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AN UPPER BOUND THEOREM FOR A CLASS OF FLAG WEAK

PSEUDOMANIFOLDS

MICHA L ADAMASZEK

Abstract. If K is an odd-dimensional flag closed manifold, flag generalized homology
sphere or a more general flag weak pseudomanifold with sufficiently many vertices, then
the maximal number of edges in K is achieved by the balanced join of cycles.

The proof relies on stability results from extremal graph theory. In the case of manifolds
we also offer an alternative (very) short proof utilizing the non-embeddability theorem of
Flores.

The main theorem can also be interpreted without the topological contents as a graph-
theoretic extremal result about a class of graphs such that 1) every maximal clique in the
graph has size d + 1 and 2) every clique of size d belongs to exactly two maximal cliques.

1. Introduction

If K is a finite simplicial complex of dimension d we write

(f−1(K), f0(K), . . . , fd(K))

for its face vector, or f -vector, meaning that fi(K) is the number of i-dimensional faces
of K. A classical problem in enumerative combinatorics is to characterize the f -vectors of
interesting classes of simplicial complexes.

Our work is motivated by this kind of a question for flag spheres, although the methods
we use work for a larger class of flag weak pseudomanifolds, see Definition 1.1. A simplicial
complex is called flag if every minimal non-face of K has two vertices. This means that the
faces of K are precisely the cliques in the graph G = K(1), the 1-skeleton of K. In this case we
write K = Cl(G) and say K is the clique complex of G. The interest in the f -vectors of flag
spheres is inspired by the Charney-Davis conjecture [4] and its generalizations [10, 15, 16, 14].

The properties of f -vectors of flag complexes can be quite different from those of arbitrary
simplicial complexes. For example, a simplicial (2s − 1)-sphere K satisfies

2sf0(K)− s(2s+ 1) ≤ f1(K) ≤ 1

2
f0(K)2 − 1

2
f0(K)

with both inequalities best possible. On the other hand, for a flag simplicial (2s− 1)-sphere
the corresponding inequalities ought to be

(1) (4s − 3)f0(K)− 8s(s− 1) ≤ f1(K) ≤ s− 1

2s
f0(K)2 + f0(K).

These are known to hold when s = 1 (obvious) and s = 2 ([5, 10]) while for s ≥ 3 both upper
and lower bounds have the status of conjectures [10, 15]. One consequence of our main result
is that the upper bound in (1) holds for flag (2s − 1)-spheres for any s, provided that the
number of vertices f0(K) is sufficiently large.

Our main result, Theorem 1.2, holds for a class of complexes which we now define.
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Definition 1.1. A d-dimensional weak pseudomanifold is a pure simplicial complex of di-
mension d such that every (d− 1)-dimensional face belongs to exactly two faces of dimension
d.

Note that the only 0-dimensional weak pseudomanifold is the complex S0 with two isolated
vertices and that every 1-dimensional weak pseudomanifold is a disjoint union of cycles.
Moreover, if K is a d-dimensional weak pseudomanifold and σ is any face then lkKσ a weak
pseudomanifold of dimension d− |σ|. Finally, note that the join of weak pseudomanifolds of
dimensions d and d′ is a weak pseudomanifold of dimension d+ d′ + 1.

We can now state the main theorem.

Theorem 1.2. For every s ≥ 1 and every constant C > 0 there is an n0 = n0(s, C) with the
following property. If K is a (2s− 1)-dimensional flag weak pseudomanifold with f0(K) ≥ n0

and fs(K) ≤ Cf0(K)s, then

f1(K) ≤ s− 1

2s
f0(K)2 + f0(K).

The upper bound is clearly best possible, since equality holds if K is the join of s copies
of the 1

sf0(K)-vertex cycle.1

The statement of the theorem may seem a bit technical, but it implies upper bounds for
some quite concrete classes of complexes, as we now explain.

Recall that if σ ∈ K is a face then the link of σ, denoted lkKσ is the subcomplex {τ ∈
K | τ ∩ σ = ∅, τ ∪ σ ∈ K}. A simplicial complex is pure if all maximal faces have the same
dimension. A pure d-dimensional complex K is a simplicial d-sphere if for every face σ the
link lkKσ is homeomorphic to the (d− |σ|)-dimensional sphere and it is a simplicial manifold
(closed, compact) if that condition holds for all σ 6= ∅. Further, we say K is Gorenstein∗, resp.
Eulerian, if for every face σ the link lkKσ has the same homology groups, resp. the same
Euler characteristic, as the (d−|σ|)-sphere. Gorenstein∗ complexes are also called generalized
homology spheres. The relation between these classes of pure simplicial complexes is best
explained by the diagram:

2s-sphere

��

+3 2s-manifold
s≥1

'/❲❲
❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

Gorenstein∗ +3 Eulerian +3 weak pseudomanifold

(2s − 1)-sphere

KS

+3 (2s − 1)-manifold

KS

We will also need the h-vector (h0(K), . . . , hd+1(K)) which is a linear transformation of the

f -vector, defined by the polynomial identity
∑d+1

i=0 hi(K)xd+1−i =
∑d

i=−1 fi(K)(x − 1)d−i.
Any Eulerian complex K satisfies the Dehn-Sommerville equations hi(K) = hd+1−i(K) for
i = 0, . . . , d+ 1.

We can now present the more specific consequences of Theorem 1.2.

Corollary 1.3. For every s ≥ 1 the inequality

(2) f1(K) ≤ s− 1

2s
f0(K)2 + f0(K)

1In general it should be understood that the factors of the join are as balanced as possible, i.e. all have size

⌊ f0(K)
s

⌋ or ⌈ f0(K)
s

⌉. Here and in the future we allow ourselves this level of language imprecision in informal or

asymptotic statements.
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holds whenever K is a sufficiently large

a) (2s−1)-dimensional flag weak pseudomanifold which satisfies the middle Dehn-Sommerville
equation hs−1(K) = hs+1(K),

b) flag simplicial (2s − 1)-manifold,
c) flag (2s − 1)-Gorenstein∗ complex.

Proof. Of course b) and c) follow from a), since every simplicial (2s−1)-manifold or Gorenstein∗

complex is Eulerian, hence it satisfies all the Dehn-Sommerville equations. To prove a) rewrite
the relation hs−1(K) = hs+1(K) using the face numbers of K. It takes the form of a linear
equation

fs(K) = as,s−1fs−1(K) + . . .+ as,0f0(K) + as,−1f−1(K)

where as,i are some universal constants. Then we have

fs(K) ≤
s−1
∑

i=−1

|as,i|
(

f0(K)

i+ 1

)

≤
(

s−1
∑

i=−1

|as,i|
)

· f0(K)s

hence we are in the situation of Theorem 1.2. �

Related work. The inequality (2) is obvious for any 1-dimensional weak pseudomanifold
and for s = 2 it is known to hold without any restrictions on f0(K) if K is a flag 3-manifold
or a flag 3-Gorenstein∗ complex, see [10]. In [1] the authors used similar methods to study
the case s = 2, but the purpose of that work was to verify a conjecture of [10] that if f1(K)
is sufficiently close to the extremal value then K is a join of two cycles. Here we move from
s = 2 to arbitrary s, but we are only interested in the extremal value itself, although it seems
reasonable to conjecture that a similar approximation result also holds.

Finally ifK is d-dimensional and Eulerian then one can define the γ-vector (γ0(K), . . . , γs(K))

of K, where s = ⌊d+1
2 ⌋, by the identity

∑d+1
i=0 hi(K)xi =

∑s
i=0 γi(K)xi(x+1)d+1−2i as in [10].

It is conjectured that ifK is a flag d-Gorenstein∗ complex then the vector γ(K) is non-negative
and even more generally that it is an f -vector of some flag simplicial complex [10, 15]. The
latter requires that γ(K) satisfies the so-called Frankl-Furedi-Kalai inequalities [9], and the
only ones which are known to hold in arbitrary dimension are γ0(K) = 1 and γ1(K) ≥ 0. Our
result proves (for sufficiently large complexes of odd dimension d = 2s−1) another inequality
from that set, namely γ2(K) ≤ s−1

2s γ1(K)2, which is precisely equivalent to (2).

A formulation in terms of graphs. Since a flag complex is completely determined by its
1-skeleton, Theorem 1.2 can be equivalently phrased in the language of graphs.

First we introduce some notation. If G is a graph and X ⊆ V (G) then G[X] is the
induced subgraph of G with vertex set X. For any v ∈ V (G) and X ⊆ V (G) we define the
neighborhood of v as NG(v) = {u : uv ∈ E(G)} and we set

degG(v,X) = |X ∩NG(v)|.
We will usually omit G from the notation and write simply deg(v,X).

By Ks(n1, . . . , ns) we denote the complete s-partite graph with parts of sizes n1, . . . , ns.
By ks(G) we mean the number of s-element cliques in G. If K = Cl(G) then of course
fs(K) = ks+1(G) for all s.

If σ is a clique in G then we define the link of σ as

lkGσ = G

[

⋂

v∈σ

NG(v)

]

.
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In particular lkGv = G[NG(v)] for a vertex v ∈ V (G). Note that we have lkCl(G)σ = Cl(lkGσ),
where each link should be understood in the appropriate sense.

Finally, we define the join G ∗ H of two graphs G and H as the disjoint union of G and
H together with all the edges between V (G) and V (H). Once again we have Cl(G ∗ H) =
Cl(G) ∗ Cl(H), where on the right-hand side we have the simplicial join.

The sole purpose of the next definition is to introduce a short substitute for the phrase “G
is the 1-skeleton of a d-dimensional flag weak pseudomanifold”.

Definition 1.4. A graph G will be called d-leveled if it is the 1-skeleton of a d-dimensional
flag weak pseudomanifold. Explicitly,

• every maximal clique in G has size d+ 1, and
• for every clique σ of size d the link lkGσ consists of two isolated vertices.

As a consequence, if G is d-leveled and σ is a clique in G then lkGσ is (d − |σ|)-leveled.
In particular, in a d-leveled graph the link of every clique of size d − 1 is a disjoint union of
cycles.

The next theorem is a straightforward equivalent formulation of Theorem 1.2.

Theorem 1.5. For every s ≥ 1 and every constant C > 0 there is an n0 = n0(s, C) with the
following property. If G is a (2s − 1)-leveled graph with n ≥ n0 vertices and with ks+1(G) ≤
Cns, then

|E(G)| ≤ s− 1

2s
n2 + n.

Organization of the paper. In Section 2 we outline the proof of Theorem 1.5 and we
introduce the toolbox of extremal graph theory. The main work is done in Section 3, where
we apply the extremal techniques in the context of (2s − 1)-leveled graphs. The proof of
Theorem 1.5 appears at the end of that section. In Section 4 we present some further results
and open problems.

The Appendix contains an alternative, very short proof of Corollary 1.3.b), that is an
upper bound in the case when K is a flag (2s − 1)-manifold. The reader interested only in
flag spheres or flag manifolds can jump directly there.

2. Extremal graph theory

Let us outline the main idea behind the proof of Theorem 1.5. Suppose, contrary to what
we want to show, that G satisfies the assumption of Theorem 1.5 but |E(G)| > s−1

2s n2 + n.
Then G is dense enough to exceed the Turan bound for the existence of (s + 1)-cliques.
However, the number ks+1(G) of those cliques is relatively small, namely O(ns), while a
“typical” graph with this edge density ought to have Θ(ns+1) cliques of size (s + 1). This
exceptional situation puts strong restrictions on the structure of G, which must be “similar”,
in a sense made precise in Theorem 2.5, to the graph Ks(ns , . . . ,

n
s ). It is a consequence of a

phenomenon called supersaturation [6], which is one of the basic principles of extremal graph
theory.

At this point we start exploiting the extra property that G is (2s − 1)-leveled. This
rigidifies the structure of G, up to the point of showing that it is either a join of s cycles or
it has even fewer edges than such a join. This approach, known as the stability method and
introduced in [19], is relatively standard in extremal graph theory. In any case, we conclude
that |E(G)| ≤ s−1

2s n2 +n, contrary to the initial assumption. This part of the proof is carried
out in Section 3.
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The similarity to the complete t-partite graph, and more generally the similarity to the
join of t graphs, is best captured by the next definition.

Definition 2.1. We say a graph G with a partition V (G) = S1 ⊔ · · · ⊔ St ⊔ X is of type
(t, η, C) if

• for every i, every v ∈ Si and every j 6= i we have deg(v, Sj) ≥ |Sj|(1− η),
• |X| ≤ C.

Moreover, we say such the partition is

• m-large if |Si| ≥ m for all i,
• (n, α)-flat if |V (G)| = n and for all i we have

n

t
(1− α) ≤ |Si| ≤

n

t
(1 + α).

If G is a graph of type (t, 0, 0) then G = G[S1] ∗ · · · ∗ G[St]. If C ≥ 0 and 0 ≤ η ≪ 1
are constant then the graphs of type (t, η, C) are “almost” joins, where “almost” refers to
the possible existence of a constant number of exceptional vertices in X and the absence of
a small fraction of edges between the parts. One should think of m as large and of α as very
small, usually 0 < α ≪ η.

Next we quote two results in extremal graph theory which will be needed later. The first
one is a lower bound for the growth of the number of cliques in a graph whose number of
edges passes the Turan bound.

Theorem 2.2. For every t ≥ 1 and C ≥ 0 there exists C ′ = C ′(t, C) such that if G is a graph
with n vertices and at least t−1

2t n
2 + C ′n edges then kt+1(G) ≥ Cnt.

Proof. This is a corollary of a theorem of Bollobás [2], which we now recall. For n ∈ N and
m ∈ R let ks(n,m) = min{ks(H) : |V (H)| = n and |E(H)| ≥ m}. By putting p = 2, r = t,
q = t− 1 and x = m in [2, Corollary 2] we obtain the inequality

(3) kt+1(n,m) ≥ 1

(t+ 1)t
(2tmnt−1 − (t− 1)nt+1) for

t− 1

2t
n2 ≤ m ≤ t

2(t+ 1)
n2

Now note that it suffices to prove the theorem for n ≥ n0 = n0(t, C). Small values of n can

be treated by later increasing C ′. Define C ′ = C(t+1)t

2t and suppose that n is large enough so

that t−1
2t n

2 + C ′n ≤ t
2(t+1)n

2. Then by (3) a graph G with |E(G)| ≥ t−1
2t n

2 + C ′n satisfies

kt+1(G) ≥ 2C ′tnt

(t+ 1)t
= Cnt.

�

Remark 2.3. An asymptotically exact value of ks(n,m) can be found in the deep result of
[17], but its application would not lead to any substantial improvement of the bounds we
get, other than tweaking some constants which are anyhow far from optimal, for instance in
Theorem 4.1.

Remark 2.4. Theorem 2.2 immediately implies that solely due to clique counting, and with-
out using the assumption that G is (2s−1)-leveled, the upper bound in Theorem 1.5 holds with
an accuracy of O(n) edges. The exact linear term can be found thanks to the combinatorial
properties of G.
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Next we quote the deep result of [13], which is our main device for controlling the approx-
imate structure of the graphs under consideration.

Theorem 2.5 (Lovász, Simonovits, [13, Theorem 2]). For every s ≥ 1 and every constant
C > 0 there exist δ = δ(s, C) and C ′ = C ′(s, C) with the following property. If 0 < k < δn2

and G is a graph with n vertices for which

|E(G)| = s− 1

2s
n2 + k and ks+1(G) ≤ Ckns−1

then there are integers n1, . . . , ns such that
∑

ni = n and
n

s
− C ′

√
k ≤ ni ≤

n

s
+ C ′

√
k

and G can be obtained from Ks(n1, . . . , ns) by changing (adding/removing) at most C ′k edges.

From this we get the following corollary, which adjusts the approximate structure so that
it fits the framework of Definition 2.1.

Corollary 2.6. For every s ≥ 1, η > 0, α > 0 and C > 0 there exist n0 = n0(s, η, α,C) and
C ′ = C ′(s, η, α,C) such that every graph G with n ≥ n0 vertices for which

|E(G)| > s− 1

2s
n2 + n and ks+1(G) ≤ Cns

is (n, α)-flat of type (s, η, C ′).

Proof. Suppose n is sufficiently large and let |E(G)| = s−1
2s n2 + k. By Theorem 2.2 we get

n ≤ k ≤ C1n for some constant C1 = C1(s, C). Moreover, we have

ks+1(G) ≤ Cns ≤ Ckns−1

so for sufficiently large n the graph G satisfies the assumptions of Theorem 2.5. We obtain a
decomposition V (G) = A1 ⊔ · · · ⊔ As which satisfies, for a suitable constant C2 = C2(s, C1),
the conditions

n

s
− C2

√
n ≤ |Ai| ≤

n

s
+ C2

√
n for all i,(4)

|E(G[Ai, Aj ])| ≤ C2n for all i, j,(5)

where |E(G[Ai, Aj ])| is the number of edges missing between the parts Ai and Aj in G.
For i 6= j define

Xi,j = {v ∈ Ai : deg(v,Aj) ≤
n

s
(1 − 1

2
η)}.

Note that by (4) for large n we have

|E(G[Ai, Aj ])| ≥ |Xi,j |(|Aj | −
n

s
(1− 1

2
η)) ≥ |Xi,j | ·

ηn

3s

so (5) gives |Xi,j| ≤ C3 for C3 = 3sC2η
−1. Set X =

⋃

i,j Xi,j, C
′ = s2C3 and Si = Ai \X.

We clearly have |X| ≤ C ′. For every i, every v ∈ Si and all j 6= i we get

|Si| ≥ |Ai| − C ′ ≥ n

s
−C2

√
n− C ′ ≥ n

s
(1− α),

|Si| ≤ |Ai| ≤
n

s
+C2

√
n ≤ n

s
(1 + α),

deg(v, Sj) ≥ deg(v,Aj)− C ′ ≥ n

s
(1− 1

2
η)− C ′ ≥ (

n

s
+ C2

√
n)(1 − η) ≥ |Sj|(1− η).
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It follows that the decomposition V (G) = S1 ⊔ · · · ⊔ Ss ⊔X makes G an (n, α)-flat graph of
type (s, η, C ′). �

For convenience we collect some facts about graphs of type (t, η, C), all of which follow
easily from the definition. In the next section we are going to use them freely without explicit
reference.

Fact 2.7. Suppose G is a graph of type (t, η, C) with a decomposition V (G) = S1⊔· · ·⊔St⊔X.

a) If 0 < β ≤ 1 and Ti ⊆ Si, X
′ ⊆ X with |Ti| ≥ β|Si| for all i then the graph G[

⋃

Ti∪X ′]
is of type (t, ηβ−1, C).

b) If 1 ≤ k ≤ t− 1 and P ⊆ ⋃k
i=1 Si then

|Sk+1 ∩
⋂

v∈P

NG(v)| ≥ (1− η|P |)|Sk+1|.

c) If η < 1
t then G[

⋃

Si] has a clique σ with |σ ∩ Si| = 1 for all i.

d) If 1 ≤ k ≤ t − 1 and σ ⊆ ⋃k
i=1 Si is a maximal clique in G[

⋃k
i=1 Si] then lkGσ is a

graph of type (t− k, η(1− η|σ|)−1, C), which is ((1− η|σ|)m)-large if G was m-large.

3. Dense d-leveled graphs

In this section we study graphs which are simultaneously of type (t, η, C) and d-leveled for
some d. The main technical result of this section is Theorem 3.4, which gives an upper bound
on the number of edges in such graphs when d = 2t− 1. Theorem 1.5 then follows easily, and
it is proved at the end of this section. First we need two auxiliary results.

Lemma 3.1. Suppose that d ≥ 0 and G is a d-leveled graph with V (G) = I ⊔X where I is
an independent set in G. Then

|I| ≤ 2|X|d.
Proof. Every vertex v ∈ I forms a (d + 1)-clique with at least one d-element subset σ of X.
On the other hand, every d-element clique σ ⊆ X belongs to at most two such (d+1)-cliques.

It follows that |I| ≤ 2
(|X|

d

)

≤ 2|X|d as required. �

Notation/Definition 3.2. For the remainder of the paper we fix small constants ηt, αt for
t = 1, 2 . . . subject to the conditions

ηt <
1

100t
for all t ≥ 1, ηt(1− 2tηt)

−1 < ηt−1 for all t ≥ 2

and αt <
ηt
10t .

Proposition 3.3. Let t ≥ 1. For every C ≥ 0 there is an m = m(t, C) with the following
property. If G is an m-large graph of type (t, ηt, C) then G is not d-leveled for any d ≤ 2t−2.

Proof. We prove the statement by induction on t. If t = 1 and m = 3 then G cannot be
0-leveled, so we are done.

Let t ≥ 2 and assume that G is m-large of type (t, ηt, C) for sufficiently large m. Suppose,
contrary to what we need to show, that G is d-leveled for some d ≤ 2t − 2. By Fact 2.7 G
has cliques of size t so d+ 1 ≥ t.

If some G[Si], say G[S1], contains a maximal clique σ of size c ≥ 2 then we have 2 ≤ c ≤
d+1 ≤ 2t−1. The link lkGσ is a (d− c)-leveled graph of type (t−1, ηt(1−2tηt)

−1, C), hence
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also of type (t− 1, ηt−1, C), and it is (1 − 2tηt)m-large. For large enough m induction yields
d− c ≥ 2(t− 1)− 1 i.e. d ≥ 2t+ c− 3 ≥ 2t− 1, contrary to our hypothesis.

It means that each G[Si] is edge-less. In this case choose a clique σ of size t− 1 containing
exactly one vertex from each of S1, . . . , St−1. The link lkGσ is a (d − t + 1)-leveled graph
contained in St ⊔ X, and the part contained in St is an independent set of size at least
(1− tηt)m. Lemma 3.1 gives

(1− tηt)m ≤ |V (lkGσ) ∩ St| ≤ 2|X|d ≤ 2Cd

which is a contradiction for sufficiently large m. �

Now we come to the main result which bounds the number of edges among those (2t− 1)-
leveled graphs which are similar to a join of t almost equal parts in the sense of Definition 2.1.

Theorem 3.4. Let t ≥ 1. For every C ≥ 0 there is an n0 = n0(t, C) with the following
property. Suppose G is an (n, αt)-flat graph of type (t, ηt

12 , C) with n ≥ n0 vertices. If G is
(2t− 1)-leveled then

|E(G)| ≤ t− 1

2t
n2 + n.

Proof. If t = 1 the result is obvious, so suppose t ≥ 2.
For v ∈ X let l(v) = |{i : deg(v, Si) ≤ n

t (1 −
ηt
12 )}|. If l(v) = 0 then we move v to any Si

and if l(v) = 1 then we move v to the only set Si for which deg(v, Si) ≤ n
t (1−

ηt
12). We iterate

this operation as long as possible. Since we moved only at most C vertices, we can assume
that for large enough n with the new partition G is

(n, 2αt)-flat of type (t,
ηt
6
, C)

and that every vertex v ∈ X satisfies l(v) ≥ 2. From now on we are going to use this new
partition and for simplicity we set

α := 2αt, η :=
ηt
6
.

The proof will be split into a series of claims. Note that G is n
2t -large.

Claim 1. For every i the graph G[Si] is triangle-free.

Proof. Let σ be a maximal clique in G[S1] and let c = |σ|. Then c ≤ 2t − 1 because G is
(2t − 1)-leveled and lkGσ is nonempty. We have that lkGσ is a (2t − 1 − c)-leveled graph of
type (t − 1, η(1 − 2tη)−1, C), and so of type (t − 1, ηt−1, C), which is n

2t(1 − 2tη)-large. By
Proposition 3.3 for sufficiently large n we have 2t− 1− c ≥ 2(t− 1)− 1, hence c ≤ 2. �

As a consequence every clique in G[
⋃

Si] has size at most 2t, and so every maximal clique
in G[

⋃

Si] has nonempty intersection with each Si.

Claim 2. There exists a clique in G[
⋃

Si] of size 2t.

Proof. Suppose that the largest clique σ in G[
⋃

Si] has size c < 2t. By Claim 1 and the last
remark there exist an index i and a vertex v ∈ Si such that σ ∩ Si = {v}. In particular,
the link lkG(σ \ {v}) does not contain any edge of G[Si] (otherwise we would have obtained
a clique of size c + 1). Also, observe that σ \ {v} is a maximal clique in G[

⋃

j 6=i Sj ], since
otherwise its superclique τ , extended by some vertex of Si, would have size c + 1. It means
that lkG(σ \ {v}) is a (2t − c)-leveled graph contained in Si ⊔ X and the part contained in
Si is an independent set of size k ≥ n

2t(1 − 2tη). For large n this is impossible because of
Lemma 3.1, as in the proof of Proposition 3.3. �
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Claim 3. For every i if Y ⊆ Si with |Y | ≥ 5
8 · n

t then G[Y ] contains an edge.

Proof. It suffices to consider Y ⊆ S1. Let σ be some maximal clique in G[
⋃

Si] of size 2t
and let σ ∩ S1 = {x, y} for some edge xy ∈ E(G). Then H = lkG(σ \ {x, y}) is a 1-leveled
graph contained in S1 ⊔X and the part contained in S1 has k ≥ |S1|(1 − 2tη) vertices. We
see that H occupies almost all of S1 ⊔X while Y occupies much more than a half of that set,
in particular

|Y ∩ V (H)| ≥ |S1|(1− 2tη) − (|S1| −
5

8
· n
t
) ≥ 1

2
(|S1|+ C) ≥ |V (H)|/2.

Since H is a union of cycles, that implies that G[Y ∩ V (H)] contains an edge. �

Claim 4. For every i the graph G[Si] has maximum degree 2.

Proof. Suppose v ∈ S1 has three neighbors u1, u2, u3 ∈ S1. We are going to inductively

construct cliques σk ⊆ ⋃k
i=2 Si for k = 1, . . . , t such that σk ⊆ σk+1, |σk| = 2(k − 1) and

v, u1, u2, u3 ∈ lkGσk for all k. This gives a contradiction since u1, u2, u3 ∈ lkG(σt ∪ {v}),
contrary to the fact that lkG(σt ∪ {v}) is 0-leveled.

We set σ1 = ∅. Suppose σk was constructed and let P = {v, u1, u2, u3} ∪ σk. Then the set
Yk+1 = Sk+1 ∩

⋂

x∈P N(x) contains at least (1 − 2tη)|Sk+1| vertices. By the previous claim
there is an edge ak+1bk+1 ∈ G[Yk+1] and we set σk+1 = σk ∪ {ak+1, bk+1}. �

Claim 5. If v ∈ X then deg(v,
⋃

Si) ≤ n(1− 1
t −

η
3t).

Proof. Let X ′ ⊆ X be the set of all vertices v such that deg(v, Si) ≤ 2 for some i. We first
prove the claim for v ∈ X ′. Assume without loss of generality that deg(v, S1) ≤ 2. Since
l(v) ≥ 2, there exists j 6= 1 such that deg(v, Sj) ≤ n

t (1− 1
2η). Then

deg(v,
⋃

Si) ≤ (t− 2)
n

t
(1 + α) +

n

t
(1− 1

2
η) + 2 ≤ n(1− 1

t
− η

3t
)

for sufficiently large n.
Next consider the vertices v ∈ X \X ′. For every such v and every i we have deg(v, Si) ≥ 3.

Define k(v) = |{i : deg(v, Si) ≤ 3
5 · n

t }|. The proof depends on the value of k(v).

The case k(v) ≥ 3. We have

deg(v,
⋃

Si) ≤ (t− 3)
n

t
(1 + α) + 3 · 3

5
· n
t
≤ n(1− 11

10
· 1
t
).

The case k(v) = 2. Without loss of generality let i = 1, 2 be the indices for which deg(v, Si) ≤
3
5 · n

t . If for both of them we have deg(v, Si) ≥ 1
6 · n

t then lkGv is a (2t − 2)-leveled graph,
which is n

6t -large of type (t, 6η,C), hence also of type (t, ηt, C). For large n this is not possible

by Proposition 3.3. It means that for at least one of i = 1, 2 we have deg(v, Si) ≤ 1
6 · nt . Then

deg(v,
⋃

Si) ≤ (t− 2)
n

t
(1 + α) +

3

5
· n
t
+

1

6
· n
t
≤ n(1− 6

5
· 1
t
).

The case k(v) = 1. Assume i = 1 is the only index with deg(v, Si) ≤ 3
5 · nt . Let u1, u2, u3 ∈ S1

be any three neighbors of v. As in the proof of Claim 4 we can now construct a clique
σ = {a2, b2, . . . , at, bt} with ak, bk ∈ Sk for k = 2, . . . , t and such that v, u1, u2, u3 ∈ lkGσ.
(The set Yk+1 ⊆ Sk+1 constructed in that proof now has at least n

t (
3
5−4tη) vertices). But then

lkG(σ ∪{v}) is a 0-leveled graph which contains 3 vertices u1, u2, u3. That is a contradiction.
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The case k(v) = 0. Then lkGv is a (2t− 2)-level graph of type (t, 5
3η,C), hence also of type

(t, ηt, C), which is 3n
5t -large. For large n that is impossible by Proposition 3.3. �

Now we can count the number of edges in G to show the desired bound. Let x = |X| ≤ C.
By Claims 4 and 5 we have

(6)
|E(G)| ≤

(

t

2

)

(
n− x

t
)2 + (n− x) + xn(1− 1

t
− η

2t
) +

(

x

2

)

≤ t− 1

2t
n2 + n− x(

η

2t
n− C · 2t− 1

2t
).

This completes the proof of Theorem 3.4. �

We can now prove the main result of the paper.

Proof of Theorem 1.5. Suppose, contrary to what we want to prove, that |E(G)| > s−1
2s n2+n.

Then the assumptions of Corollary 2.6 are satisfied, hence for sufficiently large n the graph
G is (n, αs)-flat of type (s, ηs12 , C

′) for some constant C ′ = C ′(s, C). However, since G is

(2s− 1)-leveled, by Theorem 3.4 it must satisfy |E(G)| ≤ s−1
2s n2 +n. This contradiction ends

the proof. �

4. Related results and problems

In this section we discuss some related problems and possible relaxations of the assumptions
of Theorem 1.2.

As noted in Remark 2.4, already the basic clique counting argument provides an upper
bound for the number of edges which is optimal up to an O(n) term. The advantage of
that argument is that it works for flag weak pseudomanifolds of arbitrary dimension. More
precisely, one immediately obtains the following result.

Proposition 4.1. Let d ≥ 1 and s = ⌊d+1
2 ⌋. For every constant C > 0 there is a C ′ =

C ′(d,C) such that the inequality

(7) f1(K) ≤ s− 1

2s
f0(K)2 + C ′ · f0(K)

holds for each of the following classes of complexes K:

a) d-dimensional flag complexes with fs(K) ≤ Cf0(K)s,
b) d-dimensional flag complexes which satisfy the middle Dehn-Sommerville equation

(hs(K) = hs+1(K) when d = 2s or hs−1(K) = hs+1(K) when d = 2s− 1),
c) flag simplicial d-manifolds whose Euler characteristic satisfies χ(K) ≤ Cf0(K)s,
d) flag d-Gorenstein∗ complexes.

Proof. Part a) follows directly from Theorem 2.2. Regardless of the parity of d, the middle

Dehn-Sommerville equation has the form fs(K) =
∑s−1

i=−1 as,ifi(K), hence fs(K) ≤ (
∑

i |as,i|)·
f0(K)s and therefore b) follows from a). Part b) immediately implies d). Finally for any d-
manifold we have the generalized Dehn-Sommerville equations of Klee [12], namely

hd+1−i(K)− hi(K) = (−1)i
(

d+ 1

i

)

(χ(K)− χ(Sd)),

and the middle of them again yields fs(K) ≤ C1f0(K)s for some constant C1, thus reducing
part c) to a). �
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As in the odd-dimensional case, for spheres one is expecting an exact upper bound of the
following form.

Conjecture 4.2 ([15, Conj. 6.3]). If s ≥ 1 and K is a flag triangulation of S2s then

(8) f1(K) ≤ s− 1

2s
f0(K)2 + (1 +

2

s
)f0(K)− (4 +

2

s
).

In this case equality is achieved by the join of s − 1 cycles of length k with an arbitrary
(k + 2)-vertex flag triangulation of S2, assuming that f0(K) = sk + 2.

Because the Euler characteristic of a 2s-dimensional closed manifold is O(f0(K)s+1) (by
Poincaré duality), but not necessarily O(f0(K)s), the bounds of Proposition 4.1 are not
automatically satisfied by all closed flag 2s-manifolds. In fact for arbitrary ε > 0 there are
flag 2-manifolds K with f1(K) = Ω(f0(K)2−ε), which matches the upper bound of f1(K) =
o(f0(K)2) (see below). The situation in higher even dimensions is not known.

Problem 4.3. When s ≥ 2, what is the maximum of f1(K) among all closed flag 2s-manifolds
K with a fixed number of vertices?

One can also ask to what extent the assumption fs(K) ≤ Cf0(K)s in Theorem 1.2 is
needed. We will show that there are (2s − 1)-dimensional flag weak pseudomanifolds which
do not satisfy this condition. For this we need a result of [18], that for any ε > 0 there exist
n-vertex graphs Hε

n, with arbitrarily large n, such that |E(Hε
n)| = Ω(n2−ε) and such that for

every vertex v the link lkHε
n
v is a cycle of length at least 4. In particular, Hε

n is 2-leveled and

K = Cl(Hε
n) is a flag 2-manifold with Ω(f0(K)2−ε) edges. Now the join Gε

2n = Hε
n ∗ Hε

n is a
family of 5-leveled graphs with k4(G

ε
2n) = Ω(n4−2ε). That means that a 5-dimensional flag

weak pseudomanifold K can have f3(K) = Ω(f0(K)4−2ε).
Still, even though this approach fails, it is possible that the bound on the number of edges

holds.

Problem 4.4. Is it true that any (2s−1)-leveled graph with n vertices has at most s−1
2s n2+n

edges?

The answer to this problem is obviously positive when s = 1.

In even dimension 2s we cannot expect a similar bound since the join of Hε
n/s with s − 1

copies of the n/s-vertex cycle is a 2s-leveled graph with s−1
2s n2 + Ω(n2−ε) edges. However,

one can ask the following.

Problem 4.5. Is it true that any 2s-leveled graph with n vertices has at most s−1
2s n2 + o(n2)

edges?

Again, the answer is positive when s = 1. It follows from [3, Theorem 1], which says that
a graph in which every edge belongs to at least one, but at most a fixed number of triangles,
can only have o(n2) edges.

Acknowledgement. The author thanks Jan Hladký and Eran Nevo for support and com-
ments.
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5. Appendix: Odd-dimensional manifolds

The purpose of this section is to give an independent quick proof of Corollary 1.3 in the
case when K is a flag simplicial (2s − 1)-manifold.

Proof of Corollary 1.3, case b). Let K be any flag simplicial (2s−1)-manifold with n vertices.
Let G be the 1-skeleton of K. For any vertex v the link lkKv is a flag simplicial 2(s−1)-sphere.

A classical theorem of van Kampen and Flores [11, 8] (see also [20, Sect 2.4]), which
generalizes the standard result about planar graphs, states that for all s ≥ 1 the space
Cl(Ks(3, . . . , 3)) does not embed in S2(s−1). It follows that for all v the link lkGv does not
contain Ks(3, . . . , 3) as a subgraph. As a consequence, G does not contain Ks+1(1, 3, . . . , 3)
as a subgraph.

By the main theorem of [7] a sufficiently large graph which does not containKs+1(1, 3, . . . , 3)
has at most s−1

2s n2 + n edges. That ends the proof. �

The theorem of [7] referred to in the above proof is more general. For any tuple r1 ≤
r2 ≤ · · · ≤ rs+1 with r1 ∈ {1, 2, 3} it characterizes, for sufficiently large n, all n-vertex graphs
without a Ks+1(r1, . . . , rs+1) which have the maximal possible number of edges. For r1 = 1,
r2 = · · · = rs+1 = 3 that characterization reduces to the claim that every such extremal graph
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is a join of s graphs, each of maximal degree 2. From there the bound on the number of edges
immediately follows.

For r1 = 1 that result is only stated, but not proved in [7]. For the proof the reader is
referred to [19], which is not easily accessible. However, an independent proof can be obtained
using the methods of this paper. The starting point is the stable version of the Erdös-Stone
theorem [6, p.184], which guarantees that an extremal Ks+1(1, 3, . . . , 3)-free graph can be
obtained from Ks(ns , . . . ,

n
s ) by changing o(n2) edges.

It is very likely that the characterization of extremal Ks+1(1, 3, . . . , 3)-free graphs holds
for all values of n. This would imply that the inequality (2) holds for all, not just sufficiently
large, flag simplicial (2s − 1)-manifolds.
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