
Optimal Encodings for Range Min-Max and
Top-k

Pawe l Gawrychowski and Patrick K. Nicholson

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. In this paper we consider various encoding problems for
range queries on arrays. In these problems, the goal is that the encoding
occupies the information theoretic minimum space required to answer
a particular set of range queries. Given an array A[1..n] a range top-k
query on an arbitrary range [i, j] ⊆ [1, n] asks us to return the ordered
set of indices {`1, ..., `k} such that A[`m] is the m-th largest element in
A[i..j]. We present optimal encodings for range top-k queries, as well as
for a new problem which we call range min-max, in which the goal is
to return the indices of both the minimum and maximum element in a
range.

1 Introduction

Many important algorithms and data structures make use of range queries over
arrays of values as subroutines [13,19]. As a prime example, many text in-
dexes that support pattern matching queries often maintain an array storing
the lengths of the longest common prefixes between consecutive suffixes of the
text. During a search for a pattern this array is queried in order to find the
position of the minimum value in a given range. That is, a subroutine is needed
that can preprocess an array A in order to answer range minimum queries. For-
mally, as input to such a query we are given a range [i, j] ⊆ [1, n], and wish to
return the index k = arg mini≤`≤j A[`]. In text indexing applications memory
is often the constraining factor, so the question of how many bits are needed
to answer range minimum queries has been studied heavily. After a long line
of research [2,18], it has been determined that such queries can be answered in
constant time, by storing a data structure of size 2n+o(n) bits [7]. Furthermore,
this space bound is optimal to within lower order terms (see [7, Sec. 1.1.2]). The
interesting thing about this result is that the space bound is independent of the
number of bits required to store each value in the array A. After constructing
the data structure we can discard the array A, while still retaining the ability
to answer range minimum queries.

Results of this kind, where it is shown that we can return the solutions to
all queries using less space than is required to store the original array, fall into
the category of encoding data structures, and, more generally, succinct data
structures [10]. Specifically, given a set of combinatorial objects χ we wish to
represent an arbitrary member of this set succinctly using lg |χ|+ o(lg |χ|) bits1,

1 We use lg x to denote log2 x.

ar
X

iv
:1

41
1.

65
81

v1
 [

cs
.D

S]
 2

4
N

ov
 2

01
4

while still supporting queries, if possible. For the case of range minimum queries
or range maximum queries, the set χ turns out to be Cartesian trees, which were
introduced by Vuillemin [20]. For a given array A, the Cartesian tree can be used
to find the solution to any range minimum query, and similarly, if two arrays
have the same solutions to all range minimum queries, then their Cartesian trees
are identical [7].

Recently there has been a lot of research on the topic of encodings for range
queries over arrays [6,7,8,9,14,15,16]. We provide a non-exhaustive list with brief
descriptions and references. The input to each of the following problem is an
array A[1..n], and the value k ≥ 1 is fixed prior to computing the encoding.

1. Range top-k: given a query range [i, j] ⊆ [1, n] and k′ ≤ k, return the
indices of the k′ largest values in [i, j]. This problem is the natural gener-
alization of range maximum queries and asymptotically optimal lower and
upper bounds encodings of Ω(n lg k) and O(n lg k) bits have been proposed
recently by Grossi et al. [9] and Navarro, Raman, and Rao [14], respectively.
The latter upper bound can be used to answer range top-k queries in O(k′)
time.

2. Range k-selection: given a query range [i, j] ⊆ [1, n] and k′ ≤ k, return the
index of the k′-th largest value in [i, j]. Note that any encoding that allows
us to answer range top-k queries also allows us to answer range k-selection
queries (though the question of how much time is required during a query
remains unclear) [14]. The encoding of Navarro, Raman, and Rao [14] can be
used to answer range k-selection queries in optimal O(lg lg k/ lg n+ 1) time.

3. Range majority: given a query range [i, j] ⊆ [1, n] return the indices of all
(1/k)-majorities in [i, j]. A (1/k)-majority is any element A[`] which appears
more than j− i+ 1/k times in [i, j]. Asymptotically optimal encodings have
been proposed by Navarro and Thankachan [15,16].

4. Range max-segment sum: given a query range [i, j] ⊆ [1, n] return the
range [i′, j′] ⊆ [i, j] such that

∑
i′≤`≤j′ A[`] is maximized. This is only non-

trivial if A contains both positive and negative numbers. It was recently
shown that an encoding using Θ(n) bits can be used to answer such queries
in constant time [8].

5. Previous and Next Smaller Value: given an index i return the nearest
index to the left j` < i and right jr > i such that A[j`] > A[i] and A[jr] >
A[i]. Fischer [6] considered the problem when the array elements are non-
distinct and gave an optimal encoding for this problem.

Other Encoding Problems For two-dimensional (and higher) arrays of num-
bers, the range minimum problem has been generalized as follows: given an
N ×M matrix, and a query rectangle R = [i1, i2]× [j1, j2], return the index of
the minimum element in R. Many results have been proved for this problem,
though we omit further discussion and refer the interested reader to the recent
paper of Brodal et al. [3].

2

Table 1. Old and new results. Both upper and lower bounds are expressed in bits.
Our bounds make use of the entropy function H(x) = x lg(1

x
) + (1 − x) lg(1

1−x
). For

the entry marked with a † the claimed bound holds when k = o(n).

Ref. Query Lower Bound Upper Bound Query Time

[7] max 2n−Θ(lgn) 2n−Θ(lgn) O(1)
[9,14] top-k Ω(n lg k) O(n lg k) O(k′)
[4] top-2 2.656n−Θ(lgn) 3.272n+ o(n) O(1)

Thm. 1, 2 min-max 3n−Θ(polylog(n)) 3n+ o(n) O(1)
Thm. 3, 4 top-2 3nH(1

3
)−Θ(polylog(n)) 3nH(1

3
) —

Thm. 3, 4 top-k (k + 1)nH(1
k+1

)(1− o(1))† (k + 1)nH(1
k+1

) —

Our Results In this paper, we present the first optimal encodings to range top-
k—and therefore range k-selection also—as well as a new problem which we call
range min-max, in which the goal is to return the indices of both the minimum
and maximum element in the array. We present our encoding to range min-max
first, as it gives a chance to review Fischer and Heun’s technique, and sets the
stage for the much more involved encodings for range top-k. See Table 1 for a
summary of the results. Prior to this work, the only value for which the exact
coefficient of n was known for top-k queries was the case in which k = 1 (i.e.,
range maximum queries). For even k = 2 the best previous estimate was that
the coefficient of n is between 2.656 and 3.272 [4]. The lower bound of 2.656 was
derived using generating functions and an extensive computational search [4].
In contrast, our method of analysis is purely combinatorial and gives the exact
coefficient value for all k ≥ 2. For k = 2, 3, 4 the coefficients are approximately
(rounding up) 2.755, 3.245, and 3.610, respectively. At present, one negative
aspect of our encodings is that they appear to be somewhat difficult to use as
the basis for a data structure: currently for our top-k encodings we know of no
way to support queries efficiently. We leave the question of supporting top-k
queries optimally using space matching that of our top-k encodings (to within
lower order terms) as an open problem.

Discussion of Techniques Prior work for top-k, for k ≥ 2, focused on en-
coding a particular decomposition of the array, called a shallow cutting [9,14].
Since shallow cuttings are a general technique used to solve many other range
searching problems [12,11], these previous works [9,14] required additional infor-
mation beyond just storing the shallow cutting in order to recover the answers
to top-k queries. Furthermore, in these works the exact constant factor is not
disclosed, though we estimate it to be at least twice as large as the bounds we
present. For the range top-2 a different encoding has been proposed based on ex-
tended Cartesian trees [4], which are essentially just Cartesian trees augmented
with information on how the elements represented by each node in the left spine
of the right child and the right spine of the left child of any given node inter-
leave. In contrast, our encoding is based on similar ideas to those of Fischer and
Heun [7], who describe what is called a 2D min-heap (resp. max-heap) in order

3

to encode range minimum queries (resp. range maximum queries). We begin in
Section 3 by showing how to generalize this technique to simultaneously answer
both range minimum and range maximum queries. Our encoding provides the
answer to both using 3n + o(n) bits in total (compared to 4n + o(n) using the
trivial approach of constructing both encodings separately). We then show this
bound is optimal by proving that any encoding for range min-max queries can
be used to represent an arbitrary Baxter permutation. Then, we move on in
Section 4 to generalize Fischer and Heun’s technique in a clean and natural way
to larger values of k: indeed the upper bound we present is quite concise. The
main difficulty is proving that the bound achieved by this technique is optimal.
For this we enumerate a particular class of Dyck paths, via an application of the
so-called cycle lemma of Dvoretzky and Motzkin [5].

2 Preliminaries

We make frequent use of the following result by Raman, Raman, and Rao [17]:

Lemma 1 ([17]). Let S be a bit vector of length n bits, containing m one bits.
In the word-RAM model with word size Θ(lg n) bits, there is a data structure of
size lg

(
n
m

)
+ O(n lg lgn

lgn) ≤ nH(mn) + O(n lg lgn
lgn) bits that supports the following

operations in O(1) time, for any i ∈ [1, n]:

1. access(S, i): return the bit at index i in S.
2. rankα(S, i): return the number of bits with value α ∈ {0, 1} in S[1..i].
3. selectα(S, i): return the index of the i-th bit with value α ∈ {0, 1}.

3 Optimal Encodings of Range Min-Max Queries

In this section we describe our solution for range min-max. We use RMinMax(A[i..j])
to denote a range min-max query on a subarray A[i..j]. The solution to the
query is the ordered set of indices {`1, `2} such that `1 = arg max`∈[i,j]A[`] and
`2 = arg min`∈[i,j]. This serves as a bit of a warm up for the later sections, as
it allows us to review the encoding of Fischer and Heun, since similar ideas are
used throughout the paper.

3.1 Review of Fischer and Heun’s Technique

We start by reviewing the encoding of Fischer and Heun for supporting either
range minimum queries or range maximum queries.

We explain the algorithm to construct the encoding which allows us to answer
range minimum (resp. maximum) queries. Consider an array A[1..n] storing n
numbers. Without loss of generality we can alter the values of the numbers so
that they are a permutation. To construct the encoding for range minimum
queries we sweep the array from left to right2, while maintaining a stack. A

2 In the original paper the sweeping process moves from right to left, but either direc-
tion yields a correct algorithm by symmetry.

4

Tmax : 00000101100110111010111

Tmin : 00001101100110010111011Min Max
i Stack Emit Stack Emit
1 1 1 1 1
2 2 01 1,2 1
3 2,3 1 1,3 01
4 2,3,4 1 1,4 01
5 2,3,5 01 1,4,5 1
6 2,6 001 1,4,5,6 1
7 2,6,7 1 1,4,5,7 01
8 2,8 001 1,4,5,7,8 1
9 2,8,9 1 1,4,5,9 001

10 2,8,10 01 1,4,5,9,10 1
11 2,8,10,11 1 1,4,5,9,11 01

00001 000001

i 1 2 3 4 5 6 7 8 9 10 11
A[i] 11 1 7 10 9 3 4 2 8 5 6

Fig. 1. A trace of Fischer and Huen’s algorithm for constructing the encoding for range
minimum and maximum queries on an array.

string of bits Tmin (resp. Tmax) will be emitted in reverse order as we scan the
array. Whenever we push an element onto the stack, we emit a one bit, and
whenever we pop we emit a zero bit. Initially the stack is empty, so we push the
position of the first element we encounter on the stack, in this case, 1. Each time
we increment the current position, i, we compare the value of A[i] to that of the
element in the position t, which is stored on the top of the stack. While A[t] is
not less than (resp. not greater than) A[i], we pop the stack. Once A[t] is either
empty or less than (resp. greater than) the current element, we push i onto the
stack. When we reach the end of the array, we pop all the elements on the stack,
emitting a zero bit for each element popped, followed by a single one bit.

Fischer and Heun showed that the string of bits output by this process can
be used to encode a rooted ordinal tree in terms of its depth first unary degree
sequence or DFUDS [7]. To extract the tree from a sequence, suppose we read
d zero bits until we hit the first one bit. Based on this, we create a node v
of degree d, and continue building first child of v recursively. Since there are
at most 2n stack operations, the tree is therefore represented using 2n bits.
We omit the technical details of how a query is answered, but the basic idea
is to augment this tree representation with succinct data structures supporting
navigation operations.

Lemma 2 (Corollary 5.6 [7]). Given the DFUDS representation of Tmin (resp.
Tmax) any query RMin(A[i..j]) (resp. RMax(A[i..j])) can be answered in con-
stant time using an index occupying O(n log logn

logn) = o(n) additional bits of space.

5

3.2 Upper Bound for Range Min-Max Queries

We propose the following encoding for a simultaneous representation of Tmin and
Tmax. Scan the array from left to right and maintain two stacks: a min-stack for
range minimum queries, and a max-stack for range maximum queries. Notice
that in each step except for the first and last, we are popping an element from
exactly one of the two stacks. This crucial observation allows us to save space. We
describe our encoding in terms of the min-stack and the max-stack maintained
as above. Unlike before however, we maintain two separate bit strings, T and U .
If the new element causes δ ≥ 1 elements on the min-stack to be popped, then
we prepend 0δ−11 to the string T , and prepend 0 to the string U . Otherwise, if
the new element causes δ elements on the max-stack to be popped, we prepend
0δ−11 to the string T , and 1 to the string U . Since exactly 2n elements are
popped during n push operations, the bit string T has length 2n, and the bit
string U has length n, for a total of 3n bits.

The remainder of this section is dedicated to proving the following theorem:

Theorem 1. There is a data structure that occupies 3n + o(n) bits of space,
such that any query RMinMax(A[i..j]) can be answered in O(1) time.

Proof. To prove the theorem, it is sufficient to show that there is a data structure
that occupies 3n+o(n) bits of space, and can recover any block of lg n consecutive
bits from both Tmin and Tmax in O(1) time. If we have such a structure that can
extract any block from either DFUDS representation, then we can use it as an
oracle to access the DFUDS representation of either tree. Thus, we need only
apply Lemma 2 to complete the theorem. The data structure makes use of the
bit strings T and U , as well as the following auxiliary data structures:

1. We precompute a lookup table L of size Θ(
√
n lg n) bits. The lookup table

takes two bit strings as input, s1 and s2, both with length lgn
4 , as well as a

single bit b. We conceptually think of the bit string s1 as having the format
0γ110γ21...0γt−110γt1, where each γi ≥ 0. The table returns a new bit string
s3, of length no greater than lgn

4 , that we will define next. Let · be the
concatenation operator, and define the function:

f(x, y, y′) =

{
0 · x if y = y′

1 otherwise.

If ui = 0γi1 then s3 = f(u1, s2[1], b)·f(u2, s2[2], b) · · · f(uk, s2[k], b), and s2[i]
denotes the i-th bit of s2. Such a table occupies no more than the claimed
amount of space, and can return s3 (as well as k) in O(1) time.

2. Each bit in T corresponds to at least one bit in Tmin or Tmax. Also recall
that at each step during preprocessing we append the value δ − 1 in unary
to T rather than δ (as in the representation of Fischer and Heun). Thus,
we can treat each push operation (with the exception of the first and last)
corresponding to a single one bit in T as representing three bits: two bits in
Tmin and one bit in Tmax or two bits in Tmax and one bit in Tmin, depending

6

on the corresponding value in U . We store a bit vector Bmin of length 2n
which marks the position in T of the bit corresponding to the (i lg n+ 1)-th
bit of Tmin, for 0 ≤ i ≤ b 2n

lgnc. We do the analogous procedure for Tmax and
call the resulting bit vector Bmax.

Suppose now that we support the operations rank and select on Bmin, Bmax,
and T . We use the data structure of Lemma 1 that for Bmin and Bmax will
occupy

O

(
lg

(
n
n

lgn

)
+
n lg lg n

lg n

)
= O

(
n lg lg n

lg n

)
bits, and for T will occupy no more than 2n + O(n lg lgn

lgn) bits. Thus, our data

structures at this point occupy 3n + o(n) bits in total, counting the space for
U . We will describe how to recover lg n consecutive bits of Tmin; the procedure
for Tmax is analogous. Consider the distances between two consecutive 1 bits
having indices xi and xi+1 in Bmin. Suppose xi+1−xi ≤ c lg n in Bmin, for some
constant c ≥ 9. In this case we call the corresponding block βi of lg n consecutive
bits of Bmin min-good, and otherwise we call βi min-bad. We also define similar
notions for max-good and max-bad blocks. The problem now becomes recovering
any block (good or bad), since if the lg n consecutive bits we wish to extract
are not on block boundaries we can simply extract two consecutive blocks which
overlap the desired range, then recover the bits in the range using bit shifting
and bitwise arithmetic.

If βi is min-good, then we can recover it in O(c) = O(1) time, since all
we need to do is scan the corresponding segment of T between the two 1s, as
well as the segment of U starting at rank1(T, xi). We process the bits of T and
U together in blocks of lgn

4 each, using the lookup table L: note that we can
advance in U correctly by determining t by counting the number of 1 bits in
either in s1 or s3. This can be done using either an additional lookup table of
size Θ(

√
n) using constant time, or by storing the answer explicitly in L. When

we do this, there is one border case which we must handle, which occurs when
the last bit in s1 is not a 1. However, we can simply append a 1 to end of s1 in
this case, and then delete either 1 or 01 from the end of s3, depending on the
value of s2[t]. This correction can be done in O(1) time using bit shifting and
bitwise arithmetic.

If βi is min-bad, then we store the answer explicitly. This can be done by
storing the answer for each bad βi in an array of size z lg n bits, where z is the
number of bad blocks. Since z ≤ d n

c lgne this is dnc e bits in total. We also must
store yet another bit vector, encoded using Lemma 1, marking the start of the
min-bad blocks, which occupies another O(n lg lgn

lgn) bits by a similar calculation

as before. Thus, we can recover any block in Bmin using 3n+ dnc e+ o(n) bits in
O(c) time, for any constant c > 1.

In fact, by examining the structure of Lemma 1 in more detail we can argue
that it compresses T slightly for each bad block, to get a better space bound
than 2n + o(n) bits. Consider all the min-bad blocks β1, ..., βz in Bmin and the

7

max-bad blocks β′1, ..., β
′
z′ in Bmax. For a given min-bad block βi, any max-bad

block β′j can only overlap its first or last 2 lg n bits in T . This follows since each
bit in T corresponds to at least one bit in either Tmin or Tmax, and because less
than half of these 2 lg n bits can correspond to bits in Tmin (since the block is
min-bad). Thus, each bad block has a middle part of at least (c − 4) lg n bits,
which are not overlapped by any other bad block. We furthermore observe that
these (c− 4) lg n middle bits are highly compressible, since they contain at most
lg n one bits, by the definition of a bad block. Since these (c−4) lg n middle bits
are compressed to their zeroth-order entropy in chunks of lgn

2 consecutive bits
by Lemma 1, we get that the space occupied by each of them is at most⌈

lg

(
(c− 4) lg n

lg n

)⌉
+Θ(c) ≤ (c− 4)H

(
1

c− 4

)
lg n+Θ(c) .

The cost of explicitly storing the answer for the bad block was lg n bits. Since
c ≥ 9, and assuming n is sufficiently large, we get that this additional lg n bits
of space can be added to the cost of storing the middle part of the bad block
in compressed form, without exceeding the cost of storing the middle part of
the bad block in uncompressed form. The value of c ≥ 9 came from a numeric
calculation by finding the first value of c such that (c− 4)H(1

c−4) + 1 < (c− 4).
Thus, the total space bound is 3n+ o(n) bits. ut

3.3 Lower Bound for Range Min-Max Queries

Given a permutation π = (p1, ..., pn), we say π contains the permutation pattern
s1-s2-...-sm if there exists a subsequence π whose elements have the same relative
ordering as the elements in the pattern. That is, there exist some x1 < x2 <
... < xm ∈ [1, n] such that for all i, j ∈ [1,m] we have that π(xi) < π(xj) if and
only if si < sj . For example, if π = (1, 4, 2, 5, 3) then π contains the permutation
pattern 1-3-4-2: we use this hyphen notation to emphasize that the indices need
not be consecutive. In this case, the series of indices in π matching the pattern
are x1 = 1, x2 = 2, x3 = 4 and x4 = 5. If no hyphen is present between elements
si and si+1 in the permutation pattern, then the indices xi and xi+1 must be
consecutive: i.e., xi+1 = xi + 1. In terms of the example, π does not contain the
permutation pattern 1-34-2.

A permutation π = (p1, ..., pn) is a Baxter permutation if there exist no
indices 1 ≤ i < j < k ≤ n such that π(j + 1) < π(i) < π(k) < π(j) or
π(j) < π(k) < π(i) < π(j + 1). Thus, Baxter permutations are those that do
not contain 2-41-3 and 3-14-2. For permutations on 4 elements, the non-Baxter
permutations are exactly (2, 4, 1, 3) and (3, 1, 4, 2). Baxter permutations are well
studied, and their asymptotic behaviour is known (see, e.g., OEIS A001181 [1]).

We have the following lemma:

Lemma 3. Suppose we are given a Baxter permutation π, stored in an array
A[1..n] such that A[i] = π(i). If we construct an encoding data structure that
answers range minimum and maximum queries on A, then our encoding data
structure can fully recover π.

8

Proof. In order to recover the permutation, it suffices to show that we can per-
form pairwise comparisons on any two elements in A using range minimum and
range maximum queries. The proof follows by induction on n.

For the base case, for n = 1 there is exactly one permutation, so there is
nothing to recover. Thus, let us assume that the lemma holds for all permutations
on less than n ≥ 2 elements. For a permutation on n elements, consider the sub-
permutation induced by the array prefix A[1..(n − 1)] and suffix A[2..n]. These
subpermutations must be Baxter permutations, since deleting elements from
the prefix or suffix of a Baxter permutation cannot create a 2-41-3 or a 3-14-2.
Thus, it suffices to show that we can compare A[1] and A[n], as all the remaining
pairwise comparisons can be performed by the induction hypothesis.

Let x = RMin(A[1..n]) and y = RMax(A[1..n]) be the indices of the mini-
mum and maximum elements in the array, respectively. If x ∈ {1, n} or y ∈ {1, n}
we can clearly compare A[1] and A[n], so assume x, y ∈ [2, n−1]. Without loss of
generality we consider the case where x < y: the opposite case is symmetric (i.e.,
replacing 3-14-2 with 2-41-3), and x 6= y because n ≥ 2. Consider an arbitrary
index i ∈ [x, ..., y], and the result of comparing A[1] to A[i] and A[i] to A[n]
(which can be done by the induction hypothesis, as i ∈ [2, n− 1]). The result is
either:

1. One of the two chains A[1] < A[i] < A[n] or A[n] < A[i] < A[1], in which
case we are done; or

2. A partial order in which A[i] is the minimum or maximum element, and A[1]
is incomparable with A[n].

In the second case let f(i) = 0 if A[i] is the minimum element in this partial
order, and f(i) = 1 otherwise. Because of how x and y were chosen, f(x) = 0
and f(y) = 1. Therefore, if we consider the values of f(i) for all i ∈ [x, y], there
must exist two indices i, i + 1 ∈ [x, y] such that f(i) = 0 and f(i + 1) = 1, and
then 1, i, i+ 1, n form the forbidden pattern 3-14-2, unless A[1] < A[n]. ut

Theorem 2. Any data structure that encodes range minimum and maximum
queries simultaneously must occupy 3n−Θ(log n) bits, for sufficiently large values
of n.

Proof. Let L(n) be the number of Baxter permutations on n elements. It is
known (cf. [1]) that

lim
n→∞

L(n)π
√

3n4

23n+5
= 1 .

Since we can encode and recover each one by the procedure discussed in Lemma 3,
our encoding data structure must occupy at least lgL(n) = 3n − Θ(log n) bits,
for sufficiently large values of n. ut

4 Optimal Encodings for Top-k Queries

In this section we use RTopK(A[i..j]) to denote a range top-k query on the sub-
array A[i..j]. The solution to such a query is an ordered list of indices {`1, ..., `k}
such that A[`m] is the m-th largest element in A[i..j].

9

4.1 Upper Bound for Encoding Top-k Queries

Like the encoding for range min-max queries, our encoding for range top-k
queries is based on representing the changes to a certain structure as we scan
through the array A. Each prefix in the array will correspond to a different
structure. We denote the structure, which we will soon describe, for prefix
A[1..j] as Sk(j), for all 1 ≤ j ≤ n. The structure Sk(j) will allow us to an-
swer RTopK(A[i..j]) for any i ∈ [1, j]. Our encoding will store the differences
between Sk(j) and Sk(j + 1) for all j ∈ [1, n − 1]. Let us begin by defining a
single instance for an arbitrary j.

We first define the directed graph Gj = (V,E) with vertices labelled {1, ..., j},
and where an edge (i′, j′) ∈ E iff both i′ < j′ and A[i′] < A[j′] for all 1 ≤ i′ <
j′ ≤ j. We call Gj the dominance graph of A[1..j], and say j′ dominates i′,
or i′ is dominated by j′, if (i′, j′) ∈ E. Next consider the degree dj(`) of the
vertex labelled ` ∈ [1, j] in Gj . We define an array S[1..j], where S[`] = dj(`) for
1 ≤ ` ≤ j. The structure Sk(j) is defined as follows: take the array S[1..j], and
for each entry ` ∈ [1, j] such that S[`] > k, replace S[`] with k. We refer to the
indices in Sk(j) to be active iff S[`] < k, and as inactive otherwise.

Fig. 2. Geometric interpretation of how the structure Sk(j) is updated to Sk(j+1). In
the example k = 2, and the value of each active element in the array is represented by
its height. Black circles denote 0 values in the array S[1..j], whereas crosses represent 1
values, and 2 values (inactive elements) are not depicted. When the new point (empty
circle) is inserted to the structure on the left, it increments the counters of the smallest
10 active elements, resulting in the picture on the right representing S[1..j + 1].

Lemma 4. Suppose we are given the structure Sk(j), and let {i1, ..., ij′} be the
active indices. We can recover the total order of the elements A[i1], ..., A[ij′] by
examining only Sk(j).

Proof. We scan the structure Sk(j) from index j down to 1, maintaining a total
ordering on the active elements seen so far. Initially, we have an empty total
ordering. At each active location ` the value S[`] indicates how many active

10

elements in locations [` + 1, j] are larger than A[`]. This follows since a non-
active element cannot dominate an active element in the graph Gj . Thus, we
can insert A[`] into the current total ordering of active elements. ut

We define the size of Sk(j) as follows: |Sk(j)| =
∑j
i=1(k − S[i]). The key

observation is that the structure Sk(j + 1) can be constructed from Sk(j) using
the following procedure:

1. Compute the value δj = |Sk(j)|−|Sk(j+1)|+k. This quantity is always non-
negative, as we add one new element to the large staircase, which increases
the size by at most k.

2. Find the δj indices among the active elements in Sk(j) such that their values
in A are the smallest via Lemma 4. Denote this set of indices as I.

3. Increment S[i] for each i ∈ I.
4. Add the new element at the end of the array by setting S[j + 1] = 0.

Thus, all we need to construct Sk(j + 1) is Sk(j) and the value δj . This
implies that by storing δj for j ∈ [1, n− 1] we can recover any Sk(j).

Theorem 3. We can encode solutions to all queries RTopK(A[i..j]) using at
most (k + 1)nH(1

k+1) bits of space.

Proof. Suppose we store the bitvector 0δ110δ21 . . . 0δn−11. This bitvector contains
no more than kn zero bits. This follows since each active counter can be incre-
mented k times before it becomes inactive. Thus, storing the bitvector requires
no more than lg

(
(k+1)n
n

)
≤ (k + 1)nH(1

k+1) bits.
Next we prove that this is all we need to answer a query RTopK(A[i..j]). We

use the encoding to construct Sk(j). We know that for every element at inactive
index ` in Sk(j) there are at least k elements with larger value in A[` + 1..j].
Consequently, these elements need not be returned in the solution, and it is
enough to recover the indices of the top-k values among the elements at active
indices at least i. We apply Lemma 4 on Sk(j) to recover these indices and return
them as the solution. ut

4.2 Lower Bound for Encoding Top-k Queries

The goal of this section is to show that the encoding from Section 4.1 is, in fact,
optimal. The first observation is that all structures Sk(j) for j ∈ [1, n] can be
reconstructed with RTopK queries.

Lemma 5. Any Sk(j) can be reconstructed with RTopK queries.

Proof. To reconstruct Sk(j), we execute the query RTopK(A[i..j]) for each i ∈
[1, j]. If index i is returned as the k′-th largest element in [i, j], then by definition
there are exactly k′ − 1 elements in locations A[i + 1..j] with value larger than
A[i]. Thus, i is an active location and S[i] = k′ − 1. If i is not returned by the
query, then it is inactive and we set S[i] = k. ut

11

Recall that we encode all structures by specifying δ1, δ2, . . . , δn−1. We call an
(n − 1)-tuple of nonnegative integers (δ1, δ2, . . . , δn−1) valid if it encodes some
Sk(1), Sk(2), . . . , Sk(n), i.e., if there exists at least one array A[1..n] consisting
of distinct integers such that the structure constructed for A[1..j] is exactly the
encoded Sk(j), for every j = 1, 2, . . . , n. Then the number of bits required by the
encoding is at least as large as logarithm of the number of valid (n − 1)-tuples
(δ1, δ2, . . . , δn−1). Our encoding from Section 4.1 shows that this number is at

most
(
(k+1)n
n

)
, but here we need to argue in the other direction, which is far

more involved.
Recall that the size of a particular Sk(j) is |Sk(j)| =

∑j
i=1(k − S[i]). We

would like to argue that there are many valid (n − 1)-tuples (δ1, δ2, . . . , δn−1).
This will be proven in a series of transformations.

Lemma 6. If (δ1, δ2, . . . , δn−1) is valid, then for any δn ∈ {0, 1, . . . ,
⌈
M
k

⌉
} where

M =
∑n−1
i=1 (k − δi), the tuple (δ1, δ2, . . . , δn−1, δn) is also valid.

Proof. Let A[1..n] be an array such that the structure constructed for A[1..j]
is exactly Sk(j), for every j = 1, 2, . . . , n. By definition of δj , we have that

M =
∑n−1
i=1 (k − δi) < |Sk(n)|. Denote the number of active elements in Sk(j)

with with the corresponding entry set to α as mα for α ∈ [0, k − 1]. For any

s ∈ {0, 1, . . . ,
∑k−1
α=0mα}, we can adjust A[n + 1] so that it is larger than ex-

actly the s smallest active elements in Sk(n). Therefore, choosing any δn ∈
{0, 1, . . . ,

∑k
α=1mα} results in a valid (δ1, δ2, . . . , δn). Now because |Sk(n)| =∑k−1

α=0(k − α)mα ≤ k
∑k−1
α=0mα, we have

∑k−1
α=0mα ≥

⌈
|Sk(n)|
k

⌉
, which gives the

claim. ut

Every valid (n − 1)-tuple (a1, a2, . . . , an−1) corresponds in a natural way to
a walk of length n− 1 in a plane, where we start at (0, 0) and perform steps of
the form (1, ai), for i = 1, 2, . . . , n − 1. We consider a subset of all such walks.
Denoting the current position by (xi, yi), we require that ai is an integer from
[k −

⌈
yi
k

⌉
, k]. Under such conditions, any walk corresponds to a valid (n − 1)-

tuple (δ1, δ2, . . . , δn−1), because we can choose δi = k − ai and apply Lemma 6.
Therefore, we can focus on counting such walks.

The condition [k −
⌈
yi
k

⌉
, k] is not easy to work with, though. We will count

more restricted walks instead. A Y -restricted nonnegative walk of length n
starts at (0, 0) and consists of n steps of the form (1, ai), where ai ∈ Y for
i = 1, 2, . . . , n, such that the current y-coordinate is always nonnegative. Y is
here an arbitrary set of integers.

Lemma 7. The number of valid (n−1)-tuples is at least as large as the number
of [k −∆, k]-restricted nonnegative walks of length n− 1−∆.

Proof. We have already observed that the number of valid (n − 1)-tuples is at
least as large as the number of walks consisting of n−1 steps of the form (1, ai),
where ai ∈ [k −

⌈
yi
k

⌉
, k] for i = 1, 2, . . . , n − 1. We distinguish a subset of such

walks, where the first ∆ steps are of the form (1, k), and then we always stay

12

above (or on) the line y = k∆. Under such restrictions, ai ∈ [k −∆, k] implies
ai ∈ [k −

⌈
yi
k

⌉
, k], so counting [k −∆, k]-restricted nonnegative walks gives us a

lower bound on the number of valid (n− 1)-tuples. ut

We move to counting Y -restricted nonnegative walks of length n. Again,
counting them directly is not trivial, so we introduce a notion of Y -restricted
returning walk of length n, where we ignore the condition that the current y-
coordinate should be always nonnegative, but require that the walk ends at
(n, 0).

(0, 0) (0, 0)

rotate here

Fig. 3. Left: a Y -restricted walk ending at (n, 0). Right: a cyclic rotation of the walk
on the left such that the walk is always nonnegative.

Lemma 8. The number of Y -restricted nonnegative walks of length n is at least
as large as the number of Y -restricted returning walks of length n divided by n.

Proof. This follows from the so-called cycle lemma [5], but we prefer to provide
a simple direct proof. We consider only Y -restricted nonnegative walks of length
n ending at (n, 0), and denote their set by W1. The set of Y -restricted returning
walks of length n is denoted by W2. The crucial observation is that a cyclic
rotation of any walk in W2 is also a walk in W2. Moreover, there is always at
least one such cyclic rotation which results in the walk becoming nonnegative
(see Figure 3). Therefore, we can define a total function f : W2 → W1, which
takes a walk w and rotates it cyclically as to make it nonnegative. Because there
are just n cyclic rotations of a walk of length n, any element of W1 is the image

of at most n elements of W2 through f . Therefore, |W1| ≥ |W2|
n as claimed. ut

The only remaining step is to count [k −∆, k]-restricted returning walks of
length n−1−∆. This is equivalent to counting ordered partitions of k(n−1−∆)
into parts a1, a2, . . . , an−1−∆, where ai ∈ [0, ∆] for every i = 1, 2, . . . , n− 1−∆.

Lemma 9. The number of ordered partitions of N into g parts, where every

part is from [0, B], is at least
(
N−3g′+g−1
g−g′−1

)
, where g′ =

⌊
N
B

⌋
.

Proof. The number of ordered partitions of N into g parts, where there are no
restrictions on the sizes of the parts, is simply

(
N+g−1
g−1

)
. To take the restrictions

into the account, we first split N into blocks of length B (except for the last

13

block, which might be shorter). This creates g′+1 blocks. Then, we additionally
split the blocks into smaller parts, which ensures that all parts are from [0, B].
We restrict the smaller parts, so that the last smaller part in every block is
strictly positive. This ensures that given the resulting partition into parts, we can
uniquely reconstruct the blocks. Therefore, we only need to count the number of
ways we can split the blocks into such smaller parts, and by standard reasoning

this is
(
N−3g′+g−1
g−g′−1

)
. This follows by conceptually fusing together the last two

elements in block i with the first element in block i+1, deleting the first element
in the block 1, and the last two elements in the block g′, and then partitioning
the remaining set into g − g′ pieces. ut

We are ready to combine all the ingredients. Setting N = k(n − 1 − ∆),

g = n − 1 −∆, g′ =
⌊
k(n−1−∆)

∆

⌋
=
⌊
k(n−1)
∆

⌋
− k and substituting, the number

of bits required by the encoding is at least:

lg

(
N − 3g′ + g − 1

g − g′ − 1

)
= lg

(
(k + 1)(n− 1−∆− g′)− 1

n− 2−∆− g′

)
≥ lg

(
(k + 1)(n− 2−∆− g′)

n− 2−∆− g′

)
.

Using the entropy function as a lower bound, this is at least (k+ 1)n′H(1
k+1)−

Θ(log n′), where n′ = n− 2−∆− g′ ≥ n(1− k
∆) + k

∆ − k− 2−∆. Thus, we have
the following theorem:

Theorem 4. For sufficiently large values of n, any data structure that encodes
range top-k queries must occupy (k+1)n′H(1

k+1)−Θ(log n′) bits of space, where

n′ ≥ n(1 − k
∆) + k

∆ − k − 2 −∆, and we are free to select any positive integer
∆ ≥ 1. If k = o(n), then we can choose ∆ such that ∆ = ω(k) and ∆ = o(n),
yielding that the lower bound is (k + 1)nH(1

k+1)(1− o(1)) bits.

References

1. OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences,
Number of Baxter permutations of length n. http://oeis.org/A001181, accessed:
2014-09-24

2. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms
57(2), 75–94 (2005)

3. Brodal, G.S., Brodnik, A., Davoodi, P.: The encoding complexity of two dimen-
sional range minimum data structures. In: Proc. 21st Annual European Symposium
on Algorithms (ESA). Lecture Notes in Computer Science, vol. 8125, pp. 229–240.
Springer (2013)

4. Davoodi, P., Navarro, G., Raman, R., Rao, S.: Encoding range minima and top-2
queries. Phil. Trans. R. Soc. A 372(2016), 1471–2962 (2014)

5. Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Mathematical Jour-
nal 14(2), 305–313 (1947)

6. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011), http://dx.doi.org/10.1016/j.tcs.

2011.01.036

14

 http://oeis.org/A001181
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

8. Gawrychowski, P., Nicholson, P.K.: Encodings of Range Maximum-Sum Segment
Queries and Applications. CoRR abs/1410.2847 (2014), http://arxiv.org/abs/
1410.2847

9. Grossi, R., Iacono, J., Navarro, G., Raman, R., Satti, S.R.: Encodings for range
selection and top-k queries. In: Proc. 21st Annual European Symposium (ESA).
Lecture Notes in Computer Science, vol. 8125, pp. 553–564. Springer (2013)

10. Jacobson, G.: Space-efficient static trees and graphs. pp. 549–554. IEEE (1989)
11. Jørgensen, A.G., Larsen, K.G.: Range selection and median: Tight cell probe lower

bounds and adaptive data structures. In: Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms. pp. 805–813. SIAM (2011)

12. Matoušek, J.: Reporting points in halfspaces. Computational Geometry 2(3), 169–
186 (1992)

13. Navarro, G.: Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), 52 (2013)

14. Navarro, G., Raman, R., Satti, S.R.: Asymptotically optimal encodings for range
selection. In: Proc. IARCS 34th Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS) (2014), To Appear

15. Navarro, G., Thankachan, S.V.: Encodings for range majority queries. In: Proc.
25th Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture
Notes in Computer Science, vol. 8486, pp. 262–272. Springer (2014)

16. Navarro, G., Thankachan, S.V.: Optimal encodings for range majority queries.
CoRR abs/1404.2677 (2014), http://arxiv.org/abs/1404.2677

17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

18. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Jour-
nal of Discrete Algorithms 5(1), 12 – 22 (2007), http://www.sciencedirect.com/
science/article/pii/S1570866706000141

19. Skala, M.: Array range queries. In: Space-Efficient Data Structures, Streams, and
Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday.
LNCS, vol. 8066, pp. 333–350. Springer (2013)

20. Vuillemin, J.: A unifying look at data structures. Communications of the ACM
23(4), 229–239 (1980)

15

http://arxiv.org/abs/1410.2847
http://arxiv.org/abs/1410.2847
http://arxiv.org/abs/1404.2677
http://www.sciencedirect.com/science/article/pii/S1570866706000141
http://www.sciencedirect.com/science/article/pii/S1570866706000141

	Optimal Encodings for Range Min-Max and Top-k
	1 Introduction
	2 Preliminaries
	3 Optimal Encodings of Range Min-Max Queries
	3.1 Review of Fischer and Heun's Technique
	3.2 Upper Bound for Range Min-Max Queries
	3.3 Lower Bound for Range Min-Max Queries

	4 Optimal Encodings for Top-k Queries
	4.1 Upper Bound for Encoding Top-k Queries
	4.2 Lower Bound for Encoding Top-k Queries

