
Algorithms for Art Gallery Illumination

Maximilian Ernestus∗ Stephan Friedrichs† Michael Hemmer∗

Jan Kokemüller∗ Alexander Kröller∗ Mahdi Moeini‡ Christiane Schmidt§

October 27, 2014

Abstract

We consider a variant of the Art Gallery Problem, where a polygonal region is to be
covered with light sources, with light fading over distance. We describe two practical algo-
rithms, one based on a discrete approximation, and another based on nonlinear programming
by means of simplex partitioning strategies. For the case where the light positions are given,
we describe a fully polynomial-time approximation scheme. For both algorithms we present
an experimental evaluation.

∗TU Braunschweig, IBR, Algorithms Group, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany; maximil-
ian@ernestus.de, mhsaar@gmail.com, jan.kokemueller@gmail.com, a.kroeller@tu-bs.de
†Max-Planck-Institute for Computer Science, Department 1: Algorithms and Complexity, Saarbrücken, Ger-

many; sfriedri@mpi-inf.mpg.de
‡Center of Research in Computer Science (CRIL-CNRS UMR 8188), University of Lille-Nord de France, 62307

Lens, France; moeini@cril.fr
§The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of

Jerusalem, Jerusalem 9190401, Israel; cschmidt@cs.huji.ac.il Supported by the Israeli Centers of Research Ex-
cellence (I-CORE) program (Center No. 4/11). Research was done while the author was affiliated with TU
Braunschweig.

1

ar
X

iv
:1

41
0.

59
52

v2
 [

cs
.C

G
]

 2
4

O
ct

 2
01

4

mailto:maximilian@ernestus.de
mailto:maximilian@ernestus.de
mailto:mhsaar@gmail.com
mailto:jan.kokemueller@gmail.com
mailto:a.kroeller@tu-bs.de
mailto:sfriedri@mpi-inf.mpg.de
mailto:moeini@cril.fr
mailto:cschmidt@cs.huji.ac.il

1 Introduction

The classical Art Gallery Problem asks for the minimum number of guards placed in a polygon
that allow for complete coverage of the polygon. This is one of the best-known problems in
computational geometry, see the excellent book by O’Rourke [16] for an introduction to the
subject. We consider a problem variant, motivated from discussions with practitioners in laser
scanning.

Laser Scanning. Consider obtaining an exact scan of some indoor environment, based on a
floor plan sketch, using a laser scanner. A typical 360◦ scanner can be placed at any point. It
operates by rotating its head, taking a sample in one direction, then turning by a configurable
angle θ. The time t to obtain a scan is roughly t ∝ 1/θ, and can range anywhere between seconds
and several hours in real-world applications. The quality of the result depends on the sample
point density q on the walls. For an object at distance d, this is about q ∝ 1/d. Together, we
get q ∝ td−1. The actual fading of the laser light intensity is irrelevant in practice. The problem
of minimizing the time spent scanning (with one scanner) while maintaining sufficient scanning
quality is an AGP generalization.

Realistic Light. When using light bulbs to illuminate an area, light suffers from fading.
From a dimmable bulb at brightness b, an object at distance d will receive light in an amount of
q ∝ bd−2. For simplicity we assume a linear correspondence between energy consumption and
brightness. The AGP generalization of illuminating a polygonal area with the minimum total
energy was introduced by O’Rourke in 2005, and has received insufficient treatment afterwards.
Only a restricted case of this problem has been addressed, by Eisenbrand et al. [12].

We present algorithms to approximate the separation problems from an infinite LP formu-
lation of the problem. For finite candidate guard sets (such as vertex guards), we illustrate
that it can be used for practical algorithm implementation, and yields a fully polynomial-time
approximation scheme (FPTAS).

The rest of this paper is organized as follows: Section 3 formally introduces the problem,
and discusses its complexity. Related work is presented in Section 2. In Section 4 we turn our
attention to the case of fixed guard positions, here we introduce two algorithms, one of which
yields a FPTAS. Section 5 gives a brief introduction to the general case.

2 Related Work

Guarding Problems have been studied for several decades, Chvátal [6] was the first to answer
Victor Klee’s question on the number of guards that are always sufficient and sometimes nec-
essary to monitor a polygon P with n vertices—bn3 c is the tight bound for general polygons
which was soon afterwards shown by a beautiful proof of Fisk [13]. Many other polygon classes
have been considered w.r.t. this kind of “Art Gallery Theorems”, for example, Kahn et al. [14]
obtained a tight bound of bn4 c for orthogonal polygons. Generally, the guards are allowed to be
located anywhere in the polygon (“point guards”). Sometimes, less powerful guards have been
considered, such as guards that must be placed on vertices of P (“vertex guards”).

The Art Gallery Problem with Fading has only been considered for the case of fixed light
source positions in the plane and the illumination of a line (the “stage”): Eisenbrand et al. [12]
aim at minimizing the total amount of power assigned to the given light sources such that the
entire stage is lit. The authors give a convex programming formulation of the problem that leads
to a polynomial-time solution; moreover, a (1 + ε)- and an O(1)-approximation are presented.

Over the last years, efficient implementations for the classic AGP were found. Amit et
al. [1, 2] consider greedy algorithms on heuristically picked initial guard candidate sets. Couto
et al. [10, 9] presented the first work with extensive experiments with an exact algorithm for

1

a problem variant. They developed an exact algorithm for vertex guards in orthogonal simple
polygons, with experiments with hundreds of vertices. Bottino and Laurentini [4] proposed an
algorithm for covering the edges of P . Couto et al. [8] went on to study how to increase the
efficiency of their algorithm [10, 9]; with more general classes of polygons, still without holes.
Experiments on thousands of instances confirmed the robustness of the algorithm. Baumgartner
et al. [3, 15] presented an exact algorithm for the fractional variant of the Art Gallery Problem.
In 2013, Tozoni et al. improved their algorithm (Couto et al.), solving polygons with thousands
of vertices [18].

3 Problem and Complexity

We consider a given polygon P , possibly with holes. We denote by V the vertices of P and by
n their cardinality. The diameter of P is denoted D := diamP . For a point p ∈ P the visibility
polygon V(p) is the (star-shaped) set of all points of P visible from p. The original Art Gallery
Problem (AGP) is defined as follows: We say a guard set G ⊆ P covers P iff ∪g∈GV(g) = P .
We ask for a covering G of minimum cardinality.

In this paper, we consider a variant of this problem: We assume the guards g ∈ G to be, say,
light sources whose intensity (and therefore energy consumption) can be controlled. We denote
the intensity of g ∈ G by xg > 0. Furthermore, light suffers from fading over distance. A point
w ∈ V(g) receives only %(g, w)xg light from g, where

%(g, w) :=

{
‖g − w‖−α : ‖g − w‖ > 1

1 : otherwise . (1)

Here ‖ · ‖ denotes the Euclidean norm in R2. The parameter α > 0 defines the fading rate of
the emitted light. We cap % at 1, because otherwise points on a non-zero guard would receive
an inifinite amount of light; this results in the “optimal solution” to consist of every point in P
glowing with an infinitesimally small brightness, see Lemma 3 below.

For a set W ⊆ P of witnesses, we say a guard set G ⊆ P illuminates W iff every point in W
is sufficiently lit. For simplicity, we normalize the meaning of “sufficiently lit”, i.e.,∑

g∈G∩V(w)

%(g, w)xg > 1 ∀w ∈W . (2)

Our objective is to find an illumination of minimum total energy
∑

g∈G xg. We call this problem
Art Gallery with Fading, denoted AGPF(G,W). We are generally interested in illuminating
all of P , so the relevant cases are AGPF(G,P) (where possible guard positions are given, e. g.
AGPF(V, P) is the common discretization with vertex guards) and AGPF(P, P) (where guards
can be placed anywhere). AGPF(G,W) can be formulated as a covering linear program:

min
∑
g∈G

xg (3)

s.t.
∑

g∈G∩V(w)

%(g, w)xg > 1 ∀w ∈W (4)

xg > 0 ∀g ∈ G . (5)

It should be noted that AGPF(P, P) results in an LP with an infinite number of both
variables and constraints. Baumgartner et al. show how to solve this type of LP for α = 0,
the original Art Gallery problem with fractional guards, [3, 15] and we employ some of their
approches in our work. A falloff of α = 2 models the physical behavior of light, i.e., quadratic
fading. Our actual main interest is the case α = 1, which models the linear falloff of a laser
scanner rotating around an axis at constant angular speed. The intensity xg then describes the
scanning time, and the light intensity received at a point w ∈ G equals the scan point density
of a surface located at w.

2

1 s

Figure 1: An optimal solution with fading is not an optimal solution to the original Art Gallery
Problem.

Complexity of AGPF. We begin by drawing two obvious conclusions regarding complexity:

Lemma 1. For a finite set G ⊆ P , finding integer solutions to AGPF(G,P) is NP-hard. Finding
integer solutions for AGPF(P, P) is APX-hard.

Proof. When α = 0, finding integer solutions corresponds to solving the original Art Gallery
Problem, so the corresponding hardness results [16, 11] apply.

It is tempting to solve AGPF by reducing it to AGP. Unfortunately, this approach results
in an approximation factor which is exponential in α:

Lemma 2. AGPF cannot be approximated better than 2α by first solving the Art Gallery Problem
and computing intensities afterwards.

Proof Sketch. In the polygon in Figure 1, ? is an optimal AGP solution, but an optimal
illumation uses an additional guard at •.

Finally, let us argue why capping % at 1 is neccessary. For practical purposes, this has no
impact: A physical guard (a light bulb or a laser scanner) has some physical dimension, and
there is no interest in the coverage within the object itself. We assume that the input is scaled
such that the radius 1 around a guard falls completely into the object size. From a theoretical
point of view, the cap is neccessary to make the problem feasible at all.

Lemma 3. Let %̃(g, w) := ‖g − w‖−α, α > 0, be an alternate fading function to %(g, w) in
Eq. (1). Then AGPF(P, P), using %̃ instead of %, has no optimal solutions.

Proof Sketch. It can be shown that the “optimal solution” consists of all points of P glowing
at an infinitesimally small brightness, resulting in an infinitesally small, but non-zero objective
value.

4 Algorithms for Fixed (Vertex) Guards

As previous papers identified the vertex guard variant for many Art Gallery problem versions
to be much easier solvable than the point guard variant, we turn our attention to AGPF(G,P).
To stay in line with previous work, we usually assume G = V , which is, however, not required
for the algorithms to work.

4.1 Discrete Approximation Algorithm and FPTAS

In this section we introduce a discretized approximation algorithm for AGPF(G,P) that leads
to an FPTAS. Instead of using the fading function %, we use a step function τ . For a given
ε > 0, τ is defined as follows:

τ(g, w) := bb%(g, w)cc1+ε , (6)

where bb·ccb denotes the hyperfloor with base b, i.e., bbxccb := max{bz : bz 6 x, z ∈ Z}.
Therefore τ is piecewise constant and approximates %, i.e.,

1/(1 + ε) % < τ 6 % (7)

holds. We define AGPFτ (G,W) by substituting % with τ .

Lemma 4. A solution for AGPFτ(G,W) is also a solution for AGPF(G,W). An optimal
solution for AGPFτ(P, P) is an (1 + ε)-approximation for AGPF(P, P).

Proof Sketch. The proof (Appendix) follows from Equation (7).

3

xg
1
2xg

1
4xg

1
4xg

1
8xg

1
8xg

1
16xg

1
32xg

0

00

0

Figure 2: The visibility Arrangement A({g}) induced by T{g},x for a point g with value xg, assuming
α = 1.

4.1.1 An Algorithm for AGPFτ

To solve AGPFτ (G,P), we consider the illumination function

TG,x(p) :=
∑

g∈G∩V(p)

τ(g, p)xg , (8)

which defines the amount of light received at any point p ∈ P , given a solution x ∈ RG. Trivially,
x is feasible iff TG,x > 1. It is easy to see that, for a single guard g, T{g},x is a piecewise constant
function over P , as shown in Figure 2. It induces an arrangement A({g}) within P with faces
of constant value. P is split into two parts: The first is P \ V(g), where T{g},x is constant 0.
For the second part, notice that τ is a monotically decreasing step function taking the values
(1 + ε)−z for z = 0, 1, 2, . . ., each at distances ((1 + ε)z−1, (1 + ε)z] from g (exception: [0, 1] for
z = 0). This introduces O(log1+εD) concentric bands of equal coverage value around g. The
second part of the arrangement is therefore the intersection of concentric circles with V(g).

Now consider the arrangement A(G) defined by overlaying the individual arrangements for
all g ∈ G. Then, TG,x is constant over each face, edge, and vertex of this arrangement. This
arrangement has bounded complexity:

Lemma 5. The complexity of A(G) is O((n+ log1+εD)2|G|2).

We are now ready to present the overall algorithm:

Step 0 (Visibility Arrangement). Compute the overlay of all guards visibility step func-
tions, A(G). It has polynomial complexity by Lemma 5.

Step 1 (Witness Points). Place one witness w in each feature (vertex, and edge or face inte-
rior). Let W denote the set of these witnesses, which is polynomial in cardinality.

AGPFτ (G,P), our orginal LP, has a finite number of variables, and an infinite number of
constraints, since every point in P has to be illuminated. But we can exploit that TG,x is constant
in each feature of the overlay in our LP formulation: If one witness point in an arrangement
feature f is sufficiently lit, it follows that any point in f is sufficiently lit as well. So we can solve
the finite LP AGPFτ (G,W), where W contains one witness point in every feature of A(G).

Step 2 (Solve LP). Solve AGPFτ (G,W), which is possible in polynomial time. The solution
x is feasible and optimal for AGPFτ (G,P).

From a practical point of view, this approach suffers from the fact that A(G) and hence W
become very large. Therefore, it is more efficient to solve this with the technique of iterative
primal separation (compare [10, 9] for the classical AGP), i.e., to leave out some constraints
of the LP and start with a small set W , then solve AGPFτ (G,W), and then check the A(G)
for insufficiently lit points. If no such points exist, the solution is feasible. Otherwise, we add

4

representative witness points for insufficiently lit features to W and re-iterate the process, until
the solution is feasible. We know this approach terminates because in each iteration at least one
new feature of A(G) is covered.

Putting everything together, we get

Theorem 1. AGPF(G,P) admits a fully polynomial-time approximation scheme.

Implementation Issues and Double Approximation. It should be noted that by intro-
ducing circular arcs in the arrangement A(G), we have to deal with irrational numbers – to be
precise, with algebraic degree 2. While this is possible using an appropriate number kernel, it
comes with the risk of slowing down geometric computation. For that matter, it is possible to
do a double approximation: Instead of using circles, we use regular octagons. They still have
irrational coordinates, however intersection tests in the arrangement use only linear functions.
It is possible to incorporate the corresponding loss in accuracy in the approximation factor.

4.2 Continuous optimization approach

In this section we introduce a direct algorithm for AGPF(G,P), as follows: We start with
AGPF(G,W) with W = ∅, and see if its solution is feasible for AGPF(G,P). If we can find a
point w ∈ P \W that currently does not receive sufficient light, we add it to W and repeat the
process.

This requires a subroutine for finding insufficently lit points, and obviously can be answered
by a routine that finds the darkest point. Hence, we seek an algorithm for the Primal Separation
Problem (PSP), given a current solution x:

min
w∈P

TG,x(w) = min
w∈P

∑
g∈G∩V(w)

%(g, w)xg . (9)

For simplicity of presentation, we define T (w) := TG,x(w).

4.2.1 Simplex Partitioning Algorithm

We present an algorithm to solve (9) in a simplex (a triangle) S ⊆ P that is completely seen
from every guard. This algorithm is embedded in an outer algorithm that computes the overlay
of all visibility polygons V(g) for all g ∈ G, and then triangulates the faces of this arrangement.
PSP is then solved by searching all of these triangles.

The algorithm makes use of a function ` that provides a lower bound for T , i.e., `(S) 6
T (p) ∀p ∈ S. We sketch two approaches to compute such bounds after the presentation of the
algorithm, which is a global optimization approach, based on simplex partitioning [17].

Step 0 (Initializing). Set iteration counter k = 0, S0 = S as the initial triangle. Define
U0 := S0 as the current set of simplices. Consider the vertex set of S0 and compute the
value of T at all vertices. After evaluating T at vertices, choose the vertex corresponding
to the minimum value of T as the current best solution (incumbent solution) x∗0 ∈ V (S),
and then set z∗0 := T (x∗0). Compute a lower bound β0 = `(S0) for the minimum value of
the function T over S0.

Denote by Uk = {S1, . . . ,Sw} the current set of triangles (for a w = w(k)) at iteration k =
1, 2, . . . ; the union of these triangles cover the current search region of interest. Current best
solution is x∗k ∈ V (S1) ∪ V (S2) ∪ · · · ∪ V (Sw) and z∗k = T (x∗k). At each iteration k ∈ N, we do
the following steps:

5

Step 1 (Eliminating the suboptimal triangles). Delete all triangles satisfying `(Sr) > z∗k,
because no such triangle can contain a darker point than the current best solution. Let Rk
be the collection of remaining triangles. These triangles have the potential of containing
an optimal point.

Step 2 (Selecting a triangle for the next iteration). Consider the current collection of tri-
angles Rk and select the triangle St to be partitioned, where

`(St) = min
Sr∈Rk

`(Sr). (10)

Step 3 (Refining the partition). Divide the triangle St into two smaller triangles by apply-
ing a bisection on its longest edge.

St = St1 ∪ St2 . (11)

Step 4 (Evaluating T and updating the current bound). At this point, we have the fol-
lowing new partition

Uk+1 = (Rk\St) ∪ (St1 ∪ St2). (12)

Evaluate T at the common new vertex of the triangles St1 and St2 . Update the best
solution x∗k, the current best optimal estimation z∗k, and the lower bounds on each member
of the current partition, i.e., `(Sr) 6 T (x), where x ∈ Sr,Sr ∈ Uk+1. At this point, we
need to update the current lower bound estimation of the optimal value βk as follows

βk = min
Sr∈Uk+1

`(Sr). (13)

Then, the procedure is continued by returning to Step 1.

The algorithms stops when there is no triangle to be partitioned. Alternatively, we can stop the
algorithm after a certain number of iterations, or when a δ-estimation of the optimal solution is
found (i.e., z∗k 6 βk + δ).

Geometric Lower Bound. The algorithm needs a lower bound for pruning useless partitions.
To this aim, we use a procedure that benefits from a geometrical interpretation. In fact, we know
that the light decreases with increasing distance. According to the definition of %(g, w), and for
any fixed-position guard g, the minimum of T{g},x is attained at one of the vertices of the triangle
S. Now, suppose that we have a given set of guards (lights) that are scattered in the polygon
P . Some of the lights may be inside S and the others are located somewhere in P \ S. For each
g, the minimum of T{g},x is found on the vertex of S that is farthest from g. Therefore,

`(S) :=
∑
g∈G

min
p vertex of S

T{g},x(p) (14)

is a lower bound for T over S.

Lipschitz Lower Bound. As an alternative approach to the geometric estimation of the lower
bound, one may use the analytical properties of T . For example, if T is a Lipschitzian with a
known Lipschitz constant L, then one can use the following result:

Lemma 6. Let V (S) = {v0, v1, . . . , vm} be the vertex-set of the simplex S. Let f be a Lip-
schitzian on S with the Lipschitz constant L. Denote by zj the function values T (vm) (for
j = 0, . . . ,m), then we have:

z∗ >
1

m+ 1

 m∑
j=0

zj − L max
06i6m

m∑
j=0

‖vi − vj‖

 (15)

6

Figure 3: A “von Koch” polygon with 100 vertices and the solution to the Art Gallery with Fading
problem obtained by the continuous approach.

Fortunately, this bound can be used in PSP:

Lemma 7. T is Lipschitzian.

4.3 Experiments

To evaluate the efficiency and solution quality of the two algorithms, we conducted a series of
experiments with implementations for both. They are based on our implementation used for
solving the classic Art Gallery Problem [15]. We used CPLEX 12.5 to solve LPs, and CGAL 4.4
for geometric routines. For the (computationally expensive) operation of computing visibility
polygons, an upcoming CGAL package for visibility [5] was used. All experiments were carried
out on dedicated Linux 3.11.0 machines with Intel Core i7-4770 CPUs at 3.4 GHz, and 16 GBytes
of RAM. Our implementation is serialized, only the LP solver in CPLEX employs multithreading
techniques. Every run was alloted 20 minutes of CPU times, and aborted when it did not finish
within this limit.

We used 23 different problem instances. Most of them (17) came from the Art Gallery
Problem Instances library [7]. Four were very simple test instances with under 20 vertices. Two
were real-world data: A 311-vertex polygon modelling the central square in the town of Bremen,
taken from laser scans, and a 94-vertex office environment. The complexity of the polygons
in the test set ranged between 4 and 700 vertices. Figure 3 shows the solution for a regular
100-vertex “von Koch” polygon, computed using the continuous approach.

Polygon Scaling. Solutions for the Art Gallery Problem are invariant under scaling of the
input, hence none of our input polygons have any “natural” or even consistent spatial size.
For AGPF, this no longer is the case. Especially given the cutoff in % at distance 1—see
Equation (1)—this becomes an issue. Our solution to this problem is scaling both the input and
% as follows: First, we compute an estimate for the spatial complexity of the polygon. Here,
different measures could be used, for example the diameter D, the area of P , the feature size, or
similar. Pre-experiments have shown that the average edge length of P , denoted µ(P), provides
a intuitively consistent measure. In our implementation we scale P by a factor 1/(Λµ(P)), for a
parameter Λ. Therefore, Λ = 2 corresponds to having the cutoff in % at twice the average edge
length of P .

Parameter Space. The algorithms are parametrized: The discrete algorithm takes the desired
approximation factor 1+ε as an input, here we selected 1.2, 1.6, and 2. The continuous algorithm
is parametrized in its stopping criterion, where a triangle with a difference of δ between lower
and upper bound is no longer partitioned. We chose 1/100, 1/1000, and 1/10000 as values for δ.

7

Falloff α 1 2
Scaling Λ 0.2 0.5 1 2 0.2 0.5 1 2
Lower Bound 0.93 0.90 0.88 0.85 0.95 0.92 0.88 0.85
Continuous 0.0001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Continuous 0.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Continuous 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Discrete Octagon 1.2 1.12 1.09 1.06 1.03 1.13 1.08 1.05 1.02
Discrete Octagon 1.6 1.35 1.24 1.15 1.07 1.38 1.28 1.15 1.06
Discrete Octagon 2 1.54 1.37 1.24 1.11 1.60 1.43 1.24 1.09
Discrete Circles 1.2 1.12 1.08 1.05 1.02 1.14 1.10 1.05 1.02
Discrete Circles 1.6 1.35 1.23 1.15 1.06 1.38 1.27 1.14 1.05
Discrete Circles 2 1.53 1.36 1.22 1.10 1.58 1.45 1.24 1.08

Table 1: Relative (log-average) solution values for different parameters.

For the falloff α, we selected the two practically relevant values 1 (laser scanner) and 2 (light).
To see the impact of the spatial size of the polygon on the algorithms, we varied Λ between 0.2
and 2.

Solution Quality. Table 1 contains a comparison of the objective values returned by the
different algorithms. As the absolute values are quite meaningless, we report these relative to
the best known solution, measured as a log-average. For example, the 1.53 in the lower left
corner encodes that with α = 1, and Λ = .2, the discrete algorithm with (1 + ε) = 2 produced
solutions at, on average, 1.53 times the objective value of the best algorithm (“continuous” with
δ = 1/10000).

It is obvious that the continuous algorithm is very stable in its output, and there is no sub-
stantial impact from δ. We believe it to produce optimal or near-optimal solutions. Sometimes,
the algorithm finishes with a guaranteed approximation (whenever the partitioning could find
sufficient lower bounds in all triangles). This happened in 60.2% of the experiments. For guar-
anted bounds, we include a row “Lower Bound”, which is simply the highest inverse from the
discrete algorithms, for which approximation factors are known. Even with this crude bounds,
it is obvious that the continuous algorithm aways produces very good solutions.

The discrete algorithm (both with octagons and circles) usually produces worse solutions
than the continuous, however comes with the benefit of a provable approximation factor. If we
assume the continuous solutions to be near-optimal, it can be seen that the actual optimality
gap improves with larger values for Λ. This might be due to the fact that more space is covered
with 1-disks around guards, where % and τ are equal.

Algorithm Runtimes. Next we compare the runtime of the different algorithms. Table 2
contains the runtimes of the different algorithms, again as a log-average in relation to the fastest
algorithm (“discrete” with (1 + ε) = 2). It can be seen that the choice of δ for “continuous” has
a substantial impact on the running time, with little improvement for solutions. The fastest
“continuous” (δ = 1/100) is roughly as fast as a 1.6-approximative “discrete”. Unsurprisingly,
increasing Λ narrows the speed gap between the two, as “discrete” profits from a large Λ by
using less steps in τ , hence less circular arcs in the arrangements, whereas it makes little differ-
ence to “continuous”. Furthermore, when comparing the octagon approximation in the discrete
algorithm, it can be seen that it is almost slower, especially for α = 2. This indicates that the
runtime improvement in geometric computations is completely reversed by having to compute a
better approximation, i.e., placing more octagons, to arrive at the same overall approximation
factor.

Figure 4 shows the runtime of the algorithms for a series of polygons from the same random

8

Falloff α 1 2
Scaling Λ 0.2 0.5 1 2 0.2 0.5 1 2
Continuous 0.0001 9.26 2.58 1.73 2.05 11.53 4.84 2.48 1.99
Continuous 0.001 3.61 1.71 1.48 2.10 4.06 2.30 1.89 1.94
Continuous 0.01 1.49 1.10 1.25 2.01 1.42 1.06 1.34 1.78
Discrete Octagon 1.2 11.28 5.32 2.92 2.33 408.19 134.34 54.78 10.19
Discrete Octagon 1.6 1.59 1.38 1.28 1.60 2.73 2.28 1.88 1.62
Discrete Octagon 2 1.04 1.06 1.14 1.46 1.38 1.22 1.35 1.41
Discrete Circles 1.2 4.48 2.55 1.55 1.32 7.76 4.74 2.59 1.49
Discrete Circles 1.6 1.40 1.27 0.94 1.09 1.74 1.48 1.22 0.98
Discrete Circles 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Relative (log-average) runtimes for different parameters.Sheet1

Page 1

0 100 200 300 400 500 600 700
0.1

1

10

100

1000 Continuous δ=1/1000
α=1 Λ=0.2
Continuous δ=1/1000
α=1 Λ=2
Continuous δ=1/1000
α=2 Λ=0.2
Continuous δ=1/1000
α=2 Λ=2
Discrete (1+ε)=1.6
α=1 Λ=0.2
Discrete (1+ε)=1.6
α=1 Λ=2
Discrete (1+ε)=1.6
α=2 Λ=0.2
Discrete (1+ε)=1.6
α=2 Λ=2

Figure 4: Runtime by input polygon complexity (X: vertex count n, Y: CPU time)

generator (“randsimple” from the instance library [7]), ranging from 60 to 700 vertices. Here, the
scaling with µ(P) ensures that larger polygons grow spatially with increased vertex count. The
figure confirms the intuition that spatial extension has a much higher impact on runtimes than
input complexity. Therefore we cannot give a concise description of where the current frontier in
solvability lies, only that polygons with hundreds of vertices and “reasonable” parametrizations
regarding scale can be solved.

In conclusion, it can be seen that both algorithms perform roughly comparable in both
solution quality and runtime. There are three indicators when one should choose “discrete” over
“continuous”: (1) if a provable approximation is required, (2) if an approximation factor of 2 or
above is acceptable, and (3) if the polygon is spatially small compared to the fading radius. In
all other situations, “continuous” should be preferred.

5 AGPF with Point Guards

The previous section demonstrates that AGPF(G,P) can be solved efficiently with the shown
algorithms. So, solving AGPF(P, P) seems to be within reach. In our previous work [15], we
successfully used the doubly-infinite LP formulation for AGP(P, P), together with separation
routines for both the primal and the dual LP, in a practically efficient algorithm. The same can
be applied here. As can be confirmed easily, the dual separation problem asks for a point g ∈ G
with ∑

w∈V(g)

%(g, w)yw > 1 , (16)

9

given a dual solution y. Primal and dual separation problems are very similar: Given a solution
x (resp. y), they ask for the darkest (resp. brightest) point in the corresponding arrangement.
If these problems can be solved efficiently, then by switching between primal and dual separa-
tion, we get a routine that converges towards optimal (resp. approximative, if AGPFτ is used)
solutions—if it converges. Both approaches from this paper allow for such an approach: The
discrete algorithm constructs an approximative arrangement, which is searched for the darkest
point. This can be reversed, searching for the brightest. Similarily, in the continuous algorithm,
the optimization direction can be reversed, by substituting T with −T .

We conducted experiments, by implementing the discrete approach. The results turned out
so bad that we can only summarize our findings. Even polygons with 10 vertices and D ≈ 5
could not be solved optimally, but rather had to be aborted after 20 minutes, with a primal-dual
gap still exceeding 100. By looking at the algorithm’s progress, we found a new effect that is
not present in the standard AGP problem: To increase light in slightly to little covered area,
there are guards gradually moving towards the area, dragging a chain of guards trying to cover
up shadows behind them. There is a strong need for good strategies for guard placement, which
is left for future work.

6 Conclusions

We have introduced the Art Gallery Problem with Fading, which is a generalization of both
the Art Gallery Problem and the Stage Illumination Problem by Eisenbrand et al. [12]. We
presented two efficient algorithms for the case with fixed guard positions stemming from a
infinite LP formulation. They can be used for practical applications. One of them gives rise to
an FPTAS. For the general case of arbitrary guard positions, algorithms are provided. However,
the experimental evaluation reveals issues that are left for future work.

Acknowledgments

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under con-
tract number KR 3133/1-1 (Kunst!).

10

References

[1] Y. Amit, J. S. B. Mitchell, and E. Packer. Locating guards for visibility coverage of polygons.
In ALENEX, pages 120–134, 2007.

[2] Y. Amit, J. S. B. Mitchell, and E. Packer. Locating guards for visibility coverage of polygons.
Int. J. Comput. Geometry Appl., 20(5):601–630, 2010.

[3] T. Baumgartner, S. P. Fekete, A. Kröller, and C. Schmidt. Exact solutions and bounds
for general art gallery problems. In Proceedings of the SIAM-ACM Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 11–22, 2010.

[4] A. Bottino and A. Laurentini. A nearly optimal sensor placement algorithm for boundary
coverage. Pattern Recognition, 41(11):3343–3355, 2008.

[5] F. Bungiu, M. Hemmer, J. Hershberger, K. Huang, and A. Kröller. Efficient computation
of visibility polygons. In Proceedings of the 29th European Workshop on Computational
Geometry (EuroCG ’14), 2014.

[6] V. Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory,
Series B, 18(1):39 – 41, 1975.

[7] M. C. Couto, P. J. de Rezende, and C. C. de Souza. Instances for the Art Gallery Problem,
2009. http://www.ic.unicamp.br/∼cid/Problem-instances/Art-Gallery.

[8] M. C. Couto, P. J. de Rezende, and C. C. de Souza. An exact algorithm for minimizing
vertex guards on art galleries. Intl. Trans. Op. Res., 18:425–448, 2011.

[9] M. C. Couto, C. C. de Souza, and P. J. de Rezende. Experimental evaluation of an exact
algorithm for the orthogonal art gallery problem. In WEA ’08: 7th International Workshop
on Experimental Algorithms, pages 101–113, 2008.

[10] M. C. Couto, C. C. d. Souza, and P. J. d. Rezende. An exact and efficient algorithm for the
orthogonal art gallery problem. In Proc. XX Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI), pages 87–94, 2007.

[11] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guarding polygons
and terrains. Algorithmica, 31(1):79–113, 2001.

[12] F. Eisenbrand, S. Funke, A. Karrenbauer, and D. Matijevic. Energy-aware stage illumina-
tion. Proc. Symp. on Comp. Geometry (SCG), pages 336–345, 2005.

[13] S. Fisk. A short proof of Chvátal’s watchman theorem. Journal of Combinatorial Theory,
Series B, 24(3):374, 1978.

[14] J. Kahn, M. Klawe, and D. Kleitman. Traditional art galleries require fewer watchmen.
SIAM J. on Algebraic and Discrete Methods, 4(2):194–206, 1983.

[15] A. Kröller, T. Baumgartner, S. P. Fekete, and C. Schmidt. Exact solutions and bounds for
general art gallery problems. J. on Experimental Algorithmics, 2012.

[16] J. O’Rourke. Art Gallery Theorems and Algorithms. International Series of Monographs
on Computer Science. Oxford University Press, New York, NY, 1987.

[17] J. D. Pinter. Global Optimization in Action. Kluwer Academic Publishers, 1996.

[18] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. A practical iterative algorithm for the
art gallery problem using integer linear programming. Optimization Online, October 2013.
www.optimization-online.org/DB_HTML/2013/11/4106.html.

11

A Appendix — Omitted Proofs

Lemma 2. AGPF cannot be approximated better than 2α by first solving the Art Gallery Problem
and computing intensities afterwards.

Proof. Consider the polygon shown in Figure 1 with a long spike of length s. The optimal
covering guard set consists of one guard in the lower left corner (?). Illuminating the polygon
with it requires an intensity of sα. An optimal illumination uses two lights (? and •) with
intensities 1 and about (12s)

α. The approximation factor of the first solution is therefore at least

sα

1 + (12s)
α
,

which is about 2α for large s.

Lemma 3. Let %̃(g, w) := ‖g−w‖−α, α > 0, be an alternate fading function. Then AGPF(P, P),
using %̃ instead of %, has no optimal solutions.

Proof. We show that any finite solution either is infeasible or can be improved by using more
guards. Remember that the dual of AGPF(G,W) using %̃ is

max
∑
w∈W

yw (17)

s.t.
∑

w∈W∩V(g)

%̃(g, w)yw 6 1 ∀g ∈ G (18)

yw > 0 ∀w ∈W (19)

Assume we are given an optimal solution for AGPF(P, P) that only uses a finite number of
guards. Then this solution can be converted into an optimal basic solution x with optimal dual
solution y for AGPF(G,W), for some appropriatly chosen finite G 6= ∅ and W 6= ∅.

Assuming G to be finite, there must be a w ∈W ′ with a pierced (i.e., w /∈ U) ε-neighborhood
U around w that does not contain any guard. Now consider a point g ∈ U converging towards
w. As yw > 0 and %̃(g, w)→∞ as g → w, see above, at some point∑

w∈W∩V(g)

%̃(g, w)yw > 1

must hold. A point g fulfilling this inequality indicates a violated constraint (18). So if we add
g to G, then g must receive a value in the solution (as it has negative reduced cost).

This shows that whenever G is finite, we can find an additional guard that improves the so-
lution. Consequently, AGPF(P, P) possesses only solutions with infinitely many guards. In fact,
it is easy to see that the optimal G will be topologically dense in P , using the ε-neighorhood
argument above. Then, the solution values can be scaled down arbitrarily, as %̃(g, w) is ap-
proaching ∞ as w → g. This way, we can construct a series of solutions of strictly decreasing
values, where G is infinite, and the value of all guards converge to 0. Obviously the limit of this
process is x ≡ 0, which is not feasible.

Lemma 4. A solution for AGPFτ(G,W) is also a solution for AGPF(G,W). An optimal
solution for AGPFτ(P, P) is an (1 + ε)-approximation for AGPF(P, P).

Proof. The proof follows straightforward from Equation (7), in three steps:

12

1. Because % > τ , a solution fulfilling inequalities of type (4) with τ , does so too using %.
Hence every AGPFτ(G,W) solution also solves AGPF(G,W).

2. Now consider an optimal solution x∗ with value OPT for AGPF(G,W). It is easy to see
from Equation (7) that xτ := (1 + ε)x∗ (i.e., scaling every guard with a factor 1 + ε) is a
feasible solution to AGPFτ(G,W) and has objective value (1 + ε)OPT.

3. An optimal solution x∗τ for AGPFτ(P, P) has no larger objective value than the feasible
solution (1+ε)x∗, i.e., the objective value is bounded by (1+ε)OPT. This yields feasibility
for xτ and we obtain the approximation factor.

Lemma 5. The complexity of A(G) is O((n+ log1+εD)2|G|2).

Proof. The arrangement A(G) is constructed from

• n straight line segments defining P ,

• O(n) straight line segments defining V(g) per g ∈ G, and

• O(log1+εD) circles per g ∈ G,

therefore O((n+ log1+εD)|G|) straight line segments and circles in total.

Theorem 1. AGPF(G,P) admits a fully polynomial-time approximation scheme.

Proof. Given an ε > 0, the arrangement A(G) has polynomial complexity due to Lemma 5 and
the fact that log1+εD is polynomially bounded in the encoding size of ε and P . Hence the LP
in the discrete algorithm can be solved in polynomial time. According to Lemma 4, the result
is an (1 + ε)-approximation to AGPF(G,P).

Lemma 6. Let V (S) = {v0, v1, . . . , vm} be the vertex-set of the simplex S. Let T be a Lip-
schitzian on S with the Lipschitz constant L. Denote by zj the function values T (vj) (for
j = 0, 1, . . . ,m), then we have:

z∗ >
1

m+ 1

 m∑
j=0

zj − L max
06i6m

m∑
j=0

‖vi − vj‖

 (20)

where z∗ = T (x∗) is the minimum of T over S and x∗ is the optimal point.

Proof. Let x be an arbitrary point of the simplex S. Since T is a Lipschitz function

|T (x)− zj | 6 L‖x− vj‖, j = 0, 1, . . . ,m. (21)

We know that this inequality is true for any point in S,particularly for the optimal point x∗;
consequently, we have

z∗ = T (x∗) > zj − L‖x∗ − vj‖, j = 0, 1, . . . ,m. (22)

13

By summing up these inequalities, we arrive at the following inequality

z∗ >
1

m+ 1

 m∑
j=0

zj − L
m∑
j=0

‖x∗ − vj‖

 . (23)

Due to the fact that x∗ is unknown, we need to provide an estimation of the second sum in (23).
Define the function Q as follows:

Q(x) :=
m∑
j=0

‖x− vj‖ : x ∈ S. (24)

Since S is a convex set and Q is a convex function, the maximum of Q is attained at one of the
vertices of S. Consequently,

m∑
j=0

‖x∗ − vj‖ 6 max
06i6m

m∑
j=0

‖vi − vj‖. (25)

Using this inequality in (23) completes the proof.

Lemma 7. The objective function of PSP (i.e. T) is Lipschitzian.

Proof. For the sake of simplicity in the notations, let us define for any i (such that i = 1, . . . ,m):

• %i(w) := %(gi, w).

• (x0, y0) := (xi, yi) as the coordinates of the point gi.

• (x, y) as the coordinates of the witness point w and (x1, y1) as the coordinates of the
witness point wx and (x2, y2) as the coordinates of the witness point wy (where (through
the primal-dual procedure) wx and wy are the potential points that will be chosen to be
added into the set of the witness points).

Thus

%i(w) :=

{
1√

(x−x0)2+(y−y0)2
: ‖w − gi‖ > 1

1 : otherwise
. (26)

We want to show that ∃L > 0 s.t. ∀wx, wy : |%i(wx) − %i(wy)| 6 L‖wx − wy‖. We need to
consider three different cases:

(i) ‖wx − gi‖ > 1 and ‖wy − gi‖ > 1,

(ii) ‖wx − gi‖ < 1 and ‖wy − gi‖ < 1,

(iii) ‖wx − gi‖ > 1 and ‖wy − gi‖ < 1.

Case (i): in this case, the following definition of %i(.) is applied:

%i(w) =
1√

(x− x0)2 + (y − y0)2
: w ∈ {wx, wy}.

It is sufficient to show that the partial derivatives of %i(w) are bounded by a positive number
L. The partial derivatives of %i(w) are computed as follows

∂

∂x
%i(w) =

x0 − x
[(x− x0)2 + (y − y0)2]3/2

,

14

and
∂

∂y
%i(w) =

y0 − y
[(x− x0)2 + (y − y0)2]3/2

.

We will show that | ∂∂x%i(w)| 6 L (where L > 0 is a constant). The proof of the other case, i.e.,
| ∂∂y%i(w)| 6 L, is quite similar.

Since (x, y) is included in a triangle, we have ‖x‖ < ∞ and ‖y‖ < ∞. Furthermore,√
(x− x0)2 + (y − y0)2 > |x− x0| > 0, hence [

√
(x− x0)2 + (y − y0)2]3 > |x− x0|3, this means

that:
0 6

1

[
√

(x− x0)2 + (y − y0)2]3
6

1

|x− x0|3
,

hence,

0 6
|x− x0|

[
√

(x− x0)2 + (y − y0)2]3
6

1

|x− x0|2
.

The later inequality reads as follows:

0 6 | ∂
∂x
%i(w)| 6 1

|x− x0|2
.

Since |x−x0| > 1, hence 1
|x−x0|2 6 1. To sum up, we showed that | ∂∂x%i(w)| 6 1. In a similar way,

one can show that | ∂∂y%i(w)| 6 1. These inequalities prove that %i(w) is a Lipschitz function.
Case (ii): in this case, the function %i(w) is a constant function; consequently, it is a

Lipschitzian.
Case (iii): this case corresponds to

‖wx − gi‖ > 1 and ‖wy − gi‖ < 1

and we want to show that

∃L > 0 s.t. |%i(wx)− %i(wy)| 6 L‖wx − wy‖.

We know that %i(wy) = 1 and

%i(wx) =
1√

(x1 − x0)2 + (y1 − y0)2
.

According to the triangular inequality rule:

‖wx − wy‖ = ‖wx − gi + gi − wy‖ > ‖wx − gi‖ − ‖gi − wy‖,

since ‖wy − gi‖ < 1 and ‖wx − gi‖ > 1:

‖wx − wy‖ > ‖wx − gi‖ − 1 > 0.

Due to the fact that ‖wx − gi‖ > 1, we can conclude

‖wx − gi‖ − 1

‖wx − gi‖
<
‖wx − wy‖
‖wx − gi‖

6 ‖wx − wy‖,

To sum up,
‖wx − gi‖ − 1

‖wx − gi‖
< ‖wx − wy‖. (27)

On the other hand,

|%i(wx)− %i(wy)| = |
1

‖wx − gi‖
− 1| = |1− ‖wx − gi‖

‖wx − gi‖
|

15

Since ‖wx − gi‖ > 1

|%i(wx)− %i(wy)| =
‖wx − gi‖ − 1

‖wx − gi‖
and due to (27)

|%i(wx)− %i(wy)| < ‖wx − wy‖.

This shows that %i(.) is a Lipschitz function.
Since any finite sum of Lipschitz functions is a Lipschitz function too, we conclude that the

objective function of the primal separation problem (PSP) is a Lipschitz function.

16

	1 Introduction
	2 Related Work
	3 Problem and Complexity
	4 Algorithms for Fixed (Vertex) Guards
	4.1 Discrete Approximation Algorithm and FPTAS
	4.1.1 An Algorithm for AGPF

	4.2 Continuous optimization approach
	4.2.1 Simplex Partitioning Algorithm

	4.3 Experiments

	5 AGPF with Point Guards
	6 Conclusions
	A Appendix — Omitted Proofs

