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Abstract

Canonical orderings [STOC’88, FOCS’92] have been used as a key tool in graph drawing,
graph encoding and visibility representations for the last decades. We study a far-reaching
generalization of canonical orderings to non-planar graphs that was published by Lee Mondshein
in a PhD-thesis at M.I.T. as early as 1971.

Mondshein proposed to order the vertices of a graph in a sequence such that, for any i, the
vertices from 1 to i induce essentially a 2-connected graph while the remaining vertices from
i + 1 to n induce a connected graph. Mondshein’s sequence generalizes canonical orderings
and became later and independently known under the name non-separating ear decomposition.
Currently, the best known algorithm for computing this sequence achieves a running time of
O(nm); the main open problem in Mondshein’s and follow-up work is to improve this running
time to a subquadratic time.

In this paper, we present the first algorithm that computes a Mondshein sequence in time
and space O(m), improving the previous best running time by a factor of n. In addition, we
illustrate the impact of this result by deducing linear-time algorithms for several other problems,
for which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning trees in a 3-connected
graph in linear time, improving a result of Cheriyan and Maheshwari [J. Algorithms 9(4)]. Sec-
ondly, we improve the preprocessing time for the output-sensitive data structure by Di Battista,
Tamassia and Vismara [Algorithmica 23(4)] that reports three internally disjoint paths between
any given vertex pair from O(n2) to O(m). Finally, we show how a very simple linear-time
planarity test can be derived once a Mondshein sequence is computed.

keywords: Mondshein sequence, graph drawing, canonical ordering, non-separating ear decomposition,
independent spanning trees, reporting disjoint paths

1 Introduction
Canonical orderings are a fundamental tool used in graph drawing, graph encoding and visibility
representations; we refer to [1] for a wealth of applications. For maximal planar graphs, canon-
ical orderings were first introduced by de Fraysseix, Pach and Pollack [6, 7] in 1988. Kant then
generalized canonical orderings to arbitrary 3-connected planar graphs [12, 13].

Surprisingly, the concept of canonical orderings can be traced back much further, namely to
a long-forgotten PhD-thesis at M.I.T. by Lee F. Mondshein [15] in 1971. In fact, Mondshein
proposed a sequence that generalizes canonical orderings to non-planar graphs, hence making them
applicable to arbitrary 3-connected graphs. Mondshein’s sequence was, independently and in a
different notation, found later by Cheriyan and Maheshwari [4] under the name non-separating ear
decompositions.

Computationally, it is an intriguing question how fast a Mondshein sequence can be computed.
Mondshein himself gave an involved algorithm with running time O(m2). Cheriyan showed that
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it is possible to achieve a running time of O(nm) by using a theorem of Tutte that proves the
existence of non-separating cycles in 3-connected graphs [19]. Both works (see [15, p 1.2] and [4,
p. 532]) state as main open problem, whether it is possible to compute a Mondshein sequence in
subquadratic time.

We present the first algorithm that computes a Mondshein sequence in time and space O(m),
hence solving the above 40-year-old problem. The interest in such a computational result stems
from the fact that 3-connected graphs play a crucial role in algorithmic graph theory; we illustrate
this in three direct applications by giving linear-time (and hence optimal) algorithms for several
problems, for two of which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning trees in a 3-connected graph
in linear time, improving a result of Cheriyan and Maheshwari [4]. Second, we improve the prepro-
cessing time from O(n2) to O(m) for a data structure by Di Battista, Tamassia and Vismara [8]
that reports three internally disjoint paths in a 3-connected graph between any given vertex pair in
time O(`), where ` is the total length of these paths. Finally, we illustrate the usefulness of Mond-
shein’s sequence by giving a very simple linear-time planarity test, once a Mondshein sequence is
computed.

We start by giving an overview of Mondshein’s work and its connection to canonical orderings
and non-separating ear decompositions in Section 3. Section 4 explains the idea of our linear-time
algorithm and states its main technical lemma, the Path Replacement Lemma. An in-depth proof
of correctness of this lemma is then given in Section 5. Section 6 covers three applications of our
linear-time algorithm.

2 Preliminaries
We use standard graph-theoretic terminology and assume that all graphs are simple.

Definition 1 ([14, 21]). An ear decomposition of a 2-connected graph G = (V,E) is a sequence
(P0, P1, . . . , Pk) of subgraphs of G that partition E such that P0 is a cycle and every Pi, 1 ≤ i ≤ k,
is a path that intersects P0 ∪ · · · ∪ Pi−1 in exactly its end points. Each Pi is called an ear. An ear
is short if it is an edge and long otherwise.

According to Whitney [21], every ear decomposition has exactly m− n+ 1 ears. For any i, let
Gi = P0 ∪ · · · ∪ Pi and Vi := V − V (Gi). We write Gi to denote the graph induced by Vi. We
observe that Gi does not necessarily contain all edges in E − E(Gi); in particular, there may be
short ears in E − E(Gi) that have both of their endpoints in Gi.

For a path P and two vertices x and y in P , let P [x, y] be the subpath in P from x to y. A
path with endpoints v and w is called a vw-path. A vertex x in a vw-path P is an inner vertex of
P if x /∈ {v, w}. For convenience, every vertex in a cycle is an inner vertex of that cycle.

The set of inner vertices of an ear P is denoted as inner(P ). The inner vertex sets of the ears
in an ear decomposition of G play a special role, as they partition V (G). Every vertex of G is
contained in exactly one long ear as inner vertex. This gives readily the following characterization
of Vi.

Observation 2. For every i, Vi is the union of the inner vertices of all long ears Pj with j > i.

We will compare vertices and edges of G by their first occurrence in a fixed ear decomposition.

Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge e ∈ G, let
birthD(e) be the index i such that Pi contains e. For a vertex v ∈ G, let birthD(v) be the minimal
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i such that Pi contains v (thus, PbirthD(v) is the ear containing v as an inner vertex). Whenever D
is clear from the context, we will omit D.

Clearly, for every vertex v, the ear Pbirth(v) is long, as it contains v as an inner vertex.

3 Generalizing Canonical Orderings
We give a compact rephrasing of canonical orderings in terms of non-separating ear decompositions.
This will allow for an easier comparison of a canonical ordering and its generalization to non-planar
graphs, as the latter is also based on ear decompositions. We assume that the input graphs are
3-connected and, when talking about canonical orderings, planar. It is well-known that maximal
planar graphs, which were considered in [6], form a subclass of 3-connected graphs (apart from the
triangle-graph).

Definition 4. An ear decomposition is non-separating if, for 0 ≤ i ≤ m− n, every inner vertex of
Pi has a neighbor in Gi unless Gi = ∅.

The name non-separating refers to the following helpful property.

Lemma 5. In a non-separating ear decomposition D, Gi is connected for every i.

Proof. Let u be an inner vertex of the last long ear in D. If Gi = ∅, the claim is true. Otherwise,
consider any vertex x in Gi. In order to show connectedness, we exhibit a path from x to u
in Gi. If x is an inner vertex of Pbirth(u), this path is just the path Pbirth(u)[x, u]. Otherwise,
birth(x) < birth(u). Then x has a neighbor in Gbirth(x), since D is non-separating, and, according
to Observation 2, this neighbor is an inner vertex of some ear Pj with j > birth(x). Applying
induction on j gives the desired path to u.

A plane graph is a graph that is embedded into the plane. In particular, a plane graph has a
fixed outer face. We define canonical orderings as special non-separating ear decompositions.

Definition 6 (canonical ordering). Let G be a 3-connected plane graph having the edges tr and
ru in its outer face. A canonical ordering with respect to tr and ru is an ear decomposition D of
G such that

1. tr ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not contain ru, and
3. D is non-separating.

The fact that D is non-separating plays a key role for both canonical orderings and their
generalization to non-planar graphs. E.g., for canonical orderings, Lemma 5 implies that the plane
graph G can be constructed from P0 by successively inserting the ears of D to only one dedicated
face of the current embedding, a routine that is heavily applied in graph drawing and embedding
problems.

The original definition of canonical orderings by Kant [13] states the following additional prop-
erties.

Lemma 7 (further properties). For every 0 ≤ i ≤ m− n in a canonical ordering,
4. the outer face Ci of the plane subgraph Gi ⊆ G is a (simple) cycle that contains tr,
5. Gi is 2-connected and every separation pair of Gi has both its vertices in Ci,
6. for i > 0, the neighbors of inner(Pi) in Gi−1 are contained consecutively in Ci−1, and
7. if |inner(Pi)| ≥ 2, each inner vertex of Pi has degree two in Gi.
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Properties 4 and 5 can be easily deduced from Definition 6 as follows: Every Gi is a 2-connected
plane subgraph of G, as Gi has an ear decomposition. According to [18, Corollary 1.3], all faces of
a 2-connected plane graph form cycles. Thus, every Ci is a cycle and Property 4 follows directly
from the fact that tr is assumed to be in the fixed outer face of G. As noted in [1, Lemma 1], the
3-connectivity of G implies Property 5. Property 6 follows from Property 4, the fact that every
inner vertex of Pi must be outside Ci−1 (in G) and the Jordan Curve Theorem.

For the sake of completeness, we show how Property 7 is derived. Although it is not directly
implied by Definition 6, the following lemma shows that we can always assume it.

Lemma 8. Every canonical ordering can be transformed to a canonical ordering satisfying Prop-
erty 7 in linear time.

Proof. Consider any ear Pi 6= P0 with |inner(Pi)| ≥ 2 such that an inner vertex x of Pi has a
neighbor y in Gi−1. Then Pbirth(xy) = xy and birth(xy) > i. Let Z1 be a shortest path in Pi from
an endpoint of Pi to x and let Z2 be the path in Pi from x to the remaining endpoint. Replace Pi

with the two ears Z1 ∪ xy and Z2 and delete Pbirth(xy). This preserves Properties 1–3 (note that
u /∈ Pi, as |inner(Pi)| ≥ 2).

If a vertex x ∈ {r, t} has not degree 2 in P0, it has a non-consecutive neighbor y in P0. We
replace P0 with the shortest cycle C in P0 ∪ xy that contains r, t and y, delete Pbirth(xy) = xy and
add the remaining path from x to y in P0−E(C) as new ear directly after C. This clearly preserves
Properties 1–3. We shortcut P0 in a similar way, when r and t have degree 2 in P0 and some vertex
x ∈ P0 − r − t has not degree 2. It is easy to see that the above operations can be computed in
linear total time.

Our definition of canonical orderings uses planarity only in one place: tr ∪ ru is assumed to be
part of the outer face of G. Note that the essential art of this assumption is that tr ∪ ru is part
of some face of G, as we can always choose an embedding for G having this face as outer face.
By dropping this assumption, our definition of canonical orderings can be readily generalized to
non-planar graphs: We merely require tr and ru to be edges in the graph.

This is in fact equivalent to the definition Mondshein used 1971 to define a (2,1)-sequence [15,
Def. 2.2.1], but which he gave in the notation of a special vertex ordering. This vertex ordering
actually refines the partial order inner(P0), . . . , inner(Pm−n) by enforcing an order on the inner
vertices of each path according to their occurrence on that path (in any direction). For conciseness,
we will instead stick to the following short ear-based definition, which is similar to the one given
in [4] but does not need additional degree-constraints.

Definition 9 ([15, 4]). Let G be a graph with an edge ru. A Mondshein sequence avoiding ru (see
Figure 1) is an ear decomposition D of G such that

1. r ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not contain ru, and
3. D is non-separating.

An ear decomposition D that satisfies Conditions 1 and 2 is said to avoid ru. Put simply, this
forces ru to be “added last” in D, i.e., strictly after the last long ear Pbirth(u) has been added. Note
that Definition 9 implies u /∈ P0, as Pbirth(u) contains only one inner vertex. As a direct consequence
of this and the fact that D is non-separating, G must have minimum degree 3 in order to have a
Mondshein sequence. Mondshein proved that every 3-connected graph has a Mondshein sequence.
In fact, also the converse is true.

Theorem 10. [4, 22] Let ru ∈ E(G). Then G is 3-connected if and only if G has a Mondshein
sequence avoiding ru.
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Figure 1: A Mondshein sequence of a non-planar 3-connected graph.

We state two additional facts about Mondshein sequences. Since we replaced the assumption
that tr∪ ru is in the outer face of G with the very small assumption that ru is an edge of G (which
does not assume anything about t at all), it is natural to ask how we can extract t (and thus, a
canonical ordering) from a Mondshein sequence when G is plane. We choose t as any neighbor of
r in P0. Since P0 is non-separating and the non-separating cycles of a 3-connected plane graph are
precisely its faces [19], this satisfies Definition 6 and leads to the following observation.

Observation 11. Let D be a Mondshein sequence avoiding ru of a planar graph G and let t be a
neighbor of r in P0. Then D is a canonical ordering of the planar embedding of G whose outer face
contains tr ∪ ru.

Once having a Mondshein sequence, we can aim for a slightly stronger structure. A chord of
an ear Pi is an edge in G that joins two non-adjacent vertices of Pi. Let a Mondshein sequence be
induced if P0 is induced in G and every ear Pi 6= P0 has no chord in G, except possibly the chord
joining the endpoints of Pi. The following lemma shows that we can always expect Mondshein
sequences that are induced.

Lemma 12. Every Mondshein sequence can be transformed to an induced Mondshein sequence in
linear time.

Proof. Consider any ear Pi 6= P0 that has a chord xy such that the endpoints of Pi are not {x, y}.
Let Z be the path obtained from Pi by replacing Pi[x, y] ⊆ Pi with xy; we call the latter operation
short-cutting. We replace Pi with the two ears Z and Pi[x, y] in that order and delete Pbirth(xy) = xy.
Clearly, this preserves the sequence to be a Mondshein sequence.

In order to make P0 induced, consider the subgraph H of G that consists of P0 and the chords
of P0. Let t be a neighbor of r in P0 and let C be a shortest cycle in H that contains r and t.
We replace P0 with C and replace every ear Pi that is a chord of P0 and contained in C with the
path in P0 that has been short-cutted by Pi, followed by moving that path to the position directly
after P0. This preserves the sequence to be a Mondshein sequence. It is easy to see that the above
operations can be computed in linear total time.

4 Computing a Mondshein Sequence
Mondshein gave an involved algorithm [15] that computes his sequence in time O(m2). Indepen-
dently, Cheriyan and Maheshwari gave an algorithm that runs in time O(nm) and which is based on
a theorem of Tutte. At the heart of our linear-time algorithm is the following classical construction
of 3-connected graphs due to Barnette and Grünbaum [2] and Tutte [20, Thms. 12.64 and 12.65].
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Definition 13. The following operations on simple graphs are BG-operations (see Figure 2).
(a) vertex-vertex-addition: Add an edge between two distinct non-adjacent vertices
(b) edge-vertex-addition: Subdivide an edge ab, a 6= b, by a vertex v and add the edge vw for a

vertex w /∈ {a, b}
(c) edge-edge-addition: Subdivide two distinct edges by vertices v and w, respectively, and add the

edge vw

v

w

v

w

(a) vertex-vertex-addition

a b a b

w w

v

(b) edge-vertex-addition

a

c

b

d

a

c

b

d

v

w

(c) edge-edge-addition

Figure 2: BG-operations

Theorem 14 ([2, 20]). A graph is 3-connected if and only if it can be constructed from K4 using
BG-operations.

Hence, applying an BG-operation on a 3-connected graphs preserves it to be simple and 3-
connected. Let a BG-sequence of a 3-connected graph G be a sequence of BG-operations that
constructs G from K4. It has been shown that such a BG-sequence can be computed efficiently.

Theorem 15 ([17, Thms. 6.(2) and 52]). A BG-sequence of a 3-connected graph can be computed
in time O(m).

The outline of our algorithm is as follows. We start with a Mondshein sequence of K4, which is
easily obtained, and compute a BG-sequence of our 3-connected input graph by using Theorem 15.
The crucial part is now a careful analysis that a Mondshein sequence of a 3-connected graph G can
be modified to one of G′, where G′ is obtained from G by applying a BG-operation.

This last step is the main technical contribution of this paper and depends on the various
positions in the sequence in which the vertices and edges that are involved in the BG-operation
can occur. We will prove that there is always a modification that is local in the sense that the only
long ears that are modified are the ones containing a vertex that is involved in the BG-operation.

Lemma 16 (Path Replacement Lemma). Let G be a 3-connected graph with an edge ru. Let
D = (P0, P1, . . . , Pm−n) be a Mondshein sequence avoiding ru of G. Let G′ be obtained from G
by applying a single BG-operation Γ and let ru′ be the edge of G′ corresponding to ru. Then a
Mondshein sequence D′ of G′ avoiding ru′ can be computed from D using only constantly many
constant-time modifications.

We need some notation for describing the modifications. Let vw be the edge that was added by
Γ such that, if applicable, v subdivides ab ∈ E(G) and w subdivides cd ∈ E(G). Then the edge ru′
of G′ that corresponds to ru in G is either ru, rv or rw. Whenever we consider the edge ab or cd,
e.g. in a statement about birth(ab), we assume that Γ subdivides ab, respectively, cd. W.l.o.g., we
further assume that birth(a) ≤ birth(b), birth(c) ≤ birth(d) and birth(d) ≤ birth(b). If not stated
otherwise, the birth-operator refers always to D in this section. Let S ⊆ {av, vb, vw, cw,wd} be
the set of new edges in G′.

We prove the Path Replacement Lemma by giving a detailed replacement scheme as follows.
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Lemma 17. There is a Mondshein sequence D′ = (P ′0, P ′1, . . . , P ′m−n+1) of G′ avoiding ru (respec-
tively, rv or rw if Γ subdivides ru) that can be obtained from D by performing the following four
modifications:
M1) replacing the long ear Pbirth(b) with 1 ≤ i ≤ 3 consecutive long ears P ′b1

, P ′b2
and P ′b3

, each of
which consists of edges in Pbirth(b) ∪ S (for notational convenience, we assume that all three
ears exist such that P ′bj

:= P ′bi
for every j > i)

M2) if Pbirth(cd) is long and birth(d) < birth(b), replacing Pbirth(cd) with the long ear P ′cwd that is
obtained from Pbirth(cd) by subdividing cd with w (in particular, birth(cd) = birth(d) < birth(b)
in this case)

M3) if Pbirth(ab) is short, deleting or replacing Pbirth(ab) with an edge in {va, vb, vw}; if Pbirth(cd) is
short, deleting or replacing Pbirth(cd) with an edge in {wc,wd}

M4) possibly adding vw as new last ear

In particular, D′ can be constructed from D as follows (Figures 3 and 4 determine the new ears
P ′b1

–P ′b3
of M1).

(1) Γ is a vertex-vertex-addition
Obtain D′ from D by adding the new ear vw at the end.

(2) Γ is an edge-vertex-addition
(a) birth(b) = birth(ab)

Let a′ and b′ be the endpoints of Pbirth(b) such that a′ is closer to a than to b on Pbirth(b)
(a′ may be a, but b′ 6= b).
(i) w /∈ Gbirth(b) . birth(w) > birth(b)

Obtain D′ from D by subdividing ab ⊆ Pbirth(b) with v and adding the new ear vw
at the end.

(ii) w ∈ Gbirth(b) − Pbirth(b) . birth(w) < birth(b) and w /∈ {a′, b′}
Let Z be the path obtained from Pbirth(b) by replacing ab with av∪ vb. Let Z1 be the
a′w-path in Z ∪ vw. Obtain D′ from D by replacing Pbirth(b) with the two ears Z1
and Z[v, b′] in that order.

(iii) w ∈ Pbirth(b) . birth(w) = birth(b) or w ∈ {a′, b′}
Let Z be obtained from Pbirth(b) by replacing ab with av ∪ vb. Let Z2 be the vw-path
in Z (if birth(b) = 0, Z is a cycle and there are two vw-paths; we then choose one
that does not contain r as an inner vertex). Let Z1 be obtained from Z by replacing
Z2 with the edge vw. Obtain D′ from D by replacing Pbirth(b) with the two ears Z1
and Z2 in that order.

(b) birth(b) < birth(ab) and Pbirth(ab) = ab
(i) birth(w) > birth(b) . w /∈ Gbirth(b)

Obtain D′ from D by deleting Pbirth(ab) = ab, adding the new ear av ∪ vb directly
after Pbirth(b) and adding the new ear vw at the end.

(ii) birth(w) < birth(b) . w ∈ Gbirth(b)−1 and birth(b) > 0
(A) birth(a) < birth(b) and ab = ru

Obtain D′ from D by adding the new ear wv ∪ vb directly after Pbirth(b) and
replacing Pbirth(ab) = ab with av.

(B) birth(a) < birth(b) and ab 6= ru
Obtain D′ from D by adding the new ear av ∪ vw directly after Pbirth(b)−1 and
replacing Pbirth(ab) = ab with vb.

(C) birth(a) = birth(b)
Let a′ and b′ be the endpoints of Pbirth(b) such that a′ is closer to a than to b on
Pbirth(b). We assume w.l.o.g. that w 6= a′, as otherwise, by symmetry, {a′, a} can
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be replaced with {b′, b} and vice versa. Let Z1 = av ∪ vw ∪ Pbirth(b)[a′, a] and
Z2 = Pbirth(b)[a, b′]. Obtain D′ from D by replacing Pbirth(b) with the two ears
Z1 and Z2 in that order and replacing Pbirth(ab) = ab with vb.

(iii) birth(w) = birth(b) . w ∈ inner(Pbirth(b)) and w /∈ {a, b}
If birth(a) = birth(b) > 0, let a′ and b′ be the endpoints of Pbirth(b) such that a′ is
closer to a than to b on Pbirth(b). We distinguish the following subcases.
(A) birth(a) = birth(b) > 0 and w lies strictly between either a and a′ or b and b′ in

Pbirth(b) (say w.l.o.g. between b and b′)
Let Z1 = av ∪ vw ∪ Pbirth(b)[a′, a] ∪ Pbirth(b)[w, b′] and let Z2 = Pbirth(b)[a,w].
Obtain D′ from D by replacing Pbirth(b) with the two ears Z1 and Z2 in that
order and replacing Pbirth(ab) = ab with vb.

(B) birth(a) = birth(b) > 0 and w lies strictly between a and b in Pbirth(b)
Let Z1 = av∪vb∪Pbirth(b)[a′, a]∪Pbirth(b)[b, b′] and let Z2 = Pbirth(b)[a, b]. Obtain
D′ from D by replacing Pbirth(b) with the two ears Z1 and Z2 in that order and
replacing Pbirth(ab) = ab with vw.

(C) birth(a) = birth(b) = 0
Consider the three edge-disjoint paths from a to w, from w to b and from b to
a in the cycle Pbirth(b). At least one of these paths must contain r; let Z be the
union of the other two paths. Obtain D′ from D by replacing Z in P0 with the
two edges connecting v to the endpoints of Z, adding the new ear Z directly
after P0 and replacing Pbirth(ab) = ab with the edge connecting v to the vertex
in {a, b, w} that is not an endpoint of Z.

(D) birth(a) < birth(b)
Let b′ and b′′ be the two endpoints of Pbirth(b) such that b′ is closer to w than to b
on Pbirth(b). Let Z1 = Pbirth(b)[w, b′], Z2 = Pbirth(b)[w, b′′], Z3 = Pbirth(b)[b, b′] and
Z4 = Pbirth(b)[b, b′′]. If b′ 6= a, obtain D′ from D by replacing Pbirth(b) with the
two ears av ∪ vw∪Z1 and Z2 in that order and replacing Pbirth(ab) = ab with vb.
If b′ = a, obtain D′ from D by replacing Pbirth(b) with the two ears av ∪ vb ∪ Z4
and Z3 in that order and replacing Pbirth(ab) = ab with vw.

(3) Γ is an edge-edge-addition (if birth(d) = birth(b) and there is an edge st ∈ {ab, cd} that satisfies
birth(s) < birth(t), we assume w.l.o.g. that ab is such an edge).
(a) birth(b) = birth(ab)

(i) birth(d) < birth(b) . d ∈ Gbirth(b)−1 and birth(b) > 0
Let a′ and b′ be the endpoints of Pbirth(b) such that a′ is closer to a than to b on
Pbirth(b) (a′ may be a, but b′ 6= b). Let Z be the path obtained from Pbirth(b) by
replacing ab with av ∪ vb. Let Z1 be the a′w-path in Z ∪ vw and let Z2 = Z[v, b′].
(A) birth(cd) < birth(b)

We distinguish two cases. If Pbirth(cd) = cd, obtain D′ from D by deleting
Pbirth(cd) and replacing Pbirth(b) with the three ears cw ∪ wd, Z1 and Z2 in that
order. If Pbirth(cd) is long, obtain D′ from D by subdividing cd ∈ Pbirth(cd) with
w and replacing Pbirth(b) with the two ears Z1 and Z2 in that order.

(B) birth(cd) > birth(b) and Pbirth(cd) = cd
Obtain D′ from D by deleting Pbirth(cd) = cd and replacing Pbirth(b) with the
three ears cw ∪ wd, Z1 and Z2 in that order.

(ii) birth(d) = birth(b) . d ∈ inner(Pbirth(b))
(A) c /∈ Pbirth(b)

We have birth(b) > 0 and Pbirth(cd) = cd. Let Z be the path obtained from
Pbirth(b) by replacing ab with av ∪ vb. Let a′ and b′ be the endpoints of Pbirth(b)
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such that a′ is closer to v than to d on Z. Let Z1 be the a′c-path in Z ∪ vw∪wc
and let Z2 = Z[v, b′]. If b 6= u or c 6= r, obtain D′ from D by replacing Pbirth(b)
with the two ears Z1 and Z2 in that order and replacing Pbirth(cd) = cd with
the edge wd. Otherwise, b = u = d and r = c. Then obtain D′ from D by
replacing Pbirth(b) with the two ears Z and vw ∪ wb in that order and replacing
Pbirth(cd) = cd with the edge cw.

(B) c ∈ Pbirth(b) and birth(b) < birth(cd)
Then Pbirth(cd) = cd. Let Z be obtained from Pbirth(b) by replacing ab with
av ∪ vb. Let Z1 be a shortest path in Pbirth(b) that contains c, d and v and that
does not contain r as an inner vertex (the latter is only relevant if Pbirth(b) is
a cycle). Let z be the inner vertex of Z1 that is contained in {c, d, v}. Let Z2
and Z3 be the two paths in Z1 from z to the endpoints of Z1 such that Z3 is
long (note that one of Z2 and Z3 must be long, as otherwise Γ would not be a
BG-operation). Obtain D′ from D by replacing the path Z1 in Pbirth(b) with the
two edges connecting w to the endpoints of Z1, adding the two new ears Z2∪ zw
and Z3 directly afterwards in that order and deleting Pbirth(cd) = cd.

(C) c ∈ Pbirth(b) and birth(b) = birth(cd)
Then Pbirth(b) contains ab and cd. Let Z be obtained from Pbirth(b) by replacing ab
with av ∪ vb and cd with cw ∪ wd. Let Z2 be the vw-path in Z (if birth(b) = 0,
Z is a cycle and there are two such paths; we then choose one that does not
contain r as an inner vertex). Let Z1 be obtained from Z by replacing Z2 with
the edge vw. Obtain D′ from D by replacing Pbirth(b) with the two ears Z1 and
Z2 in that order.

(b) birth(b) < birth(ab) and Pbirth(ab) = ab
(i) birth(d) < birth(b) . d ∈ Gbirth(b)−1 and birth(b) > 0

(A) birth(a) < birth(b) and ab = ru
We distinguish two cases. If Pbirth(cd) = cd, obtain D′ from D by deleting
Pbirth(cd), adding the new ears cw ∪ wd and wv ∪ vb directly before and after
Pbirth(b), respectively, and replacing Pbirth(ab) = ab with av. If Pbirth(cd) is long,
obtain D′ from D by subdividing cd ∈ Pbirth(cd) with w, adding the new ear
wv ∪ vb directly after Pbirth(b) and replacing Pbirth(ab) = ab with av.

(B) birth(a) < birth(b) and ab 6= ru
We distinguish two cases. If Pbirth(cd) = cd, obtain D′ from D by deleting
Pbirth(cd), adding the new ears cw ∪ wd and av ∪ vw directly before Pbirth(b) in
that order and replacing Pbirth(ab) = ab with vb. If Pbirth(cd) is long, obtain D′
from D by subdividing cd ∈ Pbirth(cd) with w, adding the new ear av∪vw directly
before Pbirth(b) and replacing Pbirth(ab) = ab with vb.

(C) birth(a) = birth(b)
Let a′ and b′ be the endpoints of Pbirth(b) such that a′ is closer to a than to b on
Pbirth(b). Let Z1 be the a′w-path in Pbirth(b) ∪ av ∪ vw. Let Z2 be the b′a-path
in Pbirth(b). We distinguish two cases. If Pbirth(cd) = cd, obtain D′ from D by
deleting Pbirth(cd), replacing Pbirth(b) with the three ears cw ∪ wd, Z1 and Z2 in
that order and replacing Pbirth(ab) = ab with vb. If Pbirth(cd) is long, obtain D′
from D by subdividing cd ∈ Pbirth(cd) with w, replacing Pbirth(b) with the two
ears Z1 and Z2 in that order and replacing Pbirth(ab) = ab with vb.

(ii) birth(d) = birth(b) . d ∈ inner(Pbirth(b))
In subcases A and B, we will assume that birth(a) = birth(b) = birth(c). Then also
birth(d) = birth(b). In these cases, we define Z1 as a path in Pbirth(b) that contains all
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vertices in {a, b, c, d} and two of them as endpoints such that, if birth(b) = 0, either
r /∈ Z1 or the endpoints of Z1 contain r and a vertex in {a, b}. The latter condition
avoids further case distinctions and may be assumed, as either r ∈ {a, b} or otherwise
r /∈ {a, b}, which implies that either a or b is closest to r in P0 among all vertices
in {a, b, c, d} − r. For an arbitrary direction of Z1, let (x1, . . . , x4) be the vertices
{a, b, c, d} in Z1 in the order of occurrence. Due to the symmetry of a and b (and
c and d) in the BG-operation Γ, we can assume that a precedes b and c precedes d
in this order. This gives four possibilities for (x1, x4), which will be distinguished in
the following subcases A and B. Note that all subcases satisfy Pbirth(cd) = cd when
cd /∈ Pbirth(b).
(A) birth(a) = birth(b) = birth(c) and (x1, x4) is either (a, b) or (c, d)

If (x1, x4) = (c, d), cd /∈ Pbirth(b) follows, as otherwise birth(b) = 0 and r is
an endpoint of Z1, but no endpoint of Z1 would be in {a, b}. It follows that
birth(d) < birth(cd), which makes (c, d) and (a, b) interchangeable, as it was
assumed that birth(b) < birth(ab). Therefore, we can assume (x1, x4) = (a, b)
and thus (x1, . . . , x4) = (a, c, d, b). Since Γ is a BG-operation, c 6= a or d 6= b;
by symmetry, we assume d 6= b. Let Z2 be the ca-path in Z1 (Z2 may be of
length 0). If cd ∈ Pbirth(b), let Z3 be the wb-path in the path obtained from
Pbirth(b) by subdividing cd with w; otherwise, let Z3 = Pbirth(b)[c, b]. Obtain D′
from D by replacing the path Z1 in Pbirth(b) with av ∪ vb, adding the two ears
vw ∪ wc ∪ Z2 and Z3 directly after Pbirth(b) in that order and, if cd /∈ Pbirth(b),
replacing Pbirth(cd) = cd with wd.

(B) birth(a) = birth(b) = birth(c) and (x1, x4) is either (a, d) or (c, b)
Then (x1, . . . , x4) is either (a, b, c, d), (a, c, b, d), (c, a, d, b) or (c, d, a, b). The last
two orderings coincide with the first two ones by assuming the reverse direction
of Z1 in advance (and still assuming that a precedes b and c precedes d). We
distinguish the following two cases for each of the first two orderings. If cd /∈
Pbirth(b), let Z2 = Z1; otherwise, let Z2 be the aw-path in the path obtained from
Pbirth(b) by subdividing cd with w. Obtain D′ from D by replacing the path Z1
in Pbirth(b) with av∪ vw∪wd, adding the ear Z2 directly after Pbirth(b), replacing
Pbirth(ab) = ab with vb and, if cd /∈ Pbirth(b), replacing Pbirth(cd) = cd with wc.

(C) birth(a) < birth(b) and c /∈ Pbirth(b)
Then Pbirth(cd) = cd and Pbirth(ab) = ab. Let b′ and b′′ be the two endpoints
of Pbirth(b) such that b′ is at least as close to d as to b on Pbirth(b) (a may be
contained in {b′, b′′, c}). Let Z1 = Pbirth(b)[d, b′] and Z2 = Pbirth(b)[d, b′′]. If b = d
and ru ∈ {ab, cd}, say ru = ab by symmetry, obtain D′ from D by replacing
Pbirth(b) with the three ears cw ∪wd∪Z1, Z2 and wv ∪ vb in that order, deleting
Pbirth(cd) = cd and replacing Pbirth(ab) = ab with av. If b = d, ab 6= ru and
cd 6= ru, obtain D′ from D by adding the ear av ∪ vw ∪ wc directly before
Pbirth(b), replacing Pbirth(cd) = cd with wd and replacing Pbirth(ab) = ab with vb.
Otherwise b 6= d. Then obtain D′ from D by replacing Pbirth(b) with the three
ears cw ∪ wd ∪ Z1, av ∪ vw and Z2 in that order, deleting Pbirth(cd) = cd and
replacing Pbirth(ab) = ab with vb.

(D) birth(a) < birth(b), a ∈ Pbirth(b) and c and d are both contained in Pbirth(b)[a, b]
Then a must be an endpoint of Pbirth(b) (note that a = c is possible while b = u is
not possible). Let b′ be the other endpoint of Pbirth(b) and let Z1 = Pbirth(b)[b, b′].
By symmetry, we can assume that a is closer to c than to d in Pbirth(b) (otherwise,
swap c and d). Let Z2 = Pbirth(b)[a, c], Z3 = Pbirth(b)[c, d] and Z4 = Pbirth(b)[d, b].
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If a = c, let Z5 = aw ∪ wv and let Z6 be either wd ∪ Z4 if cd ∈ Pbirth(b) or
Z3 ∪ Z4 otherwise (note Z4 is of length at least one in this case). If a 6= c, let
Z5 = vw ∪ wd ∪ Z4 (Z4 may be of length 0) and let Z6 be either Z2 ∪ cw if
cd ∈ Pbirth(b) or Z2 ∪Z3 otherwise. Obtain D′ from D by replacing Pbirth(b) with
the three ears av∪ vb∪Z1, Z5 and Z6 in that order, deleting Pbirth(ab) = ab and,
if cd /∈ Pbirth(b), replacing Pbirth(cd) = cd with the edge wd if a = c and with wc
otherwise.

(E) birth(a) < birth(b), c ∈ Pbirth(b) and either a /∈ Pbirth(b) or a is an endpoint of
Pbirth(b) and not both, c and d, are contained in Pbirth(b)[a, b]
If ab = ru, we have inner(Pbirth(b)) = b = d and cd ∈ Pbirth(b), because D avoids
ru. Then obtain D′ from D by subdividing cd ∈ Pbirth(b) with w, adding the ear
wv ∪ vb directly after Pbirth(b) and replacing Pbirth(ab) = ab with av. Otherwise
ab 6= ru. Let b′ be an endpoint of Pbirth(b) that is different from a such that the
b′b-path in Pbirth(b) contains at least one vertex in {c, d}− b. Let s be the vertex
in {c, d} − b that is closest to b′ on Pbirth(b) and let b′′ be the other endpoint of
Pbirth(b). Let Z1 = Pbirth(b)[b′, s] (Z1 may be of length 0). If cd ∈ Pbirth(b), let Z2
be the wb′′-path in the path obtained from Pbirth(b) by subdividing cd with w;
otherwise, let Z2 = Pbirth(b)[s, b′′]. Obtain D′ from D by replacing Pbirth(b) with
the two ears av ∪ vw ∪ ws ∪ Z1 and Z2 in that order, replacing Pbirth(ab) = ab
with vb and, if cd /∈ Pbirth(b), replacing Pbirth(cd) = cd with the edge connecting
w to the vertex {c, d} − s.

5 Proof of the Path Replacement Lemma
It suffices to prove Lemma 17. We split the proof over the three Lemmas 18, 20 and 21. First, we
observe that the cases of all types of BG-operations are mutually exclusive and complete. This is
most often straight-forward; e.g. birth(b) 6= birth(ab) in Case (2) implies birth(b) < birth(ab) and
thus Pbirth(ab) = ab, as the edge ab cannot be added before a and b have been added (recall that
we assume birth(a) ≤ birth(b)). For Cases (2aiii) and (2biii), recall that w /∈ {a, b}, as otherwise Γ
would not be a BG-operation.

The completeness of Cases (3ai) and (3bii) needs special attention. In Case (3ai), birth(cd) 6=
birth(b), as otherwise Pbirth(b) would contain ab and cd and have endpoints c and d, which is clearly
impossible. In Case (3bii), the subcases A and B cover the case birth(a) = birth(b), in which
we also have birth(b) = birth(c), as a and b have been chosen such that birth(a) < birth(b) if
possible. Otherwise, birth(a) < birth(b). Case (3biiC) covers c /∈ Pbirth(b), so that c ∈ Pbirth(b) in
the remaining two subcases. Let R be the property that a ∈ Pbirth(b) and c and d are both contained
in Pbirth(b)[a, b]. Then Case (3biiD) covers R, which leaves as last subcase that either a /∈ Pbirth(b)
or a ∈ Pbirth(b) and not both, c and d, are contained in Pbirth(b)[a, b]; for the latter condition, a is
an endpoint of Pbirth(b), as birth(a) < birth(b).

We now verify that D′ is an ear decomposition. Since the newly added ears of every case are
paths, it suffices to show that exactly the first ear of D′ is a cycle. The cases in which a modification
of P0 is possible are (2ai), (2aiii), (2bi) , (2biiiC), (3bi) and (3aiA) (both by modifying Pbirth(cd)),
(3aiiB+C) and (3biiA+B). All of these cases may at most subdivide P0 by a new vertex and replace
a subpath of P0 with a shorter path having the same endpoints. Both of these modifications preserve
that P ′0 is a cycle in D′. We conclude that D′ is an ear decomposition.

We prove that the number of ears in D′ is m− n+ 2, as claimed in Lemma 17. Since D′ is an
ear decomposition, there are |E(G′)| − |V (G′)|+ 1 ears in D′ due to Whitney [21]. As applying Γ
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Figure 3: Cases (1) and (2) of Lemma 17. Black vertices are endpoints of ears that are contained
in Gbirth(b). The dashed paths depict (parts of) the ears in D′.

to G increases the number of edges by exactly one more than the number of vertices, regardless of
the type of BG-operation, the number of ears in D′ is m− n+ 2.

The key observation for the remaining arguments is that D′ is similar to D with respect to
long ears. It is easy to check that all modifications of ears in Cases (1)–(3) are done according
to M1–M4. Note that all modifications either replace long ears with long ears or short ears with
short ears. Since M3 and M4 deal only with short ears, the only long ears in D that may be
changed are Pbirth(b) due to M1 and Pbirth(cd) due to M2. However, M1 and M2 are only allowed
to do local changes to the sequence of long ears. We get the following identity (ignoring Pbirth(cd)
and P ′cwd if Γ is an edge-vertex-addition and additionally ignoring Pbirth(b) and P ′b1

–P ′b3
if Γ is a

vertex-vertex-addition):

(*) The sequences of long ears in D − Pbirth(b) − Pbirth(cd) and D′ − P ′b1
− P ′b2

− P ′b3
− P ′cwd are

identical.

Thus, (*) determines the few long ears that may change when applying Γ, while M1 and M2
restrict how these changes may look like. It remains to prove that D′ is non-separating and avoids
ru (respectively, rv or rw).

Lemma 18. D′ avoids ru (respectively, rv or rw).
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Figure 4: Case (3) of Lemma 17.
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Proof. In order to check that D′ satisfies Definition 9.1 (r ∈ P ′0), it suffices to consider the cases in
which V (P0) 6⊆ V (P ′0), i.e. the Cases (2aiii), (2biiiC), (3aiiB+C) and (3biiA+B). In all these cases,
the new ear P ′0 is constructed explicitly such that r ∈ P0 implies r ∈ P ′0, which gives the claim. It
remains to check Definition 9.2. Clearly, if Γ is a vertex-vertex-addition, D′ satisfies Definition 9.2,
as only a short ear is added.

Let Γ be an edge-vertex-addition and assume first that v does not subdivide ru. Recall that
Pbirth(u) is the last long ear in D. If birth(u) > birth(b), Pbirth(u) is also the last long ear in D′,
according to (*). Thus, D′ satisfies Definition 9.2. Otherwise, birth(u) = birth(b), as Pbirth(b) is
long because it contains b as an inner vertex. This implies b = u, since u is the only inner vertex
of Pbirth(u).

If a /∈ Pbirth(b), birth(a) < birth(b) < birth(ab) and we are in Case (2bii), as w ∈ Gbirth(b) and
w 6= b, the latter since Γ is a BG-operation. Since a 6= r by assumption, we are in Case (2biiB).
In this subcase, Pbirth(b) is left unchanged and no long ear is added after Pbirth(b), which satisfies
Definition 9.2.

If a ∈ Pbirth(b), amust be a neighbor of the inner vertex b = u in Pbirth(b) and birth(ab) = birth(b)
follows. Thus, we are in Case (2aii) or (2aiii), since w ∈ Gbirth(b). Let b′ be the endpoint of Pbirth(b)
different from a and note that w 6= b. Case (2aii) adds the new ear vu ∪ ub′ directly after Pbirth(u).
Thus, vu ∪ ub′ is the last long ear in D′, contains exactly u as inner vertex and does not contain
ru, which satisfies Definition 9.2. In Case (2aiii) the same argument holds, as w = b′.

Assume that Γ subdivides ru with v. This implies a = r and b = u with birth(a) < birth(b),
as r ∈ P0 and u /∈ P0. Because D satisfies Definition 9.2, ab = ru cannot be contained in a long
ear and, hence, is itself a short ear. It follows that birth(b) < birth(ab). Thus, we are in Case (2b).
As b = u is the last vertex added in D, w ∈ Gb. Since w 6= b and birth(a) < birth(b), we are in
Case (2biiA). In this case, wv ∪ vb is added as last long ear in D′, which satisfies Definition 9.2
for the new avoided edge av of D′. Let Γ be an edge-edge-addition and assume first that Γ
does not subdivide ru. Suppose further that birth(u) > birth(b). If the precondition of M2 is
true, birth(cd) = birth(d) < birth(b); otherwise, Pbirth(cd) is either short or birth(cd) = birth(b).
According to (*), Pbirth(u) is in both cases the last long ear in D′. Since ru was not subdivided, D′
satisfies Definition 9.2.

Suppose that birth(u) = birth(b) (note that birth(u) < birth(b) is not possible, as D avoids ru).
Then b = u. Let a /∈ Pbirth(b). Then birth(a) < birth(b) < birth(ab), which implies Pbirth(ab) = ab.
Thus, we are in Case (3b). If additionally d 6= b, we are in Case (3biB). This case does neither
modify Pbirth(b) nor add long ears after it. Hence, Pbirth(b) is the last long ear in D′, which readily
implies the claim. If d = b, birth(d) = birth(b) and we are either in Case (3biiC) or (3biiE). In
the former case, Pbirth(b) is the last long ear in D′ (note that d = b), which gives the claim. In
Case (3biiE), c must be an endpoint of Pbirth(b) and cd ∈ Pbirth(b), as b is the only inner vertex of
Pbirth(b). Let b′′ be the endpoint of Pbirth(b) that is different from c. Then wd ∪ db′′ is the last long
ear in D′, which gives the claim, since d = b = u.

Let a ∈ Pbirth(b). Then a is a neighbor of the inner vertex b = u in Pbirth(b) and birth(ab) =
birth(b) follows. Thus, we are in Case (3a). Let b′ be the endpoint of Pbirth(b) that is different from
a. If d 6= b, we are in one of the two subcases of Case (3ai). In each of them, vb ∪ bb′ is the last
long ear in D′, which gives the claim. Otherwise, d = b, hence birth(d) = birth(b), and we are in
Case (3aii). If c ∈ Pbirth(b), c = b′, as otherwise Γ would not be a BG-operation. It follows that
birth(b) = birth(cd) and we are in Case (3aiiC). Then vb∪ bw is the last long ear in D′, which gives
the claim. If c /∈ Pbirth(b), we are in Case (3aiiA). Then vb ∪ bb′ is the last long ear in D′, which
gives the claim.

It remains to consider the case that Γ subdivides ru. First assume that Γ subdivides ru with
v. Then a = r, b = u, which implies birth(u) = birth(b), and birth(a) < birth(b), as r ∈ P0 and
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u /∈ P0. Additionally, birth(b) < birth(ab), as otherwise birth(b) = birth(ab) and ab = ru would be
contained in Pbirth(u), which contradicts that D avoids ru. In particular, birth(u) = birth(b) and
a /∈ Pbirth(b), as the latter would contradict birth(b) < birth(ab). Hence, we are either in one of
the Cases (3biA) and (3biiC) or in the Case (3biiE) such that b = d, c is an endpoint of Pbirth(b),
a /∈ Pbirth(b) and cd ∈ Pbirth(b). All three cases construct explicitly wv ∪ vb as the new last long ear
in D′, which satisfies Definition 9.2 for the new avoided edge rv = av of D′, as a /∈ {b, w}.

Assume that Γ subdivides ru with w. Then c = r, d = u and birth(c) < birth(d) for the
same reason as before. Recall that we assumed birth(d) ≤ birth(b). Since d = u is inner vertex of
the last long ear in D according to Definition 9.2, we have birth(d) = birth(b). According to the
initial assumption made in Case (3), this implies with birth(c) < birth(d) that birth(a) < birth(b).
Thus, we can replace (a, b) and (c, d) with each other such that all assumptions of Case (3) are still
satisfied and apply the previous case, in which Γ subdivides ru with v.

In order to prove that D′ is non-separating, we will use the following definition that is directly
motivated by (*), and a structural lemma about the connection of long ears in D and D′.

Definition 19. Let f be the function that assigns
• the index of every long ear inD′−P ′b1

−P ′b2
−P ′b3

−P ′cwd to the index of its identical counterpart
in D − Pbirth(b) − Pbirth(cd),
• b1, b2 and b3 to birth(b) if Γ is not a vertex-vertex-addition and
• cwd to birth(cd) if Γ is an edge-edge-addition and the precondition of M2 is true.

Lemma 20. Let Γ be an edge-vertex-addition. Then P ′b3
= P ′b2

and
(1) inner(P ′b1

) ∪ inner(P ′b2
) = inner(Pbirth(b)) ∪ {v}

(2) Vf(i) ⊆ V ′i for every i ∈ [0,m− n+ 1]. If i ≥ b2, V ′i = Vf(i). If i < b1, V ′i = Vf(i) ∪ v.
(3) Gf(i) = ∅ if and only if G′i = ∅, unless b = u and i = b1 6= b2.

Let Γ be an edge-edge-addition. Then
(4) If the precondition of M2 is false, inner(P ′b1

) ∪ inner(P ′b2
) ∪ inner(P ′b3

) = inner(Pbirth(b)) ∪
{v, w}. Otherwise, inner(P ′b1

) ∪ inner(P ′b2
) ∪ inner(P ′b3

) = inner(Pbirth(b)) ∪ {v} and w ∈
inner(P ′cwd).

(5) Vf(i) ⊆ V ′i for every i ∈ [0,m− n+ 1]. If i ≥ b3, V ′i = Vf(i). If i < cwd, V ′i = Vf(i) ∪ {v, w}.
If cwd ≤ i < b1, V ′i = Vf(i) ∪ {v, w} if the precondition of M2 is false and V ′i = Vf(i) ∪ {v}
otherwise.

(6) Gf(i) = ∅ if and only if G′i = ∅, unless b = u and either i = b1 6= b2 or i = b2 6= b3.

Proof. If Γ is an edge-vertex-addition, it is straight-forward to check that Pbirth(b) is never replaced
with three distinct ears in Case (2). Thus, b3 = b2.

We prove Claims (1) and (4). First, let Γ be an edge-vertex-addition. Since D′ is an ear decom-
position, every vertex of G′ must occur in exactly one long ear of D′ as inner vertex. According to
(*), the only long ear in D that may be modified is Pbirth(b). Additionally, inner(P ′b1

)∪inner(P ′b2
) ⊇

inner(Pbirth(b)), as the long ears in D′ − P ′b1
− P ′b2

and D − Pbirth(b) are identical. For the same
reason, the new vertex v in G′ has to be contained in inner(P ′b1

) ∪ inner(P ′b2
). Then Claim (1)

follows from V (G′) − V (G) = {v}. If Γ is an edge-edge-addition, a similar argument gives that
inner(P ′b1

)∪inner(P ′b2
)∪inner(P ′b3

) differs from inner(Pbirth(b)) by either {v, w} (if the precondition
ofM2 is not satisfied) or {v} (if the precondition ofM2 is satisfied, which implies w ∈ inner(P ′cwd)).
This proves Claim (4).

We prove Claims (2) and (5). First, let Γ be an edge-vertex-addition. According to Observa-
tion 2, V ′i is the union of the inner vertices of the ears in {P ′i+1, . . . , P

′
m−n+1}. As short ears do not
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matter, let {P ′x1 , . . . , P
′
xk
}, x1 > i, be the subset of long ears in that set. If i ≥ b2, (*) implies that

{Pf(x1), . . . , Pf(xk)} is exactly the set of long ears in D strictly after Pf(i), which gives V ′i = Vf(i).
Similarly, if i < b1, (*) and Claim (1) imply that V ′i = Vf(i) ∪ v. In the remaining case i = b1 6= b2,
Claim (1) implies that V ′i = inner(P ′b2

) ∪ V ′b2
⊃ Vf(b2) = Vb. Hence, Vf(i) ⊆ V ′i for all i, proving

Claim (2). Let Γ be an edge-vertex-addition. If i ≥ b3, the previous arguments imply V ′i = Vf(i). If
i < cwd, w ∈ V ′i and (*) and Claim (4) imply that V ′i = Vf(i) ∪ {v, w}. The existence of the vertex
w in V ′i for cwd ≤ i < b1 is only dependent on the precondition of M2. If the precondition is false,
V ′i = Vf(i) ∪ {v, w}; otherwise, V ′i = Vf(i) ∪ {v}. In the remaining case b1 ≤ i ≤ b2 6= b3, Claim (4)
implies that V ′i ⊇ inner(P ′b3

) ∪ V ′b3
⊃ Vf(b3) = Vb. Hence, Vf(i) ⊆ V ′i for all i, proving Claim (5).

We prove Claims (3) and (6). If G′i = ∅, Claims (2) and (5) imply that Gf(i) = ∅. Let Gf(i) = ∅.
Then f(i) ≥ b, as Pbirth(b) is a long ear, and it follows that i ≥ b1. If i ≥ b3, G′i = ∅, according to
Claims (2) and (5). Otherwise, either i = b1 6= b2 or i = b2 6= b3 (the latter is only possible if Γ is
an edge-edge-addition). In both cases, f(i) = b. Then Gb = ∅ by assumption and it follows that
Pbirth(b) is the last long ear in D. Because D avoids ru, b = u, according to Definition 9.2. We
conclude Claims (3) and (6).

Lemma 21. D′ is non-separating.

Proof. We prove that D′ satisfies Definition 9.3. Consider any 0 ≤ i ≤ m− n+ 1 and let z be any
inner vertex of P ′i . We assume that G′i 6= ∅, as otherwise there is nothing to show.

Let Γ be a vertex-vertex-addition. According to (*), the sequences of long ears in D and D′ are
identical. Thus, Pf(i) contains z as an inner vertex and, because of Observation 2, V ′i = Vf(i), in
particular Gf(i) 6= ∅. Since D is non-separating, z has a neighbor in Gf(i) and it follows that this
neighbor is also contained in G′i. Thus, D′ satisfies Definition 9.3.

Let Γ be an edge-vertex- or edge-edge-addition. If z = v, i ∈ {b1, b2, b3} according to Lemma
20.1+4 and we exhibit a neighbor of v in G′i in Table 1 for each subcase of Cases (2) and (3). If
z = w, i ∈ {vwd, b1, b2, b3} according to Lemma 20.4 and M2 and we exhibit a neighbor of w in
G′i in Table 1. If b = u and either i = b1 6= b2 or i = b2 6= b3 (the latter is only possible if Γ is an
edge-edge-addition), P ′b1

and P ′b2
contain exactly one of the vertices {v, w, b}, as b = u is the only

inner vertex of Pbirth(b) by Definition 9.2 for D. However, we have already exhibited neighbors of
v and w, so we only have to find a neighbor of b = u = inner(P ′i ) in G′i for either i = b1 6= b2 or
i = b2 6= b3. Such a neighbor is given in Table 1.

In all remaining cases, Gf(i) 6= ∅ due to G′i 6= ∅ and Lemma 20.3+6. Moreover, z is an inner
vertex of Pf(i), because of (*) and z /∈ {v, w}. Since D is non-separating, z has a neighbor in
Gf(i) and this neighbor is also contained in G′i, according to Lemma 20.2+5. Thus, D′ satisfies
Definition 9.3.

This completes the proof of Lemma 17. Every modification of Lemma 17 can be computed
in constant time, as in each case only a constant number of paths is modified. We conclude the
following theorem.

Theorem 22. Given an edge ru of a 3-connected graph G, a Mondshein sequence of G avoiding
ru can be computed in time O(m).

6 Applications
Application 1: Independent Spanning Trees
Let k spanning trees of a graph be independent if they all have the same root vertex r and, for
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Case Subcase Neighbor of v Neighbor of b Neighbor of w
(2ai) w −
(2aii) b −
(2aiii) a or b −
(2bi) w −
(2bii) A − v
(2bii) B+C b −
(2biii) A a or b −
(2biii) B w −
(2biii) C inner(Z) ∩ {a, b, w} −
(2biii) D b or w −
(3ai) A+B b − v
(3aii) A a or b or w − or w d or −
(3aii) B a or b − inner(Z1) ∩ {c, d, v}
(3aii) C a or b − c or d
(3bi) A − v v
(3bi) B+C b − v
(3bii) A+B a or b or w − c or d or v
(3bii) C b or w v or w d or v
(3bii) D w − c or d
(3bii) E b v c or d or v

Table 1: Neighbors of v ∈ inner(P ′i ) and w ∈ inner(P ′i ) in G′i and, for either i = b1 6= b2 or
i = b2 6= b3, neighbors of b = u = inner(P ′i ) in G′i for the proof that D′ is non-separating. For
entries marked with a hyphen, there is nothing to prove, as G′i is empty or the conditions for b, u
and i do not apply.

every vertex x 6= r, the paths from r to x in the k spanning trees are internally disjoint (i.e.,
vertex-disjoint except for their endpoints). The following conjecture from 1988 due to Itai and
Rodeh [11] has received considerable attention in graph theory throughout the past decades.

Conjecture (Independent Spanning Tree Conjecture [11]). Every k-connected graph contains k
independent spanning trees.
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Figure 5: Three independent spanning trees in the graph of Figure 1, which were computed from
its Mondshein Sequence (vertex numbers depict the consistent st-numbering).
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The conjecture has been proven for k ≤ 2 [11], k = 3 [4, 22] and k = 4 [5], with running times
O(m), O(n2) and O(n3), respectively, for computing the corresponding independent spanning trees.
For k ≥ 5, the conjecture is open. For planar graphs, the conjecture has been proven by Huck [10].

We show how to compute three independent spanning trees in linear time, using an idea of [4].
This improves the previous best running time by a factor of n. It may seem tempting to compute
the spanning trees directly and without using a Mondshein sequence, e.g. by local replacements in
an induction over BG-operations or inverse contractions. However, without additional structure
this is bound to fail, as shown in Figure 6.

v

r

x y z

Figure 6: A spanning subgraph of a 3-connected graph G. G is obtained from the 3-connected
graph G′ := G− v ∪ xy by a BG-operation (or inverse contraction) that adds the vertex v. Two of
the three independent spanning trees of G′ are given, rooted at r (solid and dotted edges). However,
not both of them can be completed to cover v in G.

Compute a Mondshein sequence avoiding ru, as described in Theorem 22. Choose r as the
common root vertex of the three spanning trees and let x 6= r be an arbitrary vertex.

First, we show how to obtain two internally disjoint paths from x to r that are both contained
in the subgraph Gbirth(x). An st-numbering π is an ordering v1 < · · · < vn of the vertices of a graph
such that s = v1, t = vn, and every other vertex has both a higher-numbered and a lower-numbered
neighbor. Let π be consistent to a Mondshein sequence if π is an st-numbering for every graph
Gi, 0 ≤ i ≤ m − n. Let t 6= u be a neighbor of r in P0. A consistent tr-numbering π can be
easily computed in linear time [3]. According to π, we can start with x and iteratively traverse to a
higher-numbered and lower-numbered neighbor, respectively, without leaving Gbirth(x). This gives
two internally disjoint paths from x to r and t; the path to t is then extended to the desired path
ending at r by appending the edge tr. The traversed edges of this procedure for every x 6= r give
the first two independent spanning trees T1 and T2.

We construct the third independent spanning tree. Since a Mondshein sequence is non-separating,
we can start with any vertex x 6= r, traverse to a neighbor in Gbirth(x) and iterate this procedure
until we end at u. The traversed edges of this procedure for every x 6= r form a tree that is rooted
at u and that can be extended to a spanning tree T3 that is rooted at r by adding the edge ur. T3
is independent from T1 and T2, as, for every x 6= r, the path from x to u intersects Gbirth(x) only
in x.

Application 2: Output-Sensitive Reporting of Disjoint Paths
Given two vertices x and y of an arbitrary graph, a k-path query reports k internally disjoint paths
between x and y or outputs that these do not exist. Di Battista, Tamassia and Vismara [8] give
data structures that answer k-path queries for k ≤ 3. A key feature of these data structures is
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that every k-path query has an output-sensitive running time, i.e., a running time of O(`) if the
total length of the reported paths is ` (and running time O(1) if the paths do not exist). The
preprocessing time of these data structures is O(m) for k ≤ 2 and O(n2) for k = 3.

For k = 3, Di Battista et al. show how the input graph can be restricted to be 3-connected using
a standard decomposition. For every 3-connected graph we can compute a Mondshein sequence,
which allows us to compute three independent spanning trees T1–T3 in a linear preprocessing time,
as shown in Application 1. If x or y is the root r of T1–T3, this gives a straight-forward output-
sensitive data structure that answers 3-path queries: we just store T1–T3 and extract one path from
each tree per query.

In order to extend these queries to k-path queries between arbitrary vertices x and y, [8] gives
a case distinction that shows that the desired paths can be efficiently found in the union of the six
paths in T1–T3 that join x with r and y with r. This case distinction can be used for the desired
output-sensitive reporting in time O(`) without changing the preprocessing. We conclude a linear
preprocessing time for all k-path queries with k ≤ 3.

Application 3: Planarity Testing
We give a conceptually very simple planarity test based on Mondshein’s sequence for any 3-
connected graph G in time O(n).

The 3-connectivity requirement is not really crucial, as the planarity of G can be reduced to the
planarity of all 3-connected components of G, which in turn are computed as a side-product for the
BG-sequence in Theorem 15; alternatively, one can use standard algorithms [9, 16] for reducing G
to be 3-connected. We compute an induced Mondshein sequence D avoiding an arbitrary edge ru
in time O(n). Let t be a neighbor of r in P0.

We start with a planar embedding M0 of P0 and assume with Observation 11 w.l.o.g. that the
last vertex u will be embedded in the outer face. We will first ignore short ears. Step by step, we
attempt to augment Mi with the next long ear Pj in D in order to construct a planar embedding
Mj of Gj .

Once the current embedding Mi contains u, we have added all the vertices of G and are done.
Otherwise, u is contained in Gi, according to Definition 6.2. Then Gi contains a path from each
inner vertex of Pj to u, according to Lemma 5. Since u is contained in the outer face of the final
embedding, adding the long ear Pj to Mi can preserve planarity only when it is embedded into the
outer face f of Mi. Thus, we only have to check that both endpoints of Pj are contained in f (this
is easy to test by maintaining the vertices of the current outer face). If yes, we embed Pj into f .
Otherwise, we output “not planar”; if desired, a Kuratowski-subdivision can then be extracted in
linear time.

Until now we ignored short ears, but have already constructed a planar embedding M ′ of a
spanning subgraph of G. In order to test whether the addition of the short ears to M ′ can make
the embedding non-planar, we pass through the construction of M ′ once more, this time adding
short ears. Whenever a long ear Pj is embedded, we test whether all short ears that join a vertex
of inner(Pj) with a vertex of Gj−1 can be embedded while preserving a planar embedding. Note
that if D is a canonical ordering of M , Gj−1 must be 2-connected and the outer face of Gj−1 must
be a cycle, according to [18, Corollary 1.3]. The last fact allows for an easy test whether adding
the short ears preserves a planar embedding.
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