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Partitioning Well-Clustered Graphs

with k-Means and Heat Kernel
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Abstract

We study a suitable class of well-clustered graphs that admit good k-way partitions and
present the first almost-linear time algorithm for with almost-optimal approximation guarantees
partitioning such graphs. A good k-way partition is a partition of the vertices of a graph into
disjoint clusters (subsets) {Si}ki=1

, such that each cluster is better connected on the inside than
towards the outside. This problem is a key building block in algorithm design, and has wide
applications in community detection and network analysis.

Key to our result is a theorem on the multi-cut and eigenvector structure of the graph
Laplacians of these well-clustered graphs. Based on this theorem, we give the first rigorous
guarantees on the approximation ratios of the widely used k-means clustering algorithms. We
also give an almost-linear time algorithm based on heat kernel embeddings and approximate
nearest neighbor data structures.
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1 Introduction

Partitioning a graph into two or more pieces is one of the most fundamental problems in combi-
natorial optimization, and has wide applications in various disciplines of computer science. One of
the most studied graph partitioning problems is the edge expansion problem, i.e., finding a cut with
few crossing edges normalized by the size of the smaller side of the cut. Formally, let G = (V,E)
be an undirected and unweighted graph. For any set S, the conductance of set S is defined by

φG(S) ,
|E(S, V \ S)|

vol(S)
,

where vol(S) is the total weight of edges incident to vertices in S, and the conductance of graph G
is

φ(G) , min
S:vol(S)6vol(G)/2

φG(S).

The edge expansion problem asks for a set S ⊆ V of vol(S) 6 vol(V )/2 that minimizes φ(G).
This problem is known to be NP-hard [MS90], and assuming the Small Set Expansion Conjec-
ture [RST12], does not admit a polynomial-time algorithm that achieves a constant factor approx-
imation in the worst case.

The k-way partitioning problem is a natural generalization of the edge expansion problem. We
call subsets of vertices (i.e. clusters) A1, . . . , Ak a k-way partition of G if Ai ∩Aj = ∅ for different i
and j, and

⋃k
i=1Ai = V . The k-way partitioning problem asks for a k-way partition of G such that

the conductance of any Ai in the partition is at most the k-way expansion constant, defined by

ρ(k) , min
partition A1,...,Ak

max
16i6k

φG(Ai). (1.1)

Clusters of low conductance in a real network usually capture the notion of community, and algo-
rithms for finding these subsets have applications in various domains such as community detection
and network analysis. In computer vision, most image segmentation procedures are based on
region-based merge and split [CA79], which in turn rely on partitioning graphs into multiple sub-
sets [SM00]. On a theoretical side, decomposing vertex/edge sets into multiple disjoint subsets is a
key technique in the approximation algorithms for Unique Games [Tre08], and also has applications
in the design of efficient algorithms [KLOS14, LR99, ST11].

Despite widespread use of various graph partitioning schemes over the past decades, the quan-
titative relationship between the k-way expansion constant and the eigenvalues of the graph Lapla-
cians were unknown until a sequence of very recent results, e.g. [KLL+13, LM14, LOGT12,
LRTV12, OGT14]. In particular, Lee et al. [LOGT12] proved the following higher-order Cheeger
inequality:

λk
2

6 ρ(k) 6 O(k2)
√
λk, (1.2)

where 0 = λ1 6 . . . 6 λn 6 2 are the eigevalues of the normalized Laplacian matrix ofG. Informally,
the higher-order Cheeger inequality shows that a graph G has a k-way partition with low ρ(k) if
and only if λk is small. This implies that a large gap between λk+1 and ρ(k) guarantees (i) existence
of a k-way partition {Si}ki=1 with bounded φG(Si) 6 ρ(k), and (ii) any (k + 1)-way partition of G
contains a subset with significantly higher conductance compared with ρ(k). That is, a suitable
lower bound on the gap Υ for some k, defined by

Υ ,
λk+1

ρ(k)
, (1.3)
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implies the existence of a k-way partition for which every cluster has low conductance, and that G
is a well-clustered graph.

Remark. Our gap assumption can be also “informally” interpreted as a gap between λk+1 and λk,
since a large enough gap between λk+1 and λk implies a lower bound on Υ.

1.1 Our Results

In this paper we study spectral properties of graphs satisfying the gap assumption Υ = Ω(k3). We
give structural results that show close connections between the eigenvectors and the characteristic
vectors of the clusters. This characterization allows us to show that many variants of k-means
algorithms, that are based on the spectral embedding and that work “in practice”, can be rigorously
analyzed “in theory”. Moreover, exploiting our gap assumption, we can approximate this spectral
embedding using the heat kernel of the graph. Combining this with locality-sensitive hashing, we
give an almost-linear time algorithm for the k-way partitioning problem.

Our structural results can be summarized as follows. Let {Si}ki=1 be a k-way partition of G
achieving ρ(k) defined in (1.1). We define ḡ1, · · · , ḡk to be the normalized characteristic vectors
of the clusters {Si}ki=1, and {fi}ki=1 to be the eigenvectors corresponding to the first k smallest
eigenvalues of L. Our first result is about the clusters S1, . . . Sk and the structure of f1, . . . , fk:
under the condition of Υ = Ω(k3), the span of {ḡi}ki=1 and the span of {fi}ki=1 are close to each
other. It can be stated formally as follows:

Theorem 1.1 (The Structure Theorem). Let {Si}ki=1 be a k-way partition of G achieving ρ(k),
and let Υ = λk+1/ρ(k) > k. Assume that {fi}ki=1 are the first k eigenvectors of matrix L, and
ḡ1, . . . , ḡk ∈ R

n are the characteristic vectors of {Si}ki=1, with proper normalization1. Then the
following statements hold:

1. For every ḡi, there is a linear combination of {fi}ki=1, called f̂i, such that ‖gi − f̂i‖2 6 1/Υ.

2. For every fi, there is a linear combination of {gi}ki=1, called ĝi, such that ‖fi − ĝi‖2 6 k/Υ.

This theorem generalizes the result shown by Arora et al. ([ABS10], Theorem 2.2), which proves
the easier direction (the first statement, Theorem 1.1), and can be thought as a stronger version of
the well-known Davis-Kahan theorem [DK70]. We remark that, despite that we use the higher-order
Cheeger inequality from (1.2) to motivate the definition of Υ, our proof of this structure theorem
is self-contained. Specifically, it omits much of the machinery used in the proofs of higher-order
and improved Cheeger inequalities [KLL+13, LOGT12].

As a direct application, Theorem 1.1 implies that the set of vectors of Rk in the span of {fi}ki=1 is
almost equivalent to the set of vectors of Rk in the span of {gi}ki=1. This fact has several interesting
consequences. For instance, we look at the well-known spectral embedding F : V → R

k defined by

F (u) ,
1

NormalizationFactor(u)
· (f1(u), . . . , fk(u))⊺ , (1.4)

with a proper normalization factor NormalizationFactor(u) ∈ R for each u ∈ V . We use Theorem 1.1
to prove that (i) all points F (u) from the same cluster u ∈ Si (1 6 i 6 k) are close to each other,
and (ii) most pairs of points F (u), F (v) from two different clusters Si, Sj are far from each other.

Based on this fact, we analyze the performance of spectral k-means algorithms2, aiming at
answering the following longstanding open question: Why do spectral k-means algorithms perform

1See the formal definition in Section 3.
2For simplicity, we use the word “spectral k-means algorithms” to refer to the algorithms which combine a spectral

embedding with a k-means algorithm in Euclidean space.
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well in practice? We show that the partition {Ai}ki=1 produced by the spectral k-means algorithm
gives a good approximation of any “optimal” partition {Si}ki=1: every Ai has low conductance, and
has large overlap with its correspondence Si. To the best of our knowledge, this is the first rigorous
guarantee for many practical spectral clustering algorithms. These algorithms have comprehensive
applications, and have been the subject of extensive experimental studies (e.g., [AY95, NJW+02,
VL07]). Our result also gives an affirmative answer to an open question proposed in [LOGT12]:
whether the spectral k-means algorithm can be rigorously analyzed in certain general circumstances.
Our result is as follows:

Theorem 1.2 (Approximation Guarantee of Spectral k-Means Algorithms). Let G be a graph
satisfying the condition Υ = λk+1/ρ(k) = Ω(k3), and k ∈ N. Let F : V → R

k be the em-
bedding defined above. Let {Ai}ki=1 be a k-way partition by any k-means algorithm running in
R
k that achieves an APT-approximation. Then the following statements hold: (i) φG(Ai) =

O
(
φG(Si) + APT · k3 ·Υ−1

)
; (ii) vol(Ai△Si) = O

(
APT · k3 ·Υ−1 · vol(Si)

)
.

This allows us to apply various k-means algorithms (e.g., [KSS04, ORSS12]) in Euclidean space
to give spectral clustering algorithms, with different time versus approximation tradeoffs.

Notice that for moderately large values of k, e.g. k ≈ n0.1, the performance of these algorithms
becomes super-linear, since most k-means algorithms have an Ω(nk) running time. Moreover, when
the number of clusters is k = ω(log n), it is not even clear how to obtain the embedding (1.4) in
Õ(m) time. To obtain a faster algorithm, we introduce another novel technique: we approximate
the squared-distance ‖F (u) − F (v)‖2 of the embedded points F (u) and F (v) via their heat-kernel
distance, which allows us to avoid the computation of eigenvectors. Using our gap assumption,
we apply approximate nearest-neighbor algorithms, and give an ad hoc variant of the k-means
algorithm that works in almost-linear time.

Theorem 1.3 (Almost-Linear Time Algorithm For Partitioning Graphs). Let G = (V,E) be a graph
of n vertices and m edges, and a parameter k ∈ N. Assume that Υ = λk+1/ρ(k) = Ω(k4 log3 n),
and {Si}ki=1 is a k-way partition such that φG(Si) 6 ρ(k). Then there is an algorithm running in

Õ(m) time3 that outputs a k-way partition {Ai}ki=1. Moreover, the following statements hold: (i)
φG(Ai) = O(φG(Si) + k3 log2 k ·Υ−1); (ii) vol(Ai△Si) = O

(
k3 log2 k ·Υ−1 · vol(Si)

)
.

Our algorithm differs from most of the previous spectral clustering algorithms in that it works
primarily with distances between the embedded vertices, instead of their coordinates along eigen-
vectors. This approach closely resembles many practical approaches, partly because it circumvents
issues related to the stability of eigenvectors. It also allows us to directly use the heat-kernel em-
bedding, which traditionally is used either as an alternative to pagerank vectors [Chu09] or within
the matrix multiplicative weights update frameworks [OSV12]. We believe this distance driven
approach has wider applications, especially in graph partitioning settings.

1.2 Related Work

There is a large amount of literature on partitioning graphs under various settings. Arora et
al. [ABS10] gives an O(1/λk)-approximation algorithm for the sparest cut problem with running
time nO(k), by searching for a sparest cut in the k-dimensional eigenspace corresponding to the
first k eigenvectors. Kwok et al. [KLL+13] shows that spectral partitioning gives a constant factor
approximation for the sparest cut problem, when λk is large for constant values of k.

3The Õ(·) term hides a factor of poly log n.
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Lee et al. [LOGT12] studies the higher-order Cheeger inequalities, and shows that every graph
can be partitioned into k non-empty subsets such that every subset in the partition has expansion
O(k3)

√
λk. Oveis Gharan and Trevisan [OGT14] formulate the notion of clusters with respect

to the inner and outer conductance: a cluster S should have low outer conductance, while the
conductance of the induced subgraph by S should be high. Under a gap assumption between λk+1

and λk, they further present a polynomial-time algorithm that finds a k-partition {Ai}ki=1 that
satisfy the inner- and outer-conductance condition. In order to assure that every Ai has high inner

conductance, they assume that λk+1 > poly(k)λ
1/4
k , which is much stronger than ours. Moreover,

their algorithm runs in polynomial-time, in contrast to our almost-linear time algorithm.
Based on the gap between λk and λk+1, Dey et al. [DRS14] proposed a k-way partition algorithm,

which is based on the k-centers problem and on combinatorial arguments. In contrast to our work,
their result only holds for bounded-degree graphs, and cannot provide an approximate guarantee
for every cluster. Moreover, their algorithm runs in almost-linear time only if k = O(poly log n).

We also explore the separation between λk and λk+1 from an algorithmic perspective, and show
that this assumption interacts well with heat-kernel embeddings. The heat kernel has been used
in previous algorithms on local partitioning [Chu09], balanced separators [OSV12]. It also plays a
key role in current efficient approximation algorithms for finding low conductance cuts [OSVV08,
She09]. However, most of these theoretical guarantees are through the matrix multiplicative weights
update framework [AHK12, AK07]. Our algorithm instead directly uses the heat-kernel embedding
to find low conductance cuts.

1.3 Organization of the Paper

The paper is organized as follows: We first list background knowledge in Section 2. In Section 3,
we analyze the structure theorem. Section 4 studies the k-means clustering algorithms, and gives a
theoretical approximation guarantee of k-means clustering on well-clustered graphs. In Section 5,
we present an almost-linear time algorithm for partitioning well-clustered graphs.

2 Preliminaries

Let G = (V,E) be an undirected and unweighted graph with n vertices and m edges. The set of
neighbors of a vertex u is represented by N(u), and its degree is d(u) = |N(u)|. Moreover, for any
set S ⊆ V , let vol(S) ,

∑
u∈S du. For any set S, T ⊆ V , we define E(S, T ) to be the set of edges

from S to T , aka E(S, T ) , {{u, v}|u ∈ S and v ∈ T}. For simplicity, we write ∂S = E(S, V \ S)
for any set S ⊆ V . For two sets X and Y , the symmetric difference of X and Y is defined as
X△Y , (X \ Y ) ∪ (Y \X).

We will work extensively with algebraic objects related to G. The adjacency matrix A of G is
given by

Au,v =

{
1 if {u, v} ∈ E[G], and

0 otherwise.

We will also use D to denote the n×n diagonal matrix with Duu = du for u ∈ V [G]. The Laplacian
matrix of G is defined by L , D−A, and the normalized Laplacian matrix of G is defined by

L , D−1/2LD−1/2 = I−D−1/2AD−1/2.

For this matrix, we will denote its n eigenvalues with 0 = λ1 6 · · · 6 λn 6 2, and their corresponding
eigenvectors with f1, . . . , fn. Note that if G is connected, the first eigenvector is f1 = D1/2f , where
f is any non-zero constant vector.
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fi

f̂i

ĝi

ḡi

f̂i = a linear
combination of {fi}

ĝi = a linear

combination of {ḡi}

Theorem 3.1

‖f̂i − gi‖
2
2 6 1/Υ

Theorem 3.2

‖fi − ĝi‖
2
2 6 k/Υ

Figure 1: Relations among {f̂i}, {fi}, {ḡi}, and {ĝi}. Here Υ is the gap defined with respect to λk+1 and ρ(k).

For a vector x ∈ R
n, the 2-norm, or Euclidean norm of x is given by

‖x‖ =
(

n∑

i=1

x2i

)1/2

.

The spectral norm of a matrix A ∈ R
n×n is defined by

‖A‖ = sup
x∈Rn

‖x‖=1

‖Ax‖.

If A is symmetric, ‖A‖ = |λmax(A)|, where λmax(A) is the largest eigenvalue of A in absolute
value. If A is not symmetric, then ‖A‖ =

√
|λmax(A

⊺A)|.
For any f : V → R, the Rayleigh quotient of f with respect to graph G is then given by

R(f) , f⊺Lf
‖f‖22

=
f⊺Lf

‖f‖D
=

∑
{u,v}∈E(G) (f(u)− f(v))2∑

u duf(u)
2

,

where ‖f‖D , f⊺Df .
Throughout the rest of the paper, we will use S1, . . . , Sk to express a k-way partition of G

achieving the minimum conductance, ρ(k). Note that this partition may not be unique.

3 Proof of The Structure Theorem

In this section we give a formal description of Theorem 1.1. Recall that the structure theorem
states that (i) any normalized characteristic vector ḡi of cluster Si can be approximated by a linear
combination of the first k eigenvectors, called f̂i, such that ‖f̂i − ḡi‖ 6 1/Υ; (ii) any fi (1 6 i 6 k)
can be approximated by a linear combination of the normalized characteristic vectors {ḡi}ki=1 such
that ‖fi − ĝi‖ 6 k/Υ, see Figure 1 for an illustration.

To formally prove the structure theorem, let gi be the characteristic vector of cluster Si, defined
by

gi(u) =

{
1 if u ∈ Si
0 if u 6∈ Si (3.1)

for any 1 6 i 6 k, and the corresponding normalized vector is defined by

gi =
D1/2gi

‖D1/2gi‖
. (3.2)
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Notice that the conductance of a set Si can be expressed as

φG(Si) = R(ḡi), (3.3)

and hence we can write the gap Υ as

Υ =
λk+1

ρ(k)
= min

16i6k

λk+1

φG(Si)
= min

16i6k

λk+1

R(ḡi)
. (3.4)

We will always assume that
Υ > C · k3, (3.5)

for a large enough constant C.
Theorem 3.1 below shows that the normalized characteristic vector of every cluster Si can be

approximated by a linear combination of the first k eigenvectors, with respect to the value of Υ.
We remark that this result is proven implicitly by Arora et al. ([ABS10], Theorem 2.2).

Theorem 3.1. For any 1 6 i 6 k, there is a linear combination of the eigenvectors f1, . . . , fk,
called vector f̂i ∈ R

n, such that ∥∥∥gi − f̂i
∥∥∥
2
6 1/Υ.

Proof. We write gi as a linear combination of eigenvectors of L, i.e.,

gi = α
(i)
1 f1 + · · ·+ α(i)

n fn,

and let the vector f̂i be the projection of vector ḡi on the subspace spanned by {fi}ki=1, i.e.,

f̂i = α
(i)
1 f1 + · · ·+ α

(i)
k fk.

By the definition of Rayleigh quotients, we have that

R(gi) =
(
α
(i)
1 f1 + · · · + α(i)

n fn

)⊺
L
(
α
(i)
1 f1 + · · ·+ α(i)

n fn

)

=
(
α
(i)
1

)2
λ1 + · · ·+

(
α(i)
n

)2
λn

>
(
α
(i)
2

)2
λ2 + · · ·+

(
α
(i)
k

)2
λk +

(
1− α′ −

(
α
(i)
1

)2)
λk+1

> α′λ2 +

(
1− α′ −

(
α
(i)
1

)2)
λk+1,

where α′ =
(
α
(i)
2

)2
+ · · ·+

(
α
(i)
k

)2
. Therefore, we have that

1− α′ −
(
α
(i)
1

)2
6 R(gi)/λk+1 6 1/Υ,

and

‖gi − f̂i‖2 =
(
α
(i)
k+1

)2
+ · · ·+

(
α(i)
n

)2
= 1− α′ −

(
α
(i)
1

)2
6 1/Υ,

which finishes the proof. �

Now we will show that the opposite direction holds as well, i.e., any fi (1 6 i 6 k) can be
approximated by a linear combination of the normalized characteristic vectors {gi}ki=1.
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Theorem 3.2. Let Υ > k. For any 1 6 i 6 k, there is a vector ĝi =
∑k

j=1 β
(i)
j ḡj , which is a linear

combination of {gi}ki=1, such that
‖fi − ĝi‖2 6 k/Υ.

We first discuss the intuition behind proving Theorem 3.2. It is easy to see that, if we could
write every gi exactly as a linear combination of {fi}ki=1, then we could write every fi (1 6 i 6 k)
as a linear combination of {gi}ki=1. This is because both of {fi}ki=1 and {gi}ki=1 are sets of linearly
independent vectors of the same dimension and span {g1, . . . , gk} ⊆ span {f1, . . . , fk}.

However, the gi’s are only close to a linear combination of the first k eigenvectors. We will
denote this combination as f̂i, and use the fact that the errors of approximation are small to
show that these {f̂i}ki=1 are almost orthogonal between each other. This allows us to show that

span
{
f̂1, . . . , f̂k

}
= span {f1, . . . , fk}, which then implies Theorem 3.2.

Based on the fact that

Proof. By Theorem 3.1, every gi is approximated by vector f̂i defined by

f̂i = α
(i)
1 f1 + · · ·α(i)

k fk.

Define a k by k matrix F such that Fi,j = α
(j)
i , i.e., the jth column of matrix F consists of values{

α(j)
}k
j=1

representing f̂j, where

α(j) =
(
α
(j)
1 , · · · , α(j)

k

)⊺
.

Notice that (i) each column of F has almost unit norm, and (ii) different columns are almost
orthogonal to each other, in the sense that

∣∣∣
〈
α(i), α(j)

〉∣∣∣ 6 max {R(ḡi)/λk+1,R(ḡj)/λk+1} 6 1/Υ, for i 6= j.

This implies that F is almost an orthogonal matrix. Moreover, since (F⊺F)i,i > 1 − 1/Υ and
|(F⊺F)i,j | 6 1/Υ for i 6= j, it holds by the Geršgorin Circle Theorem (cf. Theorem A.1) that all
the eigenvalues of F⊺F are at least

1− 1/Υ − (k − 1) · 1/Υ = 1− k/Υ.

Therefore, matrix F has no eigenvalue with value 0 as long as Υ > k, i.e., the vectors
{
α(j)

}k
j=1

are linearly independent. Combining this with the fact that span {f̂1, . . . , f̂k} ⊆ span {f1, . . . , fk}
and dim(span ({f1, . . . , fk})) = k, it holds that span {f̂1, . . . , f̂k} = span {f1, . . . , fk}. Hence, we
can write every fi (1 6 i 6 k) as a linear combination of {f̂i}ki=1, i.e.,

fi = β
(i)
1 f̂1 + β

(i)
2 f̂2 + · · ·+ β

(i)
k f̂k. (3.6)

Now define the value of ĝi as

ĝi = β
(i)
1 g1 + β

(i)
2 g2 + · · · + β

(i)
k gk. (3.7)

By Theorem 3.1, it is easy to see that

‖fi − ĝi‖2 6 k max
16j6k

‖f̂j − gj‖2 6 k/Υ. �
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This implies that the first k eigenvectors, normalized by D−1/2, are close (in theD-norm) to a k-
step function constant on each cluster. Our next lemma shows that, for every pair of clusters, there
exists an eigenvector whose coordinates have reasonably different values on two different clusters.
This is due to the fact that the first k eigenvectors are able to approximate the characteristic vector
of every cluster.

Lemma 3.3. Let Υ = Ω(k3). For any 1 6 i 6 k, let

ĝi = β
(i)
1 g1 + · · ·+ β

(i)
k gk

be such that

‖fi − ĝi‖ 6
k

Υ
.

Then, for any ℓ 6= j, there exists i ∈ {1, . . . , k} such that

∣∣∣β(i)ℓ − β
(i)
j

∣∣∣ > ζ ,
1

10
√
k
. (3.8)

Proof. Let β(i) =
(
β
(i)
1 , . . . , β

(i)
k

)⊺
, for 1 6 i 6 k. Since ḡi ⊥ ḡj for any i 6= j, we have that

〈ĝi, ĝj〉 = 〈β(i), β(j)〉, and therefore

∣∣∣
〈
β(i), β(j)

〉∣∣∣ = |〈ĝi, ĝj〉| 6 |〈fi − (fi − ĝi), fj − (fj − ĝj)〉|
= |〈fi, fj〉 − 〈fi − ĝi, fj〉 − 〈fj − ĝj , fi〉+ 〈fi − ĝi, fj − ĝj〉|
6 ‖fi − ĝi‖+ ‖fj − ĝj‖+ ‖fi − ĝi‖‖fj − ĝj‖
6 2
√
k/Υ + k/Υ,

where the last inequality follows from Theorem 3.2. This implies that β(i)’s are almost orthogonal
to each other.

Now we construct a k by k matrix B, where the jth column of B is β(j). Using the same
technique as in Theorem 3.2, we know that, for any eigenvalue λ of matrix B with the corresponding
normalized eigenvector x, it holds that

|λ|2x⊺x = (Bx)⊺Bx = x⊺B⊺Bx ∈
(
1− k(2

√
k/Υ + k/Υ), 1 + k(2

√
k/Υ + k/Υ)

)
, (3.9)

i.e., matrix B is almost orthogonal and its eigenvalues have modulus close to 1.

We can now show that β
(i)
ℓ and β

(i)
j are far from each other by contradiction. Suppose there

exist ℓ 6= j such that

ζ ′ , max
16i6k

∣∣∣β(i)ℓ − β
(i)
j

∣∣∣ <
1

10
√
k
.

This implies that the jth row and ℓth row of matrix B are somewhat close to each other. Let us
now define matrix E ∈ R

k×k, where

Eℓ,i , β
(i)
j − β

(i)
ℓ ,

and Et,i = 0 for any t 6= ℓ and 1 6 i 6 k. Moreover, let Q = B+E. Notice that Q has two identical
rows, and rank at most k − 1. Therefore Q has an eigenvalue with value 0, and the spectral norm
‖E‖ of E, the largest singular value of E, is at most

√
kζ ′. By definition of matrix Q we have that

Q⊺Q = B⊺B+B⊺E+E⊺B+E⊺E.
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Since B⊺B is symmetric and 0 is an eigenvalue of Q⊺Q, by Theorem A.2 we know that, if λ̂ is an
eigenvalue of Q⊺Q, then there is an eigenvalue λ of B⊺B such that

|λ̂− λ| 6 ‖B⊺E+E⊺B+E⊺E‖
6 ‖B⊺E‖+ ‖E⊺B‖+ ‖E⊺E‖
6 4
√
kζ ′ + kζ ′2,

which implies that

λ̂ > λ− 4
√
kζ ′ − kζ ′2 > 1− k(2

√
k/Υ + k/Υ)− 4

√
kζ ′ − kζ ′2,

due to (3.9). By setting λ̂ = 0, we have that

1− k(2
√
k/Υ + k/Υ)− 4

√
kζ ′ − kζ ′2 6 0.

By the condition of Υ in (3.5), the inequality above implies that ζ ′ > 1
10

√
k
, which leads to a

contradiction. �

Remark 3.4. It was shown in [KLL+13] that the first k eigenvectors can be approximated by a
(2k + 1)-step function. The quality of the approximation is the same as the one given by our
structure theorem. However, a (2k + 1)-step function is not enough to show that the entire cluster
is concentrated around a certain point.

4 Analysis of Spectral k-Means Algorithms

In this section we analyze an algorithm based on the classical spectral clustering paradigm, and
give an approximation guarantee of this method on well-clustered graphs. We will show that any
the approximation guarantee of any k-means algorithm AlgoMean(X , k) can be translated to one
for the k-way partitioning problem. Furthermore, it suffices to call AlgoMean in a black-box manner
with a point set X ⊆ ℜd.

This section is structured as follows. We first give a quick overview of spectral and k-means
clustering in Section 4.1. In Section 4.2, we use the structure theorem to analyze the spectral
embedding. Section 4.3 gives a general result about the k-means algorithm when applied to this
embedding, and a formal proof of Theorem 1.2.

4.1 k-Means Clustering

Given a set of points X ⊆ R
d, a k-means algorithm AlgoMean(X , k) seeks to find a set K of k

centers c1, · · · , ck to minimize the sum of the squared-distance between x ∈ X and the center to
which it is assigned. Formally, for any partition X1, · · · ,Xk of the set X ⊆ R

d, we define the cost
function by

COST(X1, . . . ,Xk) , min
c1,...,ck∈Rd

k∑

i=1

∑

x∈Xi

‖x− ci‖2,

i.e., the COST function minimizes the total squared-distance between the points x’s and their
individually closest center point ci, where c1, . . . , ck are chosen arbitrarily in R

d. We further define
the optimal clustering cost by

∆2
k(X ) , min

partition X1,...,Xk

COST(X1, . . . ,Xk). (4.1)
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A typical spectral k-means algorithm on graphs can be described as follows: (i) Compute the
first k eigenvectors f1, · · · , fk of the normalized Laplacian matrix4 of graph G. (ii) Map every
vertex u ∈ V [G] to a point F (u) ∈ R

k according to

F (u) =
1

NormalizationFactor(u)
· (f1(u), . . . , fk(u))⊺ , (4.2)

with a proper normalization factor NormalizationFactor(u) ∈ R for each u ∈ V . (iii) Let X , {F (u) :
u ∈ V } be the set of embedded points from vertices in G. Run AlgoMean(X , k), and group vertices
of G into k clusters, according to the output of AlgoMean(X , k). This approach that combines a
k-means algorithm with a spectral embedding has been widely used in practice for a long time,
although there is a lack of rigorous analyses of its performance prior to our results.

4.2 Analysis of the Spectral Embedding

The first step of the k-means clustering technique described above is to map vertices of a graph
into points in Euclidean space, through the spectral embedding (1.4). This subsection analyzes the
properties of this embedding. Let us define the normalization factor to be

NormalizationFactor(u) ,
√
du.

We will show that the embedding (4.2) with the normalization factor above has very nice properties:
embedded points from different clusters of G are far from each other, while embedded points from
the same cluster Si are concentrated around their center ci ∈ R

k. These properties imply that a
simple k-means algorithm is able to produce a good clustering5.

We first define k points p(i) ∈ R
k (1 6 i 6 k), where

p(i) ,
1√

vol (Si)

(
β
(1)
i , . . . , β

(k)
i

)⊺
, (4.3)

i.e., p(i) can be expressed as

p(i) =
(
D−1/2ĝ1(u), . . . ,D

−1/2ĝk(u)
)
,

where u is any vertex in Si. We will show in Lemma 4.1 that all embedded points Xi , {F (u) :
u ∈ Si} (1 6 i 6 k) are concentrated around p(i). Moreover, we bound the total squared-distance
between vertices in Xi and p

(i), which is proportional to 1/Υ: the bigger the value of Υ, the higher
concentration the points within the same cluster have. Notice that we do not claim that p(i) is the
actual center of Xi. However, these approximated points p(i)’s suffice for our analysis.

Lemma 4.1. It holds that
k∑

i=1

∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
6 k2/Υ. (4.4)

4Other graph matrices (e.g. the adjacency matrix, and the Laplacian matrix) are also widely used in practice.
Notice that, with proper normalization, the choice of these matrices does not substantially influence the performance
of k-means algorithms.

5Notice that this embedding is similar with the one used in [LOGT12], with the only difference that F (u) is not
normalized and so it is not necessarily a unit vector. This difference, though, is crucial for our analysis.
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Proof. Since ‖x‖2 = ‖D−1/2x‖D holds for any x ∈ R
n, by Theorem 3.2 we have for any 1 6 j 6 k

that
k∑

i=1

∑

u∈Si

du

(
F (u)j − p(i)j

)2
=
∥∥∥D−1/2fj −D−1/2ĝj

∥∥∥
D

6 k/Υ.

Summing over all j for 1 6 j 6 k implies that

k∑

i=1

∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
=

k∑

i=1

k∑

j=1

∑

u∈Si

du

(
F (u)j − p(i)j

)2
6 k2/Υ. �

Lemma 4.2. It holds for every 1 6 i 6 k that

9

10 vol(Si)
6
∥∥∥p(i)

∥∥∥
2
6

11

10 vol(Si)
.

Proof. By (4.3), we have that

∥∥∥p(i)
∥∥∥
2
=

1

vol(Si)

∥∥∥
(
β
(1)
i , . . . , β

(k)
i

)⊺∥∥∥
2
.

Notice that p(i) is just the ith row of matrix B defined in Lemma 3.3, normalized by
√

vol(Si).
Taking the transpose of B and x = 1, we apply the same argument as in (3.9) and obtain that

∥∥∥
(
β
(1)
i , . . . , β

(k)
i

)⊺∥∥∥
2
∈ [9/10, 11/10], (4.5)

which implies the statement. �

Lemma 4.2 shows that
∥∥p(i)

∥∥2 is proportional to 1/vol(Si). We will further show in Lemma 4.3

that these points p(i)(1 6 i 6 k) exhibit another excellent property: the distance between p(i) and
p(j) is inversely proportional to the volume of the smaller cluster between Si and Sj. Therefore,
embedded points in Xi from Si of smaller vol(Si) are far from embedded points in Xj of bigger
vol(Sj). Notice that, if this was not the case, a small misclassification of points in a bigger cluster
Sj could introduce a large error in the cluster of smaller volume.

Lemma 4.3. For every i 6= j, it holds that

∥∥∥p(i) − p(j)
∥∥∥
2
>

ζ2

10min {vol(Si), vol(Sj)}
,

where ζ is defined in (3.8).

Proof. By Lemma 3.3, there exists 1 6 ℓ 6 k such that
∣∣∣β(ℓ)i − β

(ℓ)
j

∣∣∣ > ζ.

By the definition of p(i) and p(j) it follows that

∣∣∣∣∣

∣∣∣∣∣
p(i)

‖p(i)‖ −
p(j)

‖p(j)‖

∣∣∣∣∣

∣∣∣∣∣

2

>




β
(ℓ)
i√

∑k
t=1

(
β
(t)
i

)2 −
β
(ℓ)
j√

∑k
t=1

(
β
(t)
j

)2




2

.
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By Lemma 4.2, we know that

k∑

ℓ=1

(
β
(ℓ)
j

)2
=
∥∥∥
(
β
(1)
j , . . . , β

(k)
j

)⊺∥∥∥
2
∈ [9/10, 11/10].

Therefore, we have that

∣∣∣∣∣

∣∣∣∣∣
p(i)

‖p(i)‖ −
p(j)

‖p(j)‖

∣∣∣∣∣

∣∣∣∣∣

2

>
1

2
·
(
β
(ℓ)
i − β

(ℓ)
j

)2
>

1

2
· ζ2,

and 〈
p(i)

‖p(i)‖ ,
p(j)

‖p(j)‖

〉
6 1− ζ2/4.

Without loss of generality, we assume that
∥∥p(i)

∥∥2 >
∥∥p(j)

∥∥2. By Lemma 4.2, it holds that

∥∥∥p(i)
∥∥∥
2
>

9

10 · vol(Si)
,

and ∥∥∥p(i)
∥∥∥
2
>
∥∥∥p(j)

∥∥∥
2
>

9

10 · vol(Sj)
.

Hence, it holds that ∥∥∥p(i)
∥∥∥
2
>

9

10min {vol(Si), vol(Sj)}
.

We can now finish the proof by considering two cases based on
∥∥p(i)

∥∥.
Case 1: Suppose that

∥∥p(i)
∥∥2 > 4

∥∥p(j)
∥∥2. We have that

∥∥∥p(i) − p(j)
∥∥∥ >

∥∥∥p(i)
∥∥∥−

∥∥∥p(j)
∥∥∥ >

1

2

∥∥∥p(i)
∥∥∥ ,

which implies that ∥∥∥p(i) − p(j)
∥∥∥
2
>

1

4

∥∥∥p(i)
∥∥∥
2
>

1

5min {vol(Si), vol(Sj)}
.

Case 2: Suppose
∥∥p(j)

∥∥ = α
∥∥p(i)

∥∥ for α ∈ (14 , 1]. In this case, we have that

∥∥∥p(i) − p(j)
∥∥∥
2
=
∥∥∥p(i)

∥∥∥
2
+
∥∥∥p(j)

∥∥∥
2
− 2

〈
p(i)

‖p(i)‖ ,
p(j)

‖p(j)‖

〉∥∥∥p(i)
∥∥∥
∥∥∥p(j)

∥∥∥

>
∥∥∥p(i)

∥∥∥
2
+
∥∥∥p(j)

∥∥∥
2
− 2(1 − ζ2/4) ·

∥∥∥p(i)
∥∥∥
∥∥∥p(j)

∥∥∥

= (1 + α2)
∥∥∥p(i)

∥∥∥
2
− 2(1− ζ2/4)α ·

∥∥∥p(i)
∥∥∥
2

= (1 + α2 − 2α+ αζ2/2)
∥∥∥p(i)

∥∥∥
2

>
αζ2

2
·
∥∥∥p(i)

∥∥∥
2
> ζ2 · 1

10min {vol(Si), vol(Sj)}
,

and the lemma follows. �
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4.3 Approximation Analysis of Spectral k-Means Algorithms

We now give an explanation of why spectral k-means algorithms perform well for solving the k-way
partitioning problem. Throughout the whole subsection, we assume that A1, . . . , Ak is any k-way
partition of G that is returned by a k-means algorithm with an approximation ratio of APT.

We first map every vertex u to du identical points in R
k. This “trick” allows us to bound the

volume of the overlap between the clusters retrieved by a k-means algorithm and the optimal ones.
For this reason, the cost function of partition A1, . . . , Ak of V [G] is defined by

COST(A1, . . . , Ak) , min
c1,...,ck∈Rk

k∑

i=1

∑

u∈Ai

du‖F (u) − ci‖2,

and the optimal clustering cost is defined by

∆2
k , min

partition A1,...,Ak

COST(A1, . . . , Ak),

i.e., we define the optimal clustering cost in the same way as in (4.1), except that we look at the
embedded points from vertices of G in the definition. From now on, we always refer to COST and
∆2

k as the COST and optimal COST values of points {F (u)}u∈V , where for technical reasons every
point is counted du times.

Lemma 4.4. The optimal solution of a k-means clustering satisfies ∆2
k 6 k2/Υ.

Proof. Since ∆2
k is obtained by minimizing over all partitions A1, . . . , Ak and c1, . . . , ck, we have

that

∆2
k 6

k∑

i=1

∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
. (4.6)

Hence the statement follows by applying Lemma 4.1. �

By Lemma 4.4 and the assumption that A1, · · · , Ak is an APT-approximation of an optimal
clustering, we have that COST(A1, . . . , Ak) 6 APT · k2/Υ. In the following, we show that this
upper bound of APT · k2/Υ suffices to show that this approximate clustering A1, . . . , Ak is close
to the “actual” clustering S1, . . . , Sk, in the sense that, (i) every Ai has low conductance, and (ii)
under a proper permutation σ : {1, . . . , k} → {1, . . . , k}, the symmetric difference between Ai and
Sσ(i) is low.

Lemma 4.5. Let A1, . . . , Ak be a partition of V . Suppose that, for every permutation of the indices
σ : {1, . . . , k} → {1, . . . , k}, there exists i such that vol

(
Ai△Sσ(i)

)
> 2ε vol

(
Sσ(i)

)
for ε > 1000k2

ζ2Υ
.

Then, it holds that

COST(A1, . . . , Ak) > min

{
εζ2

100
,
ζ2

100k

}
.

We will give a complete proof of Lemma 4.5 in the next subsection. Now we are ready to prove
Theorem 1.2.

Lemma 4.6. Let A1, . . . , Ak be a k-way partition that achieves an approximation ratio of APT.
Then, there exists a permutation σ of the indices such that

vol
(
Ai△Sσ(i)

)
6

2000k2 · APT
ζ2Υ

vol(Sσ(i))

for any 1 6 i 6 k.

13



Proof. The proof is by contradiction. Assume that there is i ∈ {1, . . . , k} such that

vol(Ai△Sσ(i)) >
2000k2 · APT

ζ2Υ
vol(Sσ(i)).

This implies by Lemma 4.5 that

COST(A1, . . . , Ak) > 10 · APT · k2/Υ,

which contradicts to the fact that A1, . . . , Ak is an APT-approximation to a k-way partition, whose
optimal cost is at most APT · k2/Υ. �

Lemma 4.7. Let A1, . . . , Ak be a k-way partition that achieves an approximation ratio of APT,
and σ : {1, · · · , k} → {1, · · · , k} be the permutation defined in Lemma 4.6. Let

ε =
2000k2 · APT

ζ2Υ
= O

(
k3 · APT

Υ

)
.

Then, it holds for every 1 6 i 6 k that

φG (Ai) = O(φG(Sσ(i)) + APT · k3/Υ).

Proof. For any 1 6 i 6 k, the number of leaving edges of Ai is upper bounded by

|∂ (Ai)| 6
∣∣∂
(
Ai \ Sσ(i)

)∣∣+
∣∣∂
(
Ai ∩ Sσ(i)

)∣∣

6
∣∣∂
(
Ai△Sσ(i)

)∣∣+
∣∣∂
(
Ai ∩ Sσ(i)

)∣∣

6 ε vol(Sσ(i)) + φG(Sσ(i)) vol(Sσ(i))

= (ε+ φG(Sσ(i))) vol(Sσ(i)),

where the third inequality follows from Lemma 4.6 and the fact that we use the same σ as in
Lemma 4.6. On the other hand, we have that

vol (Ai) > vol
(
Ai ∩ Sσ(i)

)
> (1− ε) vol(Sσ(i)).

Hence,

φG(Ai) 6
(ε+ φG(Sσ(i))) vol(Sσ(i))

(1− ε) vol(Sσ(i))
=
ε+ φG(Sσ(i))

1− ε = O(φG(Sσ(i)) + APT · k3/Υ). �

Theorem 1.2 follows by combining Lemma 4.6 and Lemma 4.7.

4.4 Proof of Lemma 4.5

The proof of Lemma 4.5 is based on the following high-level idea: suppose by contradiction that
there is a cluster Sj which is very different from every cluster Aℓ, where A1, . . . , Ak is an APT-
approximate k-way partition. Then there is a cluster Ai with significant overlaps with two different
clusters Sj and Sj′ . However, Lemma 4.3 gives that any two clusters are far from each other. This
implies that the COST value of A1, . . . , Ak is high, giving a contradiction.

Lemma 4.8. Suppose for every permutation π : {1, . . . , k} → {1, . . . , k} there exists index i such
that

vol
(
Ai△Sπ(i)

)
> 2ε vol(Sπ(i)).

Then one of the following statements holds:
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• For any index i there are indices i1 6= i2 and εi > 0 such that

vol(Ai ∩ Si1) > vol(Ai ∩ Si2) > εimin {vol(Si1), vol(Si2)},

and
∑k

i=1 εi > ε.

• There are indices i′, j, ℓ such that

vol(Ai′ ∩ Sj) > vol(Ai′ ∩ Sℓ) > vol(Sℓ)/k.

Proof. Let σ : {1, . . . , k} → {1, . . . , k} be the function defined by

σ(i) = argmax
16j6k

vol(Ai ∩ Sj)
vol(Sj)

.

We first assume that σ is one-to-one, i.e. σ is a permutation. By the hypothesis of the lemma, there
exists an index i such that vol(Ai△Sσ(i)) > 2ε vol(Sσ(i)). Without loss of generality, we assume
that i = 1. Notice that

vol
(
A1△Sσ(1)

)
=
∑

j 6=1

vol
(
Aj ∩ Sσ(1)

)
+
∑

j 6=σ(1)

vol (A1 ∩ Sj) . (4.7)

Hence, one of the summations on the right hand side of (4.7) is at least ε vol(Sσ(1)). Now the proof
is based on the case distinction.

Case 1: Assume that
∑

j 6=1 vol
(
Aj ∩ Sσ(1)

)
> ε vol(Sσ(1)). We define τj for 1 6 j 6 k, j 6= 1,

to be

τj =
vol
(
Aj ∩ Sσ(1)

)

vol
(
Sσ(1)

) .

We have that ∑

j 6=1

τj > ε,

and by the definition of σ we have that

vol
(
Aj ∩ Sσ(j)

)
> τj · vol

(
Sσ(j)

)

for any 1 6 j 6 k.
Case 2: Assume that ∑

j 6=σ(1)

vol (A1 ∩ Sj) > ε vol(Sσ(1)). (4.8)

Let us define τ ′j for 1 6 j 6 k, j 6= σ(1), to be

τ ′j =
vol(A1 ∩ Sj)
vol
(
Sσ(1)

) .

By (4.8) we have that ∑

j 6=σ(1)

τ ′j > ε.

This case holds by assuming vol
(
A1 ∩ Sσ(1)

)
> ε vol

(
Sσ(1)

)
, since otherwise we have

∑

j 6=1

vol
(
Aj ∩ Sσ(1)

)
> ε′ vol(Sσ(1))
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Ai
Si1 Si2

u
Bi

ci

p(i1) p(i2)

Figure 2: We use the fact that
∥

∥p(i1) − ci
∥

∥ >
∥

∥p(i2) − ci
∥

∥, and lower bound the value of COST function by only looking at
the contribution of points u ∈ Bi for all 1 6 i 6 k.

for ε′ = 1− ε, and this case was proven in Case 1.
Let us now consider the case that σ as defined earlier is not one-to-one. Hence, there is

j (1 6 j 6 k) such that j 6∈ {σ(1), . . . , σ(k)}. Since {A1, . . . , Ak} is a partition, there exists i′ such
that vol(Ai′ ∩ Sj) > vol(Sj)/k. However, by the definition of σ, we have that vol

(
Ai′ ∩ Sσ(i)

)
>

vol
(
Sσ(i′)

)
/k for σ(i) 6= j, which completes the proof. �

Proof of Lemma 4.5. By Lemma 4.8 for every i there exist i1 6= i2 such that

vol(Ai ∩ Si1) > εi min {vol(Si1), vol(Si2)},
vol(Ai ∩ Si2) > εi min {vol(Si1), vol(Si2)},

(4.9)

for some ε > 0, and
k∑

i=1

εi > min {ε, 1/k}.

Let ci be the center of Ai. Let us assume without loss of generality that ‖ci−p(i1)‖ > ‖ci−p(i2)‖,
which implies ‖p(i1)− ci‖ > ‖p(i1)− p(i2)‖/2. However, points in Bi = Ai ∩Si1 are far away from ci,
see Figure 2. We lower bound the value of COST(A1, . . . , Ak) by only looking at the contribution
of points in the Bis . Notice that by Lemma 4.1 the sum of the squared-distances between points
in Bi and p(i1) is at most k2/Υ, while the distance between p(i1) and p(i2) is large (Lemma 4.3).
Therefore, we have that

COST(A1, . . . , Ak) =

k∑

i=1

∑

u∈Ai

du‖F (u)− ci‖2

>
k∑

i=1

∑

u∈Bi

du‖F (u) − ci‖2

By applying the inequality a2 + b2 > (a− b)2/2, we have that
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COST(A1, . . . , Ak) >
k∑

i=1

∑

u∈Bi

du

(∥∥p(i1) − ci
∥∥2

2
−
∥∥∥F (u)− p(i1)

∥∥∥
2
)

>
k∑

i=1

∑

u∈Bi

du

∥∥p(i1) − ci
∥∥2

2
−

k∑

i=1

∑

u∈Bi

du

∥∥∥F (u)− p(i1)
∥∥∥
2

>
k∑

i=1

∑

u∈Bi

du

∥∥p(i1) − ci
∥∥2

2
− k2

Υ
(4.10)

>
k∑

i=1

∑

u∈Bi

du

∥∥p(i1) − p(i2)
∥∥2

8
− k2

Υ

>
k∑

i=1

ζ2 vol(Bi)

80min {vol(Si1), vol(Si2)}
− k2

Υ
(4.11)

>
k∑

i=1

ζ2εi min {vol(Si1), vol(Si2)}
80min {vol(Si1), vol(Si2)}

− k2

Υ

>
k∑

i=1

ζ2εi
80
− k2

Υ

> min

{
ζ2ε

80
,
ζ2

80k

}
− k2

Υ
> min

{
ζ2ε

100
,
ζ2

100k

}

where (4.10) follows from Lemma 4.1, (4.11) follows from Lemma 4.3 and the last inequality follows

from the assumption that ε > 1000k2

ζΥ .
�

5 Partitioning Well-Clustered Graphs in Almost-Linear Time

In this section we present the first almost-linear time algorithm for partitioning well-clustered
graphs. Our algorithm is motivated by the heat kernel embedding, which allows us to approximate
distances between F (u) in nearly-linear time. We introduce these objects in Section 5.1, present
an overview of our algorithm in Section 5.2, and give its analysis in Section 5.3.

5.1 Heat Kernel Embedding

The heat kernel is the fundamental solution of the heat equation

∂u

∂t
= −Lu.

Through the heat kernel, the Laplacian is associated with the rate of dissipation of heat. In
the discrete case, we can define the heat kernel of a graph. Formally, for any graph G with the
normalized Laplacian matrix L, the heat kernel of G is defined by

Ht , e−tL, (5.1)
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for a temperature t > 0. By the definition of the matrix exponential, we can rewrite (5.1) as

Ht =

n∑

i=1

e−tλifif
⊺
i , (5.2)

where λ1, . . . , λn are the eigenvalues of matrix L, with the corresponding eigenvectors f1, . . . , fn.
It is known that the heat kernel on a graph defined in (5.1) or similar forms relates to a geometric
embedding, and continuous random walks [LPW09]. We refer the reader to [Chu97] for further
details on the heat kernels.

In this work we view the heat kernel as a geometric embedding from vertices of G to points in
R
n. Formally, we define the heat kernel embedding ψt : V → R

n for any fixed t > 0 by

ψt(u) ,
1√
du
·
(
e−(t/2)·λ1f1(u), · · · , e−(t/2)·λnfn(u)

)
. (5.3)

This means the squared-distance between the embedded points ψ(u) and ψ(v) can be written as

ηt(u, v) , ‖ψt(u)− ψt(v)‖2. (5.4)

Notice that, in contrast to the spectral embedding (1.4) that maps vertices of G to points in
R
k, the heat kernel embedding maps vertices to points in R

n. We will resolve this issue with We
first show that under the condition of k = Ω(log n) and the gap assumption of Υ, there is a wide
range of t for which ηt(u, v) gives a good approximation of ‖F (u)− F (v)‖2.

Lemma 5.1. Let t ∈ (c log n/λk+1, 1/λk), for a constant c > 1. Then, it holds for every u, v ∈ V
that

1

e
· ‖F (u) − F (v)‖2 6 ηt(u, v) 6 ‖F (u) − F (v)‖2 +

1

nc−1
.

Proof. By the definition of the heat kernel distance in (5.4), we have that

ηt(u, v) =
n∑

i=1

e−tλi

(
fi(u)√
du
− fi(v)√

dv

)2

=

k∑

i=1

e−tλi

(
fi(u)√
du
− fi(v)√

dv

)2

+

n∑

i=k+1

e−tλi

(
fi(u)√
du
− fi(v)√

dv

)2

. (5.5)

Notice that it holds for 1 6 i 6 k that

1 > e−tλi > e−λi/λk >
1

e
, (5.6)

while it holds for k + 1 6 i 6 n that

e−tλi 6 e−c lognλi/λk+1 6 e−c lognλk+1/λk+1 =
1

nc
. (5.7)

By (5.6), the first summation in (5.5) is [1/e, 1]·‖F (u)−F (v)‖2 , and by (5.7) the second summation
in (5.5) is at most n−c+1. Hence, the statement holds. �

The proof above shows why heat kernel embedding can be used to approximate the spectral
embedding used in the spectral k-means algorithms: Under the condition of k = Ω(log n) and Υ =
Ω(k3), there is t ∈ (c log n/λk+1, 1/λk), such that, when viewing ‖ψt(u)−ψt(v)‖2, the contribution
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to ‖ψt(u)− ψt(v)‖2 from the first k coordinates of ψt(u) and ψt(v) gives a (1/e)-approximation of
‖F (u) − F (v)‖2, while the contribution to ‖ψt(u)− ψt(v)‖2 from the remaining n− k coordinates
of ψt(u) and ψt(v) is O(n−c), for a constant c. We remark that a similar intuition which views
the heat kernel embedding as a weighted combination of multiple eigenvectors was discussed in
[OSV12]. The main reason to use the heat kernel embedding instead of the spectral embedding
given by the first k eigenvectors is that there is an almost-linear time algorithm approximating
e−Ax for any SDD matrix A ∈ R

n×n and any vector x ∈ R
n.

Theorem 5.2 ([OSV12]). Given an n×n SDD matrix A with mA nonzero entries, a vector v and
a parameter δ > 0, there is an algorithm that can compute a vector x such that ‖e−Ay−x‖ 6 δ‖y‖
in time Õ((mA + n) log(2 + ‖A‖))6. Moreover, this algorithm corresponds to a linear operator
realized by a matrix Z such that for any vector x, its output is Zx.

The following lemma shows that we can obtain an embedding in almost-linear time, and this
embedding can be used to approximate the heat kernel distance between vertices.

Lemma 5.3. Let G be a graph with n vertices and m edges. Let k = Ω(log n), and Υ =
Ω(k3). Then, for any parameters t, ε > 0, we can compute an embedding of the vertices, xt(u) ∈
R
O(ε−2·logn), in Õ(ε−2 · (m + n) log(2 + t)) time7 such that with high probability it holds for all

vertices u and v that

(1− ε)ηt(u, v) 6 ‖xt(u)− xt(v)‖2 6 ηt(u, v) + n−c,

for some c > 1. In other words, the ℓ22-distance given by xt is a good approximation to the heat
kernel distance.

Proof. Since Ht = Ht/2Ht/2, we have that

ηt(u, v) =
∥∥Ht/2 (ξu − ξv)

∥∥2 .

Replacing Ht/2 with an operator Z of error δ, we get

∣∣∣‖Z (ξu − ξv)‖ − η1/2t (u, v)
∣∣∣ 6 δ ‖ξu − ξv‖ 6 δ,

where the last inequality follows from du, dv > 1. This is equivalent to

η
1/2
t (u, v)− δ 6 ‖Z (ξu − ξv)‖ 6 η

1/2
t (u, v) + δ. (5.8)

We invoke the Johnson-Lindenstrauss transform in a way analogous to the computation of effective
resistances from [SS11] and [KLP12]. For an O(ε−2 · log n) × n Gaussian matrix Q, with high
probability it holds for all u, v that

(1− ε) ‖Z (ξu − ξv)‖ 6 ‖QZ (ξu − ξv)‖ 6 (1 + ε) ‖Z (ξu − ξv)‖ . (5.9)

Combining (5.8) and (5.9) gives us that

(1− ε)
(
η
1/2
t (u, v) − δ

)
6 ‖QZ (ξu − ξv)‖ 6 (1 + ε)

(
η
1/2
t (u, v) + δ

)
.

6The Õ notation here hides poly(log n) and poly(log(1/δ)) factors.
7The Õ notation here hides factors of log(n/ε).
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Square both sides, and invoking the inequality

(1− ε)α2 − (1 + ε−1)b2 6 (a+ b)2 6 (1 + ε)α2 + (1 + ε−1)b2,

then gives

(1− 5ε) ηt(u, v)− 2δ2ε−1 6 ‖QZ (ξu − ξw)‖2 6 (1 + 5ε) ηt(u, v) + 2δ2ε−1.

Scaling QZ by a factor of (1 + 5ε)−1, and appending an extra entry in each vector to create an
additive distortion of 2δε−1 then gives the desired bounds when δ is set to εn−c. The running
time then follows from ‖L‖ 6 2 and the performance of the approximate exponential algorithm
from [OSV12] described in Theorem 5.2. �

Combing Lemma 5.1 with Lemma 5.3, we obtain the following result:

Lemma 5.4. Let G be a graph with n vertices and m edges. Let k = Ω(log n), and Υ = Ω(k3).
Then, there is an embedding of vertices xt(u) ∈ R

O(ε−2·logn), which is computable in Õ(ε−2 ·(m+n))
time, such that with high probability it holds for all u, v that

(1− ε) · 1
e
· ‖F (u)− F (v)‖2 6 ‖xt(u)− xt(v)‖2 6 ‖F (u) − F (v)‖2 + 2

nc−1
.

5.2 Algorithm Overview

Conceptually, our algorithm follows the general framework of k-means algorithms, which consists
of two key steps: a seeding step and a grouping step. The seeding step chooses k candidate centers
such that, with good probability, each one is close to the actual center of a different cluster. The
grouping step assigns each of the remaining vertices to the candidate center closest to it.

We emphasize that choosing good candidate centers is crucial for most k-means algorithms, and
has been studied extensively in literature (e.g. [AV07, ORSS12]). Recent results show that good
initial centers can be obtained by iteratively picking vertices from a non-uniform distribution,
leading to algorithms running in Ω(nk) time. The additional structure of our embedding allows for
a simpler sampling scheme motivated by these routines. Since ‖F (u)‖2 is approximately equal to
1/ vol(Si) for most vertices u ∈ Si, we can simply sample vertices with probabilities proportional
to du · ‖F (u)‖2 to ensure that we sample from the clusters uniformly. This allows us to show that
|C| = Θ(k log k) samples ensure that, for every cluster, we pick a vertex close to its center. The
well-separation property of the embedded points also allows us to remove the vertices in C which
are close to each other. This removal process ensures that at the end of the seeding step there is
exactly one vertex left from every cluster, forming a set C⋆.

After obtaining C⋆, we can proceed with the grouping step. Thanks once again to the well-
separation property of our points, we just need to assign every vertex to its nearest sampled center
in C⋆, which is much simpler than most k-means algorithms, e.g. [ORSS12]. Naively this takes
Ω(nk) time. We speed this up further by showing that for most vertices, the correct center is
an ε-approximate nearest neighbor even for moderate values of ε. This allows us to obtain an
almost-linear time routine based on approximate nearest neighbor data structures [IM98].

When k = O(poly log n), this framework directly gives an almost-linear time algorithm when
combined with algorithms for computing the first k eigenvectors. However, this becomes more
expensive as k becomes large. Note however that our algorithm only needs distance information
between the points {F (u)}u∈V [G]: in fact, we can check that any constant factor approximation
of these distances suffices. This means we can use embeddings in lower dimensional spaces that

20



approximate the distances given by F . Furthermore, we can compute such an embedding directly
using the heat kernel embedding given by the matrix e−tL, which can be approximated in nearly-
linear time [OSV12]. In the case of larger k, the gap assumption allows us to show that there is
t ∈ (c log n/λk+1, 1/λk) for which heat kernel distances approximate distances in F well. Moreover,
if we consider all t of the form t = 2i, i = O(log n), we will have considered a t in this range due
to the gap assumption. The minimum cost partition returned at these values of t will then give a
good clustering. Our overall algorithm framework for k = ω(log n) is described in Figure 3.

Cluster(G, k)

1. For 1 6 i 6 k do A′
i := ∅

2. COST(A′
1, . . . , A

′
k) :=∞

3. For t = 2, 4, 8, . . . ,poly(n) do

(a) N ← Θ(k log k)

(b) (c1, . . . , ck)← SeedAndTrim(G, N , k, t)

(c) Compute a partition A1, . . . , Ak of V : for every v ∈ V assign v to its nearest center
ci using the algorithm of the ε-NNS problem with ε = log k.

(d) If COST(A1, . . . , Ak) 6 COST(A′
1, . . . , A

′
k) SetA

′
i := Ai for 1 6 i 6 k

4. Return(A′
1, · · · , A′

k)

Figure 3: Clustering Algorithm

Remark 5.5. Notice that both the algorithm and analysis in the case of k = Ω(log n) are more
involved, as additional approximation to the spectral embedding is needed. Hence, in the rest of
this section, we only focus on the case of k = Ω(log n). However, we still use the embedding F (u),
and due to Lemma 5.4, we can get a constant factor approximation guarantee when we use xt(u)
instead of F (u).

5.3 Analysis of the Algorithm

In this subsection, we analyze the seeding step, and the group step, as well as the approximate
guarantees of the clusters returned by our algorithm. Throughout this section we will assume that
Υ = Ω(k4 log3 n).

Analysis of the Seeding Step. In the seeding step, we sample N , Θ(k log k) vertices, each
with probability proportional to du‖F (u)‖2. After that we delete the sampled vertices that are
close to each other until there are exactly k vertices left. A formal description of this routine is in
Figure 4.

Now we analyze the seeding step. For any 1 6 i 6 k, we define Ei to be

Ei ,
∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
,
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(c1 . . . cN ) = SeedAndTrim(G,N, k, t)

1. Compute an approximate embedding xt:

(a) if k = O(log n), compute the embedding using approximate eigenvector computations;

(b) else, compute approximates distances in Ht as described in Lemma 5.3 with error
ε < 0.1, c = 5.

2. For i = 1 . . . N do

(a) Set ci ← u with probability proportional to du‖xt(u)‖2.

3. For each i = 2 . . . N do

(a) Delete all cj with j < i such that ‖xt(ci)− xt(cj)‖2 < ‖xt(ci)‖2
104k

.

Figure 4: Seeding Algorithm. For simplicity in Step 2 and 3, we only write the case of k = Ω(log n). When k = O(logn), we
can simply use ‖F (u)‖ to replace xt(u).

and define the radius of Si to be

Rα
i ,

α · Ei
vol(Si)

for some parameter α, i.e., Rα
i is the approximate mean square error in cluster Si. We define

COREα
i ⊆ Si to be the set of vertices whose ℓ22-distance to p(i) is at most Rα

i , i.e.,

COREα
i ,

{
u ∈ Si :

∥∥∥F (u)− p(i)
∥∥∥
2
6 Rα

i

}
.

By the averaging argument it holds that

vol(Si \ COREα
i ) 6

∑
u∈Si

du
∥∥F (u)− p(i)

∥∥2

Rα
i

=
vol(Si)

α
,

and therefore vol(COREα
i ) >

(
1− 1

α

)
vol(Si). From now on, we assume that α = Θ(N logN).

Lemma 5.6. For each cluster Si, it holds that

∑

u∈CORE
α
i

du · ‖F (u)‖2 >
9

10

(
1− 1

100N

)
,

and also the sum over the vertices not in the cores satisfies

k∑

i=1

∑

u/∈CORE
α
i

du · ‖F (u)‖2 6
k

100N
.
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Proof. By the definition of COREα
i , we have that

k∑

i=1

∑

u∈CORE
α
i

du · ‖F (u)‖2 >
1

α

k∑

i=1

∫ α

0

∑

u∈CORE
ρ
i

du · ‖F (u)‖2dρ

>
1

α

k∑

i=1

∫ α

0

(∥∥∥p(i)
∥∥∥−

√
Rρ

i

)2

vol(COREρ
i )dρ (5.10)

>
1

α

k∑

i=1

∫ α

0

(∥∥∥p(i)
∥∥∥
2
− 2
√
Rρ

i ·
∥∥∥p(i)

∥∥∥
)(

1− 1

ρ

)
vol(Si)dρ (5.11)

>
1

α

∫ α

0

(
k − 2

k∑

i=1

√
11 · Eiρ

10

)(
1− 1

ρ

)
dρ (5.12)

where (5.10) follows from the fact that for all u ∈ CORE
ρ
i , ‖F (u)‖ > ‖p(i)‖ −

√
Rρ

i , (5.11) from

vol(COREρ
i ) >

(
1− 1

ρ

)
vol(Si), and (5.12) from the definition of Rρ

i and the fact that
∑k

1=1

∥∥p(i)
∥∥2 ·

vol(Si) = k. By the Cauchy-Schwarz inequality, we have that

k∑

i=1

√
11Eiρ
10

6

√√√√k ·
k∑

i=1

11

10
Eiρ 6

√
11 · k3ρ
10 ·Υ ,

and combing this with (5.12) gives us that

k∑

i=1

∑

u∈CORE
α
i

du · ‖F (u)‖2 >
1

α

∫ α

0

(
k − 2

√
11 · k3ρ
10Υ

)(
1− 1

ρ

)
dρ (5.13)

>
1

α

∫ α

0

(
k − 2

√
11 · k3ρ
10Υ

− k

ρ

)
dρ

> k

(
1−

√
k · α
Υ
− lnα

α

)

> k

(
1− 1

100N

)
,

where the last inequality holds by assuming α = Θ(N logN) and Υ > 100c2kN3 logN for a
sufficiently large constant c. Combing this with the fact

∑

u∈V [G]

du‖F (u)‖2 =
∑

u∈V [G]

k∑

i=1

f2i (u) = k

yields the second statement of the lemma.
Using a similar argument we can show that

∑

u∈CORE
α
i

du · ‖F (u)‖2 >
9

10

(
1− 1

cN

)
,

which finishes the proof. �

23



The next lemma shows that, after sampling Θ(k log k) vertices, with constant probability all
the sampled vertices are from the cores of k clusters, and every core contains at least one sampled
vertex.

Lemma 5.7. Assume that N = Ω(k log k) vertices are sampled, in which every vertex is sampled
with probability proportional to du ·‖F (u)‖2. Then, with constant probability the set Z = {c1 . . . cN}
of sampled vertices has the following properties:

1. Set Z only contains vertices from the cores, i.e. Z ⊆ ⋃k
i=1 CORE

α
i , and

2. Set Z contains at least one vertex from each cluster, i.e.

Z ∩ Si 6= ∅ ∀1 6 i 6 k.

Proof. By Lemma 5.4, it holds for every vertex u that

1

2e
· ‖F (u)‖2 6 ‖xt(u)‖2 6 ‖F (u)‖2 + 1

n5
.

Since
∑

u∈V [G]

du‖F (u)‖2 =
∑

u∈V [G]

k∑

i=1

f2i (u) = k,

the total probability mass that we use to sample vertices, i.e.
∑

u∈V [G] du‖xt(u)‖2, is between 1
2e ·k

and k + 1. We first bound the probability that we sample at least one vertex from every core. For
every 1 6 j 6 k, we have that the probability of each sample coming from COREα

j is at least

∑
u∈CORE

α
i
du · ‖xt(u)‖2

k + 1
>

∑
u∈CORE

α
i
du · ‖F (u)‖2

2e · (k + 1)
>

9
10

(
1− 1

100N

)

2e · (k + 1)
>

1

10k
.

Therefore, the probability that we never encounter a vertex from sampling N vertices is at most

(
1− 1

10k

)N

6
1

10k
.

Also, the probability that a sampled vertex is outside the cores of the clusters is at most

∑
u/∈CORE

α
i ,∀i du · ‖xt(u)‖

2

k/2
6

∑
u/∈CORE

α
i ,∀i du ·

(
‖F (u)‖2 + n−5

)

k/2

6
k

100N + n−4

k/2
6

1

n2
+

2

100N
.

Taking a union bound over all these events gives that the total probability of undesired events is
bounded by

k · 1

10k
+N ·

(
1

n2
+

2

100N

)
6

1

2
. �

We now show that points from the same core are much closer between each other than points
from different cores. In other words, we show that the procedure SeedAndTrim succeeds with
constant probability.
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Lemma 5.8. For any two vertices u, v ∈ COREα
i , it holds that

‖xt(u)− xt(v)‖2 6
12αk2

Υvol(Si)
<

1

2 · 104k .

Proof. By the definition of COREα
i , it holds for any u ∈ COREα

i that

∥∥∥F (u)− p(i)
∥∥∥ 6

√
Rα

i

By the triangle inequality, it holds for any u ∈ COREα
i and v ∈ COREα

i that

‖F (u) − F (v)‖ 6 2
√
Rα

i ,

or

‖F (u) − F (v)‖2 6 4Rα
i =

4αEi
vol(Si)

6
4αk2

Υvol(Si)
,

where the last inequality follows from the fact that
∑k

i=1 Ei 6 k2/Υ. On the other hand, we also
have

‖F (u)‖2 >
(∥∥∥p(i)

∥∥∥−
√
Ri

)2
>

9

10
·
(
1− 1

cN

)
·
∥∥∥p(i)

∥∥∥
2
>

4

5 vol(Si)
.

and

‖F (u)‖2 6
(∥∥∥p(i)

∥∥∥+
√
Ri

)2
6

11

10

(
1 +

1

cN

)
·
∥∥∥p(i)

∥∥∥
2
6

6

5 vol(Si)
.

Therefore we can incorporate the conditions on xt(u) to give

‖xt(u)− xt(v)‖2 6 ‖F (u)− F (v)‖2 + 1

n3

6
4αk2

Υvol(Si)
+

1

n3

6
10αk2

Υ
‖F (u)‖2

6
12αk2

Υvol(Si)
.

By the conditions on α and Υ, and the fact that ‖xt(u)‖2 6 2‖F (u)‖2, it also holds

‖xt(u)− xt(v)‖2 6
10αk2

Υ
‖F (u)‖2 < ‖xt(u)‖

2

2 · 104k .

�

Lemma 5.9. For any u ∈ COREα
i and v ∈ COREα

j where i 6= j, we have

‖xt(u)− xt(v)‖2 >
1

1000k vol(Si)
>
‖xt(u)‖2
104k

.
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Proof. By the triangle inequality, it holds for any pair of u ∈ COREα
i and v ∈ COREα

j that

‖F (u)− F (v)‖ >
∥∥∥p(i) − p(j)

∥∥∥−
∥∥∥F (u)− p(i)

∥∥∥−
∥∥∥F (v)− p(j)

∥∥∥ .

By Lemma 4.3, we have for any i 6= j,

∥∥∥p(i) − p(j)
∥∥∥
2
>

1

10kmin {vol(Si), vol(Sj)}
.

Combing this with the fact that

∥∥∥F (u) − p(i)
∥∥∥ 6

√
Rα

i 6

√
α · k2

Υvol(Si)
,

we obtain that

‖F (u)− F (v)‖ >
∥∥∥p(i) − p(j)

∥∥∥−
∥∥∥F (u)− p(i)

∥∥∥−
∥∥∥F (v) − p(j)

∥∥∥

>

√
1

10kmin {vol(Si), vol(Sj)}
−
√

αk2

Υvol(Si)
−
√

αk2

Υvol(Sj)

>

√
1

100kmin {vol(Si), vol(Sj)}

Hence, we have that

‖xt(u)− xt(v)‖2 >
1

2e
‖F (u)− F (v)‖2 > 1

1000k vol(Si)
>
‖xt(u)‖2
104k

. �

Combing Lemma 5.8 and Lemma 5.9 directly gives us the following result:

Lemma 5.10. The procedure SeedAndTrim returns in Õ(m+ k2) time a set of centers c1 . . . ck
such that each COREα

i contains exactly one ci.

Analysis of the Grouping Step. After the seeding step, we obtain k vertices c1, · · · , ck. The
analysis about the seeding step assures that these k vertices belong to k different clusters. The next
step is to assign the remaining n − k vertices to different clusters. Based on the well-separation
property, we can simply ask every vertex to choose its nearest point in the embedded space. Hence
we reduce this step to the following ε-approximate nearest neighbor problem (ε-NNS).

Problem 1 (ε-approximate nearest neighbor Problem). Given a set of point P ∈ R
d and a point

q ∈ R
d, find a point p ∈ P such that, for all p′ ∈ P , ‖p − q‖ 6 (1 + ε)‖p′ − q‖.

The grouping step of our algorithm uses the algorithm in [IM98] for the ε-NNS problem.

Theorem 5.11 (Proposition 1 of [IM98]). Given a set of points P ⊂ R
d, and ε > 0, there is an

algorithm for ε-NNS which uses Õ
(
|P |1+ 1

1+ε + d|P |
)
preprocessing and requires Õ

(
d|P | 1

1+ε

)
query

time.

By applying Theorem 5.11 and setting ε = Θ(log k), the grouping step takes Õ(nd) time in
total.
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Approximation Analysis of the Algorithm. Now we analyze the approximation ratios of the
returned k-way partition.

Lemma 5.12. Let (A1, . . . , Ak) = Cluster(G, k) be the partition of V [G] computed by the algo-
rithm of Figure 3. Then, under a proper permutation of the indices, for any 1 6 i 6 k it holds

vol(Ai△Si) = O

(
k3 log2 k

Υ
vol(Si)

)

and

φG(Ai) = O

(
φG(Si) +

k3 log2 k

Υ

)
.

Proof. First we bound the symmetric difference between Ai and its correspondence Si (1 6 i 6 k).

vol(Ai△Si) 6
∑

i 6=j

vol

({
v ∈ Si : ‖ci − xt(v)‖ >

‖cj − xt(v)‖
log k

})

+
∑

i 6=j

vol

({
v ∈ Sj : ‖cj − xt(v)‖ >

‖ci − xt(v)‖
log k

})
(5.14)

6 vol

({
v ∈ Si : ‖ci − xt(v)‖2 >

1

1000k log2 k vol(Si)

})

+
∑

i 6=j

vol

({
v ∈ Sj : ‖cj − xt(v)‖2 >

1

1000k log2 k vol(Si)

})
(5.15)

6
2000k3 log2 k

Υ
vol(Si). (5.16)

where (5.14) follows from Theorem 5.11 by setting ε = log k − 1, (5.15) follows from Lemma 5.9,
and (5.16) follows by Lemma 4.1 and the fact that

∑

u∈Sj

dv‖xt(u)− cj‖2 6 2
∑

u∈Sj

dv

∥∥∥F (u)− p(j)
∥∥∥
2

for any j.
The bound in the outer conductance of the Ai’s follows from the same argument of Lemma 4.7.

�
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A Auxiliary Results

Theorem A.1 (Geršgorin Circle Theorem). Let A be an n×n matrix , and let Ri(A) =
∑

j 6=i |Ai,j|,
for 1 6 i 6 n. Then, all eigenvalues of A are in the union of Geršgorin Discs defined by

n⋃

i=1

{z ∈ C : |z −Ai,i| 6 Ri(A)} .

Theorem A.2 (Corollary 6.3.4 [HJ12]). Let A be an n × n normal matrix with eigenvalues
λ1, . . . , λn and E be an n×n matrix. If λ̂ is an eigenvalue of A+E, then there is some eigenvalue
λi of A for which |λ̂− λi| 6 ‖E‖.

B Generalization For Weighted Graphs

Our result can be easily generalized to more general graphs, i.e., undirected weighted graphs for
which the edge weights are polynomially bounded. Formally, for any weighted graph G = (V,E,w :
E → R), we define the weighted adjacency matrix A of G by

Au,v =

{
w(u, v) if {u, v} ∈ E,
0 otherwise.

where w(u, v) = w(v, u) is the weight on the edge {u, v}. For every vertex u ∈ V we define the
weighted degree of u as du =

∑
{u,v}∈E w(u, v), and the degree matrix D is defined by Du,u = du.

We can define the Laplacian matrix L and the heat kernel Ht in the same way as in the case of
unweighted graphs. Then, it is easy to verify that all the results in Section 5 hold.
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