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To celebrate a century of X-ray crystallography, I describe how 100 crystal structures influenced
chromatin and transcription research.
Introduction
When Max von Laue first illuminated a crystal with X-rays 100

years ago, it was unclear what the obtained diffraction pattern

meant. William Henry Bragg and his son Lawrence, however,

soon realized that X-ray diffraction provided information about

the inner structure of crystals. After decades of elaboration,

X-ray crystallography advanced to become the most widely

used method for the determination of 3D structures. Its ap-

plication to biological macromolecules fostered the deve-

lopment of molecular biology in the second half of the 20th

century. Crystallography defined biological paradigms such

as molecular recognition, enzymatic catalysis, and allosteric

regulation.

Until about 30 years ago, researchers could still follow publica-

tion of all new crystal structures of biomolecules. But then the

pace at which new structures were solved increased rapidly

due to the advent of new enabling techniques. Proteins were ob-

tained in recombinant form, and nucleic acids were synthesized

in large quantities. Crystals were cryo-cooled to slow down ra-

diation damage. Synchrotron X-ray sources improved, and fast

X-ray detection devices emerged. Modern computers and better

software for structure determination became available. By now,

100,000 structures have been deposited in the protein database.

Many of these revealed the inner workings of molecular ma-

chines, allowing researchers to rationalize phenotypes of muta-

tions and to engineer biological processes.

Crystal structures can be like landmarks. They can guide us on

our way toward a better understanding of a biological process

(Shi, 2014 [this issue of Cell]). Landmark structures not only

disclose some of life’s secrets, but they also open up new fron-

tiers. Here, I describe many of the structures that I consider to be

landmark structures in the biology of chromatin, transcription,

and epigenetics. I hope the resulting list of about 100 crystallo-

graphic structures, along with several structures obtained by

other methods, exemplifies how structural information influ-

enced the community and led to new concepts.

How DNA Is Structured
The proposal of the double-helical structure of DNA relied on

X-ray diffraction patterns of DNA fibers obtained in the middle

of the last century (Watson and Crick, 1953) (Figure 1). The direct

observation of a nucleic acid duplex, however, had to await the

crystal structure of a transfer RNA (tRNA) from yeast in 1974

(Robertus et al., 1974) (Figure 1). The structure of a B-DNA
duplex was solved only after DNA synthesis methods became

available (Wing et al., 1980) (Figure 1). Crystal structures of

DNA in A-form (Shakked et al., 1981) and Z-form (Wang et al.,

1979) highlighted the sequence-dependent conformational flex-

ibility of DNA.

In eukaryotic nuclei, DNA is packaged with histone proteins

into chromatin. The fundamental unit of chromatin, the nucleo-

some core particle, was elucidated structurally in 1984 at a res-

olution of 7 Å (Richmond et al., 1984). When the resolution

reached 2.8 Å, a detailed view of the nucleosome emerged

that revealed the DNA conformation and DNA interactions with

histones (Luger et al., 1997). The nucleosome core structure

confirmed the structure of the free histone octamer (Arents

et al., 1991). It further showed that the histone protein tails

emerged between and around DNA duplexes to become avail-

able for interactions with other nucleosomes or chromatin.

The structure of higher-order chromatin is dynamic, but a

complex of four nucleosomes could be crystallized and showed

two stacks of nucleosomes and DNA that zigzagged between

them (Schalch et al., 2005). Electron microscopy revealed how

such tetranucleosome units may be arranged within a 30 nm

fiber of chromatin (Song et al., 2014) and provided evidence

for helical order in such fibers (Scheffer et al., 2011). Another

electron microscopic study provided an alternative fiber model

(Robinson et al., 2006). These results explained how extended

DNAmolecules can be packaged in the cell nucleus but also pro-

vided models for how chromatin regulates the accessibility of

genes and their transcription. Whereas a compact chromatin

structure can cause gene repression, gene activation requires

chromatin opening and assembly of the transcription machinery

at the promoter.

How DNA Is Recognized
To enable transcription, cells use transcription factors that bind

to specific DNA sites. The first crystal structures of transcription

factors included the bacterial catabolite activator protein CAP

(McKay and Steitz, 1981) (Figure 1) and the bacteriophage

lambda proteins cro (Anderson et al., 1981) and repressor

(Pabo and Lewis, 1982). These structures contained helix-turn-

helix regions that were involved in DNA binding and led to the

concept of DNA-binding proteinmotifs. The studies of the bacte-

riophage proteins required protein overexpression because

these transcription factors could not be isolated from natural

sources in quantities required for structural studies.
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Figure 1. A Selection of Landmark Crystal Structures in the Biology of Chromatin and Transcription
From left to right, the depicted structures are yeast tRNA, a DNA duplex, the bacterial transcription factor CAP, the bacteriophage 434 repressor protein in
complex with DNA, the eukaryotic TATA-binding protein TBP, the nucleosome, the bacterial RNA polymerase, the histone acetyltransferase Gcn5, the eukaryotic
RNA polymerase 10-subunit core enzyme, the complete 12-subunit RNA polymerase II complex in complex with transcription factor TFIIS, and an archaeal Swi/
Snf-type ATPase resembling the catalytic subunit found in many chromatin remodeling complexes. DNA is shown in blue, and proteins are depicted as ribbon
models in different colors. For details, please refer to the text.
Structures of DNA-bound transcription factors led to the

concept of sequence-specific DNA recognition. DNA complexes

of the repressor proteins from bacteriophages 434 (Anderson

et al., 1987) (Figure 1) and lambda (Jordan and Pabo, 1988)

and of the 434 cro protein (Wolberger et al., 1988) revealed

protein helices bound in the DNA major groove. DNA-binding

helices were also observed in structures of homeodomains

(Kissinger et al., 1990; Otting et al., 1990; Qian et al., 1989). In

a ‘‘leucine zipper’’ of the GCN4 factor, protein helices in the

DNA major groove were extended and used for factor dimeriza-

tion (Ellenberger et al., 1992; König and Richmond, 1993). The

transcription factors recognized target sequences via interac-

tions of amino acid residues with DNA base edges. Such ‘‘direct

readout’’ can be complemented by ‘‘indirect readout’’ of the

DNA conformation via protein-DNA backbone contacts (Lesser

et al., 1990; Otwinowski et al., 1988).

Later protein-DNA complex structures revealed a variety of

DNA-binding structural motifs. The transcription factor NF-kB

uses a b barrel fold to contact DNA via protein loops (Becker

et al., 1998; Ghosh et al., 1995; Müller et al., 1995). Transcription

factors of the zinc finger family recognize DNA with small protein

folds that are stabilized by zinc ions (Fairall et al., 1993; Luisi

et al., 1991; Marmorstein et al., 1992; Pavletich and Pabo,

1991). Zinc fingers were later used for the design of proteins

with newDNA-binding specificities (Choo et al., 1994). This cata-

lyzed the development of protein and genome engineering as

new research fields. Zinc fingers were also present in Klf4

(Schuetz et al., 2011), which, together with transcription factors

Oct4, Sox2, and c-Myc, enables reprogramming of the genome

and generation of induced pluripotent stem cells.

Crystallography also showed how transcription factors bind to

adjacent DNA sites for combinatorial gene regulation. The DNA-

bound structures of yeast MATa2 interacting with MATa1 (Li

et al., 1995) and with MCM1 (Tan and Richmond, 1998) revealed

factor-factor interactions that underlie synergistic DNA binding.

This concept held for human transcription factors (Piper et al.,

1999). Oct4 and Sox2 can also bind to neighboring DNA sites
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(Reményi et al., 2003). Crystallography also led to a model

of an ‘‘enhanceosome’’ containing eight transcription factors

bound to DNA (Panne et al., 2007). Here, binding of one factor in-

duces a DNA conformation that promotes binding of a neigh-

boring factor.

Transcription factors can also bend DNA dramatically. The

bacterial CAP protein bends DNA by 90 degrees to enable spe-

cific DNA recognition (Schultz et al., 1991). The eukaryotic TATA

box-binding protein (TBP) also introduces a 90 degree bend into

DNA (Kim et al., 1993a, 1993b). The integration host factor (Rice

et al., 1996) and the mitochondrial transcription factor A (Ngo

et al., 2011; Rubio-Cosials et al., 2011) can even bend DNA by

180 degrees, inducing a U-turn. To achieve DNA bending, pro-

teins can use two strategies. They can insert amino acid residues

like wedges between DNA base pairs to disrupt base stacking

and may also neutralize backbone charges on one side of

DNA, which induces bending due to the repulsion of phosphates

on the opposite strand.

How DNA Binding Is Regulated
Crystallography further established concepts that explained

bacterial gene regulation. In the trp operon, the Trp repressor

protein inhibits expression of enzymes required for tryptophan

biosynthesis when enough of the amino acid is available. The

structure of the Trp repressor revealed a homodimer with a

DNA-binding helix in eachmonomer (Schevitz et al., 1985). Bind-

ing of the regulator tryptophan alters the relative position of

the two helices to enable DNA binding and gene repression

(Otwinowski et al., 1988). These studies also showed that water

molecules in the protein-DNA interface may contribute to

sequence-specific DNA recognition.

Many transcription factors contain not only a DNA-binding

domain but also additional domains that can activate transcrip-

tion or bind other transcription factors or small-molecule regula-

tors. In the bacterial lac operon, the Lac repressor protein binds

DNA to control the expression of enzymes involved in lactose

metabolism. The lac repressor contains a domain that binds



the regulator lactose (Friedman et al., 1995) and a domain that

binds DNA (Bell and Lewis, 2000; Lewis et al., 1996). The regu-

lator allosterically changes the orientation of the DNA-binding

domains, leading to DNA dissociation and gene activation.

Eukaryotic transcription factors are generally also modular.

The nuclear receptor for the hormone estrogen comprises a

DNA-binding domain (Schwabe et al., 1993) and a hormone-

binding domain (Brzozowski et al., 1997). Binding of estrogen

influences receptor dimerization and its interaction with other

factors that regulate transcription. The tumor suppressor p53

contains a tetramerization domain that clamps four p53 subunits

together (Clore et al., 1994) and a DNA-binding domain that har-

bors tumorigenic mutations that can impair DNA binding (Cho

et al., 1994).

Transcription factors are often regulated by nuclear localiza-

tion. For example, the inhibitory protein I-kB retains the tran-

scription factor NF-kB in the cytoplasm by masking its nuclear

localization sequence (Huxford et al., 1998). External signals

remove I-kB, leading to nuclear import of NF-kB, DNA binding,

and gene activation. Similarly, external signals trigger phosphor-

ylation of cytosolic STAT transcription factors (Becker et al.,

1998), which leads to factor dimerization, nuclear import, DNA

binding, and gene activation.

How DNA Directs RNA Synthesis: Single-Subunit
RNA Polymerases
It took until the late 1990s to obtain a crystallographic view of

transcription. The shape of the single-subunit DNA-dependent

RNA polymerase from bacteriophage T7 was observed in a me-

dium-resolution crystallographic study (Sousa et al., 1993). The

crystal structure of T7 RNA polymerase revealed an active center

cleft and a domain that binds promoter DNA and enables

sequence-specific initiation of RNA synthesis (Jeruzalmi and

Steitz, 1998; Cheetham et al., 1999). In the structure of a T7

RNA polymerase transcribing complex, the DNA template strand

formed a hybrid duplex with a transcript of three nucleotides at

the active site (Cheetham and Steitz, 1999). This suggested that

the polymerase could only hold a three base pair DNA-RNA

hybrid, but later structures of the T7 elongation complex revealed

extensive refolding of the polymerase, which then accommo-

dated a seven to eight base pair hybrid (Tahirov et al., 2002; Yin

and Steitz, 2002).

These studies established many concepts in DNA-directed

RNA synthesis. They highlighted the importance of promoter

recognition and showed how ribonucleotide substrates are

selected over deoxyribonucleotides to prevent synthesis of

DNA. Addition of nucleotides to the RNA occurs in two steps

by first binding the substrate nucleoside triphosphate to a prein-

sertion site and then moving it to the insertion site for catalysis

(Temiakov et al., 2004). Details of RNA synthesis were revealed

by X-ray studies of the single-subunit RNA polymerase from

bacteriophage N4 (Basu and Murakami, 2013).

Eukaryotic cells also contain a single-subunit RNA poly-

merase, the polymerase transcribing the mitochondrial genome.

Mitochondrial RNA polymerase structurally resembles T7 RNA

polymerase but contains an additional region for promoter bind-

ing (Ringel et al., 2011). In contrast to T7 RNA polymerase, mito-

chondrial RNA polymerase, however, does not refold during the
transition from transcription initiation to elongation (Schwing-

hammer et al., 2013).

How DNA Is Transcribed in Cells: Multisubunit RNA
Polymerases
The first structures of cellular RNA polymerases were obtained

at the turn of the millennium. The structure of bacterial RNA

polymerase from Thermus aquaticus (Zhang et al., 1999) was

followed by the structure of yeast RNA polymerase II (Pol II),

which synthesizes messenger RNA (Cramer et al., 2000, 2001)

(Figure 1). The structures revealed functional elements and

enabled structure-function analysis of cellular transcription.

They also suggested that catalysis followed a two-metal ion

mechanism (Cramer et al., 2000), as proposed for all nucleotide

polymerases (Steitz and Steitz, 1993). Comparison of bacterial

and eukaryotic RNA polymerases revealed a conserved multisu-

bunit architecture and an active center cleft with a flexible bridge

helix for the translocation of the polymerase relative to DNA.

The structure of a Pol II transcription elongation complex

showed that the polymerase clamp domain closed over a

DNA-RNA hybrid of eight to nine base pairs during transcription

elongation and suggested the basis for nucleic acid strand sep-

aration during transcription (Gnatt et al., 2001). Later structures

of bacterial RNA polymerase and Pol II transcription elongation

complexes with bound nucleoside triphosphate substrate (Vas-

sylyev et al., 2007; Wang et al., 2006) revealed that folding of

the polymerase trigger loop closed the active site and sug-

gested mechanisms of substrate selection. The same mecha-

nisms likely occur in archaeal RNA polymerases, which show

a remarkable similarity to Pol II (Hirata et al., 2008; Korkhin

et al., 2009).

The first structure of Pol II with a bound transcription factor, the

elongation factor TFIIS, showed that a single ‘‘tunable’’ active

site was used both for RNA synthesis and RNA cleavage and

indicated the mechanism of proofreading during transcription

(Kettenberger et al., 2003) (Figure 1). Electron microscopy of

an analogous bacterial complex revealed a similar topology

(Opalka et al., 2003). The structure of an ‘‘arrested’’ Pol II elonga-

tion complex with a backtracked RNA provided insights into how

TFIIS rescues polymerase that stalled during transcription

(Cheung and Cramer, 2011). Crystal structures of a second eu-

karyotic RNA polymerase, Pol I, showed that a subunit corre-

sponding to TFIIS was located at the active center of this enzyme

(Engel et al., 2013; Fernández-Tornero et al., 2013).

Transcription is coordinated with cotranscriptional events

such as RNA processing. This coordination is to a large extent

achieved by binding of factors to the flexible C-terminal domain

(CTD) of Pol II. Changes in CTD phosphorylation lead to an ex-

change of protein factors during transcription. The first struc-

tures of CTD peptides bound to CTD-binding proteins showed

that theCTD adoptsmultiple conformations and revealed the ba-

sis for phosphorylation-specific binding (Fabrega et al., 2003;

Meinhart and Cramer, 2004; Verdecia et al., 2000). Crystallog-

raphy also revealed the mechanisms and the determinants for

substrate specificity of CTD kinases (Baumli et al., 2012; Baumli

et al., 2008; Bösken et al., 2014; Lolli et al., 2004; Schneider et al.,

2011; Tahirov et al., 2010) and CTD phosphatases (Ghosh et al.,

2008; Kamenski et al., 2004; Xiang et al., 2010).
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How Transcription Starts
For the initiation of transcription, RNA polymerases cooperate

with initiation factors to locate and open promoter DNA. The

structure of the Pol II initiation factor TBP revealed a saddle-

shaped molecule (Nikolov et al., 1992) (Figure 1) that bound

the DNA minor groove and bent DNA by 90 degrees (Kim

et al., 1993a, 1993b). The resulting TBP-DNA complex can re-

cruit initiation factors TFIIA (Geiger et al., 1996; Tan et al., 1996)

and TFIIB (Nikolov et al., 1995) on either side. Electron micro-

scopy revealed the overall architectures of the large multipro-

tein initiation factors TFIID (Andel et al., 1999; Bieniossek

et al., 2013; Cianfrocco et al., 2013; Leurent et al., 2002) and

TFIIH (Chang and Kornberg, 2000; Gibbons et al., 2012; Schultz

et al., 2000). Crystal structures for individual parts of TFIID,

TFIIE, TFIIF, and TFIIH were reported, including an archaeal ho-

molog of the ATPase in TFIIH (Fan et al., 2006) that functions in

DNA opening.

An understanding of transcription initiation, however, had to

await structures of initiation factor complexes with RNA poly-

merases. An initial structure of a partial Pol II-TFIIB complex

(Bushnell et al., 2004) was consistent with crosslinking results

(Chen and Hahn, 2003) and revealed a domain of TFIIB that

bound Pol II to recruit it to the promoter. The structure of

the Pol II-TFIIB complex (Kostrewa et al., 2009; Liu et al.,

2010) enabled modeling of initiation complexes with closed

double-stranded and open DNA. A subsequent structure of

a Pol II-TFIIB complex with bound DNA and an initial RNA

transcript showed that TFIIB alters the polymerase active

site to allosterically activate RNA synthesis (Sainsbury et al.,

2013).

Bacterial transcription initiation relies on sigma factors. The

structure of a free sigma factor revealed its modular nature

(Malhotra et al., 1996). Structures of RNA polymerase with

bound sigma factor (Murakami et al., 2002b; Vassylyev et al.,

2002) and with sigma factor and promoter DNA (Murakami

et al., 2002a) showed that sigma factor bridges between poly-

merase and the promoter and suggested how sigma factor do-

mains recognize DNA sequence elements. When promoter

DNA is unwound, one sigma factor domain traps the nontem-

plate single strand of DNA (Feklistov and Darst, 2011). An alter-

native sigma factor is able to stabilize a flipped-out base from

the nontemplate strand during DNA melting (Campagne et al.,

2014). Structures of bacterial transcription initiation complexes

showed how RNA polymerase and sigma factor cooperate to

recognize promoter sequences, unwind DNA, and ‘‘preorgan-

ize’’ the template strand for RNA chain initiation (Zhang et al.,

2012).

The initiation factors sigma and TFIIB perform similar func-

tions, including DNA binding and opening and defining the start

site of transcription. Comparison of bacterial and eukaryotic

structures showed that sigma factor and TFIIB interact with

roughly the same parts of their RNA polymerases but have unre-

lated folds, arguing for convergent evolution. Recently, electron

microscopy and crosslinking provided the location of additional

initiation factors in human and yeast Pol II initiation complexes

(Grünberg et al., 2012; He et al., 2013; Mühlbacher et al., 2014;

Murakami et al., 2013), enabling further crystallographic studies

of transcription initiation.
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How Transcription Initiation Is Regulated
Bacterial transcription can be regulated by direct interactions of

transcription factors with the general transcription machinery

and DNA. The CAP factor activates transcription by binding

DNA and an adjacent domain of the polymerase, thereby recruit-

ing the polymerase to the promoter (Benoff et al., 2002). Simi-

larly, a protein of bacteriophage lambda activates transcription

by binding to DNA and an adjacent domain of sigma (Jain

et al., 2004). Eukaryotic transcription factors normally bind to co-

activator complexes, which then bind the general transcription

machinery. Coactivator binding requires activation domains,

which are often unstructured in their free state but can adopt

short helical structures upon coactivator binding (Brzovic et al.,

2011; Kussie et al., 1996; Radhakrishnan et al., 1997). Vice versa,

a coactivator can also form a a helix to bind a transcription factor

(Shiau et al., 1998).

Many transcription factors bind to the coactivator complex

Mediator, which consists of 25–35 subunits arranged in four

modules. The crystal structure of the Mediator head module re-

vealed an intricate fold with surfaces for interactions with Pol II

and other Mediator modules (Imasaki et al., 2011; Larivière

et al., 2012; Robinson et al., 2012). Recent electron microscopy

revealed the central location of the head module within the over-

all Mediator architecture (Tsai et al., 2014;Wang et al., 2014). The

mechanisms by which Mediator influences transcription remain

to be explored, but there is evidence for a conformational change

in Mediator induced by binding of a transcription activator

(Meyer et al., 2010; Taatjes et al., 2002).

Transcription initiation is also regulated by methylation of DNA

upstream of the promoter. In higher cells, this often occurs in

CpG islands, which are DNA regions enriched for CpG dinucleo-

tides. Hypermethylation of CpG islands generally leads to tran-

scription repression. In a structure of a methyltransferase-DNA

substrate complex, the target base was flipped out of the DNA

double helix and inserted into the enzyme’s active site (Klima-

sauskas et al., 1994). A human DNA methyltransferase uses

additional domains to ensure that only hemimethylated CpG di-

nucleotides undergo methylation after replication, as seen in the

enzyme-DNA complex structure (Song et al., 2011; Song et al.,

2012).

How Chromatin Regulates Transcription
To make chromatin accessible for transcription, remodeling

complexes use ATP hydrolysis to change nucleosome position

and structure. Many remodelers contain a Swi/Snf family

ATPase that induces DNA translocation with respect to histones

(Dürr et al., 2005; Thomä et al., 2005) (Figure 1). A combination of

structural techniques provided the architecture of chromatin re-

modelers ISW1a (Yamada et al., 2011), INO80 (Saravanan et al.,

2012; Tosi et al., 2013), and SWR1 (Nguyen et al., 2013) and indi-

cated how these machines bind nucleosomes, although the

structure of the ‘‘remodeled nucleosome state’’ has remained

elusive. Remodeling complexes not only bind nucleosomes—

they can also be regulated by nucleosomes allosterically (Clapier

and Cairns, 2012; Hauk et al., 2010; Racki et al., 2014).

Proper nucleosome assembly by histone chaperones is

required to repress cryptic transcription that can produce aber-

rant RNAs from nonpromoter regions. X-ray studies unraveled



chaperone structures and showed that chaperones disrupt

histone interfaces ormimic nucleosomal DNA to prevent promis-

cuous histone interactions prior to their assembly into nucleo-

somes (Elsässer et al., 2012; English et al., 2006; Hondele

et al., 2013; Hu et al., 2011; Park and Luger, 2006). Certain as-

sembly factors incorporate histone variants into nucleosomes

at specific sites. The histone variant H2A.Z changes nucleosome

structure at active promoters (Suto et al., 2000) and is removed

by a specific chaperone (Obri et al., 2014), and nucleosomes

containing the centromeric histone H3 variant are apparently de-

stabilized compared to canonical nucleosomes (Tachiwana

et al., 2011).

Structural studies also revealed details on how proteins recog-

nize nucleosomes. A structure of a nucleosome in complex with

RCC1, a regulator of chromatin condensation, showed how this

protein recognizes both histones and DNA to specifically bind

nucleosomes (Makde et al., 2010). Another nucleosome struc-

ture in complex with the gene-silencing factor Sir3 indicated

how protein-nucleosome interactions are regulated bymodifica-

tions in histone tails (Armache et al., 2011).

How Chromatin Marks Function
Covalent histone modifications provide another layer of gene

regulation (Strahl and Allis, 2000). Histone modifications include

acetylation, methylation, phosphorylation, and ubiquitination

and can be associated with active transcription or repression.

Enzymes that set or remove these marks are known as ‘‘writers’’

and ‘‘erasers,’’ respectively. The structure of the histone acetyl-

transferase Gcn5 provided insights into how chromatin marks

are written (Rojas et al., 1999) (Figure 1). The structure of a

portion of the acetyltransferase p300 explained mutations asso-

ciated with human cancers (Liu et al., 2008). The subunit orga-

nization of the large acetyltransferase complex NuA4 and its

mode of interaction with the nucleosome were revealed by elec-

tron microscopy (Chittuluru et al., 2011). Crystal structures of

histone methyltransferases revealed their mechanism and how

specificity for histones was achieved (Kwon et al., 2003; Min

et al., 2002; Wilson et al., 2002; Xiao et al., 2003; Zhang et al.,

2002).

Crystallography also showed how eraser enzymes work. The

structure of a bacterial homolog of a histone deacetylase (Finnin

et al., 1999) was followed by structures of the NAD-dependent

Sir2 enzyme (Avalos et al., 2002; Finnin et al., 2001; Min et al.,

2001) and eukaryotic zinc-dependent histone deacetylases (So-

moza et al., 2004; Vannini et al., 2004). Histone demethylase

structures of the LSD1 (Chen et al., 2006; Stavropoulos et al.,

2006; Yang et al., 2006) and JmJ (Ng et al., 2007) classes re-

vealed the basis for substrate specificity. The structure of the

four-subunit deubiquitination module of the SAGA complex pro-

vided the basis for substrate specificity and activation of this

eraser (Köhler et al., 2010; Samara et al., 2010).

Histone marks can recruit proteins via specific ‘‘reader’’ do-

mains. The bromodomain binds acetylated lysine residues, as

observed for the factors P/CAF, Taf1, and Gcn5 (Dhalluin

et al., 1999; Jacobson et al., 2000; Owen et al., 2000). The chro-

modomain binds methylated lysines, as exemplified by the HP1

chromodomain bound to a histone H3 peptide methylated at

lysine-9 (Jacobs and Khorasanizadeh, 2002). The PHD finger
domain also binds a methylated lysine residue by trapping it

into an aromatic cage that is lined with residues mutated in can-

cer (Li et al., 2006; Peña et al., 2006). The pockets in reader and

eraser proteins were consequently explored for drug design (Fil-

ippakopoulos et al., 2010). Multiple histone marks can be read

by a single reader domain (Morinière et al., 2009) or by combina-

torial binding of readers (Jacobson et al., 2000; Tsai et al., 2010;

Xi et al., 2011). Multiple histone marks influence transcription

activity, for example, via the initiation factor TFIID that binds his-

tone tails with marks for active transcription (Vermeulen et al.,

2007).

Toward Structural Cell Biology
In the coming years, X-ray crystallography will likely continue to

provide landmark structures that elucidate unknown mecha-

nisms in chromatin and transcription biology. However, many

proteins that function in chromatin and transcription are modular

by design. To resolve the structure of flexible factors and tran-

sient multicomponent complexes, crystallography will often be

integrated with complementary techniques. Of particular impor-

tance will be electron microscopy, which enables placement of

crystal structures of complex components but can now also

reach high resolution that enables building of atomic models

(Kühlbrandt, 2014; Wong et al., 2014). Crosslinking and mass

spectrometry (Gingras et al., 2007; Serpa et al., 2012) will be

routinely used to derive the relative position of known structures

and to support models obtained by a combination of electronmi-

croscopy and crystallography.

A central future challenge will be the analysis of molecular

structures within their cellular context and of structural changes

in space and time. Advanced light microscopy techniques can

now resolve detailed structures of assemblies such as nuclear

pore complexes (Szymborska et al., 2013) or the cytoskeleton

(Xu et al., 2013). A combination of in vivo crosslinking with

deep sequencing and computer simulations can elucidate the

overall folding of chromosomes (Naumova et al., 2013). Electron

tomography provides three-dimensional images of the nuclear

pore complex (Beck et al., 2004; Bui et al., 2013) or polysomes

(Brandt et al., 2009).

We are witnessing the advent of a new research field that may

be referred to as structural cell biology. Structural biologists may

soon tackle most fundamental questions in biology. What is the

conformational space for genomes, and how is it explored and

utilized during gene activation and cell differentiation? What is

the three-dimensional structure of genes and howdoes it change

during transcription? What is the dynamic architecture of tran-

sient RNA assemblies with multiple proteins? Answers to these

questions will require the development of new techniques and al-

gorithms to bridge resolution gaps, to integrate structural data

frommultiple sources, and to embed structures into their biolog-

ical context.
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Dürr, H., Körner, C., Müller, M., Hickmann, V., and Hopfner, K.P. (2005). X-ray

structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its com-

plex with DNA. Cell 121, 363–373.

Ellenberger, T.E., Brandl, C.J., Struhl, K., and Harrison, S.C. (1992). The GCN4

basic region leucine zipper binds DNA as a dimer of uninterrupted alpha heli-

ces: crystal structure of the protein-DNA complex. Cell 71, 1223–1237.
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