
Encodings of Range Maximum-Sum Segment
Queries and Applications

Pawe l Gawrychowski and Patrick K. Nicholson

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Given an array A containing arbitrary (positive and nega-
tive) numbers, we consider the problem of supporting range maximum-
sum segment queries on A: i.e., given an arbitrary range [i, j], return

the subrange [i′, j′] ⊆ [i, j] such that the sum
∑j′

k=i′ A[k] is maximized.
Chen and Chao [Disc. App. Math. 2007] presented a data structure for
this problem that occupies Θ(n) words, can be constructed in Θ(n) time,
and supports queries in Θ(1) time. Our first result is that if only the in-
dices [i′, j′] are desired (rather than the maximum sum achieved in that
subrange), then it is possible to reduce the space to Θ(n) bits, regardless
the numbers stored in A, while retaining the same construction and query
time. Our second result is to improve the trivial space lower bound for
any encoding data structure that supports range maximum-sum segment
queries from n bits to 1.89113n−Θ(lgn), for sufficiently large values of
n. Finally, we also provide a new application of this data structure which
simplifies a previously known linear time algorithm for finding k-covers:
i.e., given an array A of n numbers and a number k, find k disjoint sub-
ranges [i1, j1], ..., [ik, jk], such that the total sum of all the numbers in
the subranges is maximized.

1 Introduction

Many core data structure problems involve supporting range queries on arrays of
numbers: see the surveys of Navarro [16] and Skala [18] for numerous examples.
Likely the most heavily studied range query problem of this kind is that of
supporting range maximum queries (resp. range minimum queries): given an
array A of n numbers, preprocess the array such that, for any range [i, j] ⊆ [1, n]
we can return the index k ∈ [i, j] such that A[k] is maximum (resp. minimum).
These kinds of queries have a large number of applications in the area of text
indexing [9, Section 3.3]. Solutions have been proposed to this problem that
achieve Θ(n) space (in terms of number of machine words1), and constant query
time [2,8]. At first glance, one may think this to be optimal, since the array A
itself requires n words to be stored. However, if we only desire the index of the
maximum element, rather than the value of the element itself, it turns out that
it is possible to reduce the space [10].

By a counting argument, it is possible to show that 2n − o(n) bits are nec-
essary to answer range maximum queries on an array of n numbers [10]. On

1 In this paper we assume the word-RAM model with word size Θ(logn) bits.

ar
X

iv
:1

41
0.

28
47

v2
  [

cs
.D

S]
  2

4 
N

ov
 2

01
4



the other hand, rather surprisingly, it is possible to achieve this space bound, to
within lower order terms, while still retaining constant query time [10]. That is,
regardless of the number of bits required to represent the individual numbers in
A, we can encode a data structure in such a way as to support range maximum
queries on A using 2n+ o(n) bits: we need not access A during any part of the
query algorithm. In a more broad sense, results of this type are part of the area
of succinct data structures [13], in which the aim is to represent a data structure
using space matching the information theoretic lower bound, to within lower
order terms.

In this paper, we consider range maximum-sum segment queries [6], where,
given a range [i, j], the goal is to return a subrange [i′, j′] ⊆ [i, j] such that∑j′

k=i′ A[k] is maximized. Note that this problem only becomes non-trivial if the
array A contains negative numbers. With a bit of thought it is not difficult to
see that supporting range maximum queries in an array A can be reduced to
supporting range maximum-sum segment queries on a modified version of A that
we get by padding each element of A with a sufficiently large negative number
(see [6] for the details of the reduction). However, Chen and Chao [6] showed that
a reduction holds in the other direction as well: range maximum-sum segment
queries can be answered using a combination of range minimum and maximum
queries on several different arrays, easily constructible from A. Specifically, they
show that these queries can be answered in constant time with a data structure
occupying Θ(n) words, that can be constructed in linear time.

A natural question one might ask is whether it is possible to improve the
space of their solution to Θ(n) bits rather than Θ(n) words, while still retaining
the constant query time. On one hand, we were aware of no information theoretic
lower bound that ruled out the possibility of achieving Θ(n) bits. On the other
hand, though Chen and Chao reduce the problem to several range maximum
and range minimum queries, they still require comparisons to be made between
various word-sized elements in arrays of size Θ(n) words in order to make a final
determination of the answer to the query; we review the details of their solution
in Section 4.1. Therefore, it was not clear by examining their solution whether
further space reduction was possible.

Our first result, presented in Section 4.2, is that if we desire only the indices
of the maximum-sum segment [i′, j′] rather than the value of the sum itself,
then we can achieve constant query time using a data structure occupying Θ(n)
bits and constructable in linear time. There are many technical details, but
the main idea is to sidestep the need for explicitly storing the numeric arrays
required by Chen and Chao to make comparisons by storing two separate graphs
that are judiciously defined so as to be embeddable in one page. By a well
known theorem of Jacobson [13], combined with later improvements [15,12], it is
known that one-page graphs—also known as outerplanar graphs—can be stored
in a number of bits that is linear in the number of vertices and edges, and be
constructed in linear time, while still retaining the ability to navigate between
nodes in constant time. Navigating these graphs allows us to implicitly simulate

2



comparisons between certain numeric array elements, thus avoiding the need to
store the arrays themselves.

Our second result, presented in Section 6 is to improve the information the-
oretic lower bound for this problem. It is quite trivial to show that one requires
n bits to support range maximum-sum segment queries by observing that if an
array contains only numbers from the set {1,−1} we can recover them via Θ(n)
queries. Since there are 2n possible arrays of this type, the lower bound fol-
lows. In contrast, by an enumeration argument, we give an improved bound of
1.89113n−Θ(lg n) bits when n is sufficiently large. The main idea is to enumer-
ate a combinatorial object which we refer to as maximum-sum segment trees,
then bound the number of trees of this type using generating functions and
Pringsheim’s Theorem.

Our final result, presented in Section 7, is a new application for maximum-
sum segment data structures. Given an array and a number k, we want to find
a k-cover: i.e, k disjoint subranges with the largest total sum. This problem was
first studied by Csurös [7], who was motivated by an application in bioinfor-
matics, and constructed an O(n log n) time algorithm. Later, an optimal O(n)
time solution was found by Bengtsson and Chen [4]. We provide an alternative
O(n) time solution, which is an almost immediate consequence of any constant
time maximum-sum segment data structure that can be constructed in linear
time. An advantage of our algorithm is that it can be also used to preprocess the
array just once, and then answer the question for any k ∈ [1, n] in O(k) time.
We remark that this related, but not equivalent, to finding k non-overlapping
maximum-sum segments, and finding k maximum-sum segments. In the latter,
one considers all

(
n
2

)
segments ordered non-increasingly according to their corre-

sponding sums, and wants to select the k-th one [14]. In the former, one repeats
the following operation k times: find a maximum-sum segment disjoint from all
the previously chosen segments, and add it to the current set [17].

2 Notation and Definitions

We follow the notation of Chen and Chao [6] with a few minor changes. Let A
be an array of n numbers. Let S(i, j) denote the sum of the values in the range

[i, j]: i.e., S(i, j) =
∑j

k=iA[k]. Let C be an array of length n such that C[i]
stores the cumulative sum S(1, i). Note that S(i, j) = C[j]− C[i− 1] if i > 1.

Given an arbitrary array B, a range maximum query RMaxQ(B, i, j) returns
the index of the rightmost maximum value in the subarray B[i, j]; the query
RMinQ(B, i, j) is defined analogously. A range maximum-sum segment query
RMaxSSQ(A, i, j) returns a subrange A[i′, j′] such that i ≤ i′ ≤ j′ ≤ j, and
S(i′, j′) is maximum. If there is a tie, then our data structure will return the
shortest range with the largest value of j′; i.e., the rightmost one.2 Note that
the answer is a range, specified by its endpoints, rather than the sum of the
values in the range. Also note that if the range A[i, j] contains only non-positive

2 Alternatively, we can return the leftmost such range by symmetry.

3



numbers, we return an empty range as the solution: we discuss alternatives in
Appendix A, but suggest reading on to Section 4 first.

A
C

Left-Vis
Left-Min

1

10 5 7 3 11 9 13 2 6 8 12

2 3 4 5 6 7 98 10 11

2

10

4

6

8

12

i
10 −5 2 −4 8 −2 4 4−11 2 4

0 2 2 4 0 6 0 8 8 8 8
1 3 3 5 5 7 5 9 9 9 9

0

12
0
0
0
0

Fig. 1. Example array A and the values of the various definitions presented in this
section that are induced by A. The list of candidates for this array are: (1, 2), (3, 4),
(5, 6), (5, 8), (9, 10), (9, 11), (9, 12).

The left visible region Left-Vis(i) of array C at index i is defined to be the
maximum index 1 ≤ j < i such that C[j] ≥ C[i], or 0 if no such index exists:
this corresponds to the “left bound” definition of Chen and Chao. The left min-
imum Left-Min(i) of array C is defined to be RMinQ(C,Left-Vis(i) + 1, i)
for 1 < i ≤ n; we define the left minimum of A[1] to be 0. This corresponds
to (one less than) the “good partner” definition of Chen and Chao. See Fig-
ure 1 for an illustration of these definitions. The pairs (Left-Min(i), i) where
Left-Min(i) < i are referred to as candidates.3 Define the candidate score array
D such that D[i] = S(Left-Min(i) + 1, i) if (Left-Min(i), i) is a candidate,
and D[i] = 0 otherwise, for all i ∈ [1, n]. Thus, for non-candidates, the candidate
score is 0. Let x′ = RMaxQ(D, 1, n) and t′ = Left-Min(x′). From the defini-
tions it is not too difficult to see that RMaxSSQ(A, 1, n) is [t′+ 1, x′] if t′ 6= x′,
and the empty range otherwise.

3 Preliminary Data Structures

We make use of the following result for supporting range minimum and range
maximum queries on arrays.

Lemma 1 ([10]). Given an array B of n numbers, we can store a data structure
of size 2n+ o(n) bits such that RMaxQ(B, i, j) can be returned for any 1 ≤ i ≤
j ≤ n in O(1) time. Similarly, we can also answer RMinQ(B, i, j) for 1 ≤ i ≤
j ≤ n using the same space bound. These data structures can be constructed in

3 One exception is the pair (Left-Min(1), 1), which may be a valid candidate. Without
loss of generality we can ignore this case by assuming A[1] = 0, as in Figure 1.

4



linear time so as to return the rightmost maximum (resp. minimum) in the case
of a tie.

We also require the following succinct data structure result for representing
one-page graphs. A one-page (or outerplanar) graph G has the property that
it can be represented by a sequence of balanced parentheses [13]. Equivalently,
there exists a labelling 1, ..., n of the vertices in G in which there is no pair of
edges (u1, u2) and (u3, u4) in G such that 1 ≤ u1 < u3 < u2 < u4 ≤ n. That
is, if we refer to vertices by their labels, then we have that the set of ranges
represented by edges are either nested or disjoint: we refer to this as the nesting
property. Note that our definitions of the navigation operations differ (slightly)
from the original source so as to be convenient for our application, and we explain
how to support these operations in Appendix B.

Lemma 2 (Based on [15,12]). Let G be a one-page multigraph with no self-
loops: i.e., G has vertex labels 1, ..., n, and m edges with the nesting property.
There is a data structure that can represent G using 2(n+m) + o(n+m) bits,
and be constructed in Θ(n + m) time from the adjacency list representation of
G, such that the following operations can be performed in constant time:

1. Degree(G, u) return the degree of vertex u.

2. Neighbour(G, u, i) return the index of the vertex which is the endpoint of
the i-th edge incident to u, for 1 ≤ i ≤ Degree(u). The edges are sorted in
non-decreasing order of the indices of the endpoints: Neighbour(G, u, 1) ≤
Neighbour(G, u, 2) ≤ . . . ≤ Neighbour(G, u,Degree(G, u)).

3. Order(G, u, v) return the order of the edge (u, v) among those incident to
u: i.e., return an i such that Neighbour(G, u, i) = v.4

In all of the operations above, a vertex is referred to by its label, which is an
integer in the range [1, n].

4 Supporting Range Maximum-Sum Segment Queries

In this section we present our solution to the range maximum-sum segment query
problem which occupies linear space in bits. First we begin by summarizing the
solution of Chen and Chao [6]. Then, in Section 4.2 we describe an alternative
data structure that occupies Θ(n) words of space. Finally, we reduce the space
of our alternative data structure to linear in bits.

4 Since G may be a multigraph the value of i may be arbitrary among all possible
values that satisfy the equation. We note that this is more general than we require,
as in our application we will not execute this type of query on a multigraph, so the
answer will always be unique.

5



4.1 Answering Queries using Θ(n) Words

In the solution of Chen and Chao the following data structures are stored: the
array C; a data structure to support RMinQ(C, i, j) queries; a data structure for
supporting RMaxQ(D, i, j) queries; and, finally, an array P of length n where
P [i] = Left-Min(i). Thus, the overall space is linear in words.

The main idea is to examine the candidate (P [x], x) whose right endpoint
achieves the maximum sum in the range [i, j]. If P [x] + 1 ∈ [i, j] then Chen and
Chao proved that [P [x] + 1, x] is the correct answer. However, if P [x] + 1 6∈ [i, j]
then they proved that there are two possible ranges which need to be examined to
determine the answer. In this case we check the sum for both ranges and return
the range with the larger sum. The pseudocode for their solution to answering
the query RMaxSSQ(A, i, j) is presented in Algorithm 1:

Algorithm 1 Computing RMaxSSQ(A, i, j).

1: x← RMaxQ(D, i, j)
2: if P [x] = x then . In this case x is a non-candidate, so D[x] = 0
3: return the empty range
4: else if P [x] + 1 ≥ i then . In this case [P [x] + 1, x] ⊆ [i, j]
5: return [P [x] + 1, x]
6: else . In this case [P [x] + 1, x] 6⊆ [i, j]
7: y ← RMaxQ(D,x+ 1, j)
8: t← RMinQ(C, i− 1, x− 1)
9: if S(t+ 1, x) > S(P [y] + 1, y) then

10: return [t+ 1, x]
11: else
12: return [P [y] + 1, y]
13: end if
14: end if

Items (1), (2) and (3) of the following collection of lemmas by Chen and
Chao imply that the query algorithm is correct. We use item (4) later.

Lemma 3 ([6]). The following properties hold (using the notation from Algo-
rithm 1):

1. If [P [x] + 1, x] ⊆ [i, j] then RMaxSSQ(A, i, j) is [P [x] + 1, x].
2. The following inequalities hold: x < P [y] ≤ y.
3. If [P [x] + 1, x] 6⊆ [i, j] then RMaxSSQ(A, i, j) is [P [y] + 1, y] or [t+ 1, x].
4. If 1 ≤ i < j ≤ n then it cannot be the case that P [i] < P [j] ≤ i. That is, the

ranges [P [i], i] and [P [j], j] have the nesting property for all 1 ≤ i < j ≤ n.

On line 9 of Algorithm 1 the sums can be computed in constant time using
the array C. All other steps either defer to the range maximum or minimum
structures, or a constant number of array accesses. Thus, the query algorithm
takes constant time to execute.

6



4.2 Reducing the Space to Θ(n) Bits

Observe that the data structure for answering RMaxQ (resp. RMinQ) queries
on D (resp. C) only requires 2n+o(n) bits by Lemma 1; 4n+o(n) bits in total for
both structures. Thus, if we can reduce the cost of the remaining data structures
to Θ(n) bits, while retaining the correctness of the query algorithm, then we are
done. There are two issues that must be overcome in order to reduce the overall
space to linear in bits:

1. The array P occupies n words, so we cannot store it explicitly.
2. In the case where [P [x] + 1, x] is not contained in [i, j], we must compare
S(t+ 1, x) and S(P [y] + 1, y) without explicitly storing the array C.

The first issue turns out to be easy to deal with: we instead encode the graph
G = ([n], {(P [x], x)|1 ≤ x ≤ n, P [x] < x}, which we call the candidate graph
using the following lemma:

Lemma 4. The candidate graph G can be represented using 4n + o(n) bits of
space, such that given any x ∈ [1, n] we can return Left-Min(x) in O(1) time.

Proof. Item (4) of Lemma 3 implies that the edges of G have the nesting prop-
erty. We store G in the data structure of Lemma 2. Given x, we can retrieve
Left-Min(x) since, if (Left-Min(x), x) is a candidate, we have that the degree
of x ∈ V (G) is exactly one and to a vertex with index less than x. If x is a
non-candidate, then the degree is either exactly zero, or any edge from x is to
a vertex with index larger than x, and we can return P [x] = x. Thus, we can
navigate to Left-Min(x) in O(1) time. ut

From here onward, we can assume that we have access to the array P , which
we simulate using Lemma 4. Unfortunately, the second issue turns out to be
far more problematic. We overcome this problem via a two step approach. In
the first step, we define another array Q which we will use to avoid directly
comparing the sums S(t + 1, x) and S(P [y] + 1, y). This eliminates the need to
store the array C. We then show how to encode the array Q using Θ(n) bits.

Left Siblings and the Q Array: Given candidate (P [x], x), we define the
left sibling Left-Sib((P [x], x)) to be the largest index ` ∈ [1, P [x] − 1], such
that there exists an `′ ∈ [` + 1, P [x]] with S(` + 1, `′) > S(P [x] + 1, x), if
such an index exists. Moreover, when discussing `′ we assume that `′ is the
smallest such index. If no such index ` exists, or if (P [x], x) is a non-candidate,
we say Left-Sib((P [x], x)) is undefined. We define the array Q such that Q[x] =
Left-Sib((P [x], x)) for all x ∈ [1, n]; if Q[x] is undefined, then we store the value
0 to denote this. We now prove that we can compare S(t+ 1, x) to S(P [y] +1, y)
using the Q array.

Lemma 5. If P [y] = y or Q[y] ≥ t then RMaxSSQ(A, i, j) = [t+ 1, x]. Other-
wise, RMaxSSQ(A, i, j) = [P [y] + 1, y]

7



-20

 0

 20

 40

 60

 5  10  15  20  25  30  35  40  45

Fig. 2. A graph of the cumulative sums C (thick middle line) for a randomly generated
instance with n = 45 and floating point numbers drawn uniformly from the range
[−20, 20]. The edges drawn above the line for C represent the candidate graph G and
the edges below represent the left sibling graph H: note that H is a multigraph.

Proof. There are several cases. For this proof, `′ is defined relative to Q[y]:

1. If P [y] = y then A[y] is non-positive. However, since [P [x] + 1, x] 6⊆ [i, j] it
is implied that A[x] is positive, thus [t+ 1, x] is the correct answer.

2. If Q[y] > x then there exists an `′ such that S(Q[y] + 1, `′) > S(P [y] + 1, y)
with `′ < P [y]. Thus, (Q[y], `′) is a better candidate in the range [x + 1, j]
than (P [y], y), so RMaxQ(D, i + 1, j) = `′ and we have a contradiction.
Hence, Q[y] ≤ x.

3. If [Q[y], `′] ⊆ [t, x] then by transitivity we have S(P [y]+1, y) < S(t+1, x). If
Q[y] ≥ t and `′ > x then it implies that S(x+ 1, `′) is positive. This implies
D[`′] > D[x], which contradicts the fact that RMaxQ(D, i, j) = x. Thus, if
Q[y] ≥ t, then [t+ 1, x] is the correct answer.

4. If Q[y] < t then it is implied that the sum S(t + 1, x) ≤ S(P [y] + 1, y) by
the definition of left sibling, so [P [y] + 1, y] is the rightmost correct answer.
Note that if Q[y] = 0 and P [y] 6= y, then S(P [y] + 1, y) is larger than any
subrange in [1, P [y]− 1], so this also holds. ut

Note that in the previous proof, we need not know the value of `′ in order to
make the comparison: only the value Q[y] is required.

Encoding the Q Array: Unfortunately, the graph defined by the set of
edges (Q[x], x) does not have the nesting property. Instead, we construct an

8



n-vertex graph H using the pairs (Q[x], P [x]) as edges, for each x ∈ [1, n] where
Left-Sib(x) is defined (i.e., Q[x] 6= 0). We call H the left sibling graph. We
give an example illustrating both the graphs G and H in Figure 2. Note in the
figure that each edge in G has a corresponding edge in H unless its left sibling
is undefined. We formalize this intuition in the following lemma:

Lemma 6. Let (P [x], x) be a candidate, and suppose i = Degree(H,P [x]) −
Order(G,P [x], x) + 1. If i > 0 then it is the case that Left-Sib((P [x], x)) =
Neighbour(H,P [x], i). Otherwise, Left-Sib((P [x], x)) is undefined.

Proof. Let t = P [x] and consider the set of candidates (t, x1), ..., (t, xd), where
d = Degree(G, t), and xi = Neighbour(G, t, i). Then, we have S(t+1, xi−1) <
S(t + 1, xi) for all 1 < i ≤ d, since xi−1 < xi and t is contained in the left
visible region of all xi. Furthermore, suppose `j = Left-Sib((t, xj)) for all
1 ≤ j ≤ d′, where d′ = Degree(H, t). We show that `j−1 ≥ `j , by assuming
the opposite. If `j−1 < `j then it is implied by the definition of left sibling
that S(t + 1, xj) < S(t + 1, xj−1), which is a contradiction. Thus, we have
`1 ≥ `2 ≥ ... ≥ `d′ , and the remaining candidates (t, xd′+1), ..., (t, xd) have
undefined left siblings, as there would be an edge in H corresponding to them
otherwise. The calculation in the statement of the lemma is equivalent to the
previous statement. ut

Next, we prove the property that can be observed in Figure 2: namely, that
we can apply Lemma 2 to H.

Lemma 7. The left-sibling graph H can be represented using no more than 4n+
o(n) bits of space, such that given any x ∈ [1, n] we can return Q[x] in constant
time, assuming access to the data structure of Lemma 4.

Proof. If H is does not have the nesting property, then there exist candidates
(t1, x1), (t2, x2) with t1 < t2 such that `1 < `2 < t1, where `1 = Left-Sib((t1, x1))
and `2 = Left-Sib((t2, x2)). Proof by case analysis:

1. Consider the case where t1 is the left visible region of x2. For (t2, x2) to be
a candidate in this case implies that C[t2] < C[t1]. Consequently, it is also
the case that x1 < t2: otherwise (t2, x1) would be a candidate. This implies
that C[x1] < C[x2]. Thus, we have that S(t1 + 1, x1) ≤ S(t2 + 1, x2), which
contradicts the fact that `1 < `2.

2. If t1 is not in the left visible region of x2, then let x3 be the rightmost index
in [t1, t2 − 1] such that C[x2] ≤ C[x3].
(a) If S(t2 + 1, x2) < S(t1 + 1, x3) then we arrive at a contradiction since

the left sibling of (t2, x2) cannot be to the left of t1.
(b) If S(t1+1, x3) ≤ S(t2+1, x2) and S(t1+1, x1) ≤ S(t1+1, x3) then we also

arrive at a contradiction since transitivity implies that S(t1 + 1, x1) ≤
S(t2 + 1, x2), which as we saw in case 1 leads to a contradiction.

(c) Thus, S(t1 + 1, x3) ≤ S(t2 + 1, x2) and S(t1 + 1, x3) < S(t1 + 1, x1). This
implies that t2 < x1 by the definition of x3. Therefore, since C[x2] ≤
C[x3] we have that C[t1] < C[t2], since otherwise t1 would not be the left

9



minimum of x1. This is a contradiction since it implies S(t2 + 1, x2) <
S(t1 + 1, x3).

Thus, we can apply Lemma 2 to H, achieving the desired space bound. Using the
calculation in Lemma 6 we can return Q[x] in constant time for any candidate
(P [x], x). ut

Thus, to simulate the query algorithm of Chen and Chao we need: the range
maximum structure for the array D (Lemma 1); the range minimum structure
for the array C (Lemma 1); the representation of the graph G (Lemma 2); the
representation of the graph H (Lemma 2). We have the following theorem:

Theorem 1. There is a data structure for supporting range maximum-sum seg-
ment queries, RMaxSSQ(A, i, j) for any 1 ≤ i ≤ j ≤ n in constant time which
occupies 12n+ o(n) bits.

5 Constructing the P and Q Arrays

Here we show that the arrays P and Q can be constructed in O(n) time, and
therefore the construction time of the data structure from Theorem 1 is O(n).
This follows since we can construct the adjacency list representation of the graphs
G and H in linear time from the arrays P and Q, respectively.

Constructing the P array is rather straightforward. We only need to efficiently
compute Left-Vis(i) for every i. This can be done using a simple stack-based
procedure. Informally, we consider i = 1, 2, . . . , n and maintain a stack, where we
keep Left-Vis(i), Left-Vis(Left-Vis(i)), and so on, see Algorithm 2. More
formally, we define the falling staircase of a sequence (a1, . . . , ak) to be the
maximal sequence of indices (i1, . . . , is) such that is = k and ij = max{x :
x < ij+1 and ax ≥ aij+1} for j = s − 1, . . . , 1. Then Left-Vis(i) is the next-
to-last element of the falling staircase of (C[1], . . . , C[i]), and it is easy to see
that Algorithm 2 maintain such falling staircase. Having all Left-Vis(i), we
can compute all Left-Min(i) in O(n) total time with range minimum queries
(by Lemma 1, a range minimum structure can be constructed in O(n) time and
answers any query in O(1) time).

Algorithm 2 Computing all Left-Vis(i).

S ← ∅
for i = 1, 2, 3 . . . , n do

while S 6= ∅ and C[S.top] < C[i] do
S.pop()

end while
Left-Vis(i)← S.top
S.push(i)

end for

10



Fig. 3. A schematic depiction of the stack of rising staircases. Each rising staircase is
in red, and the falling staircase consists of the larger red elements.

Computing the Q array is more involved. Let (i1, . . . , is) be the falling stair-
case of (C[1], . . . , C[i]). It partitions [1, n] into ranges [1, i1], [i1+1, i2], . . . , [is−1+
1], is] For each of these ranges we store the rising staircase of the corresponding
range of the C array, where the rising staircase of (a1, . . . , ak) is the falling stair-
case of (−a1, . . . ,−ak). Each of these rising staircases is stored on a stack, so we
keep a stack of stacks, see Figure 3. Observe that the rising staircases allow us
to extract P [i] without using the range minimum structure by simply returning
the leftmost element of the last rising staircase. This is because the sequence we
constructed the last rising staircase for is exactly C[(Left-Vis(i) + 1]), i], and
the leftmost element of a rising staircase is the smallest element of the sequence.

Before we argue that the rising staircases allow us to compute every Q[i], we
need to show that they can be maintained efficiently as we consider i = 1, . . . , n.

Lemma 8. The rising staircases constructed for C[1, i] can be updated to be the
rising staircases constructed for C[1, (i+ 1)] in amortized O(1) time.

Proof. Consider the rising staircases constructed for C[1..i], and denote the cur-
rent ranges by [1, i1], [i1+1, i2], . . . , [is−1+1, is]. We first find largest s′ such that
C[is′ ] > C[i+ 1]. Then we pop all [is′ + 1, is′+1], . . . , [is−1 + 1, is] from the stack
and push [is′ + 1, i + 1]. The remaining part is to construct the rising staircase
corresponding to the new range [is′ + 1, i + 1]. It can be constructed using the
rising staircases corresponding to the removed ranges. More precisely, given the
rising staircases of C[ij + 1, ij ] and C[ij+1 + 1..ij+2], both stored on stacks, the
rising staircase of C[ij + 1..ij+2] can be constructed in O(1) amortized time. We
call this merging the rising staircases. It can be implemented by popping the
elements from the latter rising staircase as long as they are smaller than the
first element on the former rising staircase (so the stacks should give us access
to their top elements, but this is easy to add). Every popped element disappears
forever, hence the whole merging procedure amortizes to O(1) time. ut

11



Now we are ready show how to compute Q[i] given the rising staircases.
Recall that Q[i] is the largest ` < P [i] such that there exists `′ ∈ [`, P [i]− 1] for
which S(` + 1, `′) > S(P [i + 1] + 1, i + 1). In other words, we want to find the
largest ` < P [i] such that C[`′]−C[`] > C[i]−C[P [i]] for some `′ ∈ [`, P [i]− 1].
Because P [i] is the leftmost element of the last rising staircase. ` must belong
to one of the earlier staircases. Then, because the rightmost elements on the
rising staircases are nonincreasing, it is enough to consider ` and `′ belonging
to the same rising staircase, and furthermore without losing the generality `′

is the rightmost element there. So, to summarize, we want to find the largest
` belonging to one of the rising staircases (but not the last one), such that
C[`′]−C[`] > C[i]−C[P [i]], where `′ is the rightmost element of the same rising
staircase. We will first show how to determine `′, i.e., the relevant staircase, and
then the rightmost possible ` there.

We define the span of a rising staircase to be the difference between its
leftmost and rightmost element (which, by definition, is the same as the difference
between its smallest and largest element). We maintain the falling staircase of
the sequence of spans of all rising staircases. In other words, we store the rising
staircase with the largest span, then the rising staircase with the largest span
on its right, and so on. By definition, the span of a rising staircase is equal to
the largest possible value of C[`′] − C[`], where ` and `′ belong to that rising
staircase. Therefore, to determine `′ we only need to retrieve the rising staircase
corresponding to the next-to-last element of the falling staircase of the sequence
of spans, which can be done in O(1) time, assuming that we can maintain that
falling staircase efficiently.

Lemma 9. The falling staircase of the sequence of spans of all rising staircases
can be updated in O(1) time after merging the two rightmost rising staircases.

Proof. Consider the two rightmost rising staircases. After merging, the rightmost
element of the resulting rising staircase is the rightmost element of the latter
rising staircase. The leftmost element of the resulting rising staircase is either
leftmost element of the former or the latter rising staircase, depending on which
one is smaller. Therefore, the largest element stays the same, and the smallest
element stays the same or decreases, so the span of the new rising staircase
cannot be smaller than the spans of the initial rising staircases.

Now the falling staircase of the sequence of spans of all rising staircases can be
updated by first popping its elements corresponding to the two rightmost rising
staircases, and then including the span of the new rising staircase, which might
require popping more elements. Because the new span is at least as large as the
spans of the removed elements, this maintains the falling staircase correctly in
O(1) amortized time. ut

After having determined the appropriate rising staircase, such that `′ is the
rightmost element there, we want to determine `. Denoting the rising staircase
by (i′1, . . . , i

′
s′), where i′s′ = `′, we need to determine the largest j such that

C[i′s′ ] − C[i′j ] > C[i] − C[P [i]]. This can be done by starting with j = s′ and
decrementing j as long as C[i′s′ ] − C[i′j ] ≤ C[i] − C[P [i]], i.e., scanning the

12



rising staircase from right to left. A single scan might require a lot of time, but
one can observe that all scanned elements can be actually removed from the
rising staircase. This is because the next time we scan the same rising staircase
again, the value of C[i]−C[P [i]] will be at least as large as now. When the rising
staircase (or more precisely its prefix) becomes a part of a longer rising staircase,
the scanned elements will be outside of the surviving prefix, therefore they can be
safely removed. This reduces the amortized complexity of determining a single `
to O(1), and gives the claimed total linear time to determine the whole Q array.

6 Lower Bound

In this section we prove a lower bound by showing that range maximum seg-
ment sum queries can be used to construct a combinatorial object which we
call maximum-sum segment trees, or MSS-trees for short. By enumerating the
total number of distinct MSS-trees, we get a lower bound on the number of bits
required to encode a data structure that supports range maximum segment sum
queries.

6.1 MSS-trees

We define MSS-trees as follows. An MSS-tree for an array A[1, n] is a rooted
ordinal tree, i.e., a rooted tree in which the children are ordered. Each node
is labelled with a range [i, j] ⊆ [1, n]. For technical reasons, as in the previous
sections, we assume A[1] = 0. The intuition is as follows. Suppose we execute
the query RMaxSSQ(A, 1, n) and are given a range [i + 1, j]. We define the
drop of a query result [i + 1, j] to be the range [i, j]—i.e., a range with the left
endpoint of the query result extended by one—as we find it more convenient to
discuss drops rather than query results. Thus, since A[1] = 0, all possible drops
span at least two array locations, with the exception of the empty range, whose
drop will be defined to be the empty range. Next, we consider the partial sums
(i.e., the C array), and how we can force certain drops to occur. To get a drop
of [i, j] we simply fix C[i] to be the minimum, and C[j] to be the maximum.
Then, by fixing other partials sums we have (roughly) the following flexibility
when setting the values of additional drops in A:

1. The drop of RMaxSSQ(A, 1, i−1) can be completely arbitrary in the range
[1, i−1], of length at least two, or zero. Note that it is important that A[1] = 0
to make this statement true. Furthermore, we maintain the invariant that
the values in array locations C[1], . . ., C[i − 1] are restricted to the range
(C[i], C[j]), and that the minimum of these values occurs to the left of the
maximum.

2. The drop of RMaxSSQ(A, j+1, n) can be completely arbitrary in the range
[j + 1, n], of length at least two or zero. This follows since we know that
A[j + 1] is a non-positive number, since j + 1 was not contained in [i, j] =
RMaxSSQ(A, 1, n). As in the previous case, we maintain the invariant that

13



the values C[j + 1], . . ., [n] are restricted to the range (C[i], C[j]), and that
the minimum of these values occurs to the left of the maximum.

3. The drop of RMaxSSQ(A, i, j − 1) can be almost completely arbitrary in
the range [i, j−1], with length at least two. The difference between this case
and the previous is that the empty range cannot be returned as a drop, nor
can a drop with left index i+1. This can be seen since RMaxSSQ(A, i, i+1)
has a drop [i, i + 1], as A[i + 1] must be positive: otherwise, A[i + 1] would
not be included as the left index of the query result for RMaxSSQ(A, 1, n)
as it does not increase the score. Finally, we maintain the invariant that the
values in array locations C[i + 1], . . ., C[j − 1] are restricted to the range
(C[i], C[j]), and that the minimum of these values occurs to the left of the
maximum.

The previous three situations are a bit vague about border cases, and we will
clarify this in our later discussion. Because of these cases, our MSS-trees will in
two flavours: either general, which will describe situations 1 and 2, or restricted,
which describes situation 3. General MSS-trees may contain subtrees which are
restricted, and restricted MSS-trees may contain subtrees which are general. In
light of this mutual definition, we define general MSS-trees first, followed by
restricted MSS-trees.

General MSS-trees Given the array A, and a range [i0, j0], we construct a
general tree in the following way. If i0 = j0, then we return a single node labelled
[i0, j0]. This is consistent with the fact that we have enforced the range to begin
with a non-positive number for the general case by setting A[1] = 0. Thus, there
is only one possible type of tree when the range has length 1. If the range [i0, j0]
is not valid (for instance if i0 > j0), then we return an empty tree. Otherwise,
we execute RMaxSSQ(A, i0, j0) and are given a drop [i, j] ⊆ [i0, j0]. We then
create a node labelled with the range [i, j]. The node will have three children
(all of which are possibly empty trees):

– The left child is a general MSS-tree constructed on the range [i0, i− 1].
– The middle child is a restricted MSS-tree constructed on the range [i, j− 1].
– The right child is a general MSS-tree constructed on the range [j + 1, j0].

Restricted MSS-tree Given a subrange [i0, j0], we construct a restricted MSS-
tree as follows. If i0 = j0 then we return an empty tree. If i0 = j0 − 1, then we
return a tree labelled with [i0, j0]. Otherwise, if we execute RMaxSSQ(A, i0, j0),
then we will be given a drop [i0, j] ⊆ [i0, j0]. This follows from the invariants since
we know that C[i0] < C[k] for any k ∈ [i0 + 1, j0]. The root of the restricted
tree is labelled with [i0, j], and has two children (again, possibly both empty
subtrees):

1. The left child is the result of recursively constructing a restricted MSS-tree
on the range [i0, j − 1].

2. The right child is the result of recursively constructing a general MSS-tree
on the range [j + 1, j0].

14



6.2 Examples

Given any data structure that answers RMaxSSQ queries on A, we can con-
struct the MSS-tree for A by invoking the construction algorithm for general
MSS-trees on the range [1, n]. As an example, we give a figure showing all possible
MSS-trees for n = 3 and n = 4 in Figure 4. Using the invariants described above,
it is not difficult to construct arrays of lengths 3 and 4—in which A[1] = 0—such
each of the MSS-trees in the figure can be extracted by the procedure described
above.

[1, 2] [1, 3]

[1, 2]

[2, 3]

[1, 2] [2, 3] [1, 3]

[1, 2]

[3, 4] [2, 4]

[2, 3]

[1, 4]

[1, 3]

[1, 2]

n = 3

n = 4

[1, 4]

[1, 2] [3, 4]

[1, 2]

[1, 2]

[3, 4]

Fig. 4. Every possible MSS-tree for n = 3 and n = 4. Each node is a box labelled with
its respective range. We use black boxes to denote empty subtrees.

6.3 Enumeration via Recurrences

Based on the discussion in the previous section we write the following recurrences
to count the number of MSS-trees for an array of length n. Let T (n) denote the
number of general MSS-trees on an array of length n, and M(n) denote the
number of restricted trees on an array of length n.

T (0) = 1

T (n) = 1 +

n∑
j=2

j−1∑
i=1

T (i− 1) ·M(j − i) · T (n− j) for n ≥ 1 (1)

M(0) = 0

M(1) = 1

M(n) =

n∑
i=2

M(i− 1) · T (n− i) for n ≥ 2 (2)

We rewrite (1) as follows:

T (n) = 1 +

n∑
j=2

j−1∑
i=1

T (i− 1) ·M(j − i) · T (n− j)

15



= 1 +

n∑
j=2

T (n− j)
j−1∑
i=1

T (i− 1) ·M(j − i)

= 1 +

n∑
j=2

T (n− j)
j−1∑
i=1

M(j − i) · T (i− 1)

= 1 +

n∑
j=2

T (n− j)
j−1∑
i=1

M(i) · T (j − i− 1)

= 1 +

n∑
j=2

T (n− j)
j∑

i=2

M(i− 1) · T (j − i)

Therefore, by combining with (2) we get a simpler recurrence for T (n):

T (n) =1 +

n∑
j=2

T (n− j) ·M(j)

=1 +

n−2∑
j=0

T (n− 2− j) ·M(j + 2) for n ≥ 1 (3)

Because M(0) = 0, we can then rewrite (2) to get the following equivalent
recurrence:

M(n) =

n−1∑
i=0

M(i) · T (n− 1− i) for n ≥ 2 (4)

Now we define two polynomials p(x) =
∑∞

n=0M(n)xn and q(x) =
∑∞

n=0 T (n)xn.
From (3) and (4) we get the following equalities.

p(x) =x+ xp(x)q(x)

q(x) =
1

1− x
+ x2q(x)

p(x)− x
x2

After substituting p(x) = x
1−xq(x) we get:

q(x) =
1

1− x
+ x2q(x)

p(x)− x
x2

=
1

1− x
+ q(x)

(
x

1− xq(x)
− x
)

=
1

1− x
+

x2q2(x)

1− xq(x)

and then:

q(x)(1− x)(1− xq(x)) =(1− xq(x)) + x2q2(x)(1− x)

16



q(x)− xq2(x)− xq(x) + x2q2(x) =1− xq(x) + x2q2(x)(1− x)

q(x)− xq2(x) =1− x3q2(x)

q2(x)(x3 − x) + q(x)− 1 =0

So finally q(x) =
1±
√

1−4x(1−x2)

2x(1−x2) . We can eliminate the positive branch through

a simple sanity check by setting x = 0. Thus, the generating function for the
above sequence of numbers is:

q(x) =
1−

√
1− 4x(1− x2)

2x(1− x2)
.

Interestingly, this generating function implies that the number of valid MSS-
trees for n = 0, 1, 2, ... corresponds to OEIS A157003[1]. As for the asymptotics:
the first singularity encountered along the positive real axis for the function
q(x) is located at x ≈ 0.2695944. By Pringsheim’s Theorem [11, see p.226 and
Theorems IV.6, IV.7] this implies that at least log2( 1

0.269594npoly(n) ) ≥ 1.89113n−
Θ(lg n) bits are required to represent an MSS-tree, provided n is sufficiently large.
Thus, we have proven the following theorem:

Theorem 2. For an array A of length n, any data structure that encodes the
solution to range maximum-sum segment queries must occupy at least 1.89113n−
Θ(lg n) bits, if n is sufficiently large.

7 Application to Computing k-Covers

Given an array A of n numbers and a number k, we want to find k disjoint
segments [i1, j1], . . . , [ik, jk], called a k-cover, such that the total sum of all num-
bers inside, called the score, is maximized. For k = 1 this is a classic exercise,
often used to introduce dynamic programming. For larger values of k, it is easy
to design an O(nk) time dynamic programming algorithm, but an interesting
question is whether we can do better. As shown by Csurös [7], one can achieve
O(n log n) time complexity. This was later improved to O(nα(n, n)) [3] and fi-
nally to optimal O(n) time [4]. In this section we show that, assuming a constant
time range maximum-sum segment structure, which can be constructed in linear
time, we can preprocess the array in time O(n), so that given any k, we can com-
pute a maximum k-cover in O(k) time. This improves the previous linear time
algorithm, which needs O(n) time to compute a maximum k-cover regardless of
how small k is, so our algorithm is more useful when there are multiple different
values of k for which we want to compute a maximum k-cover.

We iteratively construct a maximum score k-cover for k = 0, 1, 2, . . . , n. This
is possible due to the following property already observed by Csurös.

Lemma 10. A maximum score (k+ 1)-cover can be constructed from any max-
imum score k-cover consisting of intervals [i1, j1], . . . , [ik, jk] in one of the two
ways:

17



1. adding a new interval [ik+1, jk+1] disjoint with all [i1, j1], . . . , [ik, jk],
2. replacing some [i`, j`] with two intervals [i`, j

′], [i′, j`].

As any such transformation results in a valid (k+ 1)-cover, we can construct
a maximum score (k + 1)-cover by simply choosing the one increasing the score
the most. In other words, we can iteratively select the best transformation. Now
the question is how to do so efficiently.

We will first show that the best transformation of each type can be found in
O(1+k) time using the range maximum-sum queries. Assume that we have both
a range maximum-sum and a range minimum-sum query structure available.
Recall that out of all possible transformations of every type, we want the find
the one increasing the score the most.

1. To add a new interval [ik+1, jk+1] disjoint with all [i1, j1], . . . , [ik, jk] in-
creasing the score the most, we guess an index ` such that the new in-
terval is between [i`, j`] and [i`+1, j`+1] (if ` = 0 we ignore the former
and if ` = k the latter condition). Then [ik+1, jk+1] can be found with
RMaxSSQ(A, i` + 1, j`+1 − 1).

2. To replace some [i`, j`] with two intervals [i`, j
′], [i′, j`] increasing the score

the most, we observe that the score increases by −S(j′+ 1, i′− 1), hence we
can guess ` and then find (j′ + 1, i′ − 1) with RMinSSQ(A, i`, j`).

For every type, we need 1 + k calls to one of the structures. If each call takes
constant time, the claimed O(1 + k) complexity follows.

We will now show that, because we repeatedly apply the best transformation,
the situation is more structured and the best transformation of each type can
be found faster. To this end we define a transformation tree as follows. Its root
corresponds to the maximum-sum segment [i, j] of the whole A, meaning that
its weight is S(i, j), and has up to three children. If A is empty or consists of
only negative numbers, the transformation tree is empty.

1. The left child is the transformation tree recursively defined for A[1..i− 1].
2. The middle child is the transformation tree recursively defined for −A[i..j],

i.e., for a copy of A[i..j] with all the numbers multiplied by −1.
3. The right child is the transformation tree recursively defined for A[j + 1..n].

If any of these ranges is empty, we don’t create the corresponding child. Now
the transformation tree is closely related to the maximum score k-covers.

Lemma 11. For any k ≥ 1, a k-cover constructed by the iterative method cor-
responds to a subtree of the transformation tree containing the root.

Proof. We apply induction on k. For k = 1, the cover is exactly the maximum-
sum segment, which corresponds to the root of the whole transformation tree.
Now assume that the lemma holds for some k ≥ 1 and consider how the iterative
method proceeds. It is easy to see that any of the possible transformations, i.e.,
either adding a new interval or splitting an existing interval into two, correspond
to a child of a node already in the subtree corresponding to the maximum k-
cover by the inductive hypothesis. Hence the lemma holds for k + 1 and so for
all k ≥ 1. ut

18



This suggests that a maximum k-cover can be found by computing a maxi-
mum weight subtree of the transformation tree containing the root and consisting
of k nodes. Indeed, any such subtree corresponds to a k-cover, and by Lemma 11
a maximum k-cover corresponds to some subtree. To find a maximum weight
subtree efficiently, we observe the following property of the transformation tree.

Lemma 12. The transformation tree has the max-heap property, meaning that
the weight of every node is at least as large as the weight of its parent.

Proof. We apply induction on n. For the induction step, we need to prove that
the weight of the root is at least as large as the weight of all of its children.
This is immediate in case of the left and the right child, because the weight of
the root is the largest S(i, j) for 1 ≤ i ≤ j ≤ n, the weight of the left child
is the largest S(i′, j′) for 1 ≤ i′ ≤ j′ < i, and the weight of the right child is
the largest S(i′, j′) for j < i′ ≤ j′ ≤ n. The weight of the middle child, if any,
is the largest −S(i′, j′) for i ≤ i′ ≤ j′ ≤ j, and to finish the proof we need to
argue that any such −S(i′, j′) is at most S(i, j). But if −S(i′, j′) > S(i, j), then
S(i,i′−1)+S(j′+1,j)

2 > S(i, j), so either S(i, i′−1) > S(i, j) or S(j′+1, j) > S(i, j).
In either case, S(i, j) was not a maximum-sum segment, a contradiction. ut

Therefore, to find a maximum weight subtree consisting of k nodes, we can
simply choose the k nodes with the largest weight in the whole tree (we assume
that the weights are pairwise distinct, and if not we break the ties by considering
the nodes closer to the root first). This can be done by first explicitly construct-
ing the transformation tree, which takes O(n) time assuming a constant time
maximum and minimum range-sum segment structures. Then we can use the
linear time selection algorithm [5] to find its k nodes with the largest weight.
This is enough to solve the problem for a single value of k in O(n) time.

If we are given multiple values of k, we can process each of them in O(k)
time assuming the following linear time and space preprocessing. For every i =
01, 2, . . . , log n we select and store the 2i nodes of the transformation tree with
the largest weight. This takes O(n + n/2 + n/4 + ...) = O(n) total time and
space. Then, given k, we find i such that 2i ≤ k < 2i+1 and again use the linear
time selection algorithm to choose the k nodes with the largest weight out of the
stored 2i+1 nodes.

References

1. OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences,
Transform of Catalan numbers whose Hankel transform gives the Somos-4 se-
quence. http://oeis.org/A157003, accessed: 2014-09-24

2. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Proc. LATIN.
LNCS, vol. 1776, pp. 88–94. Springer (2000)

3. Bengtsson, F., Chen, J.: Computing maximum-scoring segments in almost linear
time. In: Proc. COCOON. pp. 255–264. LNCS, Springer, Berlin, Heidelberg (2006)

4. Bengtsson, F., Chen, J.: Computing maximum-scoring segments optimally. Tech.
rep., Research Report, Lule̊a University of Technology (2007)

19

 http://oeis.org/A157003


5. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
Journal of Computer and System Sciences 7, 448–461 (1972)

6. Chen, K.Y., Chao, K.M.: On the range maximum-sum segment query problem.
Discrete Applied Mathematics 155(16), 2043–2052 (2007)

7. Csürös, M.: Maximum-scoring segment sets. IEEE/ACM Trans. Comput. Biology
Bioinform. 1(4), 139–150 (2004)

8. Durocher, S.: A simple linear-space data structure for constant-time range mini-
mum query. In: Space-Efficient Data Structures, Streams, and Algorithms - Papers
in Honor of J. Ian Munro on the Occasion of His 66th Birthday. LNCS, vol. 8066,
pp. 48–60. Springer (2013)

9. Fischer, J.: Data Structures for Efficient String Algorithms. Ph.D. thesis, Ludwig-
Maximilians-Universität München (October 2007)

10. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Uni. Press (2009)
12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation

for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)
13. Jacobson, G.: Space-efficient static trees and graphs. pp. 549–554. IEEE (1989)
14. Liu, H.F., Chao, K.M.: Algorithms for finding the weight-constrained k longest

paths in a tree and the length-constrained k maximum-sum segments of a sequence.
Theor. Comput. Sci. 407(1-3), 349–358 (Nov 2008), http://dx.doi.org/10.1016/
j.tcs.2008.06.052

15. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

16. Navarro, G.: Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), 52 (2013)

17. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all maximal scor-
ing subsequences. In: Proceedings of the Seventh International Conference on In-
telligent Systems for Molecular Biology. pp. 234–241. AAAI Press (1999), http:
//dl.acm.org/citation.cfm?id=645634.660812

18. Skala, M.: Array range queries. In: Space-Efficient Data Structures, Streams, and
Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday.
LNCS, vol. 8066, pp. 333–350. Springer (2013)

20

http://dx.doi.org/10.1016/j.tcs.2008.06.052
http://dx.doi.org/10.1016/j.tcs.2008.06.052
http://dl.acm.org/citation.cfm?id=645634.660812
http://dl.acm.org/citation.cfm?id=645634.660812


A Alternatives to the Empty Range

Although the data structure we describe returns the empty range in the case that
[i, j] only contains non-positive numbers, it is a simple modification of our data
structure to return the largest non-positive number instead. To do this, we keep
an additional data structure that supports range maximum queries on A: this
occupies 2n + o(n) bits by Lemma 1. Whenever our data structure returns the
empty range, we can instead return the result of RMaxQ(A, i, j) query, which
has the desired effect.

B Navigation in One-Page Graphs

We give a description of Munro and Raman’s representation, with slight mod-
ification [15]. Given a one-page graph G there is an implicit labelling of the
vertices from left-to-right along its book spine. We represent such a graph using
a sequence of balanced parenthesis sequence B. Each vertex u is represented
as a pair “()”, and the edges incident to the vertex are represented either as
an opening or closing parenthesis sequence Su that follow this pair. For the
purposes of exposition we orient the edges so that edge (u, v), where u < v is
directed from u to v: this is just to simpify the description, the edges are actually
undirected. Consider the vertex labelled u ∈ [1, n]. Each edge directed into u is
represented in the prefix of Su, and each edge directed out of u is represented
in the suffix. Let vz = Neighbour(u, z). Then (v1, u), (v2, u), ..., (vx, u) are the
edges directed into u, and (u, vx+1), ..., (u, vx+y) are the edges directed out of
u, for some x + y = Degree(u). Then the sequence Su =)x(y. The i-th “)”
from left-to-right represenents the edge (vx−i+1, u), whereas the i-th “(“ from
left-to-right represents the edge (u, vx+i).

We construct the data structure of Geary et al. [12] on B. We use this par-
ticular structure, since has a simple construction algorithm that takes O(n+m)
deterministic worst-case time (actually it can be constructed in o(n+m) time,
but we only need the weaker fact). The data structure for B occupies 2(n+m)+
o(n+m) bits: note that m is not necessarily O(n) in general since, although the
graph G is planar, it is a multigraph.

We also build rank/select auxiliary structures W1 on the balanced parenthe-
sis sequence B, each “()” will represent a 1 bit and all other combinations of
pairs of parenthesis represent a 0. This takes o(n + m) bits in total, since we
need not store the bit vector explicitly, just lookup tables [15]: the details here
are rather technical, but mainly involve specialized table lookup. This allows us,
given a label u, to jump immediately to the balanced parenthesis pair “()” that
represents vertex u using a select operation on W1. Similarly, given an arbitrary
open/close parenthesis at position i, we can use the rank operation on W1 to
compute the vertex associated with that open/close parenthesis. Given this rep-
resentation, it is easy to compute Degree(u) of some vertex u: we simply return
the distance (minus one) between the ending “)” of the pair representing u, and
the starting “(” representing u+ 1.

21



The representation just described almost allows us to perform the operation
Neighbour(G, u, i). The issue is that listing the neighbours in the obvious way
returns them in a slightly strange order: we get the edges directed into u in
non-increasing order of their starting vertex, followed by the edges directed out
of u in non-decreasing order of their starting vertex. In fact, for our application
this is enough, because in our application all of the vertices either have no
edges directed out, or no edges directed in. Thus, we can use Degree(u), and
rank/select operations on W1 to return the neighbours in non-decreasing order.
The Order(G, u, v) operation becomes trivial as well, since, it is known that
if (u, v) is an edge, we can find the pair of parentheses that represent (u, v) in
constant time using the representation just described. Once we have either the
opening or closing parenthesis representing (u, v) in Su, we can easily compute
its order using Degree(u) and rank/select operations on W1.

However, in the more general setting described in the lemma it is not difficult
to perform all these operations as described. In addition to the previous data
structures, we construct auxiliary structures W2 which mark, for each vertex u,
the point in Su where the first opening parenthesis appears. The W2 structures
allow us to perform rank and select operations on these marked positions. These
also occupy o(n+m) bits if used in combination with W1. The details are, again,
rather technical, but the idea is to used specialized lookup tables, bit masking,
and auxiliary rank/select structures. The purpose of W2 is to allow us to perform
the operations Order and Neighbour, as the closing parenthesis in the prefix
of Su are stored in non-ascending order of their endpoints. It is not difficult to
see that using rank and select on W2, together with a small calculation, allow
us to support Order and Neighbour operations in constant time.

As for construction time, given the adjacency list representation, we can
determine for all vertices u ∈ V (G) the string Su in O(n+m) time in total. This
allows us to write down the balanced parenthesis sequence in O(n+m) time.

22


	Encodings of Range Maximum-Sum Segment Queries and Applications
	1 Introduction
	2 Notation and Definitions
	3 Preliminary Data Structures
	4 Supporting Range Maximum-Sum Segment Queries
	5 Constructing the P and Q Arrays
	6 Lower Bound
	7 Application to Computing k-Covers
	A Alternatives to the Empty Range
	B Navigation in One-Page Graphs


