arXiv:1307.2521v1 [cs.DS 9 Jul 2013

Point Line Cover: The Easy Kernel is Essentially Tight

Stefan Kratsch'; Geevarghese Philip?’and Saurabh Ray>*

! Technical University Berlin, Germany, stefan.kratsch@tu-berlin.de
2 Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, gphilip@mpi-inf.mpg.de
3 Ben-Gurion University, Israel, saurabh@bgu.ac.il

Abstract

The input to the NP-hard POINT LINE COVER problem (PLC) consists of a set P of n points
on the plane and a positive integer k, and the question is whether there exists a set of at
most k lines which pass through all points in P. By straightforward reduction rules one can
efficiently reduce any input to one with at most k2 points. We show that this easy reduction is
already essentially tight under standard assumptions. More precisely, unless the polynomial
hierarchy collapses to its third level, for any ¢ > 0, there is no polynomial-time algorithm
that reduces every instance (P, k) of PLC to an equivalent instance with O(k?~¢) points.
This answers, in the negative, an open problem posed by Lokshtanov (PhD Thesis, 2009).

Our proof uses the notion of a kernel from parameterized complexity, and the machinery
for deriving lower bounds on the size of kernels developed by Dell and van Melkebeek (STOC
2010). It has two main ingredients: We first show, by reduction from VERTEX COVER, that—
unless the polynomial hierarchy collapses—PLC has no kernel of total size O(k?~¢) bits.
This does not directly imply the claimed lower bound on the number of points, since the best
known polynomial-time encoding of a PLC instance with n points requires w(n?) bits. To get
around this hurdle we build on work of Goodman, Pollack and Sturmfels (STOC 1989) and
devise an oracle communication protocol of cost O(nlogn) for PLC; its main building block
is a bound of O(n®(™) for the order types of n points that are not necessarily in general
position and an explicit (albeit slow) algorithm that enumerates all possible order types of
n points. This protocol, together with the lower bound on the total size (which also holds
for such protocols), yields the stated lower bound on the number of points.

While a number of essentially tight polynomial lower bounds on total sizes of kernels
are known, our result is—to the best of our knowledge—the first to show a nontrivial lower
bound for structural/secondary parameters.

*Supported by the German Research Foundation (DFG), research project PREMOD, KR 4286/1.
TSupported by the Indo-German Max Planck Center for Computer Science(IMPECS).
#Work done in part while at Max-Planck-Institut fiir Informatik, Saarbriicken, Germany.

1 Introduction

Recall that a point (a, b) in the two-dimensional plane is said to lie on a line y = maz + ¢ if and
only if b = ma + ¢ holds.! In this case we also say that the line covers—or passes through—the
point, and also, symmetrically, that the point covers the line. The POINT LINE COVER (PLC)
problem of finding a smallest number ¢ of lines which cover a given set of n points on the plane
is motivated by various practical applications [18] 27]]. Megiddo and Tamir [27] showed that
the problem is NP-hard. Kumar et al. [22] and Brodén et al. [3]] showed that the problem is
APX-hard, and therefore cannot be approximated to within an arbitrarily small constant factor
in polynomial time, unless P=NP. Grantson and Levcopoulos [[16] devised an O(log ¢)-factor
approximation algorithm which runs in polynomial time when ¢ € O(n!/4).

In this work we study the complexity of the decision version where, given a set P of n points
and an integer k, the task is to determine whether the points in P can be covered by at most k
lines. While there is no a priori relation between n and k, it is known that one can efficiently
reduce to the case where P contains at most k2 points: First, any line containing at least k + 1
points is mandatory if we want to use at most k lines in total. Indeed, the k + 1 points on
such a line would otherwise require k + 1 separate lines since any two lines share at most one
point. Thus we may delete any such line and all points which the line covers, and decrease &
by one without changing the outcome (yes or no). Second, if no line contains more than &
points, then k lines can cover at most k2 points. Thus, if n > k? then we return no, and else we
have n < k? as claimed. It is a natural and, in our opinion, very interesting question whether
this simple reduction process can be improved to yield a significantly better reduction, e.g.,
to k2~ points for some ¢ > 0. This has been posed as an open problem by Lokshtanov [25].

Our main result is a negative answer to Lokshtanov’s question.

Theorem 1. Let ¢ > 0. Unless coNP C NP/poly, there is no polynomial-time algorithm that
reduces every instance (P, k) of POINT LINE COVER to an equivalent instance with O(k?~¢) points.?

The first part of our result is a lower bound of O(k%>~¢) on the size of a POINT LINE COVER
instance which can be obtained by efficient (reduction) algorithms. For this we use established
machinery from parameterized complexity (formal definitions and tools are given in Section [2)).

Theorem 2. Let ¢ > 0. The POINT LINE COVER problem has no kernel of size O(k*¢), i.e., no
polynomial-time reduction to equivalent instances of size O(k?~¢), unless coNP C NP /poly.

To get the much more interesting lower bound of on the number of points we
have to relate the number of points in an instance of PLC to the size of the instance, as tightly
as possible. The catch here is that there is no known efficient and sufficiently tight encoding
of PLC-instances with n points into a small—in terms of n—number of bits [15, Section 1].
Further, known tools from parameterized complexity only provide lower bounds on total sizes
of kernels. We throw more light on this distinction in our brief discussion on VERTEX COVER
later in this section.

Getting around this hurdle is the second component of our result: It is known that point sets
in general position, i.e., with no three points sharing a line, can be partitioned into 20(logn)
equivalence classes (later, and formally, called order types) in a combinatorial sense; we extend
this fact to arbitrary sets of n points (Lemma 5. The answer (yes or no) to a PLC instance is
determined by the order type of points in the instance. Thus, morally, the relevant information
expressed by the coordinates of the n points is only O(nlogn) bits. However, no efficient

'Throughout this work we assume the implicit presence of an arbitrary but fixed Cartesian coordinate system.
*The assumption that coNP ¢ NP/poly is backed up by the fact that coNP C NP/poly is known to imply a
collapse of the polynomial hierarchy to its third level [31]; it is therefore widely believed.

numbering scheme for order types is known, and hence we do not know how to efficiently
compute such a representation with O(nlogn) bits. Our solution for this is as follows: First, we
prove that order types of point sets are decidable, and devise a computable—albeit inefficient—
enumeration scheme, which we believe to be of independent interest.

Lemma 1. There exists an algorithm which enumerates, for each n € N, all order types defined by
n points in the plane.

We then use the fact that the size lower bound of for POINT LINE COVER also
holds in the setting of a two-player communication protocol where the first player holds the
input instance but can only communicate a bounded number of bits to an all-powerful oracle
that will solve the instance (see for definitions). Using our enumeration scheme, the
oracle can query the first player about her instance and, effectively, perform a binary search for
the order type of the input. This kind of an oracle communication protocol was introduced by
Dell and van Melkebeek [8]], who developed lower bound techniques for such protocols; they
also used such an active oracle to answer a question about sparse languages.

Related work. Langerman and Morin [24] showed that POINT LINE COVER is fixed-parameter
tractable (FPT) with respect to the target number % of lines by giving an algorithm that runs
in time O*(k%"); we use O*-notation to hide factors polynomial in the input size. Later,
Grantson and Levcopoulos [16] proposed a faster algorithm which solves the problem in time
O*((k/2.2)?*). The fastest FPT algorithm currently known for the problem is due to Wang et
al. [30], and it solves the problem in time O*((k/1.35)").

Langerman and Morin [24] also gave the reduction to at most k2 points that we outlined
earlier. In terms of parameterized complexity this can be seen to lead to a polynomial kernel-
ization, using a few standard arguments: Clearly, we are effectively asking for a set cover for
the point set (where sets are given by the lines). There are at most k% lines and we can encode
the points contained in each line using at most k? bits; this uses O(k®) bits. Since SET COVER
is in NP, there is a Karp reduction back to POINT LINE COVER, which gives an equivalent PLC
instance of size polynomial in k%, i.e., polynomial in k. Estivill-Castro et al. [11] describe a cou-
ple of additional reduction rules which, while not improving beyond O(k?) points, yield kernels
which seem to be better amenable to faster subsequent processing by algorithms. See also the
PhD thesis of Heednacram [19, Chapter 2] for a survey of related work.

A number of papers build on the work of Dell and van Melkebeek [8]] to prove concrete
polynomial lower bounds for the size of kernelizations for certain problems, e.g., [7, 20, [5]; to
the best of our knowledge none of them obtain tight bounds of secondary parameters (other
than the number of edges, which is usually an immediate consequence). For other recent de-
velopments in kernelization we refer to the survey of Lokshtanov et al. [26].

Vertex cover. To shed more light on the distinction between lower bounds on kernel sizes
and lower bounds on other, secondary or structural, parameters, let us briefly recall what is
known for the well-studied VERTEX COVER problem: It is known how to efficiently reduce
VERTEX COVER input instances to equivalent instances with O(k) vertices and O(k?) edges [4],
and hence to size O(k?) by adjacency matrix encoding. The breakthrough work of Dell and
van Melkebeek [8] showed that no reduction to size O(k?~¢) is possible for any ¢ > 0, unless
coNP C NP/poly. Since graphs with m edges (and no isolated vertices) can be represented
with O(mlogm) bits this also implies that no reduction to O(k?~¢) edges is possible. Similarly,
we cannot get to O(k!'~¢) vertices since that would allow an adjacency matrix encoding of size
O(k?>~%). Contrast this with d-HITTING SET, i.e., VERTEX COVER on hypergraphs with edges of
size d, for which the best known reduction achieves O(k?~1) vertices and O (k%) hyperedges [11;

3

Dell and van Melkebeek [8] ruled out size O(kd_‘?). Thus the bound on the number of edges is
essentially tight, but the implied lower bound on the number of vertices is much weaker, namely
O(k'~¢). The takeaway message is that lower bounds for secondary parameters can, so far, be
only concluded from their effect on the instance size; there are no “direct” lower bound proofs.

Organization of the rest of the paper In the next section we state various definitions and
preliminary results. In we prove an upper bound of n®(™ on the number of combina-
torially distinct order types of n points in the plane, and show that there is an algorithm which
enumerates all order types of n points, thereby proving [Lemma 1| In|Section 4/ we present our
reduction from VERTEX COVER to POINT LINE COVER which proves a more general claim than
We describe an oracle communication protocol of cost O(nlogn) for POINT LINE

CovVER in|[Section 5| and this yields our main result, [Theorem 1)). We conclude in

2 Preliminaries

We use [n] to denote the set {1,2,...,n}. Throughout the paper we assume the presence of
an arbitrary but fixed Cartesian coordinate system. All geometric objects are referenced in
the context of this coordinate system. We use p, and p, to denote the x and y coordinates,
respectively, of a point p. A set of points in the plane is said to be in general position if no three
of them are collinear; a set of points which is not in general position is said to be degenerate.
For two points p # ¢ in the plane, we use pg to denote the unique line in the plane which passes
through p and ¢; we say that the line pq is defined by the pair p, q.

Let a,b, c be three points in the plane. We say that the orientation of the ordered triple
(a,b,c) is +1 if the points lie in counter-clockwise position, —1 if they lie in clockwise position
and 0 if they are collinear. Formally, let

1 az ay
M((a,b,c)) = 1 by by
1 ¢ ¢y

Then, orientation({a,b,c)) = sgndet M ({a,b, c)) where sgn is the sign function and det is the
determinant function. Note that the determinant above is zero if and only if the rows are lin-
early dependent in which case, without loss of generality, (1, a,,a,) = A(1,bz,by) + p(1, ¢z, cy).
Comparing the first coordinates on both sides of the inequality we see that 4 = 1 — A\ which
is equivalent to saying that one of the points is a convex combination of the other two. Hence
orientation({a, b, c)) is zero exactly when a, b, and ¢ are collinear.

Let P = (p1,--- , pn) be an ordered set of points, where p; = (x;,;) = P[i]. Denote by ([g])
the set of ordered triples (i, j, k) where i < j < k and i, j, k € [n]. Define o : ([g]) — {+1,0,—1}
to be the function o((4, j, k)) = orientation(p;, pj, px). The function ¢ is called the order type of
‘P. Observe that the order type of a point set depends on the order of points and not just on the
set of points. Two point sets P, Q of the same size n are said to be combinatorially equivalent
if there exist orderings P’ of P and Q' of Q such that the order types of P’ and Q' —which
are both functions of type ([g]) — {+1,0, —1}—are identical. Otherwise we say that P and Q
are combinatorially distinct. If two order types come from combinatorially equivalent (distinct)
point sets, we call the order types combinatorially equivalent (distinct).

It is not difficult to see that combinatorial distinction is a correct criterion for telling non-
equivalent instances of POINT LINE COVER apart.

Lemma 2. Let (P, k), (Q, k) be two instances of POINT LINE COVER. If the point sets P, Q are
combinatorially equivalent, then (P, k) and (Q, k) are equivalent instances of POINT LINE COVER.

4

Proof. Let P, Q be combinatorially equivalent, let |P| = |Q| = n, and let P/, Q' be orderings of P
and Q, respectively, with identical order types. Observe first that the combinatorial equivalence
provides us with a natural bijection 7 : P — Q, defined as follows. Let p € P, and let i € [n] be
such that P'[i] = p. Then 7(p) = Q'[i].

For any subset 7" C P, let n(T) denote the set {n(¢) : t € T'}. Let S C P be collinear.
For any triple a,b,c € ©(9), orientation({a,b, c)) = orientation({r~1(a),7~1(b),771(c))) = 0
where the first equality follows from the combinatorial equivalence of P and Q and the second
equality follows from the collinearity of every triple of points in S. This implies that every triple
of points in 7(S) are collinear, which is equivalent to saying that = (S) is a collinear subset of
Q. Similarly, since 7 is a bijection, if 7(.5) is collinear for some S C P then S is also collinear.
Thus, S is a collinear subset of P if and only if 7(S) is a collinear subset of Q.

Let (P, k) be a yes instance, and let £ be a set of at most k lines which cover all points in P.
Without loss of generality, each of the lines in £ passes through at least two points in P since
we can always replace a line through a single point by a line through two or more points. For
each ¢ € £, denote by Sy the subset of points of P that ¢ covers. Since Sy is collinear, so is 7(.Sy)
and thus we can define ¢ to be the line through 7 (Sy). Then, £ = {¢' : ¢ € L} covers Q since
for every g € Q there is line £ € £ that covers 7—1(g). This implies that (Q, k) is a yes instance.
Again, since 7 is a bijection, we have that if (Q, k) is a yes instance then (P, k) is a yes instance.
Thus, (P, k) is a yes instance if and only if (Q, k) is a yes instance. O

Remark 1. For the previous lemma, it is not important that a triple in P has the same orientation
as the corresponding triple (under the bijection 7) in Q. It is sufficient to ensure that a triple
in P has orientation 0 iff the corresponding triple has orientation 0. We could define and use a
coarser notion of equivalence based on this but we choose to stick to order types since they are
well studied.

We need the following straightforward polynomial-time construction of point sets with some

special properties for our reduction in|Section 4;

Lemma 3. For any positive integer n we can construct, in time polynomial in n, a set P =
{p1,...,pn} of n points with the following properties:

1. The set of points P is in general position;
2. No two lines defined by pairs of points in P are parallel; and,
3. No three lines defined by pairs of points in P pass through a common point outside P.

Proof. We describe a polynomial-time construction of such a point set. The construction is
trivial when n = 1. Assume that a set P’ of 1 < ¢ < n points with these properties has been
constructed. Observe that all the points which are “forbidden” by the set P'—that is, points
which cannot be added to the set P’ without violating one of the three properties—lie on a
bounded number of lines. For instance, the first property is violated if and only if a new point
lies on one of the (;) lines defined by pairs of points in P’. Similarly, the second and third
conditions forbid points which lie on sets of O(t3) and O(#°) lines, respectively. Further, we can
compute all these lines in polynomial time by enumerating all possibilities.

We augment the set P’ by choosing a point which is not on one of these lines. To facilitate
this we pick all our points from a grid of size n® x n®. As we argued above, only O(n®) lines
are forbidden at any point during the construction. Each of these lines intersects the n% x n®
grid in O(n%) points. Thus at most O(n!'!) of the n'? grid points are forbidden at any time, and
we augment P’ with a point on the grid which is not forbidden. Our construction consists of
repeating this step n times, and takes polynomial time. O

Graphs. All graphs in this article are finite, simple, undirected, and loopless. In general we
follow the graph terminology of Diestel’s textbook on the subject [9]. The (open) neighborhood
N¢(v) of a vertex v in a graph G is the set of all vertices u of G such that v and v are adjacent.
A vertex cover of a graph G is a subset S C V(G) of the vertex set of GG such that for every edge
e of G, there is at least one vertex in S which is incident with e.

Parameterized complexity. A parameterized problem A is a subset of ¥* x N for some finite
alphabet 3; the second component of instances (z, k) € ¥* x N is called the parameter. A kernel-
ization algorithm for problem A4 is an algorithm that given (z, k) € X* takes time polynomial in
|z| + k and outputs an equivalent instance (z’, k') of A—that is, one which preserves the yes/no
answer—such that |2/|, k¥’ are both bounded by some function h of k; this function is called the
size of the kernelization [10, [12] 28]]. If / is polynomially bounded then we have a polynomial
kernelization. One of the most important (fairly) recent results in kernelization is a framework
for ruling out polynomial kernels for certain problems, assuming that coNP ¢ NP /poly [2} 13].

Our work uses an extension of the lower bound framework that is due to Dell and van
Melkebeek [8]. Their work provided the first tool to prove concrete polynomial lower bounds
on the possible size of kernelizations. In fact, their lower bounds are proven for an abstraction
of kernelization as oracle communication protocols of bounded cost; the lower bounds carry
over immediately. (For intuition, the first player could run a kernelization with size h and
send the outcome to the oracle, who decides the instance, obtaining a protocol of cost h(k) for
deciding (z, k) € A. Of course, having a multi-round communication or using an active oracle
that queries the user appears to be more general than kernelization.)

Definition 1 (Oracle Communication Protocol). An oracle communication protocol for a lan-
guage L is a communication protocol between two players. The first player is given the input
z and has to run in time polynomial in the length of the input; the second player is computa-
tionally unbounded but is not given any part of x. At the end of the protocol the first player
should be able to decide whether x € L. The cost of the protocol is the number of bits of
communication from the first player to the second player.

Our lower bound for the size of kernels for POINT LINE COVER will follow from a reduction
from the well-known NP-hard VERTEX COVER problem (cf. [21]). We recall the problem setting.

VERTEX COVER

Input: A graph G, and a positive integer k.
Question: Does the graph G have a vertex cover of size at most k?
Parameter: k

The smallest known kernel for the problem has at most (2k — clog k) vertices for any fixed
constant ¢ [23]. This kernel can have Q(k?) edges, and so the total size of the kernel is Q(k?),
and not O(k). Dell and van Melkebeek [8] showed that this is—in a certain sense—the best
possible upper bound on the kernel size for VERTEX COVER. In fact, they proved much more
general lower bounds about the cost of a communication process used to decide languages.

Theorem 3 ([8, Theorem 2]). Let d > 2 be an integer; and ¢ a positive real. If coNP ¢ NP /poly,
then there is no protocol of cost O(n=%) to decide whether a d-uniform hypergraph on n vertices
has a vertex cover of at most k vertices, even when the first player is conondeterministic.

We will use the immediate corollary that VERTEX COVER admits no oracle communication
protocol of cost O(k?~¢) for deciding whether a graph G has a vertex cover of size at most k
(and hence also no kernelization of that size), for any £ > 0, unless coNP C NP /poly.

The POINT LINE COVER problem. A formal statement of the central problem of this paper is
as follows:

POINT LINE COVER

Input: A set of n points P in the plane, and a positive integer k.
Question: Is there a set of at most & lines in the plane which cover all the points in P?
Parameter: k

We use the following “dual” problem to POINT LINE COVER in our proof of In
the input to this problem, each line in the set £ is given as a pair (m, c¢) C Q x Q where m is the
slope of the line and c its Y'-intercept.

LINE POINT COVER

Input: A set of n lines £ in the plane, and a positive integer k.
Question: Is there a set of at most k points in the plane which cover all the lines in £?
Parameter: k

There is a polynomial-time, parameter-preserving reduction from the dual to the primal:

Lemma 4. There is a polynomial-time reduction from the LINE POINT COVER problem to the
POINT LINE COVER problem which preserves the parameter k. That is, the reduction takes an
instance (L, k) of LINE POINT COVER to an equivalent instance (P, k) of POINT LINE COVER.

Proof. The lemma follows from a well known duality of point and lines (see e.g., [6]). Given
a set of points P = {p1,---,pn} and a set of lines £L = {¢,---,¢,}, one can obtain lines
P = {p1,--- ,Pn} and points £ = {l71, e jm} such that the point /; lies on the line p; if and
only if the point p; lies on the line ¢;. In other words, each line can be replaced by a point and
each point can be replaced by a line while preserving the incidences between lines and points.

To see this, first note that it can be assumed without loss of generality that none of the given
lines ¢; is vertical. This can be easily done by a suitable rotation of the coordinate system since
there are only a finite number of directions for the y-axis to avoid. Next note that a point (a, b)
lies on a line y = ma + c if and only if the point (m, —c) lies on the line y = ax — b since both
conditions are equivalent to b = ma + ¢. Thus if p; = (a;,b;), we can take p; to be the line
y = a;x — b; and if ¢; is the line y = mjx + ¢;, we can take @j to be the point (m;, —c¢;). This
transformation can be done in polynomial time for any reasonable representation of rational
numbers.

The above “point-line duality” implies that (£, k) and (£, k) are equivalent instances of LINE
PoOINT COVER and POINT LINE COVER respectively. O

3 Enumerating Order Types

Goodman and Pollack [[14] proved that the number of combinatorially distinct order types on n
points in general position is O (n*"(1+(1))), Using this we prove an upper bound on the number
of all order types on n points, including those that come from point sets not in general position.
We defer the proof of the following lemma to the end of this section.

O(n)

Lemma 5. There are at most n combinatorially distinct order types defined by n points in R,

Thus there are only 2°(*1°8%) combinatorially distinct instances of the POINT LINE COVER
problem with n points—see In this section we consider the algorithmic problem of
enumerating all order types of n-point sets; we need such an algorithm for proving our lower
bound in Note that we do not need an efficient algorithm; we only need to show that

7

there is an algorithm which solves the problem and terminates in finite time for each n. Given
this, a first approach would be to consider a large enough N = f(n) and produce the order type
of every set of n points whose coordinates are integers in [IN]. The hope here would be that
every order type comes from some point set whose points have coordinates of finite precision.
Unfortunately, this is not true: there are order types o which cannot be realized by point sets
with rational coordinates [15]. We need a somewhat more sophisticated argument to prove

Lemma Tl

Proof of Goodman et al. [I5] show that for any function o which is the order type of
some (unknown) set of n points in general position, there exists an ordered set P of n points in
the plane such that (i) the order type of P is o, and (ii) each point in P has integer coordinates

in [22(9(")} . We show that by modifying their proof to work with the more general notion of an

order type of cells rather than points we can enumerate all order types of n points, including
those which correspond to degenerate point sets.

We start with a brief overview of the proof of Goodman et al. We are given a function
o ([’g]) — {—1,+1} which is the order type of some point set in general position. The goal
is to show that there exists an ordered point set P = (p1,...,p,) with order type o such that
the coordinates of the points p; are integers of magnitude 22°" " We first find an ordered
point set Q = (qi, ..., qn) Whose order type is c—but which may have points with non-integral
coordinates—and then modify Q to obtain P. Let z; and y; be variables which stand for the
z and y coordinates of ¢;. Let A((i,j,k)) = det M({gi,q;,qx)). Our variables must satisfy
the set of equations sgn A((i,5,k)) = o(i,5,k) ¥ {i,5,k) € (%), which can be rewritten as
A(i, j,k)) - o(i,j, k) > 0V (i,5,k) € ([g}). This set of equations can safely® be replaced by
A((i,j,k)) - (i, 4, k) > 1Y (i, 5, k) € (). Since we started with the assumption that o is the
order type of some point set, we know that this set of inequalities has a solution. Observe that
this is a set of inequalities of degree two where the coefficients have bit length 1. Hence, by a
result of Grigor'ev and Vorobjov [[17] they have a solution Q = (g1, ...,¢,) € R?" within a ball
of radius 22°" around the origin. It can be shown that the minimum distance between a point
in Q and the line determined by two other points in Q is bounded away from 0, and that the
minimum angle defined by three points in Q is bounded away from 0. This is because (i) the
determinants in our inequalities have magnitude at least 1, and (ii) the points in Q lie inside a
ball of bounded radius. It follows that moving these points by small distances does not change
their order type, and so each of these points can be moved to a point whose coordinates are
integral multiples of some ¢ € 9-200"), By scaling up we get integral coordinates of magnitude
at most 22°" . This gives us the required set P.

This strategy breaks down when ¢ is an order type of a degenerate point set. To see why;, let
us consider the order type o of a degenerate point set and proceed exactly as above. Since we
now have collinear triples, our set of inequalities has the following form

A, k) - ol g, k) > 1 Y (i, j,k) € (@) s.t. o(i, j, k) # 0
(D
A6, 5, k) =0 Y (i, j, k) € <[§]> s.t. o(i, j, k) = 0,

and the Grigor’ev-Vorobjov bound still holds. The problem arises in the step where we move
some point slightly to make its coordinates multiples of ¢/ € 2-2°Y While this cannot make a
clockwise triple counter-clockwise or vice versa, it could easily destroy the collinearity of triples
and thus violate the set of equations.

3See the paper of Goodman et al. [15] for all technical details.

To get around this problem, we replace points with bigger regions in the argument. We first
extend the notion of orientation from triples of points to triples of convex regions in the plane,
as follows. Let r,, 1, and r. be three convex regions in the plane. We assign an orientation
+1 (resp. —1) to the triple (ry,ry,r.) if for each choice of points p, € 74,0, € 75, and p, €
r. the triple (p,,py, p.) has orientation +1 (resp. —1). If a triple (rq,r,r.) is not assigned
an orientation according to this rule then we assign it the orientation 0; this happens if and
only if there is a line intersecting the three regions. As with points, we define an order type

for an ordered set of regions (ri,---,7,) to be the function ¢ which satisfies o((i, j, k)) =
orientation(r;, v, 71).
Once we have a solution Q@ = (g1, ...,q,) € R?*" to the inequalities as described above,

we superimpose a grid with cells of side length 2727 5nto the coordinate system. For each
qgi € Q, we take r; to be the cell in which the point ¢; lies. Observe that the order type of
these 7;’s is the same as the order type of the ¢;’s. This can be seen as follows. Whenever a
triple (¢;,, ¢i,, ¢i5) Of points in Q have non-zero orientation, any three points a, b, ¢ lying in the
cells r;,, ;,, and r;, respectively have the same orientation since, as argued before, moving the
points slightly does not change orientation. Also, if a triple of points has orientation 0 then the
corresponding cells have orientation 0 by definition. As before, we can scale up the grid so that
the r;’s are cells of side length 1 whose corners have integer coordinates. It follows that we can
enumerate all order types defined by n points by (i) taking an integer grid of size 22°Y "and
(ii) listing all order types defined by some n-subset of the cells in this grid. O

Proof of[Lemma 5] For any given order type defined by an ordered point set P = (p1,...,pn),
we show that there is an ordered set of 2n points in general position whose order type encodes
the order type of P. Together with the Goodman-Pollack bound, this shows that the number of
combinatorially distinct order types defined by any set of n points (not necessarily in general
position) is n©™),

We use the ideas described in the proof of As we did there, we obtain points
qi,---,qn so that (i) the order type of (qi,...,q,) is the same as that of (p1,...,p,) and (i)
moving ¢; inside a small cell r; around it does not change orientations of triples with non-zero
orientations. If required we also shift the superimposed grid in such a way that no point g¢;
lies on the boundary of the corresponding region r;. For each point ¢;, we pick a line segment
s; containing ¢; such that (i) the end-points of s; lie in r; and (ii) the 2n end-points of these
segments are in general position. Such segments can be found by picking the end-points one by
one. We always pick them inside the appropriate region to satisfy the first condition and when
we pick the next one, there are only a finite number of lines to avoid in order satisfy the second
condition. As before, we get that the order type of the ordered segment set (si,...,s,) is the
same as that of the ordered point set (py, . . ., p,). Denote the end-points of s; by s} and s?. Then,
for any triple of points (p;, p;, px) with orientation +1 all the eight triples of the form (s}, s, 51)
where u,v,w € {1,2} have the orientation +1. The same holds for triples with orientation
—1. Furthermore, for any triple (p;, p;, pr) with orientation 0, the eight triples do not have the
same orientation. To see this, consider the line ¢ through ¢;, ¢;, and ¢;,. Clearly ¢ intersects the
segments s;, s;, and s;. We move ¢ parallel to itself until it passes through an end-point = of
one of the segments, say s;, for the first time. (We skip the parallel move if ¢ is collinear with a
segment and just let = be either endpoint. Note that by general position of segment endpoints no
further endpoints are on / in this case.) Then, keeping this point x fixed we rotate /, if required,
until it passes through the end-point of another segment, say s;, for the first time. (We skip
rotation if the parallel move already hit two segment endpoints; as they are in general position
we cannot hit three at the same time.) The line /¢ still intersects s, and therefore the two end-
points of s are on opposite sides of ¢ (neither of them can be on /¢ since we assumed that the

9

(G,k) (G, 2k)

- W<

Figure 1: Reduction, phase one.

set of end-points is in general position). Thus orientation({x,y, s}.)) # orientation((x,y, s)).

Thus, given the orientations of ordered triples in the set {s},s?,--- s}, s2} we can deduce
the orientations of ordered triples in {p1,--- ,p,}. Hence the order type of (s}, s --- sl s2)
encodes the order type of (p1,--- ,pp)- O

4 Lower Bound on Kernel Size

In this section we prove Theorem [2 The main component of our proof is a polynomial-time
reduction from VERTEX COVER to LINE POINT COVER in which the parameter value is exactly
doubled.

Lemma 6. There is a polynomial-time reduction from VERTEX COVER to LINE POINT COVER which
maps instances (G, k) of VERTEX COVER to equivalent instances (L, 2k) of LINE POINT COVER.

Proof. Given an instance (G, k) of VERTEX COVER with n := |V(G)| and m := |E(G)|, we
construct an equivalent instance (£, 2k) of LINE POINT COVER in two phases.

In the first phase we construct a graph G’ such that G’ has a vertex cover of size at most 2k
if and only if G has a vertex cover of size at most k. To do this, we first make two copies Gy, G1
of the graph G. For a vertex v € V(G), let vy, v; denote its copies in Gy and G, respectively.
For each edge {u,v} € E(G), we add the two edges {ug,v1}, {u1,v0} to G'. This completes
the construction. Note that there are four edges in G’ which correspond to each edge in G:
these consist of the two copies of the edge “within” Gy and G;, and the two edges “across”
Gy and G, added in the second step. Formally, we set V(G’) = {vp,v1 | v € V(G)}, and
E(G) = {{ui, v} | i,5 € {0,1} A {u,v} € E(G)}; see[Figure 1} As we show in[Claim 1} G’ has
a vertex cover of size at most 2k if and only if G has a vertex cover of size at most k.

In the second phase we start with the graph G’ which is the output of the first phase, and
construct a set £ of lines in the plane. We do this in such a way that there is a set of at most 2k
points in the plane which cover all the lines in £ if and only if the graph G’ has a vertex cover
of size at most 2k. We start by constructing a set of 2n points* P = {p1,...,p2,} in the plane
which has the following properties:

1. The set of points P is in general position;
2. No two lines defined by pairs of points in P are parallel; and,

3. No three lines defined by pairs of points in P pass through a common point outside P.

“These points will not be part of the reduced instance.

10

By[Lemma 3] we can construct the set P in time polynomial in n.

We associate, in an arbitrary fashion, a distinct point P, € P with each vertex v € V(G’).
We initialize £ to be the empty set. Now for each edge {u, v} of G’, we add the line L, = P, P,
to L. This completes the construction; (£, 2k) is the reduced instance of LINE POINT COVER. We
now show that this is indeed a reduction.

Completeness. Assume that the starting instance (G, k) of VERTEX COVER is yes. This implies—
[Claim 1}—that (G, 2k) is yes, and it suffices to show that (£, 2k) is yes for LINE POINT COVER.
Let S C V(G') with |S| < 2k be a vertex cover of G'. Consider the set Q = {P, | v € S} of at
most 2k points in the plane. By construction, any line L € L is of the form L = P, P, for some
u,v € V(G') with {u,v} € E(G’). Since S is a vertex cover of G', we know that S N {u,v} # 0.
Hence QN {P,, P,} # 0, and so Q contains a point which covers the line L. It follows that Q is
a line point cover for £ of size at most 2k and that (£, 2k) is yes for LINE POINT COVER.

Soundness. Now suppose (L, 2k) is yes for LINE POINT COVER. Note that in general, a solution
for (£, 2k) could contain points which do not belong to the set P that we used for the construc-
tion; these points do not correspond to vertices of G’. Indeed, any pair of lines in £ meet at
a point, but not every pair of edges in G’ share a vertex. We show that there exists a solution
for (£, 2k) which consists entirely of points which correspond to vertices in G'. We start with
a smallest solution Q; |Q| < 2k of (£, 2k) which has a minimum number of points that do not
correspond to vertices of G’, i.e., with as few points P € Q \ P as possible. Let us call all points
not in P bad points; points in P are good points. We define S(Q) := {v € V(G') | P, € Q} as
the set of vertices of G’ that correspond to good points which are in Q.

Suppose Q contains a bad point P. Since Q is a smallest solution, there is at least one line
in £ which (i) is covered by P, and (ii) is not covered by any other point in Q. If there is exactly
one such line, say P,P,, then we may replace P by P, or P, in Q and reduce the number of
bad points, a contradiction. Now from the third property of the point set P and from the fact
that every line in £ is defined by some pair of points in P, we get that point P covers exactly
two lines, say L;, L» € £, and that these are not covered by other points of Q.

We now examine the structure around line L; more closely. We know that L; = P, Py, for
some u;,v; € V(G') with 4,5 € {0,1}. We assume for the sake of convenience that i = j = 0,
so that L; = P, P,,; a symmetric argument works when ¢ = j = 1 or¢ # j. Since P is the
only point in Q which covers L;, we know that P,, P,, ¢ Q and hence that uy, vy ¢ S(Q). We
also know from the construction that (i) {Fy, P, ; 7,5 € {0,1}} C £ and (i) {{w;,v;};4,j €
{0,1}} € E(G"). For any vertex v € V(G’)\ S(Q) the stated minimal properties of Q imply—see
that |Ng/(v) \ S(Q)| < 1, and so we get that N/ (v) \ S(Q) = {uo} and Negr(uo) \
S(Q) = {wo}. It follows that v; € S(Q) and that P,, is a good point in Q.

By construction we have that N¢/(vg) = Ng/(v1), and hence that N/ (v1) \ S(Q) = {uo}.
From the first property of the point set P we get that the lines in £ which are covered by the
point P,, all correspond to edges of G’ which are at v;. It follows that the set @' = (Q\ {P,, }) U
{P,,} covers all lines in £ since it contains the corresponding points P,, for all neighbors w of
vi. Now (i) |Q'| = |Q|, (i) P € @/, (iii) Q has the same number of good points as Q, and
(iv) the good points in Q' cover all the lines that were covered by the good points of Q, and in
addition they cover L; = P, P,,. Hence there is at most one line in L—namely, Lo—which (i)
is covered by P, and (ii) is not covered by any other point in Q'. By previous arguments this
contradicts the minimality of Q' and hence of Q.

It follows that there is a set Q of at most 2k points which (i) covers all the lines in £ and
(ii) has only good points. We claim that S(Q) is a vertex cover of G’ of size at most 2k: For
any edge {u,v} € E(G’), the corresponding line in £ is covered by a good point in Q, so it is
covered by P, or P,. Thus S(Q) contains u or v, and |S(Q)| = |Q| < 2k. It follows that (G’, 2k)
and hence also (G, k) are yes for VERTEX COVER.

11

Wrap-up. It is not difficult to see that the first phase of the reduction can be done in polynomial
time, and we have argued that the second phase can also be done in polynomial time. O

We now prove the claims which we use in the proof of Lemma 6]

Claim 1. Let G be any graph, and let G’ be the graph obtained from G by applying the construction
from the first phase of the reduction in the proof of Then G has a vertex cover of size at
most k if and only if G’ has a vertex cover of size at most 2k.

Proof. For the forward direction, let S C V(G) be a vertex cover of G, of size at most k. Then
S" = {vg,v1 | v € S} is a vertex cover of G’, of size at most 2k. Since S’ contains exactly two
vertices for each vertex of S, we have that |S’| = 2|S| < 2k. To see that S’ is a vertex cover of
G, assume for the sake of contradiction that an edge {x,y} of G’ is not covered by S’. There
are four cases to consider, which reduce by symmetry to the following two.

1. Both end points of the edge {z, y} belong to the subgraph G of G. (A symmetric argument
holds when both = and y belong to the subgraph G;.) Then from the construction, there
is an edge {u,v} € F(G) such that = ug, y = vo. Since neither z nor y is in 5’, it follows
from the construction of S’ that neither of {u, v} isin S.

2. Vertices x and y belong to two distinct subgraphs G;;i € {0, 1}. Without loss of generality,
let x € V(Gp),y € V(G1). Observe that the construction adds such an edge {z,y} to G’
exactly when (i) there is an edge {u,v} € F(G), and (ii) (z = ug,y = v1) V (x = vg,y =
uy1). In either case, since neither z nor y is in 5, it follows from the construction of S’
from S that neither of {u,v} isin S.

In each case, S does not cover the edge {u, v} in G, a contradiction.

For the reverse direction, let S C V(G’) be an inclusion-minimal vertex cover of G’, of size
at most 2k. If G’ has a vertex cover of size at most 2k, then it certainly has a minimal vertex
cover of size at most 2k. We first show that for any vertex u € V(G), either (i) both the copies
ug,up are in S’, or (ii) neither copy is in S’. Suppose not, and exactly one of these, say uy, is
in S’. Since S’ is a minimal vertex cover, uy covers at least one edge, and so the neighborhood
N (up) of ug is non-empty. Now, from the construction of G’ we get that N(ug) = N(uy), and
since u; ¢ S’, it follows that all vertices in N(u;) = N(up) must be in S’. But then 5"\ {up} isa
strictly smaller vertex cover of G/, a contradiction.

Thus S’ can be partitioned into pairs of vertices {{ug,u1} | v € S C V(G)}. We claim that
S is a vertex cover of graph G, of size at most k. The claim on size follows immediately from
the construction of S. To see that S is a vertex cover of G, observe that if {z,y} € E(G) and
{z,y} NS = 0, then (i) {xo,21,y0,y1} NS’ = 0 by the construction of S and (ii) all the four
edges {{z;,vi} | i € {0,1}} are in E(G’) by the construction of G’, which together contradict
the assumption that S’ is a vertex cover of G'. O

Claim 2. Let (L, 2k) be an instance of LINE POINT COVER constructed as in the second phase of
the reduction in the proof of Let P,G', P, be as in the construction, and let Q be a
smallest set of points which (i) cover all the lines in £ and (ii) has as few points P € Q \ P as
possible. Let S(Q) := {v € V(G') | P, € Q}. Then for any vertex v € V(G') \ S(Q) we have that
[Ner(v) \ S(Q) < 1.

Proof. We reuse the notation and terminology defined in the proof of Suppose a
vertex v € V(G') \ S(Q) has two neighbours u,w which are not in S(Q). Then the lines
L, = P,P, and Ly = P,P, which intersect at the good point P, are covered by two bad
points—say Pi, P, respectively—in Q. By an argument presented in the proof of we

12

know that each of P;, P, covers exactly two lines in £, and that these lines are not covered
by any other point in Q. Let L;, L} be the two lines covered by P, for ¢ € {1,2}, and let P’
be the intersection of L} and L. Thus the two bad points P, P, together cover the subset
{L;, L |i € {1,2}} of £, but so do the two points P,, P’ of which at most one is a bad point.
Thus (Q \ {P1, P»}) U{P,, P’} is a smallest set of points which (i) cover all the lines in £ and
(ii) has strictly fewer bad points than Q, a contradiction. O

Using [Lemma 6| we can prove a stronger statement than

Theorem 4. Let ¢ > 0. The POINT LINE COVER problem admits no oracle communication protocol
of cost O(k>~¢) for deciding instances (P, k), unless coNP C NP /poly.

Proof. Suppose POINT LINE COVER admits an oracle communication protocol of cost O(k?~¢)
that decides any instance (P, k). then yields a protocol of the same cost for LINE
POINT COVER. Combining this with the reduction from VERTEX COVER to LINE POINT COVER
from [Lemma 6| which has a linear parameter increase (i.e., k — 2k), we get a protocol of cost
O(k?~¢) for deciding VERTEX COVER instances (G, k). [Theorem 3|now implies coNP C NP/poly,
as claimed. O

Theorem 2|is now immediate.

Proof of [Theorem 2} If POINT LINE COVER has a kernel of size O(k*~¢), then the polynomially-
bounded first player in the oracle communication protocol could compute this kernel and send
it to the second player who, being computationally unbounded, can compute and return the
correct one-bit answer (yes or no). The cost of this protocol is O(k?~¢), and by [Theorem 4] this
implies coNP C NP/poly. O

5 Lower bound on the number of points

In this section we prove our main result, namely that the straightforward reduction of POINT
LINE COVER instances (P, k) to k? points cannot be significantly improved. Recall that, unlike
for VERTEX COVER, we do not know of an efficient encoding of POINT LINE COVER to instances
of near linear size in the number of points. In the case of VERTEX COVER it is straightforward
to encode instances with m edges using O(mlogm) bits. Together with the known O(k%~¢)
lower bound on kernel size [8], this implies an O(k?~¢) lower bound on the number of edges for
VERTEX COVER kernels. Obtaining an efficient encoding of POINT LINE COVER to instances of
near linear size in the number of points is an old open problem in computational geometry [15].
The following lemma gets around this handicap by providing an oracle communication protocol
of cost near linear in the number of points.

Lemma 7. There is an oracle communication protocol of cost O(nlogn) for deciding instances of
POINT LINE COVER with n points.

Proof. We describe the claimed oracle communication protocol for deciding POINT LINE COVER
instances. The polynomially-bounded player holding the input is called Alice, and the compu-
tationally unbounded player is called Bob. Recall that by [Definition 1] the cost of a protocol is
the number of bits sent from Alice to Bob; in contrast, Bob can sent any amount of information
to Alice (who, however, has only polynomial time in the input size for reading it).

Alice and Bob both use the following scheme to represent order types as strings over the
alphabet {+1,0, —1}. Recall that the order type of an ordered set of n points P = (1,...,n) isa
certain function o : ([g]) — {+1,0, —1}. To form the string representing o, we first arrange the

13

set ([g]) in increasing lexicographic order to get a list £. Then we replace each = € £ by o(x).
This gives us the desired string; we denote it the Order Type Representation of the ordered set,
or OTR for short. Observe that each OTR can be encoded using O(n?) bits.

From [Lemma 5 we know that the number of combinatorially distinct order types of n-point
sets is n?("). Since for each order type there are at most n! other order types combinatorially
equivalent to it, the number of different order types of n-point sets is at most n! - n®(" = RO,
This indicates that the pertinent information which Alice holds is O(nlogn) bits. But we do not
know of a polynomial-time procedure which encodes this information into these many bits, and
so Alice cannot just employ such an encoding and send the result to Bob for him to solve the
instance. We use the following protocol to get around this problem.

1. Alice sends the value n of the number of points in the input set to Bob in binary encoding.

2. Alice fixes an arbitrary ordering of the input point set. She then computes the OTR of this
ordered set.

3. Bob generates a list of all n°(™ possible order types; by this is a computable
task. He then computes the OTRs of these order types and sorts them in lexicographically
increasing order.

4. Alice and Bob now engage in a conversation where Bob uses binary search on the sorted
list to locate the OTR which Alice holds. Bob sends the median OTR M in his list to Alice.
Alice replies, in two bits, whether the OTR she holds is smaller, equal to, or larger than
M in lexicographic order. If the answer is not “equal”, Bob prunes his list accordingly,
throwing out all OTRs which cannot be the one held by Alice. By repeating this procedure
O(log(n®™)) = O(nlogn) times, Bob is left with a single OTR S which is identical to the
one held by Alice.

5. Bob now computes the size of a smallest point-line cover of any point set which has the
order type S, and sends this number to Alice. Alice compares this number with the input
k and answers yes or no accordingly.

It is not difficult to see that Alice can do her part of this procedure in polynomial time, and
that all tasks which Bob has to do are computable. The total cost of the protocol is logn +
O(nlogn) = O(nlogn), as claimed. O

This lemma and the kernel on O(k?) points together imply an oracle communication proto-
col for POINT LINE COVER that matches the lower bound from up to k°() factors.
This suggests that a kernelization or compression to bit size O(k*+°(1)) may be possible; at least
it is impossible to get better lower bounds via oracle communication protocols.

Corollary 1. The POINT LINE COVER problem has an oracle communication protocol of cost
O(k?1og k) for deciding instances (P, k).

Now, using the protocol from[Lemma 7]in place of an efficient encoding, it is straightforward
to complete the claimed lower bound of O(k*~¢) on the number of points in a kernel.

Proof of Theorem[I] By[Lemma 7} such a kernelization would directly give an oracle communi-
cation protocol for POINT LINE COVER of cost O(k2~¢'): Given an instance (P, k), Alice applies
the (polynomial-time) kernelization that generates an equivalent instance with O(k%~¢) points.
Then she proceeds by using the protocol from the proof of Lemma 7}

As we already showed in there is no O(k*>~¢") protocol for POINT LINE COVER
for any ¢’ > 0, unless coNP C NP /poly. This completes the proof. O

14

6 Conclusion

We took up the question of whether the known simple reduction of POINT LINE COVER instances
(P, k) to equivalent instances with k? points can be significantly improved. This has been posed
as an open problem by Lokshtanov in his PhD Thesis [25]] and also at the open problem sessions
of various meetings of the Parameterized Algorithms community. Our main result,
answers Lokshtanov’s question in the negative.

Along the way, we proved that no polynomial-time reduction to size O(k?~¢) bits is possible
either. Now, starting with the reduction to k2 points, one can encode the order type of the
reduced instance using lambda matrices [14] into O(k*log k) bits. Let us recall however, that
our lower bound (like all lower bounds via the same framework [8]) holds also for oracle
communication protocols. Since we devise a protocol of cost O(k?logk), our lower bound
seems to be the best possible with these methods. We pose as an open problem whether the gap
between the upper and lower bound in the total size of a reduced instance can be closed; we
expect that the “correct bound” is O(k?) bits.

We briefly mention a variant of the SET COVER problem where sets are restricted to have
pairwise intersections of cardinality at most one (1-ISC) [22]], of which POINT LINE COVER is
a special case. It is not hard to see that the reduction to k2 points carries over directly to a
reduction of the ground set of such a 1-ISC instance to k? elements if we are looking for a set
cover of size most k. This also gives a polynomial kernelization of the problem of size O(k° log k)
bits since there are at most (k;) sets (each pair of ground set elements is in at most one of them),
each containing at most k elements whose identity can be encoded in O(log k) bits. (A more
careful analysis yields an upper bound of O(k*logk) bits.) The lower bound for the cost of
oracle communication protocols for PLC carries over to this problem as well, and so 1-ISC has
no such protocol or kernelization of cost/size O(k*~¢) for any ¢ > 0 unless coNP C NP/poly.
However, we do not know of a protocol for deciding 1-ISC instances with ground set of n
elements at cost O(n'*°(1)), and so we do not have a bound for the size of the ground set.
Thus, unlike for PLC, we also have no protocol of cost O(k?logk) for 1-ISC to (essentially)
match the lower bound for protocols. Note that the lower bound on the number of points does
not transfer from PLC to (the ground set size of) 1-ISC since using a reduction for 1-ISC on a
PLC instance does not necessarily result in a PLC instance. We ask whether the gap between
upper and lower bounds for kernels for 1-ISC can be closed, and whether, perhaps similar to
our protocol for PLC, a tight lower bound for the ground set elements can be proven.

15

References

[1]
[2]

[3]

[4]
[5]
(6]

[7]
(8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci., 76(7):524—
531, 2010.

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems
without polynomial kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009.

Bjorn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons is APX-
hard. In Proceedings of the 13th Canadian Conference on Computational Geometry, University of
Waterloo, Ontario, Canada, August 13-15, 2001, pages 45-48, 2001.

Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further improve-
ments. J. Algorithms, 41(2):280-301, 2001.

Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems on graphs
with small degeneracy. CoRR, abs/1305.4914, 2013.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry.
Springer-Verlag, 3rd revised edition, 2008.

Holger Dell and Daniel Marx. Kernelization of packing problems. In Rabani [29], pages 68-81.
Holger Dell and Dieter van Melkebeek. Satisfiability Allows No Nontrivial Sparsification Unless
The Polynomial-Time Hierarchy Collapses. In Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 251-260. ACM,
2010.

Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, Third edition, 2005.

Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag, New York,
1999.

Vladimir Estivill-Castro, Apichat Heednacram, and Francis Suraweera. Reduction rules deliver
efficient fpt-algorithms for covering points with lines. ACM Journal of Experimental Algorithmics,
14, 2009.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs for
NP. J. Comput. Syst. Sci., 77(1):91-106, 2011.

Jacob E. Goodman and Richard Pollack. The complexity of point configurations. Discrete Applied
Mathematics, 31:167-180, 1991.

Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of order types
requires exponential storage. In David S. Johnson, editor, STOC, pages 405-410. ACM, 1989.
Magdalene Grantson and Christos Levcopoulos. Covering a set of points with a minimum number
of lines. In Tiziana Calamoneri, Irene Finocchi, and Giuseppe F. Italiano, editors, Algorithms and
Complexity, 6th Italian Conference, CIAC 2006, Rome, Italy, May 29-31, 2006, Proceedings, volume
3998 of Lecture Notes in Computer Science, pages 6-17. Springer, 2006.

D. Yu. Grigor’ev and N.N. Vorobjov Jr. Solving systems of polynomial inequalities in subexponential
time. Journal of Symbolic Computation, 5(12):37 — 64, 1988.

Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics, 20:29-42, 1991.

Apichat Heednacram. The NP-Hardness of Covering Points with Lines, Paths and Tours and their
Tractability with FPT-Algorithms. Phd thesis, Griffith University, Australia, 2010.

Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower bounds
for kernelization. In Rabani [29]], pages 104-113.

Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a symposium on
the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, The IBM Research Symposia Series, pages 85-103.
Plenum Press, New York, 1972.

V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with intersection 1. In Ugo
Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata, Languages and Programming, 27th
International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proceedings, volume

16

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

1853 of Lecture Notes in Computer Science, pages 624—635. Springer, 2000.

Michael Lampis. A kernel of order 2k — clog k for vertex cover. Information Processing Letters,
111(23-24):1089-1091, 2011.

Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational Geometry,
33(4):717-729, 2005.

Daniel Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD thesis, Univer-
sity of Bergen, Norway, 2009.

Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization - preprocessing with a
guarantee. In Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Daniel Marx, editors, The
Multivariate Algorithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer Science,
pages 129-161. Springer, 2012.

Nimrod Megiddo and Arie Tamir. On the Complexity of Locating Linear Facilities in the Plane.
Operations Research Letters, 1(5):194-197, 1982.

Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

Yuval Rabani, editor. Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. SIAM, 2012.

Jianxin Wang, Wenjun Li, and Jianer Chen. A parameterized algorithm for the hyperplane-cover
problem. Theoretical Computer Science, 411(44-46):4005-4009, 2010.

Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26:287-300, 1983.

17

	1 Introduction
	2 Preliminaries
	3 Enumerating Order Types
	4 Lower Bound on Kernel Size
	5 Lower bound on the number of points
	6 Conclusion

