(‖V ‖ + ‖δV ‖) × L
1
)(

((U ∩K) × I) ∩C
)

< ∞,

lim
i→∞

(

(‖V ‖ + ‖δV ‖) × L
1
)(

((U ∩K) × I) ∩ ((C ∼Ci) ∪ (Ci ∼C))
)

= 0

whenever K is a compact subset of U and I a compact subset of J ; in fact, if
b, ε ∈ J , b+ ε < inf I, and A = {x : |f(x) − fi(x)| > ε}, then

(U × I) ∩ (C ∼Ci) ⊂ (A× I) ∪ {(x, y) : b < f(x) − ε ≤ y < f(x)},

(U × I) ∩ (Ci ∼C) ⊂ (A× I) ∪ {(x, y) : b < f(x) ≤ y < f(x) + ε}.

Consequently, one employs Fubini’s theorem and 9.1 to compute

T (φ) = lim
i→∞

(

´

Ci
η(V, x) • φ(x, y) d(‖δV ‖ × L

1)(x, y)

−
´

g−1[Ci]
P♮ •Dφ(·, y)(x) d(V × L

1)((x, P ), y)
)

= lim
i→∞

´

J

(

((δV ) xEi(y))(φ(·, y)|U)

−
´

Ei(y)×G(n,m)
P♮ •Dφ(·, y)(x) dV (x, P )

)

dL
1y

= lim
i→∞

´

JV ∂Ei(y)(φ(·, y)|U) dL
1y.

In view of 8.29, one infers

‖T ‖
(

((IntK) ∼A) × Int I
)

≤ ̺(K, I, b, δ)

whenever K is a compact subset of Rn ∼B, I is a compact subset of J , inf I >
b ∈ J , 0 < δ < ∞, A is a compact subset of U , and ‖V ‖((K ∼A) ∩ E(b)) ≤ δ.
In particular, taking A = ∅ and δ sufficiently large, one concludes that T is
representable by integration and taking A such that ‖V ‖((K ∼A) ∩ E(b)) is
small yields

‖T ‖(((Rn ∼B) ∼U) × J) = 0.

The conclusion now follows from 9.12 (1) (3).

9.14 Remark. The conditions on ̺ are satisfied for instance if for any compact
subset K of Rn ∼B there holds

either
´

U∩K |V Df | d‖V ‖ < ∞, lim
i→∞

(‖V ‖ xU ∩K)(1)(V Df − V Dfi) = 0,

or lim sup
i→∞

(‖V ‖ xU ∩K)(q)(V Dfi) < ∞ for some 1 < q ≤ ∞;
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in fact if I is a compact subset of J and inf I > b ∈ J then, in the first case,

lim sup
i→∞

´

K∩A∩{x : fi(x)∈I}|V Dfi| d‖V ‖ ≤
´

K∩A∩{x : f(x)>b}|V Df | d‖V ‖

whenever A is ‖V ‖ measurable and, in the second case,

̺(K, I, b, δ) ≤ δ1−1/q lim sup
i→∞

(‖V ‖ xU ∩K)(q)(V Dfi) for 0 < δ < ∞.

9.15. If f is a nonnegative L 1 measurable R valued function, O ⊂ R, L 1(O) =
0, ε > 0, and j ∈ P, then there exist b1, . . . , bj such that

ε(i− 1) < bi < εi and bi /∈ O for i = 1, . . . , j,
∑j

i=1(bi − bi−1)f(bi) ≤ 2
´

f dL
1,

where b0 = 0; in fact, it is sufficient to choose bi such that

ε(i− 1) < bi < εi, bi /∈ O, εf(bi) ≤
´ εi

ε(i−1)
f dL

1

for i = 1, . . . , j, and note bi − bi−1 ≤ 2ε.

9.16 Theorem. Suppose m, n, U , V , G, and B are as in 9.1, f ∈ TG(V ),
g : U → {y : 0 ≤ y < ∞}, and

´

U∩K |f | + |V Df | d‖V ‖ < ∞, Lip(g|K) < ∞

whenever K is a compact subset of Rn ∼B.
Then gf ∈ TG(V ).

Proof. Define h = gf and note h ∈ T(V ) by 8.20 (4). Define a function c by
c = ((Rn ∼B) × R) ∩ Clos g and note

dmn c = U ∪G, c|U = g, Lip(c|K) < ∞

whenever K is a compact subset of Rn ∼B. Moreover, let

J = {y : 0 < y < ∞}, A = (U × J) ∩ {(x, y) :h(x) > y}.

and define p : (Rn ∼B) × J → Rn ∼B by

p(x, y) = x for x ∈ Rn ∼B and y ∈ J.

Noting (‖V ‖+‖δV ‖)(K∩{x :h(x) > y}) < ∞ wheneverK is a compact subset of
Rn ∼B and y ∈ J , the proof may be carried out by showing that the distribution
T ∈ D ′((Rn ∼B) × J,Rn) defined by

T (φ) =
´

J

(

((δV ) x{x :h(x) > y})(φ(·, y)|U)

−
´

{x : h(x)>y}×G(n,m)
P♮ •Dφ(·, y)(x) dV (x, P )

)

dL
1y

for φ ∈ D((Rn ∼B) × J,Rn) satisfies the conditions of 9.12 (3) with f replaced
by h.
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For this purpose, define subsets D(y), E(υ), and F (y, υ) of U ∪G, varifolds
Wy ∈ RVm(Rn ∼B), and distributions S(y) ∈ D ′(Rn ∼B,Rn) and Σ(y, υ) ∈
D ′(Rn ∼B,Rn) by

D(y) = {x : f(x) > y}, E(υ) = {x : c(x) > υ},

F (y, υ) = D(y) ∩ E(υ), Wy(k) =
´

D(y)×G(n,m)k dV,

S(y)(θ) = ((δV ) xD(y))(θ|U) −
´

D(y)×G(n,m)P♮ •Dθ(x) dV (x, P ),

Σ(y, υ)(θ) = ((δV ) xF (y, υ))(θ|U) −
´

F (y,υ)×G(n,m)P♮ •Dθ(x) dV (x, P )

whenever y, υ ∈ J , k ∈ K ((Rn ∼B) × G(n,m)), and θ ∈ D(Rn ∼B,Rn). Let
O consist of all b ∈ J violating the following condition:

S(b) is representable by integration and ‖S(b)‖((Rn ∼B) ∼U) = 0.

Note L 1(J ∼O) = 0 by 9.1 and

‖δWb‖ is a Radon measure, Σ(b, y) = S(b) xE(y) +Wb ∂E(y)

whenever b ∈ J ∼O and y ∈ J . One readily verifies by means of 8.7 in conjunc-
tion with [Fed69, 2.10.19 (4), 2.10.43] that c ∈ T(W ) and

W Dc(x) = V Dg(x) for ‖V ‖ almost all x ∈ D

whenever D is ‖V ‖ measurable, W ∈ RVm(Rn ∼B), W (k) =
´

D×G(n,m)k dV
for k ∈ K ((Rn ∼B) × G(n,m)) and ‖δW‖ is a Radon measure.

Whenever N is a nonempty finite subset of J ∼O define functions fN :
dmn f → {y : 0 ≤ y < ∞} and hN : dmn f → {y : 0 ≤ y < ∞} by

fN (x) = sup({0} ∪ (N ∩ {y :x ∈ D(y)})), hN (x) = fN(x)g(x)

whenever x ∈ dmn f and distributions ΘN ∈ D ′((Rn ∼B) × J,Rn) and TN ∈
D ′((Rn ∼B) × J,Rn) by

ΘN (φ) =
´

J

(

((δV ) x{x : fN (x) > y})(φ(·, y)|U)

−
´

{x : fN (x)>y}×G(n,m)
P♮ •Dφ(·, y)(x) dV (x, P )

)

dL
1y,

TN (φ) =
´

J

(

((δV ) x{x :hN (x) > y})(φ(·, y)|U)

−
´

{x : hN (x)>y}×G(n,m)P♮ •Dφ(·, y)(x) dV (x, P )
)

dL
1y

whenever φ ∈ D((Rn ∼B) × J,Rn).
Next, it will be shown if N is a nonempty finite subset of J ∼O then

‖TN‖(X × J) ≤ ((p#‖ΘN‖) xX)(c) +
´

U∩Xf |V Dg| d‖V ‖

whenever X is an open subset of Rn ∼B. For this purpose suppose j ∈ P and
0 = b0 < b1 < . . . < bj < ∞ satisfy N = {bi : i = 1, . . . , j} and notice that

fN (x) = bi if x ∈ D(bi) ∼D(bi+1) for some i = 1, . . . , j − 1,

fN (x) = 0 if x ∈ (dmn f) ∼D(b1), fN(x) = bj if x ∈ D(bj)
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and define distributions Ψ1,Ψ2 ∈ D ′((Rn ∼B) × J,Rn) by

Ψ1(φ) =
´

J

((

S(b1) xE(y/b1)

+
∑j

i=2(S(bi) xE(y/bi) ∼E(y/bi−1))
)

(φ(·, y))
)

dL
1y,

Ψ2(φ) =
´

J

(
∑j−1

i=1 (Wbi
−Wbi+1

) ∂E(y/bi) +Wbj
∂E(y/bj)

)

(φ(·, y)) dL
1y

for φ ∈ D((Rn ∼B) × J,Rn). One computes

ΘN (φ) =
∑j

i=1

´ bi

bi−1
S(bi)(φ(·, y)) dL

1y for φ ∈ D((Rn ∼B) × J,Rn)

and deduces from 3.4 (2) with U replaced by Rn ∼B that

‖ΘN‖(d) =
∑j

i=1

´ bi

bi−1
‖S(bi)‖(d(·, y)) dL

1y

whenever d is an R valued ‖ΘN‖ integrable function. Noting

{x :hN (x) > y} ∩ (D(bi) ∼D(bi+1)) = F (bi, y/bi) ∼F (bi+1, y/bi),

{x :hN (x) > y} ∩ (U ∼D(b1)) = ∅, {x :hN (x) > y} ∩D(bj) = F (bj , y/bj)

for i = 1, . . . , j − 1 and y ∈ J , one obtains

TN(φ) =
´

J

(
∑j−1

i=1 (Σ(bi, y/bi) − Σ(bi+1, y/bi)) + Σ(bj , y/bj)
)

(φ(·, y)) dL
1y

whenever φ ∈ D((Rn ∼B) × J,Rn). Computing with the help of 5.2 that
∑j−1

i=1 (Σ(bi, y/bi) − Σ(bi+1, y/bi)) + Σ(bj , y/bj)

=
∑j

i=1S(bi) xE(y/bi) +
∑j

i=1Wbi
∂E(y/bi)

−
∑j−1

i=1S(bi+1) xE(y/bi) −
∑j−1

i=1Wbi+1
∂E(y/bi)

= S(b1) xE(y/b1) +
∑j

i=2S(bi) x(E(y/bi) ∼E(y/bi−1))

+
∑j−1

i=1 (Wbi
−Wbi+1

) ∂E(y/bi) +Wbj
∂E(y/bj)

whenever y ∈ J yields

TN = Ψ1 + Ψ2.

Moreover, the quantity ‖Ψ1‖(X × J) does not exceed
´

J

(

‖S(b1)‖ xE(y/b1) +
∑j

i=2‖S(bi)‖ x(E(y/bi) ∼E(y/bi−1))
)

(X) dL
1y

=
∑j

i=1

´

J
(‖S(bi)‖ xX)(E(y/bi)) dL

1y

−
∑j

i=2

´

J (‖S(bi)‖ xX)(E(y/bi−1)) dL
1y

=
∑j

i=1(bi − bi−1)(‖S(bi)‖ xX)(c) = ((p#‖ΘN‖) xX)(c)

and, using 8.5 and 8.29, the quantity ‖Ψ2‖(X × J) may be bounded by
´

J

(
∑j−1

i=1 ‖(Wbi
−Wbi+1

) ∂E(y/bi)‖ + ‖Wbj
∂E(y/bj)‖

)

(X) dL
1y

=
∑j−1

i=1 bi

´

X
|(Wbi

−Wbi+1
) Dc| d‖Wbi

−Wbi+1
‖ + bj

´

X
|Wbj

Dc| d‖Wbj
‖

=
∑j−1

i=1 bi

´

X∩(D(bi) ∼ D(bi+1))
|V Dg| d‖V ‖ + bj

´

X∩D(bj)
|V Dg| d‖V ‖

=
´

U∩X
f |V Dg| d‖V ‖.
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Next, it will be proven

‖T ‖(X × J) ≤
´

U∩X
2g|V Df | + f |V Dg| d‖V ‖

whenever X is an open subset of Rn ∼B. Recalling the formula for ‖ΘN ‖, one
may use 9.15 with f(y) replaced by (‖S(y)‖ xX)(c) for y ∈ J to construct a
sequence N(i) of nonempty finite subsets of J ∼O such that

((p#‖ΘN(i)‖) xX)(c) ≤ 2
´

J
(‖S(y)‖ xX)(c) dL

1y,

dist(y,N(i)) → 0 as i → ∞ for y ∈ J.

Define A(i) = (U × J) ∩ {(x, y) :hN(i)(x) > y} for i ∈ P. Noting

hN(i)(x) → h(x) as i → ∞ for x ∈ dmn f

and recalling (‖V ‖ + ‖δV ‖)(K ∩ {x :h(x) > y}) < ∞ for y ∈ J whenever K is
a compact subset of Rn ∼B, one infers

(

(‖V ‖ + ‖δV ‖) × L
1
)

(C ∩A∼A(i)) → 0

as i → ∞ whenever C is a compact subset of (Rn ∼B) × J . Since A(i) ⊂ A for
i ∈ P, it follows by means of Fubini’s theorem that

TN(i) → T as i → ∞

and, in conjunction with the assertion of the preceding paragraph,

‖T ‖(X × J) ≤ 2
´

J
(‖S(y)‖ xX)(c) dL

1y +
´

U∩X
f |V Dg| d‖V ‖.

Therefore the assertion of the present paragraph is implied by 9.12 (1) (4) (6).
Finally, the assertion of the preceding paragraph extends to all Borel subsets

X of Rn ∼B by approximation and the conclusion follows.

10 Embeddings into Lebesgue spaces

In this section a variety of Sobolev Poincaré type inequalities for weakly dif-
ferentiable functions are established by means of the relative isoperimetric in-
equalities 7.9 and 7.11. The key are local estimates under a smallness condi-
tion on set of points where the nonnegative function is positive, see 10.1 (1).
These estimates are formulated in such a way as to improve in case the func-
tion satisfies a zero boundary value condition on an open part of the boundary.
Consequently, Sobolev inequalities are essentially a special case, see 10.1 (2).
Local summability results also follow, see 10.3. Finally, versions without the
previously hypothesised smallness condition are derived in 10.7 and 10.9.

The differentiability results which will be derived in 11.2 and 11.4 are based
on 10.1 (1) whereas the oscillation estimates which will be proven in 13.1 and
13.3 employ 10.9.

10.1 Theorem. Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, p, U , V , and ψ are as in 6.1, n ≤ M , G is a relatively open subset of

BdryU , B = (BdryU) ∼G, and f ∈ TG(V ), then the following two statements
hold:
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(1) Suppose 1 ≤ Q ≤ M , 0 < r < ∞, E = {x : f(x) > 0},

‖V ‖(E) ≤ (Q−M−1)α(m)rm,

‖V ‖(E ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

and A = U∩{x : U(x, r) ⊂ Rn ∼B}. Then the following four implications
hold:

(a) If p = 1, β = ∞ if m = 1 and β = m/(m− 1) if m > 1, then

(‖V ‖ xA)(β)(f) ≤ Γ
(

‖V ‖(1)(V Df) + ‖δV ‖(f)
)

.

(b) If p = m = 1 and ψ(E) ≤ Γ−1, then

(‖V ‖ xA)(∞)(f) ≤ Γ ‖V ‖(1)(V Df).

(c) If 1 ≤ q < m = p and ψ(E) ≤ Γ−1, then

(‖V ‖ xA)(mq/(m−q))(f) ≤ Γ(m− q)−1‖V ‖(q)(V Df).

(d) If 1 < p = m < q ≤ ∞ and ψ(E) ≤ Γ−1, then

(‖V ‖ xA)(∞)(f) ≤ Γ1/(1/m−1/q)‖V ‖(E)1/m−1/q‖V ‖(q)(V Df).

(2) Suppose G = BdryU , E = {x : f(x) > 0}, and ‖V ‖(E) < ∞. Then the
following four implications hold:

(a) If p = 1, β = ∞ if m = 1 and β = m/(m− 1) if m > 1, then

‖V ‖(β)(f) ≤ Γ
(

‖V ‖(1)(V Df) + ‖δV ‖(f)
)

.

(b) If p = m = 1 and ψ(E) ≤ Γ−1, then

‖V ‖(∞)(f) ≤ Γ ‖V ‖(1)(V Df).

(c) If 1 ≤ q < m = p and ψ(E) ≤ Γ−1, then

‖V ‖(mq/(m−q))(f) ≤ Γ(m− q)−1‖V ‖(q)(V Df).

(d) If 1 < p = m < q ≤ ∞ and ψ(E) ≤ Γ−1, then

‖V ‖(∞)(f) ≤ Γ1/(1/m−1/q)‖V ‖(E)1/m−1/q‖V ‖(q)(V Df).

Proof. Denote by (1c)′ [respectively (2c)′] the implication resulting from (1c)
[respectively (2c)] through omission of the factor (m− q)−1 and addition of the
requirement q = 1. It is sufficient to construct functions Γ(1a), Γ(1b), Γ(1c), Γ(1c)′ ,
Γ(1d), Γ(2a), Γ(2b), Γ(2c), Γ(2c)′ , and Γ(2d) corresponding to the implications (1a),
(1b), (1c), (1c)′, (1d), (2a), (2b), (2c), (2c)′, and (2d) whose value at M for
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1 ≤ M < ∞ is a positive, finite number such that the respective implication is
true for M with Γ replaced by this value. Define

Γ(1a)(M) = Γ(1b)(M) = Γ(1c)′(M) = Γ7.8(M), Γ(2a)(M) = Γ(1a)(sup{2,M}),

Γ(2b)(M) = Γ(1b)(sup{2,M}), Γ(2c)′(M) = Γ(1c)′(sup{2,M}),

Γ(2c)(M) = M2Γ(2c)′(M),

∆1(M) = (sup{1/2, 1 − 1/(2M2 − 1)})1/M , ∆2(M) = 2M/(1 − ∆1(M)),

∆3(M) = M sup{α(m) :M ≥ m ∈ P},

∆4(M) = inf{α(m) :M ≥ m ∈ P}/2,

∆5(M) = sup{1,Γ(2c)(M)(∆2(M)∆3(M) + 1)},

∆6(M) = 4M+1∆3(M)M ∆5(M)M+1,

Γ(1c)(M) = sup{2Γ(1c)′(2M),∆6(M)(1 + ∆3(M)Γ(1c)′(2M))},

∆7(M) = sup{1,Γ(1c)′(2M)},

∆8(M) = inf
{

inf{1,∆3(M)−1∆4(M)∆1(M)M }(1 − ∆1(M))M , 1/2
}

,

∆9(M) = 2∆7(M)∆8(M)−1,

Γ(1d)(M) = sup
{

∆9(M),∆1(M)−M Γ(1c)′(2M)
}

,

Γ(2d)(M) = Γ(1d)(sup{2,M})

whenever 1 ≤ M < ∞.
In order to verify the asserted properties suppose 1 ≤ M < ∞ and abbreviate

δi = ∆i(M) whenever i = 1, . . . , 9. In the verification of assertion (X) [respec-
tively (X)′], where X is one of 1a, 1b, 1c, 1d, 2a, 2b, 2c, and 2d, [respectively
1c and 2c] it will be assumed that the quantities occurring in its hypotheses are
defined and satisfy these hypotheses with Γ replaced by Γ(X)(M) [respectively
Γ(X)′(M)].

Step 1. Verification of the property of Γ(1a).

Define E(b) = {x : f(x) > b} for 0 ≤ b < ∞. If m = 1 then Γ7.8(M)−1 ≤
‖V ∂E(b)‖(U) + ‖δV ‖(E(b)) for L 1 almost all b with 0 < b < (‖V ‖ xA)(β)(f)
by 7.9 and the conclusion follows from 8.29. If m > 1, define

fb = inf{f, b}, g(b) = (‖V ‖ xA)(β)(fb) ≤ b ‖V ‖(E)1/β < ∞

for 0 ≤ b < ∞ and use Minkowski’s inequality to conclude

0 ≤ g(b+ y) − g(b) ≤ (‖V ‖ xA)(β)(fb+y − fb) ≤ y ‖V ‖(A ∩ E(b))1/β

for 0 ≤ b < ∞ and 0 < y < ∞. Therefore g is Lipschitzian and one infers from
[Fed69, 2.9.19] and 7.9 that

0 ≤ g′(b) ≤ ‖V ‖(A ∩E(b))1−1/m ≤ Γ7.8(M)
(

‖V ∂E(b)‖(U) + ‖δV ‖(E(b))
)

for L 1 almost all 0 < b < ∞, hence (‖V ‖ xA)(β)(f) = limb→∞ g(b) =
´∞

0 g′ dL 1

by [Fed69, 2.9.20] and 8.29 implies the conclusion.

Step 2. Verification of the properties of Γ(1b) and Γ(1c)′ .

Omitting the terms involving δV from the proof of Step 1 and using 7.11
instead of 7.9, a proof of Step 2 results.
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Step 3. Verification of the properties of Γ(2a), Γ(2b), and Γ(2c)′ .

Taking Q = 1, one may apply (1a), (1b), and (1c)′ with M replaced by
sup{2,M} and a sufficiently large number r.

Step 4. Verification of the property of Γ(2c).

One may assume f to be bounded by 8.12, 8.13 (4). Noting f q(m−1)/(m−q) ∈
TBdry U (V ) by 9.9, one now applies (2c)′ with f replaced by f q(m−1)/(m−q) to
deduce the assertion by the method of [Fed69, 4.5.15].

Step 5. Verification of the property of Γ(1c).

One may assume ‖V ‖(q)(V Df) < ∞ and, possibly using homotheties, also
r = 1. Moreover, one may assume f to be bounded by 8.12, 8.13 (4), hence

´

|f | + |V Df | d‖V ‖ < ∞

by 8.20 (1) and Hölder’s inequality. Define

ri = δ1 + (i − 1)(1 − δ1)/M, Ai = U ∩ {x : U(x, ri) ⊂ Rn ∼B}

whenever i = 1, . . . ,m. Observe that

Q −M−1 ≤ rm
1

(

Q− (2M)−1
)

, rm
1 ≥ 1/2, rm ≤ 1,

ri+1 − ri = 2/δ2 for i = 1, . . . ,m− 1.

Choose gi ∈ E (U,R) with

spt gi ⊂ Ai, gi(x) = 1 for x ∈ Ai+1,

0 ≤ gi(x) ≤ 1 for x ∈ U, Lip gi ≤ δ2

whenever i = 1, . . . ,m− 1. Notice that gif ∈ T(V ) by 8.20 (4) with

V D(gif)(x) = V Dgi(x)f(x) + gi(x)V Df(x) for ‖V ‖ almost all x.

Moreover, one infers gif ∈ TBdry U (V ) by 9.16 and 9.4.
If i ∈ {1, . . . ,m − 1} and 1 − (i − 1)/m ≥ 1/q ≥ 1 − i/m then by (2c) and

Hölder’s inequality

(‖V ‖ xAi+1)(mq/(m−q))(f) ≤ ‖V ‖(mq/(m−q))(gif)

≤ Γ(2c)(M)(m− q)−1
(

δ2(‖V ‖ xAi)(q)(f) + ‖V ‖(q)(V Df)
)

≤ δ5(m− q)−1
(

(‖V ‖ xAi)(m/(m−i))(f) + ‖V ‖(q)(V Df)
)

.

In particular, replacing q by m/(m − i) and using Hölder’s inequality in con-
junction with 8.20 (1), one infers

(‖V ‖ xAi+1)(m/(m−i−1))(f) ≤ 2δ3δ5

(

(‖V ‖ xAi)(m/(m−i))(f) + ‖V ‖(q)(V Df)
)

whenever i ∈ {1, . . . ,m − 2} and 1 − i/m ≥ 1/q, choosing j ∈ {1, . . . ,m − 1}
with 1 − (j − 1)/m ≥ 1/q > 1 − j/m and iterating this j − 1 times, also

(‖V ‖ xAj)(m/(m−j))(f)

≤ (4δ3δ5)j−1
(

(‖V ‖ xA1)(m/(m−1))(f) + ‖V ‖(q)(V Df)
)

.
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Together this yields

(‖V ‖ xAj+1)(mq/(m−q))(f)

≤ δ6(m− q)−1
(

(‖V ‖ xA1)(m/(m−1))(f) + ‖V ‖(q)(V Df)
)

.

and the conclusion then follows from (1c)′ with M and r replaced by 2M and
r1.

Step 6. Verification of the property of Γ(1d).

Assume

r = 1, ‖V ‖(E) > 0, ‖V ‖(q)(V Df) < ∞,

abbreviate β = m/(m− 1) and α = 1/(1/m− 1/q), and suppose

λ = ‖V ‖(E), ‖V ‖(q)(V Df) < κ < ∞.

Notice that 0 < δ1 < 1, 0 < δ8 < 1, α ≥ 1 and λ > 0, and define

ri = 1 − (1 − δ1)i, si = δα
9 λ

1/m−1/qκ(1 − 2−i),

Xi = Rn ∩ {x : dist(x,B) > ri}, Ui = U ∩Xi,

Hi = Xi ∩ BdryU, Ci = (BdryUi) ∼Hi, Wi = V |2Ui×G(n,m),

ti = ‖V ‖(Ui ∩ {x : f(x) > si}),

fi(x) = sup{f(x) − si, 0} whenever x ∈ dmn f

whenever i is a nonnegative integer. Notice that

ri+1 − ri = δ1(1 − δ1)i, Ui+1 ⊂ Ui, si+1 − si = δα
9 λ

1/m−1/qκ2−i−1 > 0

whenever i is a nonnegative integer. The conclusion is readily deduced from the
assertion,

ti ≤ λδαi
8 whenever i is a nonnegative integer ,

which will be proven by induction.
The case i = 0 is trivial. To prove the case i = 1, one applies (1c)′ with

M and r replaced by 2M and δ1 and Hölder’s inequality in conjunction with
8.20 (1) to obtain

(‖V ‖ xU1)(β)(f) ≤ Γ(1c)′(2M)‖V ‖(1)(V Df) ≤ δ7λ
1−1/qκ,

hence

t
1−1/m
1 ≤ (s1 − s0)−1(‖V ‖ xU1)(β)(f) ≤ δ−α

9 λ1−1/m2δ7 ≤ λ1−1/mδ
α(1−1/m)
8 .

Assuming the assertion to be true for some i ∈ P, notice that

λ ≤ δ3, αi ≥ 1, ti ≤ λδαi
8 ≤ δ4δ

m
1 (1 − δ1)im ≤ (1/2)α(m)(ri+1 − ri)m,

fi ∈ TG(V ), fi|Xi ∈ THi
(Wi),

Hi = Xi ∩ BdryUi, Ui+1 ⊂ Ui ∩ {x : U(x, ri+1 − ri) ⊂ Rn ∼Ci},
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by 8.12, 8.13 (4) and 9.5, 9.6 with f , X , H , W , C, and r replaced by fi, Xi, Hi,
Wi, Ci, and ri+1 − ri. Therefore (1c)′ applied with U , V , Q, M , G, B, f , and
r replaced by Ui, Xi, 1, 2M , Hi, Ci, fi|Xi, and ri+1 − ri yields

(‖V ‖ xUi+1)(β)(fi) ≤ Γ(1c)′(2M)(‖V ‖ xUi)(1)(V Dfi),

hence, using Hölder’s inequality in conjunction with 8.12, 8.13 (4) and 8.20 (1),

(‖V ‖ xUi+1)(β)(fi) ≤ δ7t
1−1/q
i κ ≤ δ7λ

1−1/qδ
αi(1−1/q)
8 κ.

Noting δ−α
9 2δ7 ≤ δ

α(1−1/m)
8 and 2δα(1−1/q)

8 ≤ δ
α(1−1/m)
8 , it follows

t
1−1/m
i+1 ≤ (si+1 − si)−1(‖V ‖ xUi+1)(β)(fi)

≤ λ1−1/mδ−α
9 2δ7

(

2δα(1−1/q)
8

)i
≤ λ1−1/mδ

α(1−1/m)(i+1)
8

and the assertion is proven.

Step 7. Verification of the property of Γ(2d).

Taking Q = 1, one may apply (1d) with M replaced by sup{2,M} and a
sufficiently large number r.

10.2 Remark. The role of 7.9 and 7.11 respectively in the Steps 1 and 2 of the
preceding proof is identical to the one of Allard [All72, 7.1] in Allard [All72,
7.3].

The method of deduction of (2c) from (2c)′ is classical, see [Fed69, 4.5.15].
In the context of Lipschitz functions the method of deduction of (1c) from

(1c)′ and (2c) is outlined by Hutchinson in [Hut90, pp. 59–60].
The iteration procedure employed in the proof (1d) bears formal resemblance

with Stampacchia [Sta66, Lemma 4.1 (i)]. However, here the estimate of ti+1 in
terms of ti requires a smallness hypothesis on ti.

10.3 Corollary. Suppose m, n, U , V , and p are as in 6.1, 1 ≤ q ≤ ∞,
Y is a finite dimensional normed vectorspace, f ∈ T(V, Y ), and V Df ∈
Lloc

q (‖V ‖,Hom(Rn, Y )).
Then the following four statements hold:

(1) If m > 1 and f ∈ Lloc
1 (‖δV ‖, Y ), then f ∈ Lloc

m/(m−1)(‖V ‖, Y ).

(2) If m = 1, then f ∈ Lloc
∞ (‖V ‖ + ‖δV ‖, Y ).

(3) If 1 ≤ q < m = p, then f ∈ Lloc
mq/(m−q)(‖V ‖, Y ).

(4) If 1 < m = p < q ≤ ∞, then f ∈ Lloc
∞ (‖V ‖, Y ).

Proof. In view of 8.16 and 9.2 it is sufficient to consider the case Y = R and
f ∈ T∅(V ). Assume p = 1 in case of (1) or (2) and define ψ as in 6.1. Moreover,
assume (‖V ‖+ψ)(U)+‖V ‖(q)(V Df) < ∞ and, in case of (1), also ‖δV ‖(1)(f) <
∞. Suppose K is a compact subset of U . Choose 0 < r < ∞ with U(x, r) ⊂ U
for x ∈ K and 0 < s < ∞ with

‖V ‖(E) ≤ (1/2)α(m)rm, ψ(E) ≤ Γ10.1(sup{2, n})−1,
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where E = {x : f(x) > s}. Select g ∈ E (R,R) with g(t) = 0 if t ≤ s and g(t) = t
if t ≥ s+ 1 and notice that g ◦ f ∈ T∅(V ) and

‖V D(g ◦ f)(x)‖ ≤ (Lip g)‖V Df‖(x) for ‖V ‖ almost all x

by 8.12 with Υ = {t : t ≤ s} and 9.2. Applying 10.1 (1) with M , G, f , and
Q replaced by sup{2, n}, ∅, g ◦ f , and 1 and, in case of (2), noting 8.32, the
conclusion follows.

10.4. If 1 ≤ q ≤ p ≤ ∞, q < ∞, µ measures X, G is a countable collection of
µ measurable {t : 0 ≤ t ≤ ∞} valued functions, 1 ≤ κ < ∞,

card(G ∩ {g : g(x) > 0}) ≤ κ for µ almost all x,

and f(x) =
∑

g∈G g(x) for µ almost all x, then

µ(p)(f) ≤ κ
(
∑

g∈Gµ(p)(g)q
)1/q

, µ(∞)(f) ≤ κ sup({0} ∪ {µ(∞)(g) : g ∈ G});

in fact, abbreviating h(x) =
∑

g∈G g(x)q for µ almost all x, one estimates

µ(p)(f)q ≤ κq
(
∑

g∈G

´

gp dµ
)q/p

≤ κq∑

g∈Gµ(p)(g)q if p < ∞,

µ(∞)(f)q ≤ κqµ(∞)(h) ≤ κq∑

g∈Gµ(∞)(g)q.

10.5 Lemma. Suppose Y is a finite dimensional normed vectorspace, Φ is a
family of open subsets Y , and h :

⋃

Φ → {t : 0 < t < ∞} satisfies

h(y) = 1
20 sup{inf{1, dist(y, Y ∼ Υ)} : Υ ∈ Φ} whenever y ∈

⋃

Φ.

Then there exists a countable subset B of
⋃

Φ and for each b ∈ B an asso-
ciated function gb : Y → R with the following properties.

(1) If y ∈ B, then By = B ∩ {b : B(b, 10h(b)) ∩ B(y, 10h(y)) 6= ∅} satisfies

cardBy ≤ (129)dim Y .

(2) If b ∈ B, then 0 ≤ gb(y) ≤ 1 for y ∈ Y , spt gb ⊂ B(b, 10h(b)), and

Lip(gb|B(y, 10h(y))) ≤ (130)dim Y h(y)−1 whenever y ∈
⋃

Φ.

(3) If y ∈ Y , then
∑

b∈B gb(y) = 1.

Proof. Assume dim Y > 0 and observe that [Fed69, 3.1.13] remains valid with
Rm and m replaced by Y and dim Y ; in fact, one modifies the proof by choosing
a nonzero translation invariant Radon measure ν over Y and replacing α(m) by
ν B(0, 1). Then one modifies the proof of [Fed69, 3.1.14] by taking B to be the
set named “S” there, γ(t) = sup{0, inf{1, 2 − t}} for t ∈ R, hence Lipµ = 1,
and adding the estimates

Lipub ≤ h(y)−1, Lip(σ|B(y, 10h(y))) ≤ (129)dim Y h(y)−1,

Lip(vb|B(y, 10h(y))) ≤ Lipub + Lip(σ|B(y, 10h(y))) ≤ (130)dim Y h(y)−1

whenever y ∈
⋃

Φ and b ∈ By; hence one may take gb = vb for b ∈ B.

61



10.6 Lemma. Suppose Y is a finite dimensional normed vectorspace, D is a
closed subset of Y , and 0 < s < ∞.

Then there exists a countable family G with the following properties.

(1) If g ∈ G, then g : Y → R and spt g ⊂ U(d, s) for some d ∈ D.

(2) If y ∈ Y then card(G ∩ {g : B(y, s/4) ∩ spt g 6= ∅}) ≤ (129)dim Y .

(3) There holds D ⊂ Int
{

∑

g∈G g(y) = 1
}

and
∑

g∈G g(y) ≤ 1 for y ∈ Y .

(4) If g ∈ G, then 0 ≤ g(y) ≤ 1 for y ∈ Y and Lip g ≤ 40 · (130)dim Y s−1.

Proof. Assume s = 1. Defining Φ = {Y ∼D} ∪ {U(d, 1) :d ∈ D}, observe that
the function h resulting from 10.5 satisfies h(y) ≥ 1

40 for y ∈ Y , hence one
verifies that one can take G = {gb :D ∩ spt gb 6= ∅}.

10.7 Theorem. Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, p, U , V , and ψ are as in 6.1, Y is a finite dimensional normed

vectorspace, sup{dim Y, n} ≤ M , f ∈ T(V, Y ), 1 ≤ Q ≤ M , N ∈ P, 0 < r <
∞,

‖V ‖(U) ≤ (Q −M−1)(N + 1)α(m)rm,

‖V ‖({x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

A = {x : U(x, r) ⊂ U}, and fΥ : dmn f → R is defined by

fΥ(x) = dist(f(x),Υ) whenever x ∈ dmn f , ∅ 6= Υ ⊂ Y ,

then the following four statements hold.

(1) If p = 1, β = ∞ if m = 1 and β = m/(m− 1) if m > 1, then there exists
a subset Υ of Y such that 1 ≤ card Υ ≤ N and

(‖V ‖ xA)(β)(fΥ) ≤ ΓN1/β
(

‖V ‖(1)(V Df) + ‖δV ‖(fΥ)
)

.

(2) If p = m = 1 and ψ(U) ≤ Γ−1, then there exists a subset Υ of Y such
that 1 ≤ card Υ ≤ N and

(‖V ‖ xA)(∞)(fΥ) ≤ Γ ‖V ‖(1)(V Df).

(3) If 1 ≤ q < m = p and ψ(U) ≤ Γ−1, then there exists a subset Υ of Y such
that 1 ≤ card Υ ≤ N and

(‖V ‖ xA)(mq/(m−q))(fΥ) ≤ ΓN1/q−1/m(m− q)−1‖V ‖(q)(V Df).

(4) If 1 < p = m < q ≤ ∞ and ψ(U) ≤ Γ−1, then there exists a subset Υ of
Y such that 1 ≤ card Υ ≤ N and

(‖V ‖ xA)(∞)(fΥ) ≤ Γ1/(1/m−1/q)r1−m/q‖V ‖(q)(V Df).
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Proof. Define

∆1 = sup{1,Γ7.8(M)}M , ∆2 = (sup{1/2, 1 − 1/(2M2 − 1)})1/M ,

∆3 = 40 · (130)M , ∆4 = ∆−M
2 Γ10.1(2M),

∆5 = (1/2) inf{α(m) :M ≥ m ∈ P},

∆6 = sup{1,Γ10.1(2M)}(∆3
3 + 1)∆−1

5 (1 − ∆2)−M ,

∆7 = sup{α(m) :M ≥ m ∈ P}, ∆8 = 4M∆6∆7 + Γ10.1(2M),

∆9 = M∆7Γ10.1(2M), Γ = sup{∆1,∆4,∆8, 2∆6(1 + ∆9)}

and notice that ∆5 ≤ 1 ≤ inf{∆6,∆7}.
In order to verify that Γ has the asserted property, suppose m, n, p, U , V ,

ψ, Y , f , Q, N , r, A, and fΥ are related to Γ as in the body of the theorem.
Abbreviate ι = mq/(m − q) in case of (3) and α = 1/m − 1/q in case of (4).
Moreover, define

κ = ‖V ‖(1)(V Df) in case of (1) or (2),

κ = (m− q)−1‖V ‖(q)(V Df) in case of (3),

κ = ∆1/α
9 ‖V ‖(q)(V Df) in case of (4)

and assume r = 1 and dmn f = U .
First, the case κ = 0 will be considered.
For this purpose choose Ξ and υ as in 8.33 and let

Π = Ξ ∩ {W : ‖W‖(U) ≤ (Q −M−1)α(m)}.

Applying 7.9 and 7.11 with V , E, and B replaced by W , U , and BdryU , one
infers

‖W‖(A)1/β ≤ ∆1 ‖δW‖(U) in case of (1), where 00 = 0,

‖W‖(A) = 0 in case of (2) or (3) or (4)

whenever W ∈ Π. Since card(Ξ ∼ Π) ≤ N , there exists Υ such that

υ[Ξ ∼ Π] ⊂ Υ ⊂ Y and 1 ≤ card Υ ≤ N.

In case of (1), it follows that, using 6.10,

(‖V ‖ xA)(β)(fΥ) ≤
∑

W ∈Π dist(υ(W ),Υ)‖W‖(A)1/β

≤ ∆1

∑

W ∈Π dist(υ(W ),Υ)‖δW‖(U) = ∆1‖δV ‖(fΥ).

In case of (2) or (3) or (4), the corresponding estimate is trivial.
Second, the case κ > 0 will be considered.
For this purpose assume κ < ∞ and define

X = {x : B(x,∆2) ⊂ U}, s = ∆6κ,

B = Y ∩
{

y : ‖V ‖(f−1[U(y, s)]) > (Q−M−1)α(m)
}

.

Choose Υ ⊂ Y satisfying

1 ≤ card Υ ≤ N and B ⊂ {y : dist(y,Υ) < 2s};
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in fact, if B 6= ∅ then one may take Υ to be a maximal subset of B with respect
to inclusion such that {U(y, s) : y ∈ Υ} is disjointed. Abbreviate γ = dist(·,Υ)
and, in case of (1), define

λ = κ+ ‖δV ‖(γ ◦ f)

and assume λ < ∞. In case of (2) or (3) or (4), define λ = κ. Let

D = Y ∩ {y : γ(y) ≥ 2∆6λ}, E = f−1[D].

Next, it will be shown that

‖V ‖(X ∩ E) ≤ (1/2)α(m)(1 − ∆2)m in case of (1) or (3),

‖V ‖(X ∩ E) = 0 in case of (2) or (4).

To prove this assertion, choose G as in 10.6 and let Eg = {x : g(f(x)) > 0} for
g ∈ G. Since D ∩B = ∅ as ∆6λ ≥ s, it follows that

‖V ‖(Eg) ≤ (Q−M−1)α(m) ≤
(

Q − (2M)−1
)

α(m)∆m
2 ,

‖V ‖(Eg ∩ {x : Θm(‖V ‖, x) < Q}) ≤ Γ−1 ≤ ∆−1
4 ≤ Γ10.1(2M)−1∆m

2 ,

ψ(Eg) ≤ Γ−1 ≤ Γ10.1(2M)−1 in case of (2) or (3) or (4)

whenever g ∈ G. Denoting by cg the characteristic function of Eg, applying 8.15
with Υ replaced by spt g and noting 8.20 (1) and 9.2 yields g ◦ f ∈ T∅(V ) with

|V D(g ◦ f)(x)| ≤ ∆3s
−1cg(x)‖V Df(x)‖ for ‖V ‖ almost all x

whenever g ∈ G. Moreover, denoting the function whose domain is U and whose
value at x equals

∑

g∈G(g ◦ f)(x) by
∑

g∈G g ◦ f , notice that

card(G ∩ {g :x ∈ Eg}) ≤ ∆3 for x ∈ U,
(
∑

g∈Gg ◦ f
)

|E = 1, spt g ⊂ {y : γ(y) ≥ ∆6λ} for g ∈ G.

In case of (1), one estimates, using 10.1 (1a) with M , G, f , and r replaced by
2M , ∅, g ◦ f , and ∆2 and [Fed69, 2.4.18 (1)],

‖V ‖(X ∩ E)1/β ≤ (‖V ‖ xX)(β)(
∑

g∈Gg ◦ f) ≤
∑

g∈G(‖V ‖ xX)(β)(g ◦ f)

≤ Γ10.1(2M)
∑

g∈G

(

∆3s
−1(‖V ‖ xEg)(1)(V Df) + ‖δV ‖(g ◦ f)

)

,

≤ Γ10.1(2M)
(

∆−1
6 ∆2

3 + (f#‖δV ‖)({y : γ(y) ≥ ∆6λ})
)

≤ Γ10.1(2M)(∆2
3 + 1)∆−1

6 ≤ ∆5(1 − ∆2)M ≤
(

(1/2)α(m)(1 − ∆2)m
)1/β

,

where 00 = 0. In case of (2), using 10.1 (1b) with M , G, f , and r replaced by
2M , ∅, g ◦ f , and ∆2, one estimates

(‖V ‖ xX)(∞)(
∑

g∈Gg ◦ f) ≤
∑

g∈G(‖V ‖ xX)(∞)(g ◦ f)

≤ Γ10.1(2M)
∑

g∈G∆3s
−1(‖V ‖ xEg)(1)(V Df)

≤ Γ10.1(2M)∆2
3∆−1

6 ≤ ∆5(1 − ∆2)M < 1,
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hence ‖V ‖(X ∩ E) = 0. In case of (3), using 10.4 and 10.1 (1c) with M , G, f ,
and r replaced by 2M , ∅, g ◦ f , and ∆2, one estimates

‖V ‖(X ∩ E)1/ι ≤ (‖V ‖ xX)(ι)(
∑

g∈Gg ◦ f)

≤ ∆3

(
∑

g∈G(‖V ‖ xX)(ι)(g ◦ f)q
)1/q

≤ Γ10.1(2M)(m− q)−1∆2
3s

−1
(
∑

g∈G(‖V ‖ xEg)(q)(V Df)q
)1/q

≤ Γ10.1(2M)∆3
3∆−1

6 ≤ ∆5(1 − ∆2)M ≤
(

(1/2)α(m)(1 − ∆2)m
)1/ι

.

In case of (4), using 10.1 (1d) with M , G, f , and r replaced by 2M , ∅, g ◦ f ,
and ∆2 and noting Γ10.1(2M)1/α(M∆7)α ≤ ∆1/α

9 , one obtains

(‖V ‖ xX)(∞)(g ◦ f) ≤ ∆1/α
9 ∆3s

−1(‖V ‖ xEg)(q)(V Df) for g ∈ G

and therefore ‖V ‖(X ∩E) = 0, since if q < ∞ then, using 10.4,

(‖V ‖ xX)(∞)(
∑

g∈Gg ◦ f) ≤ ∆3

(
∑

g∈G(‖V ‖ xX)(∞)(g ◦ f)q
)1/q

≤ ∆1/α
9 ∆2

3s
−1

(
∑

g∈G(‖V ‖ xEg)(q)(V Df)q
)1/q

≤ ∆3
3∆−1

6 ≤ ∆5(1 − ∆2)M < 1,

and if q = ∞ then (‖V ‖ xX)(∞)(
∑

g∈G g ◦ f) < 1 follows similarly.

In case of (2) or (4), noting 2∆6∆1/α
9 ≤ Γ1/α in case of (4), the conclusion

is evident from the assertion of the preceding paragraph. Now consider the case
of (1) or (3) and define h : Y → R by

h(y) = sup{0, γ(y) − 2∆6λ} for y ∈ Y .

Notice that h ◦ f ∈ T∅

(

V |2X×G(n,m)
)

with

|V D(h ◦ f)(x)| ≤ ‖V Df(x)‖ for ‖V ‖ almost all x

by 8.15 with Υ replaced by Y and 9.2. In case of (1), applying 10.1 (1a) with
M , U , V , G, f , Q, and r replaced by 2M , X , V |2X×G(n,m), ∅, h ◦ f |X , 1, and
1 − ∆2 implies

(‖V ‖ xA)(β)(h ◦ f) ≤ Γ10.1(2M)
(

‖V ‖(1)(V Df) + ‖δV ‖(h ◦ f)
)

,

(‖V ‖ xA)(β)(γ ◦ f) ≤ 4M∆6∆7N
1/βλ+ Γ10.1(2M)λ ≤ ΓN1/βλ

since ‖V ‖(A)1/β ≤ 2M∆7N
1/β . In case of (3), applying 10.1 (1c) with M , U ,

V , G, f , Q, and r replaced by 2M , X , V |2X×G(n,m), ∅, h ◦ f |X , 1, and 1 − ∆2

implies

(‖V ‖ xA)(ι)(h ◦ f) ≤ Γ10.1(2M)κ,

(‖V ‖ xA)(ι)(γ ◦ f) ≤ 4M∆6∆7N
1/ικ+ Γ10.1(2M)κ ≤ ΓN1/ικ

since ‖V ‖(A)1/ι ≤ 2M∆7N
1/ι.
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10.8 Remark. Comparing the preceding theorem to previous Sobolev Poincaré
inequalities of the author, see [Men10, 4.4–4.6], which treated the particular case
of f being the orthogonal projection onto an n−m dimensional plane in the
context of integral varifolds, the present approach is significantly more general.
Yet, for the case of orthonormal projections the previous results give somewhat
more precise information as they include, for instance, the intermediate cases
1 < p < m as well as Lorentz spaces. Evidently, the question arises whether the
present theorem can be correspondingly extended.

10.9 Theorem. Suppose m, n, p, U , V , and ψ are as in 6.1, n ≤ M < ∞,
N ∈ P, 1 ≤ Q ≤ M , f ∈ T(V ), 0 < r < ∞, X is a finite subset of U ,

‖V ‖(U) ≤ (Q −M−1)(N + 1)α(m)rm,

‖V ‖({x : Θm(‖V ‖, x) < Q}) ≤ Γ−1rm,

and A = {x : U(x, r) ⊂ U}, then there exists a subset Υ of R with 1 ≤ card Υ ≤
N + cardX such that the following four statements hold with g = dist(·,Υ) ◦ f :

(1) If p = 1, β = ∞ if m = 1 and β = m/(m− 1) if m > 1, then

(‖V ‖ xA)(β)(g) ≤ Γ10.1(M)
(

‖V ‖(1)(V Df) + ‖δV ‖(g)
)

.

(2) If p = m = 1 and ψ(U ∼X) ≤ Γ10.1(M)−1, then

(‖V ‖ xA)(∞)(g) ≤ Γ10.1(M) ‖V ‖(1)(V Df).

(3) If 1 ≤ q < m = p and ψ(U) ≤ Γ10.1(M)−1, then

(‖V ‖ xA)(mq/(m−q))(g) ≤ Γ10.1(M)(m− q)−1‖V ‖(q)(V Df).

(4) If 1 < p = m < q ≤ ∞ and ψ(U) ≤ Γ10.1(M)−1, then

(‖V ‖ xA)(∞)(g) ≤ Γ1/(1/m−1/q)Q1/m−1/qr1−m/q‖V ‖(q)(V Df),

where Γ = Γ10.1(M) sup{α(i) :M ≥ i ∈ P}.

Proof. Choose a nonempty subset Υ of R satisfying

card Υ ≤ N + cardX, f [X ] ⊂ Υ,

‖V ‖(U ∩ {x : f(x) ∈ I}) ≤ (Q−M−1)α(m)rm for I ∈ Φ,

where Φ is the family of connected components of R ∼ Υ. Notice that

dist(b,Υ) = dist(b,R ∼ I) and dist(b,R ∼J) = 0

whenever b ∈ I ∈ Φ and I 6= J ∈ Φ, and

dist(b,Υ) = dist(b,R ∼ I) = 0 whenever b ∈ Υ and I ∈ Φ.

Defining fI = dist(R ∼ I) ◦ f , one infers fI ∈ T∅(V ) and

|V Df(x)| = |V DfI(x)| for ‖V ‖ almost all x ∈ f−1[I],

V Df(x) = 0 for ‖V ‖ almost all x ∈ f−1[Υ],

V DfI(x) = 0 for ‖V ‖ almost all x ∈ f−1[R ∼ I]
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whenever I ∈ Φ by 8.12, 8.13, 8.20 (1), and 9.2.
The conclusion now will be obtained employing 10.4 and applying 10.1 (1)

with G and f replaced by ∅ and fI for I ∈ Φ. For instance, in case of (3) one
estimates

(‖V ‖ xA)(mq/(m−q))(g) ≤
(
∑

I∈Φ(‖V ‖ xA)(mq/(m−q))(fI)q
)1/q

≤ λ
(
∑

I∈Φ‖V ‖(q)(V DfI)q
)1/q

= λ ‖V ‖(q)(V Df),

where λ = Γ10.1(M)(m− q)−1. The cases (1) and (2) follow similarly. Defining
∆ = sup{α(i) :M ≥ i ∈ P} and noting ∆ ≥ 1, hence α(m)(1/m−1/q)2

≤

∆(1/m−1/q)2

≤ ∆, the same holds for (4).

10.10 Remark. The method of deduction of 10.9 from 10.1 is that of Hutchinson
[Hut90, Theorem 3] which is derived from Hutchinson [Hut90, Theorem 1].

10.11 Remark. A nonempty choice of X will occur in 13.1.

11 Differentiability properties

In this section approximate differentiability, see 11.2, and differentiability in
Lebesgue spaces, see 11.4, are established for weakly differentiable functions.
The primary ingredient is the Sobolev Poincaré inequality 10.1 (1).

11.1 Lemma. Suppose m,n ∈ P, m ≤ n, U is an open subset of U , V ∈
RVm(U), Y is a finite dimensional normed vectorspace, f is a ‖V ‖ measurable
Y valued function, and A is the set of points at which f is (‖V ‖,m) approxi-
mately differentiable.

Then the following four statements hold.

(1) The set A is ‖V ‖ measurable and (‖V ‖,m) apDf(x) ◦ Tanm(‖V ‖, x)♮ de-
pends ‖V ‖ xA measurably on x.

(2) There exists a sequence of functions fi : U → Y of class 1 such that

‖V ‖(A∼{x : f(x) = fi(x) for some i}) = 0.

(3) If g : U → Y is locally Lipschitzian, then

‖V ‖(U ∩ {x : f(x) = g(x)} ∼A) = 0.

(4) If g is a ‖V ‖ measurable Y valued function and B = U ∩{x : f(x) = g(x)},
then B ∩A is ‖V ‖ almost equal to B ∩ dmn(‖V ‖,m) apDg and

(‖V ‖,m) apDf(x) = (‖V ‖,m) apDg(x) for ‖V ‖ almost all x ∈ B ∩A.

Proof. Assume Y = R. Then (1) is [Men12a, 4.5 (1)].
In order to prove (2), one may reduce the problem. Firstly, to the case that

‖V ‖(U ∼M) = 0 for some m dimensional submanifold M of Rn of class 1 by
[Fed69, 2.10.19 (4), 3.2.29]. Secondly, to the case that for some 1 < λ < ∞ the
varifold satisfies additionally that λ−1 ≤ Θm(‖V ‖, x) ≤ λ for ‖V ‖ almost all
x by [Fed69, 2.10.19 (4)] and Allard [All72, 3.5 (1a)], hence thirdly to the case
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that Θm(‖V ‖, x) = 1 for ‖V ‖ almost all x by [Fed69, 2.10.19 (1) (3)]. Finally,
to the case ‖V ‖ = L m by [Fed69, 3.1.19 (4), 3.2.3, 2.8.18, 2.9.11] which may be
treated by means of [Fed69, 3.1.16].

(4) follows from [Fed69, 2.10.19 (4)] and implies (3) by [Men12a, 4.5 (2)].

11.2 Theorem. Suppose m, n, U , and V are as in 6.1, Y is a finite dimensional
normed vectorspace, and f ∈ T(V, Y ).

Then f is (‖V ‖,m) approximately differentiable with

V Df(a) = (‖V ‖,m) apDf(a) ◦ Tanm(‖V ‖, a)♮

at ‖V ‖ almost all a.

Proof. In view of 11.1 (4), one employs 8.17 and 8.12 to reduce the problem to
the case that f is bounded and V Df ∈ Lloc

1 (‖V ‖,Hom(Rn, Y )). In particular,
one may assume Y = R by 8.18. Define β = ∞ if m = 1 and β = m/(m− 1) if
m > 1. Let ga : dmn f → R be defined by ga(x) = f(x) − f(a) for a, x ∈ dmn f .

First, it will be shown that

lim sup
s→0+

s−1‖V ‖(B(a, s))−1
´

B(a,s)
ga d‖V ‖ < ∞ for ‖V ‖ almost all a.

For this purpose define C = {(a,B(a, r)) : B(a, r) ⊂ U} and consider a point a
satisfying for some M the conditions

sup{4, n} ≤ M < ∞, 1 ≤ Θm(‖V ‖, a) ≤ M, (‖V ‖ + ‖δV ‖)(∞)(f) ≤ M,

lim sup
s→0+

s−m
(´

B(a,s)|V Df | d‖V ‖ + ‖δV ‖ B(a, s)
)

< M,

Θm(‖V ‖, ·) and f are (‖V ‖, C) approximately continuous at a

which are met by ‖V ‖ almost all a by [Fed69, 2.10.19 (1) (3), 2.8.18, 2.9.13].
Define ∆ = Γ10.1(M). Choose 1 ≤ Q ≤ M and 1 < λ ≤ 2 subject to the
requirements Θm(‖V ‖, a) < 2λ−m(Q − 1/4) and

either Q = Θm(‖V ‖, a) = 1 or Q < Θm(‖V ‖, a).

Then pick 0 < r < ∞ such that B(a, λr) ⊂ U and

‖V ‖ B(a, s) ≥ (1/2)α(m)sm, ‖V ‖ U(a, λs) ≤ 2(Q−M−1)α(m)sm,

‖V ‖(U(a, λs) ∩ {x : Θm(‖V ‖, x) < Q}) ≤ ∆−1sm,
´

B(a,λs)
|V Df | d‖V ‖ + ‖δV ‖ B(a, λs) ≤ Mλmsm

for 0 < s ≤ r. Choose y(s) ∈ R such that

‖V ‖(U(a, λs) ∩ {x : f(x) < y(s)}) ≤ (1/2)‖V ‖ U(a, λs),

‖V ‖(U(a, λs) ∩ {x : f(x) > y(s)}) ≤ (1/2)‖V ‖ U(a, λs)

for 0 < s ≤ r, in particular

|y(s)| ≤ M and f(a) = lim
s→0+

y(s).
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Define fs(x) = f(x) − y(s) whenever 0 < s ≤ r and x ∈ dmn f . Recalling 8.12,
8.13 (4), and 9.2, one applies 10.1 (1a) with U , G, f , and r replaced by U(a, λs),
∅, f+

s respectively f−
s , and s to infer

(‖V ‖ xB(a, (λ− 1)s))(β)(fs) ≤ ∆
´

B(a,λs)|V Dfs| d‖V ‖ +
´

B(a,λs)|fs| d‖δV ‖

≤ κsm

for 0 < s ≤ r, where κ = ∆Mλm. Noting that

|y(s) − y(s/2)| · ‖V ‖(B(a, (λ− 1)s/2))1/β

≤ (‖V ‖ xB(a, (λ− 1)s/2))(β)(fs/2) + (‖V ‖ xB(a, (λ − 1)s))(β)(fs) ≤ 2κsm,

|y(s) − y(s/2)| ≤ 2m+1κα(m)−1/β(λ− 1)1−ms,

one obtains for 0 < s ≤ r that

|y(s) − f(a)| ≤ 2m+2κα(m)−1/β(λ− 1)1−ms,

(‖V ‖ xB(a, (λ− 1)s))(β)(ga) ≤ κ
(

1 + 2m+3M(λ− 1)1−m
)

sm.

Combining the assertion of the preceding paragraph with [Men09, 3.7 (i)]
applied with α, q, and r replaced by 1, 1, and ∞, one obtains a sequence of
locally Lipschitzian functions fi : U → R such that

‖V ‖
(

U ∼
⋃

{Bi : i ∈ P}
)

= 0, where Bi = U ∩ {x : f(x) = fi(x)}.

Since f − fi ∈ T(V ) with

V Df(a) − V Dfi(a) = V D(f − fi)(a) = 0 for ‖V ‖ almost all a ∈ Bi

by 8.20 (1) (3), the conclusion follows from of 8.7 and 11.1 (4).

11.3. If m, n, U , V , ψ, and p are as in 6.1, p = m, and a ∈ U , then

Tanm(‖V ‖, a) = Tan(spt ‖V ‖, a);

in fact, if 0 < r < ∞, U(a, 2r) ⊂ U , ψ(U(a, 2r) ∼{a})1/m ≤ (2γ(m))−1, and
x ∈ U(a, r) ∩ spt ‖V ‖, then ‖V ‖ B(x, s) ≥ (2mγ(m))−msm for 0 < s < |x − a|
by [Men09, 2.5].

11.4 Theorem. Suppose m, n, p, U , V are as in 6.1, 1 ≤ q ≤ ∞, Y is a finite
dimensional normed vectorspace, f ∈ T(V, Y ), V Df ∈ Lloc

q (‖V ‖,Hom(Rn, Y )),

C = {(a,B(a, r)) : B(a, r) ⊂ U},

and X is the set of points in spt ‖V ‖ at which f is (‖V ‖, C) approximately
continuous.

Then ‖V ‖(U ∼X) = 0 and the following four statements hold.

(1) If m > 1, β = m/(m− 1), and f ∈ Lloc
1 (‖δV ‖, Y ), then

lim
r→0+

r−m
´

B(a,r)(|f(x) − f(a) − 〈x− a, V Df(a)〉 |/|x− a|)β d‖V ‖x = 0

for ‖V ‖ almost all a.
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(2) If m = 1, then f |X is differentiable relative to X at a with

D(f |X)(a) = V Df(a)| Tanm(‖V ‖, a) for ‖V ‖ almost all a.

(3) If q < m = p and ι = mq/(m− q), then

lim
r→0+

r−m
´

B(a,r)(|f(x) − f(a) − 〈x− a, V Df(a)〉 |/|x− a|)ι d‖V ‖x = 0

for ‖V ‖ almost all a.

(4) If p = m < q, then f |X is differentiable relative to X at a with

D(f |X)(a) = V Df(a)| Tanm(‖V ‖, a) for ‖V ‖ almost all a.

Proof. Clearly, ‖V ‖(U ∼X) = 0 by [Fed69, 2.8.18, 2.9.13].
Assume p = q = 1 in case of (1) or (2). In case of (4) also assume p > 1 and

q < ∞. Define α = β in case of (1), α = ι in case of (3), and α = ∞ in case of
(2) or (4). Moreover, let ha : dmn f → Y be defined by

ha(x) = f(x) − f(a) − 〈x− a, V Df(a)〉

whenever a ∈ dmn f ∩ dmnV Df and x ∈ dmn f .
The following assertion will be shown. There holds

lim
s→0+

s−1(s−m‖V ‖ xB(a, s))(α)(ha) = 0 for ‖V ‖ almost all a.

In the special case that f is of class 1, in view of 8.7, it is sufficient to prove
that

lim
s→0+

s−1(s−m‖V ‖ xB(a, s))(α)(Norm(‖V ‖, a)♮(· − a)) = 0

for ‖V ‖ almost all a; and if ε > 0 and Tanm(‖V ‖, a) ∈ G(n,m), then

Θm(‖V ‖ xU ∩ {x : | Norm(‖V ‖, a)♮(x− a)| > ε|x− a|}, a) = 0

in case of (1) by [Fed69, 3.2.16] and

B(a, s) ∩ spt ‖V ‖ ⊂ {x : | Norm(‖V ‖, a)♮(x − a)| ≤ ε|x− a|} for some s > 0

in case of (2) or (3) or (4) by 11.3 and [Fed69, 3.1.21]. To treat the general case,
one obtains a sequence of functions fi : U → Y of class 1 such that

‖V ‖
(

U ∼
⋃

{Bi : i ∈ P}
)

= 0, where Bi = U ∩ {x : f(x) = fi(x)}

from 11.2 and 11.1 (2). Define gi = f − fi and notice that gi ∈ T(V, Y ) and

V Dgi(a) = V Df(a) − V Dfi(a) for ‖V ‖ almost all a

for i ∈ P by 8.20 (3). Define Radon measures µi over U by

µi(A) =
´ ∗

A|V Dgi| d‖V ‖ +
´ ∗

A|gi| d‖δV ‖ in case of (1),

µi(A) =
´ ∗

A
|V Dgi|

q d‖V ‖ in case of (2) or (3) or (4)
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whenever A ⊂ U and i ∈ P and notice that µi(Bi) = 0 by 8.20 (1) (or alter-
nately by 11.2 and 11.1 (4)). The assertion will be shown to hold at a point a
satisfying for some i ∈ P that

f(a) = fi(a), V Df(a) = V Dfi(a),

lim
s→0+

s−1(s−m‖V ‖ xB(a, s))(α)(fi(·) − fi(a) − 〈· − a, V Dfi(a)〉) = 0,

Θm(‖V ‖ xU ∼Bi, a) = 0, ψ({a}) = 0, Θm(µi, a) = 0.

These conditions are met by ‖V ‖ almost all a in view of the special case, [Fed69,
2.10.19 (4)]. Choosing 0 < r < ∞ with B(a, 2r) ⊂ U and

‖V ‖(U(a, 2s) ∼Bi) ≤ (1/2)α(m)sm,

ψU(a, 2r) ≤ Γ10.1(2n)−1 in case of (2) or (3) or (4)

for 0 < s ≤ r, one infers from 9.2 and 10.1 (1) with U , M , G, f , Q, and r
replaced by U(a, 2s), 2n, ∅, gi, 1, and s that

(‖V ‖ xB(a, s))(α)(gi) ≤ ∆µi(B(a, 2s))1/q in case of (1) or (2) or (3),

(‖V ‖ xB(a, s))(α)(gi) ≤ ∆s1−m/qµi(B(a, 2s))1/q in case of (4)

for 0 < s ≤ r, where ∆ = Γ10.1(2n) in case of (1) or (2), ∆ = (m −
q)−1Γ10.1(2n) in case of (3), and ∆ = Γ10.1(2n)1/(1/m−1/q)α(m)1/m−1/q in
case of (4). Consequently,

lim
s→0+

s−1(s−m‖V ‖ xB(a, s))(α)(gi) = 0

and the assertion follows.
From the assertion of the preceding paragraph one obtains

lim
s→0+

(s−m‖V ‖ xB(a, s))(α)(| · −a|−1ha(·)) = 0 for ‖V ‖ almost all a;

in fact, if B(a, r) ⊂ U and κ = sup{s−1(s−m‖V ‖ xB(a, s))(α)(ha) : 0 < s ≤ r},
then one estimates

(s−m‖V ‖ xB(a, s))(α)(| · −a|−1ha)

≤ s−m/α∑∞
i=12is−1(‖V ‖ x(B(a, 21−is) ∼ B(a, 2−is)))(α)(ha)

≤ 2κ
∑∞

i=12(1−i)m/α = 2κ/(1 − 2−m/α)

in case of (1) or (3) and (s−m‖V ‖ xB(a, s))(α)(| · −a|−1ha) ≤ κ in case of (2)
or (4) for 0 < s ≤ r. This yields the conclusion in case of (1) or (3) and that
f |X is differentiable relative to X at a with

D(f |X)(a) = V Df(a)| Tan(X, a) for ‖V ‖ almost all a

in case of (2) or (4) by [Fed69, 3.1.22]. To complete the proof, note that X is
dense in spt ‖V ‖ and hence if p = m, then

Tan(X, a) = Tan(spt ‖V ‖, a) = Tanm(‖V ‖, a) for a ∈ U

by [Fed69, 3.1.21] and 11.3.

11.5 Remark. The usage of ha in the last paragraph of the proof is adapted from
the proof of [Fed69, 4.5.9 (26) (II)].
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12 Coarea formula

In this section rectifiability properties of the distributional boundary of almost
all superlevel sets of real valued weakly differentiable functions are established,
see 12.2. The result rests on the approximate differentiability of such functions,
see 11.2. To underline this fact, it is derived as corollary to a general result for
approximately differentiable functions, see 12.1.

12.1 Theorem. Suppose m,n ∈ P, m ≤ n, U is an open subset of Rn,
V ∈ RVm(U), f is a ‖V ‖ measurable real valued function which is (‖V ‖,m)
approximately differentiable at ‖V ‖ almost all points, F is a ‖V ‖ measurable
Hom(Rn,R) valued function with

F (x) = (‖V ‖,m) apDf(x) ◦ Tanm(‖V ‖, x)♮ for ‖V ‖ almost all x,

and
´

K∩{x : |f(x)|≤s}
|F | d‖V ‖ < ∞ whenever K is a compact subset of U and

0 ≤ s < ∞, and T ∈ D ′(U × R,Rn) and S(y) : D(U,Rn) → R satisfy

T (φ) =
´

〈φ(x, f(x)), F (x)〉 d‖V ‖x for φ ∈ D(U × R,Rn),

S(y)(θ) = lim
ε→0+

ε−1
´

{x : y<f(x)≤y+ε}
〈θ, F 〉 d‖V ‖ ∈ R for θ ∈ D(U,Rn)

whenever y ∈ R, that is y ∈ dmnS if and only if the limit exists and belongs to
R for θ ∈ D(U,Rn).

Then the following two statements hold.

(1) If φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function, then

T (φ) =
´

S(y)(φ(·, y)) dL
1y,

´

g d‖T ‖ =
´ ´

g(x, y) d‖S(y)‖xdL
1y.

(2) There exists an L 1 measurable function W with values in RVm−1(U)
endowed with the weak topology such that for L 1 almost all y there holds

Tanm−1(‖W (y)‖, x) = Tanm(‖V ‖, x) ∩ kerF (x) ∈ G(n,m− 1),

Θm−1(‖W (y)‖, x) = Θm(‖V ‖, x)

for ‖W (y)‖ almost all x and

S(y)(θ) =
´ 〈

θ, |F |−1F
〉

d‖W (y)‖ for θ ∈ D(U,Rn).

Proof. First, notice that 3.3 with J = R implies that T is representable by
integration and

T (φ) =
´

〈φ(x, f(x)), F (x)〉 d‖V ‖x, ‖T ‖(g) =
´

g(x, f(x))|F (x)| d‖V ‖x

whenever φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function.
Next, the following assertion will be shown. There exists an L 1 measurable

function W with values in RVm−1(U) such that for L 1 almost all y there holds

Tanm−1(‖W (y)‖, x) = Tanm(‖V ‖, x) ∩ kerF (x) ∈ G(n,m− 1),

Θm−1(‖W (y)‖, x) = Θm(‖V ‖, x)
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for ‖W (y)‖ almost all x and

T (φ) =
´ ´ 〈

φ(x, f(x)), |F (x)|−1F (x)
〉

d‖W (y)‖xdL
1y,

´

g d‖T ‖ =
´ ´

g(x, y) d‖W (y)‖xdL
1y

whenever φ ∈ L1(‖T ‖,Rn) and g is an R valued ‖T ‖ integrable function. For
this purpose choose a disjoint sequence of Borel subsets Bi of U , sequences Mi

of m dimensional submanifolds of Rn of class 1 and functions fi : Mi → R of
class 1 satisfying ‖V ‖

(

U ∼
⋃∞

i=1 Bi

)

= 0 and

Bi ⊂ Mi, fi(x) = f(x), Dfi(x) = (‖V ‖,m) apDf(x) = F (x)| Tanm(‖V ‖, x)

whenever i ∈ P and x ∈ Bi, see 11.1, [Fed69, 2.8.18, 2.9.11, 3.2.17, 3.2.29] and
Allard [All72, 3.5 (2)]. Let B =

⋃∞
i=1 Bi. If y ∈ R satisfies

H
m−1(B ∩ {x : f(x) = y and (‖V ‖,m) apDf(x) = 0}) = 0,

´

B∩K∩{x : f(x)=y}Θm(‖V ‖, x) dH
m−1x < ∞

whenever K is a compact subset of U , then define W (y) ∈ RVm−1(U) by

W (y)(k) =
´

B∩{x : f(x)=y}
k(x, ker (‖V ‖,m) apDf(x))Θm−1(‖V ‖, x) dH

m−1x

for k ∈ K (U × G(n,m − 1)). Applying [Fed69, 3.2.22] with f replaced by fi

and summing over i, one infers that
´

A∩{x : s<f(x)<t}
|F | d‖V ‖ =

´ t

s

´

A∩B∩{x : f(x)=y}
Θm(‖V ‖, x) dH

m−1xdL
1y

whenever A is ‖V ‖ measurable and −∞ < s < t < ∞, hence
´

g(x, f(x))|F (x)| d‖V ‖x =
´ ´

g(x, y) d‖W (y)‖xdL
1y

whenever g is an R valued ‖T ‖ integrable function. The remaining parts of the
assertion now follow by considering appropriate choices of g and recalling 2.20.

Consequently, (1) is implied by 3.4 (2) with J = R and Z = Rn. Noting

S(y)(θ) = lim
ε→0+

ε−1
´ y+ε

y

´ 〈

θ, |F |−1F
〉

d‖W (υ)‖ dL
1υ for θ ∈ D(U,Rn)

whenever y ∈ dmnS, (2) follows using 2.2, 2.21, and [Fed69, 2.8.17, 2.9.8].

12.2 Corollary. Suppose m, n, U , and V are as in 6.1, f ∈ T(V ), and E(y) =
{x : f(x) > y} for y ∈ R.

Then there exists an L 1 measurable function W with values in RVm−1(U)
endowed with the weak topology such that for L 1 almost all y there holds

Tanm−1(‖W (y)‖, x) = Tanm(‖V ‖, x) ∩ kerV Df(x) ∈ G(n,m− 1),

Θm−1(‖W (y)‖, x) = Θm(‖V ‖, x)

for ‖W (y)‖ almost all x and

V ∂E(y)(θ) =
´ 〈

θ, |V Df |−1V Df
〉

d‖W (y)‖ for θ ∈ D(U,Rn).

Proof. In view of 8.28 and 11.2, this is a consequence of 12.1.
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12.3 Remark. The formulation of 12.2 is modelled on similar results for sets of
locally finite perimeter, see [Fed69, 4.5.6 (1), 4.5.9 (12)]. Observe however that
the structural description of V ∂E(y) given here for L 1 almost all y does not
extend to arbitrary ‖V ‖ + ‖δV ‖ measurable sets E such that V ∂E is repre-
sentable by integration; in fact, ‖V ∂E‖ does not even need to be the weight
measure of some member of RVm−1(U). (Using [Fed69, 2.10.28] to construct
V ∈ IV1(R2) such that ‖δV ‖ is a nonzero Radon measure with ‖δV ‖({x}) = 0
for x ∈ R2 and ‖V ‖(spt δV ) = 0, one may take E = spt δV .)

13 Oscillation estimates

In this section two situations are studied where the oscillation of a generalised
weakly differentiable function may be controlled by its weak derivative assuming
a suitable summability of the mean curvature of the underlying varifold. In
general, such control is necessarily rather weak, see 13.1 and 13.2, but under
special circumstances one may obtain Hölder continuity, see 13.3. The main
ingredients are the analysis of the connectedness structure of a varifold, see
6.14, and the Sobolev Poincaré inequalities with several medians, see 10.9.

13.1 Theorem. Suppose m, n, p, U , and V are as in 6.1, p = m, K is a
compact subset of U , 0 < ε ≤ dist(K,Rn ∼U), ε < ∞, and either

(1) 1 = m = q and λ = 2m+5α(m)−1Γ10.1(2n) sup{Θ1(‖V ‖, a) :a ∈ K}, or

(2) 1 < m < q and λ = ε.

Then there exists a positive, finite number Γ with the following property.
If Y is a finite dimensional normed vectorspace, f : spt ‖V ‖ → Y is a

continuous function, f ∈ T(V, Y ), and κ = sup{(‖V ‖ xU(a, ε))(q)(V Df) : a ∈

K}, then

|f(x) − f(χ)| ≤ λκ whenever x, χ ∈ K ∩ spt ‖V ‖ and |x− χ| ≤ Γ−1.

Proof. Let ψ be as in 6.1. Abbreviate A = spt ‖V ‖ and δ = 1−m/q. Abbreviate

∆1 = 2m+3α(m)−1, ∆2 = Γ10.1(2n).

Notice that Θm
∗ (‖V ‖, a) ≥ 1/2 for a ∈ A by 4.8 (4) and 7.6. If m > 1, then

dmn Θ1(‖V ‖, ·) = U, ∆3 = sup{Θ1(‖V ‖, a) : a ∈ K} < ∞

by 4.8 (1) (2). If m > 1, then Θm−δ(‖V ‖, a) = 0 for a ∈ A by 4.9. Moreover, if
a ∈ A, 0 < r < ∞, and U(a, r) ⊂ U then, by 6.14 (3), there exists 0 < s ≤ r
such that A ∩ U(a, s) is a subset of the connected component of A ∩ U(a, r/2)
which contains a. Since K ∩A is compact, one may therefore construct j ∈ P

and ai, si and ri for i = 1, . . . , j such that K ∩A ⊂
⋃j

i=1 U(ai, si) and

ai ∈ K ∩A, 0 < si ≤ ri ≤ ε, A ∩ U(ai, si) ⊂ Ci, U(ai, ri) ⊂ U,

ψ(U(ai, ri) ∼{ai}) ≤ ∆−1
2 , ‖V ‖ U(ai, ri) ≥ (1/2)α(m)(ri/2)m,

r−1
i ‖V ‖ B(ai, ri) ≤ 4∆3 if m = 1,

∆1Γ10.9 (4)(2n)m/δrδ−m
i ‖V ‖ U(ai, ri) ≤ ε if m > 1
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for i = 1, . . . , j, where Ci is the connected component of A ∩ U(ai, ri/2) which
contains ai. Since K∩A is compact, there exists a positive, finite number Γ with
the following property. If x, χ ∈ K∩A and |x−χ| ≤ Γ−1 then {x, χ} ⊂ U(ai, si)
for some i.

In order to verify that Γ has the asserted property, suppose that Y , f , κ, x,
and χ are related to Γ as in the body of the theorem.

Assume κ < ∞. Since |y| = sup{α(y) :α ∈ Hom(Y,R), ‖α‖ ≤ 1} for y ∈ Y
by [Fed69, 2.4.12], one may also assume Y = R by 8.18. Choose i such that
{x, χ} ⊂ Ci. Choose N ∈ P satisfying

(1/2)Nα(m)(ri/2)m ≤ ‖V ‖ U(ai, ri) ≤ (1/2)(N + 1)α(m)(ri/2)m.

Applying 10.9 (2) (4) with U , M , Q, r, and X replaced by U(ai, ri), 2n, 1, ri/2,
and {ai} yields a subset Υ of R such that card Υ ≤ N + 1 and

f [U(ai, ri/2)] ⊂
⋃

{B(y, κi) : y ∈ Υ},

where κi = ∆2κ if m = 1 and κi = Γ10.9 (4)(2n)m/δrδ
i κ if m > 1. Defining I

to be the connected component of
⋃

{B(y, κi) : y ∈ Υ} which contains f(a), one
infers

|f(x) − f(χ)| ≤ diam I = L
1(I) ≤ 2(N + 1)κi ≤ ∆1κir

−m
i ‖V ‖ U(ai, ri) ≤ λκ

since {f(x), f(χ)} ⊂ f [Ci] ⊂ I and I is an interval.

13.2 Remark. Considering varifolds corresponding to two parallel planes, it is
clear that Γ may not be chosen independently of V . Also the continuity hypoth-
esis on f is essential as may be seen considering V associated to two transversely
intersecting lines.

13.3 Theorem. Suppose 1 ≤ M < ∞.
Then there exists a positive, finite number Γ with the following property.
If m, n, p, U , V , and ψ are as in 6.1, p = m, n ≤ M , 0 < r < ∞,

A = {x : U(x, r) ⊂ U},

ψU(a, r) ≤ Γ−1, ‖V ‖ U(a, s) ≤ (2 −M−1)α(m)sm for 0 < s ≤ r

whenever a ∈ A ∩ spt ‖V ‖, Y is a finite dimensional normed vectorspace, f ∈
T(V, Y ), C = {(x,B(x, s)) : B(x, s) ⊂ U}, X is the set of a ∈ A ∩ spt ‖V ‖ such
that f is (‖V ‖, C) approximately continuous at a, m < q ≤ ∞, δ = 1 − m/q,
and κ = sup{(‖V ‖ xU(a, r))(q)(V Df) : a ∈ A ∩ spt ‖V ‖}, then

|f(x) − f(χ)| ≤ λ|x − χ|δκ whenever x, χ ∈ X and |x− χ| ≤ r/Γ,

where λ = Γ if m = 1 and λ = Γ1/δ if m > 1.

Proof. Define

∆1 = (1 − 1/(4M − 1))1/M , ∆2 = sup{1,Γ10.9 (4)(2M)}M ,

Γ = 4(1 − ∆1)−1 sup{4Γ10.1(2M),∆2}

and notice that Γ ≥ 4(1 − ∆1)−1.
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In order to verify that Γ has the asserted property, suppose that m, n, p, U ,
V , ψ, M , r, A, Y , f , C, X , q, δ, κ, x, χ, and λ are related to Γ as in the body
of the theorem.

In view of 8.18 and 10.3 (2) (4) one may assume Y = R. Define s = 2|x−χ|
and t = (1 − ∆1)−1s and notice that 0 < s < t ≤ r and

‖V ‖ U(x, t) ≤ (2 −M−1)α(m)(1 − ∆1)−msm

≤
(

2 − (2M)−1
)

α(m)∆m
1 (1 − ∆1)−msm =

(

2 − (2M)−1
)

α(m)(t− s)m,

ψU(x, t) ≤ Γ−1 ≤ Γ10.1(2M)−1.

Therefore applying 10.9 (2) (4) with U , M , N , Q, r, and X replaced by U(x, t),
2M , 1, 1, t − s, and ∅ yields a subset Υ of R with card Υ = 1 such that
(‖V ‖ xU(x, s))(∞)(fΥ) is bounded by, using Hölder’s inequality,

Γ10.1(2M)(‖V ‖ xU(x, t))(1)(V Df) ≤ 4Γ10.1(2M)tδκ if m = 1, and by

Γ10.9 (4)(2M)m/δtδ(‖V ‖ xU(x, t))(q)(V Df) ≤ ∆1/δ
2 tδκ if m > 1.

Noting |f(x) − f(χ)| ≤ 2(‖V ‖ xU(x, s))(∞)(fΥ) and t = 2(1 − ∆1)−1|x−χ|, the
conclusion follows.

14 Geodesic distance

Reconsidering the support of the weight measure of a varifold whose mean cur-
vature satisfies a suitable summability of the mean curvature, the oscillation
estimate 13.1 is used to establish in this section that its connected components
agree with the components induced by its geodesic distance, see 14.2.

14.1 Example. Whenever 1 ≤ p < m < n, U is an open subset of Rn and X is
an open subset of U , there exists V related to m, n, U , and p as in 6.1 such that
spt ‖V ‖ equals the closure of X relative to U as is readily seen taking the into
account the behaviour of ψ and V under homotheties; compare [Men09, 1.2].

14.2 Theorem. Suppose m, n, U , V , and p are as in 6.1, p = m, and C is a
connected component of spt ‖V ‖, and a, x ∈ C.

Then there exist −∞ < b ≤ y < ∞ and a Lipschitzian function g : {υ : b ≤
υ ≤ y} → spt ‖V ‖ such that g(b) = a and g(y) = x.

Proof. In view of 6.14 (4) one may assume C = spt ‖V ‖. Whenever c ∈ C
denote by X(c) the set of χ ∈ C such that there exist −∞ < b ≤ y < ∞
and a Lipschitzian function g : {υ : b ≤ υ ≤ y} → C such that g(b) = c and
g(y) = χ. Observe that it is sufficient to prove that c belongs to the interior of
X(c) relative to C whenever c ∈ C.

For this purpose suppose c ∈ C, choose 0 < r < ∞ with U(c, 2r) ⊂ U and
let K = B(c, r). If m = 1, define λ as in 13.1 (1) and notice that λ < ∞ by
4.8 (1). Define q = 1 if m = 1 and q = 2m if m > 1. Choose 0 < ε ≤ r such that

λ sup{‖V ‖(U(χ, ε))1/q :χ ∈ K} ≤ r,

where λ = ε in accordance with 13.1 (2) if m > 1, and define

s = inf{Γ13.1(m,n,m,U, V,K, ε, q)−1, r}.
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Next, define functions fδ : C → R by letting fδ(χ) for χ ∈ C and δ > 0
equal the infimum of sums

j
∑

i=1

|xi − xi−1|

corresponding to all finite sequences x0, x1, . . . , xj in C with x0 = c, xj = χ and
|xi − xi−1| ≤ δ for i = 1, . . . , j and j ∈ P. Notice that

fδ(χ) ≤ fδ(ζ) + |ζ − χ| whenever ζ, χ ∈ C and |ζ − χ| ≤ δ.

Since C is connected and fδ(c) = 0, it follows that fδ is a locally Lipschitzian
real valued function satisfying

Lip(fδ|A) ≤ 1 whenever A ⊂ U and diamA ≤ δ,

in particular fδ ∈ T(V ) and ‖V ‖(∞)(V Dfδ) ≤ 1 by 8.7. One infers

fδ(χ) ≤ r whenever χ ∈ C ∩ B(c, s) and δ > 0

from 13.1. It follows that C ∩ B(c, s) ⊂ X(c); in fact, if χ ∈ C ∩ B(c, s) one
readily constructs gδ : {u : 0 ≤ υ ≤ r} → Rn satisfying

gδ(0) = c, gδ(r) = χ, Lip gδ ≤ 1 + δ,

dist(gδ(υ), C) ≤ δ whenever 0 ≤ υ ≤ r,

hence, noting that im gδ ⊂ B(c, (1+δ)r), the existence of g : {υ : 0 ≤ υ ≤ r} → C
satisfying g(0) = c, g(r) = χ, and Lip g ≤ 1 now is a consequence of [Fed69,
2.10.21].

14.3 Remark. The deduction of 14.2 from 13.1 is adapted from Cheeger [Che99,
§17] who attributes the argument to Semmes, see also David and Semmes
[DS93].

14.4 Remark. In view of 14.1 it is not hard to construct examples showing
that the hypothesis “p = m” in 13.1 may not be replaced by “p ≥ q” for
any 1 ≤ q < m if m < n. Yet, for indecomposable V , the study of possible
extensions of 14.2 as well as related questions seems to be most natural under
the hypothesis “p = m− 1”, see Topping [Top08].

15 Curvature varifolds

In this section Hutchinson’s concept of curvature varifold is rephrased in terms
of the concept of weakly differentiable function proposed in the present paper,
see 15.6. To indicate possible benefits of this perspective, a result on the differ-
entiability of the tangent plane map is included, see 15.9.

15.1. Suppose n ∈ P and Y = Hom(Rn,Rn) ∩ {σ :σ = σ∗}. Then T :
Hom(Rn, Y ) → Rn denotes the linear map which is given by the composition
(see [Fed69, 1.1.1, 1.1.2, 1.1.4, 1.7.9])

Hom(Rn, Y ) ⊂
−→ Hom(Rn,Hom(Rn,Rn))

≃ Hom(Rn,R) ⊗ Hom(Rn,R) ⊗ Rn L⊗1Rn

−−−−−→ R ⊗ Rn ≃ Rn,
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where the linear map L is induced by the inner product on Hom(Rn,R), hence
T (g) =

∑n
i=1 〈ui, g(ui)〉 whenever g ∈ Hom(Rn, Y ) and u1, . . . , un form an

orthonormal basis of Rn.

15.2. Suppose n, Y and T are as in 15.1, n ≥ m ∈ P, M is an m dimensional
submanifold of Rn of class 2, and τ : M → Y is defined by τ(x) = Tan(M,x)♮

for x ∈ M . Then one computes

h(M,x) = T (Dτ(x) ◦ τ(x)) whenever x ∈ M ;

in fact, differentiating the equation τ(x) ◦ τ(x) = τ(x) for x ∈ M , one obtains

τ(x) ◦ 〈u,Dτ(x)〉 ◦ τ(x) = 0 for u ∈ Tan(M,x),

T (Dτ(x) ◦ τ(x)) ∈ Nor(M,x)

for x ∈ M and, denoting by u1, . . . , un an orthonormal base of Rn, one computes

τ(x) • (Dg(x) ◦ τ(x)) =
∑n

i=1 〈τ(x)(ui), Dg(x)〉 • τ(x)(ui)

= −g(x) •
∑n

i=1 〈τ(x)(ui), Dτ(x)〉 (ui) = −g(x) • T (Dτ(x) ◦ τ(x))

whenever g : M → Rn is of class 1 and g(x) ∈ Nor(M,x) for x ∈ M .

15.3 Lemma. Suppose n and Y are as in 15.1 and n > m ∈ P.
Then the vectorspace Y is generated by {P♮ :P ∈ G(n,m)}.

Proof. If u1, . . . , um+1 are orthonormal vectors in Rn, um+1 ∈ L ∈ G(n, 1), and

Pi = span
{

uj : j ∈ {1, . . . ,m+ 1} and j 6= i
}

∈ G(n,m)

for i = 1, . . . ,m+1, then L♮ +(Pm+1)♮ = 1
m

∑m+1
i=1 (Pi)♮. Hence one may assume

m = 1 in which case [Fed69, 1.7.3] yields the assertion.

15.4 Definition. Suppose n, Y and T are as in 15.1, n ≥ m ∈ P, U is an
open subset of Rn, V ∈ IVm(U), X = U ∩ {x : Tanm(‖V ‖, x) ∈ G(n,m)}, and
τ : X → Y satisfies

τ(x) = Tanm(‖V ‖, x)♮ whenever x ∈ X.

Then the varifold V is called a curvature varifold if and only if there exists
F ∈ Lloc

1

(

‖V ‖,Hom(Rn, Y )
)

satisfying
´

〈(τ(x)(u), F (x)(u)), Dφ(x, τ(x))〉 + φ(x, τ(x))T (F (x)) • u d‖V ‖x = 0

whenever u ∈ Rn and φ ∈ D(U × Y,R).

15.5 Remark. Using approximation and the fact that τ is a bounded function,
one may verify that the same definition results if the equation is required for
every φ : U × Y → R of class 1 such that

Clos(U ∩ {(x, σ) : φ(x, σ) 6= 0 for some σ ∈ Y })

is compact. Extending T accordingly, one may also replace Y by Hom(Rn,Rn)
in the definition; in fact, if F ∈ Lloc

1

(

‖V ‖,Hom(Rn,Hom(Rn,Rn))
)

satisfies
the condition of the modified definition then imF (x) ⊂ Y for ‖V ‖ almost all x
as may be seen by enlarging the class of φ as before and considering φ(x, σ) =
ζ(x)α(σ) for x ∈ U , σ ∈ Hom(Rn,Rn), ζ ∈ D(U,R) and α : Hom(Rn,Rn) →
R is linear with Y ⊂ kerα, compare Hutchinson [Hut86, 5.2.4 (i)].

Consequently, the definition 15.4 is equivalent to Hutchinson’s definition in
[Hut86, 5.2.1]. The present formulation is motivated by 15.3.
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15.6 Theorem. Suppose n, Y and T are as in 15.1, n ≥ m ∈ P, U is an
open subset of Rn, V ∈ IVm(U), X = U ∩ {x : Tanm(‖V ‖, x) ∈ G(n,m)}, and
τ : X → Y satisfies

τ(x) = Tanm(‖V ‖, x)♮ whenever x ∈ X.

Then V is a curvature varifold if and only if ‖δV ‖ is a Radon measure
absolutely continuous with respect to ‖V ‖ and τ ∈ T(V, Y ). In this case, there
holds

h(V, x) = T (V Dτ(x)) for ‖V ‖ almost all x,

(δV )x(φ(x, τ(x))u) =
´

〈(τ(x)(u), V Dτ(x)(u)), Dφ(x, τ(x))〉 d‖V ‖x

whenever φ : U × Y → R is of class 1 such that

Clos(U ∩ {(x, σ) :φ(x, σ) 6= 0 for some σ ∈ Y })

is compact and u ∈ Rn.

Proof. Suppose V is a curvature varifold and F is as in 15.4. If ζ ∈ D(U,R),
γ ∈ E (Y,R) and u ∈ Rn, one may take φ(x, σ) = ζ(x)γ(σ) in 15.4, 15.5 to
obtain

´

γ(τ(x)) 〈(τ(x)(u), Dζ(x)〉 + ζ(x) 〈F (x)(u), Dγ(τ(x))〉 d‖V ‖x

= −
´

ζ(x)γ(τ(x))T (F (x)) • u d‖V ‖x.

In particular, taking γ = 1, one infers that ‖δV ‖ is a Radon measure absolutely
continuous with respect to ‖V ‖ with

T (F (x)) = h(V, x) ‖V ‖ almost all x.

It follows that

(δV )((γ ◦ τ)ζ · u) = −
´

ζ(x)γ(τ(x))T (F (x)) • u d‖V ‖x

for ζ ∈ D(U,R), γ ∈ E (Y,R) and u ∈ Rn. Together with the first equation
this implies that τ ∈ T(V, Y ) with V Dτ(x) = F (x) for ‖V ‖ almost all x by 8.4.

To prove the converse, suppose ‖δV ‖ is a Radon measure absolutely con-
tinuous with respect to ‖V ‖ and τ ∈ T(V, Y ). Since τ is a bounded function,
V Dτ ∈ Lloc

1

(

‖V ‖,Hom(Rn, Y )
)

by 8.3 (1). In order to prove the equation for
the generalised mean curvature vector of V , in view of 11.2 and [Men13, 4.8], it
is sufficient to prove that

h(M,x) = T
(

(‖V ‖,m) apDτ(x) ◦ τ(x)
)

for ‖V ‖ almost all x ∈ U ∩M

whenever M is an m dimensional submanifold of Rn of class 2. The latter
equation however is evident from 11.1 (4) and 15.2 since

Tan(M,x) = Tanm(‖V ‖, x) for ‖V ‖ almost all x ∈ U ∩M

by [Fed69, 2.8.18, 2.9.11, 3.2.17] and Allard [All72, 3.5 (2)].
Next, define f : X → Rn × Y by

f(x) = (x, τ(x)) for x ∈ dmn τ
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and notice that f ∈ T(V,Rn × Y ) with

V Df(x)(u) = (τ(x)(u), V Dτ(x)(u)) for u ∈ Rn

for ‖V ‖ almost all x by 8.20 (2) and 8.7. The proof may be concluded by
establishing the last equation of the postscript. Using approximation and the
fact that τ is a bounded function yields that is sufficient to consider φ ∈ D(U ×
Y,R). Choose ζ ∈ D(U,R) with

Clos(U ∩ {x :φ(x, σ) 6= 0 for some σ ∈ Y }) ⊂ Int{x : ζ(x) = 1}

and denote by γ the extension of φ to Rn × Y by 0. Now, applying 8.4 with Y
replaced by Rn × Y yields the equation in question.

15.7 Remark. The first paragraph of the proof is essentially contained in Hutchin-
son in [Hut86, 5.2.2, 5.2.3] and is included here for completeness.

15.8 Remark. If m = n then Θm(‖V ‖, ·) is a locally constant, integer valued
function whose domain is U ; in fact, τ is constant, hence V is stationary by 15.6
and the asserted structure follows from Allard [All72, 4.6 (3)].

15.9 Corollary. Suppose m,n ∈ P, 1 < m < n, β = m/(m− 1), U is an open
subset of Rn, V ∈ IVm(U) is a curvature varifold, X = U∩{x : Tanm(‖V ‖, x) ∈
G(n,m)}, and τ : X → Y satisfies

τ(x) = Tanm(‖V ‖, x)♮ whenever x ∈ X.

Then ‖V ‖ almost all a satisfy

lim
r→0+

r−m
´

B(a,r)(|τ(x) − τ(a) − 〈x− a, V Dτ(a)〉 |/|x− a|)β d‖V ‖x = 0.

Proof. This is an immediate consequence of 15.6 and 11.4 (1).

15.10 Remark. Using 11.4 (2), one may formulate a corresponding result for the
case m = 1.

15.11 Remark. Notice that one may deduce decay results for height quantities
from this result by use of [Men10, 4.11 (1)].

15.12 Remark. If 1 < p < m and V Dτ ∈ Lloc
p

(

‖V ‖,Hom(Rn, Y )
)

, see 15.1, one
may investigate whether the conclusion still holds with β replaced by mp/(m−
p).
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